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Fused sparsity and robust estimation for linear models with unknown variance

In this paper, we develop a novel approach to the problem of learning sparse representations in the context of fused sparsity and unknown noise level. We propose an algorithm, termed Scaled Fused Dantzig Selector (SFDS), that accomplishes the aforementioned learning task by means of a second-order cone program. A special emphasize is put on the particular instance of fused sparsity corresponding to the learning in presence of outliers. We establish finite sample risk bounds and carry out an experimental evaluation on both synthetic and real data.

Introduction

Consider the classical problem of Gaussian linear regression 1 :

Y = Xβ * + σ * ξ, ξ ∼ N n (0, I n ), (1) 
where Y ∈ R n and X ∈ R n×p are observed, in the neoclassical setting of very large dimensional unknown vector β * . Even if the ambient dimensionality p of β * is larger than n, it has proven possible to consistently estimate this vector under the sparsity assumption. The letter states that the number of nonzero elements of β * , denoted by s and called intrinsic dimension, is small compared to the sample size n. Most famous methods of estimating sparse vectors, the Lasso and the Dantzig Selector (DS), rely on convex relaxation of ℓ 0 -norm penalty leading to a convex program that involves the ℓ 1 -norm of β. More precisely, for a given λ > 0, the Lasso and the DS [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF][START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF][START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF] are defined as

β L = arg min β∈R p 1 2 Y -Xβ 2 2 + λ β 1 (Lasso) β DS = arg min β 1 subject to X ⊤ (Y -Xβ) ∞ ≤ λ. (DS)
The performance of these algorithms depends heavily on the choice of the tuning parameter λ.

Several empirical and theoretical studies emphasized that λ should be chosen proportionally to the noise standard deviation σ * . Unfortunately, in most applications, the latter is unavailable. It is therefore vital to design statistical procedures that estimate β and σ in a joint fashion. This topic received special attention in last years, cf. [START_REF] Giraud | High-dimensional regression with unknown variance[END_REF] and the references therein, with the introduction of computationally efficient and theoretically justified σ-adaptive procedures the square-root Lasso [START_REF] Belloni | Square-root lasso: Pivotal recovery of sparse signals via conic programming[END_REF] (a.k.a. scaled Lasso [START_REF] Sun | Scaled sparse linear regression[END_REF]) and the ℓ 1 penalized log-likelihood minimization [START_REF] Städler | ℓ1-penalization for mixture regression models[END_REF].

In the present work, we are interested in the setting where β * is not necessarily sparse, but for a known q × p matrix M, the vector Mβ * is sparse. We call this setting "fused sparsity scenario".

The term "fused" sparsity, introduced by [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF], originates from the case where Mβ is the discrete derivative of a signal β and the aim is to minimize the total variation, see [START_REF] Harchaoui | Catching change-points with lasso[END_REF][START_REF] Rinaldo | Properties and refinements of the fused lasso[END_REF] for a recent overview and some asymptotic results. For general matrices M, tight risk bounds were proved in [START_REF] Iouditski | On the accuracy of l1-filtering of signals with block-sparse structure[END_REF]. We adopt here this framework of general M and aim at designing a computationally efficient procedure capable to handle the situation of unknown noise level and for which we are able to provide theoretical guarantees along with empirical evidence for its good performance.

This goal is attained by introducing a new procedure, termed Scaled Fused Dantzig Selector (SFDS), which is closely related to the penalized maximum likelihood estimator but has some advantages in terms of computational complexity. We establish tight risk bounds for the SFDS, which are nearly as strong as those proved for the Lasso and the Dantzig selector in the case of known σ * . We also show that the robust estimation in linear models can be seen as a particular example of the fused sparsity scenario. Finally, we carry out a "proof of concept" type experimental evaluation to show the potential of our approach.

2 Estimation under fused sparsity with unknown level of noise 2.1 Scaled Fused Dantzig Selector

We will only consider the case rank(M) = q ≤ p, which is more relevant for the applications we have in mind (image denoising and robust estimation). Under this condition, one can find a (pq) × p matrix N such that the augmented matrix M = [M ⊤ N ⊤ ] ⊤ is of full rank. Let us denote by m j the jth column of the matrix M -1 , so that

M -1 = [m 1 , ..., m p ].
We also introduce:

M -1 = [M † , N † ], M † = [m 1 , ..., m q ] ∈ R p×q , N † = [m q+1 , ..., m p ] ∈ R p×(p-q) .
Given two positive tuning parameters λ and µ, we define the Scaled Fused Dantzig Selector (SFDS) ( β, σ) as a solution to the following optimization problem:

minimize q j=1 Xm j 2 |(Mβ) j | subject to        |m ⊤ j X ⊤ (Xβ -Y )| ≤ λσ Xm j 2 , j ≤ q; N ⊤ † X ⊤ (Xβ -Y ) = 0, nµσ 2 + Y ⊤ Xβ ≤ Y 2 2 .

(P1)

This estimator has several attractive properties: (a) it can be efficiently computed even for very large scale problems using a second-order cone program, (b) it is equivariant with respect to the scale transformations both in the response Y and in the lines of M and, finally, (c) it is closely related to the penalized maximum likelihood estimator. Let us give further details on these points.

Relation with the penalized maximum likelihood estimator

One natural way to approach the problem of estimating β * in our setup is to rely on the standard procedure of penalized log-likelihood minimization. If the noise distribution is Gaussian, ξ ∼ N n (0, I n ), the negative log-likelihood (up to irrelevant additive terms) is given by

ℓ(Y , X; β, σ) = n log(σ) + Y -Xβ 2 2 2σ 2 .
In the context of large dimension we are concerned with, i.e., when p/n is not small, the maximum likelihood estimator is subject to overfitting and is of very poor quality. If it is plausible to expect that the data can be fitted sufficiently well by a vector β * such that for some matrix M, only a small fraction of elements of Mβ * are nonzero, then one can considerably improve the quality of estimation by adding a penalty term to the log-likelihood. However, the most appealing penalty, the number of nonzero elements of Mβ, leads to a nonconvex optimization problem which cannot be efficiently solved even for moderately large values of p. Instead, convex penalties of the form j ω j |(Mβ) j |, where w j > 0 are some weights, have proven to provide high accuracy estimates at a relatively low computational cost. This corresponds to defining the estimator ( β PL , σ PL ) as the minimizer of the penalized log-likelihood

l(Y , X; β, σ) = n log(σ) + Y -Xβ 2 2 2σ 2 + q j=1 ω j |(Mβ) j |.
To ensure the scale equivariance, the weights ω j should be chosen inversely proportionally to σ: ω j = σ -1 ωj . This leads to the estimator

( β PL , σ PL ) = arg min β,σ n log(σ) + Y -Xβ 2 2 2σ 2 + q j=1 ωj |(Mβ) j | σ .
Although this problem can be cast [START_REF] Städler | ℓ1-penalization for mixture regression models[END_REF] as a problem of convex minimization (by making the change of parameters φ = β/σ and ρ = 1/σ), it does not belong to the standard categories of convex problems that can be solved either by linear programming or by second-order cone programming or by semidefinite programming. Furthermore, the smooth part of the objective function is not Lipschitz which makes it impossible to directly apply most first-order optimization methods developed in recent years. Our goal is to propose a procedure that is close in spirit to the penalized maximum likelihood but has the additional property of being computable by standard algorithms of second-order cone programming.

To achieve this goal, at the first step, we remark that it can be useful to introduce a penalty term that depends exclusively on σ and that prevents the estimator of σ * from being too large or too small. One can show that the only function (up to a multiplicative constant) that can serve as penalty without breaking the property of scale equivariance is the logarithmic function. Therefore, we introduce an additional tuning parameter µ > 0 and look for minimizing the criterion

nµ log(σ) + Y -Xβ 2 2 2σ 2 + q j=1 ωj |(Mβ) j | σ . (2) 
If we make the change of variables φ 1 = Mβ/σ, φ 2 = Nβ/σ and ρ = 1/σ, we get a convex function for which the first-order conditions [START_REF] Städler | ℓ1-penalization for mixture regression models[END_REF] take the form

m ⊤ j X ⊤ (Y -Xβ) ∈ ωj sign({Mβ} j ), (3) 
N ⊤ † X ⊤ (Y -Xβ) = 0, (4) 1 nµ Y 2 2 -Y ⊤ Xβ = σ 2 . (5) 
Thus, any minimizer of (2) should satisfy these conditions. Therefore, to simplify the problem of optimization we propose to replace minimization of (2) by the minimization of the weighted ℓ 1norm j ωj |(Mβ) j | subject to some constraints that are as close as possible to [START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF][START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF][START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF]. The only problem here is that the constraints (3) and ( 5) are not convex. The "convexification" of these constraints leads to the procedure described in (P1). As we explain below, the particular choice of ωj s is dictated by the desire to enforce the scale equivariance of the procedure.

Basic properties

A key feature of the SFDS is its scale equivariance. Indeed, one easily checks that if ( β, σ) is a solution to (P1) for some inputs X, Y and M, then α( β, σ) will be a solution to (P1) for the inputs X, αY and M, whatever the value of α ∈ R is. This is the equivariance with respect to the scale change in the response Y . Our method is also equivariant with respect to the scale change in M. More precisely, if ( β, σ) is a solution to (P1) for some inputs X, Y and M, then ( β, σ) will be a solution to (P1) for the inputs X, Y and DM, whatever the q × q diagonal matrix D is. The latter property is important since if we believe that for a given matrix M the vector Mβ * is sparse, then this is also the case for the vector DMβ * , for any diagonal matrix D. Having a procedure the output of which is independent of the choice of D is of significant practical importance, since it leads to a solution that is robust with respect to small variations of the problem formulation.

The second attractive feature of the SFDS is that it can be computed by solving a convex optimization problem of second-order cone programming (SOCP). Recall that an SOCP is a constrained optimization problem that can be cast as minimization with respect to w ∈ R d of a linear function a ⊤ w under second-order conic constraints of the form

A i w + b i 2 ≤ c ⊤ i w + d i , where A i s are some r i × d matrices, b i ∈ R ri , c i ∈ R d are
some vectors and d i s are some real numbers. The problem (P1) belongs well to this category, since it can be written as min(u 1 + . . . + u q ) subject to

Xm j 2 |(Mβ) j | ≤ u j ; |m ⊤ j X ⊤ (Xβ -Y )| ≤ λσ Xm j 2 , ∀j = 1, . . . , q; N ⊤ † X ⊤ (Xβ -Y ) = 0, 4nµ Y 2 2 σ 2 + (Y ⊤ Xβ) 2 ≤ 2 Y 2 2 -Y ⊤ Xβ.
Note that all these constraints can be transformed into linear inequalities, except the last one which is a second order cone constraint. The problems of this type can be efficiently solved by various standard toolboxes such as SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] or TFOCS [START_REF] Becker | Templates for convex cone problems with applications to sparse signal recovery[END_REF].

Finite sample risk bound

To provide theoretical guarantees for our estimator, we impose the by now usual assumption of restricted eigenvalues on a suitably chosen matrix. This assumption, stated in Definition 2.1 below, was introduced and thoroughly discussed by [START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF]; we also refer the interested reader to [START_REF] Van De Geer | On the conditions used to prove oracle results for the Lasso[END_REF]. Définition 2.1. We say that a n × q matrix A satisfies the restricted eigenvalue condition RE(s, 1), if

κ(s, 1) ∆ = min |J|≤s min δ J c 1 ≤ δ J 1 Aδ 2 √ n δ J 2 > 0.
We say that A satisfies the strong restricted eigenvalue condition RE(s, s, 1), if κ(s, s, 1)

∆ = min |J|≤s min δ J c 1 ≤ δ J 1 Aδ 2 √ n δ J∪J0 2 > 0,
where J 0 is the subset of {1, ..., q} corresponding to the s largest in absolute value coordinates of δ.

For notational convenience, we assume that M is normalized in such a way that the diagonal elements of 1 n M ⊤ † X ⊤ XM † are all equal to 1. This can always be done by multiplying M from the left by a suitably chosen positive definite diagonal matrix. Furthermore, we will repeatedly use the projector 2 

Π = XN † (N ⊤ † X ⊤ XN † ) -1 N ⊤ † X
⊤ onto the subspace of R n spanned by the columns of XN † . We denote by r = rank{Π} the rank of this projector which is typically very small compared to n ∧ p, and is always smaller than n ∧ (pq). In all theoretical results, the matrices X and M are assumed deterministic. Theorem 2.1. Let us fix a tolerance level δ ∈ (0, 1) and define λ = 2nγ log(q/δ). Assume that the tuning parameters γ, µ > 0 satisfy

µ γ ≤ 1 - r n -2 (n -r) log(1/δ) + log(1/δ) n . ( 6 
)
If the vector Mβ * is s-sparse and the matrix (I n -Π)XM † satisfies the condition RE(s, 1) with some κ > 0 then, with probability at least 1 -6δ, it holds:

M( β -β * ) 1 ≤ 4 κ 2 ( σ + σ * )s 2γ log(q/δ) n + σ * κ 2s log(1/δ) n (7) 
X( β -β * ) 2 ≤ 2( σ + σ * ) 2γs log(q/δ) κ + σ * 8 log(1/δ) + r . ( 8 
)
If, in addition, (I n -Π)XM † satisfies the condition RE(s, s, 1) with some κ > 0 then, with a probability at least 1 -6δ, we have:

M β -Mβ * 2 ≤ 4( σ + σ * ) κ 2 2s log(q/δ) n + σ * κ 2 log(1/δ) n (9)
Moreover, with a probability at least 1 -7δ, we have:

σ ≤ σ * µ 1/2 + λ Mβ * 1 nµ + s 1/2 σ * log(q/δ) nκµ 1/2 + (σ * + Mβ * 1 )µ -1/2 2 log(1/δ) n . ( 10 
)
Before looking at the consequences of these risk bounds in the particular case of robust estimation, let us present some comments highlighting the claims of Theorem 2.1. The first comment is about the conditions on the tuning parameters µ and γ. It is interesting to observe that the roles of these parameters are very clearly defined: γ controls the quality of estimating β * while µ determines the quality of estimating σ * . One can note that all the quantities entering in the right-hand side of ( 6) are known, so that it is not hard to choose µ and γ in such a way that they satisfy the conditions of Theorem 2.1. However, in practice, this theoretical choice may be too conservative in which case it could be a better idea to rely on cross validation.

The second remark is about the rates of convergence. According to [START_REF] Dalalyan | Robust estimation for an inverse problem arising in multiview geometry[END_REF], the rate of estimation measured in the mean prediction loss 1 n X( ββ * ) 2 2 is of the order of s log(q)/n, which is known as fast or parametric rate. The vector Mβ * is also estimated with the nearly parametric rate in both ℓ 1 and ℓ 2 -norms. To the best of our knowledge, this is the first work where such kind of fast rates are derived in the context of fused sparsity with unknown noise-level. With some extra work, one can check that if, for instance, γ = 1 and |µ -1| ≤ cn -1/2 for some constant c, then the estimator σ has also a risk of the order of sn -1/2 . However, the price to pay for being adaptive with respect to the noise level is the presence of Mβ * 1 in the bound on σ, which deteriorates the quality of estimation in the case of large signal-to-noise ratio.

Even if Theorem 2.1 requires the noise distribution to be Gaussian, the proposed algorithm remains valid in a far broader context and tight risk bounds can be obtained under more general conditions on the noise distribution. In fact, one can see from the proof that we only need to know confidence sets for some linear and quadratic functionals of ξ. For instance, such kind of confidence sets can be readily obtained in the case of bounded errors ξ i using the Bernstein inequality. It is also worthwhile to mention that the proof of Theorem 2.1 is not a simple adaptation of the arguments used to prove analogous results for ordinary sparsity, but contains some qualitatively novel ideas. More precisely, the cornerstone of the proof of risk bounds for the Dantzig selector [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF][START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF][START_REF] Gautier | High-dimensional instrumental variables regression and confidence sets[END_REF] is that the true parameter β * is a feasible solution. In our case, this argument cannot be used anymore. Our proposal is then to specify another vector β that simultaneously satisfies the following three conditions: M β has the same sparsity pattern as Mβ * , β is close to β * and lies in the feasible set.

A last remark is about the restricted eigenvalue conditions. They are somewhat cumbersome in this abstract setting, but simplify a lot when the concrete example of robust estimation is considered, cf. the next section. At a heuristical level, these conditions require from the columns of XM † to be not very strongly correlated. Unfortunately, this condition fails for the matrices appearing in the problem of multiple change-point detection, which is an important particular instance of fused sparsity. There are some workarounds to circumvent this limitation in that particular setting, see [START_REF] Mammen | Locally adaptive regression splines[END_REF][START_REF] Harchaoui | Multiple change-point estimation with a total variation penalty[END_REF]. The extension of these kind of arguments to the case of unknown σ * is an open problem we intend to tackle in the near future.

Application to robust estimation

This methodology can be applied in the context of robust estimation, i.e., when we observe Y ∈ R n and A ∈ R n×k such that the relation

Y i = (Aθ * ) i + σ * ξ i , ξ i iid ∼ N (0, 1)
holds only for some indexes i ∈ I ⊂ {1, ..., n}, called inliers. The indexes does not belonging to I will be referred to as outliers. The setting we are interested in is the one frequently encountered in computer vision [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Szeliski | Computer Vision: Algorithms and Applications[END_REF]: the dimensionality k of θ * is small as compared to n but the presence of outliers causes the complete failure of the least squares estimator. In what follows, we use the standard assumption that the matrix 1 n A ⊤ A has diagonal entries equal to one. Following the ideas developed in [START_REF] Candès | Highly robust error correction by convex programming[END_REF][START_REF] Dalalyan | L1-penalized robust estimation for a class of inverse problems arising in multiview geometry[END_REF][START_REF] Dalalyan | Robust estimation for an inverse problem arising in multiview geometry[END_REF][START_REF] Nguyen | Robust lasso with missing and grossly corrupted observations[END_REF][START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], we introduce a new vector ω ∈ R n that serves to characterize the outliers. If an entry ω i of ω is nonzero, then the corresponding observation Y i is an outlier. This leads to the model:

Y = Aθ * + √ nω * + σ * ξ = Xβ * + σ * ξ, where X = [ √ n I n A], and β = [ω * ; θ * ] ⊤ .
Thus, we have rewritten the problem of robust estimation in linear models as a problem of estimation in high dimension under the fused sparsity scenario. Indeed, we have X ∈ R n× (n+k) and β * ∈ R n+k , and we are interested in finding an estimator β of β * for which ω = [I n 0 n×k ] β contains as many zeros as possible. This means that we expect that the number of outliers is significantly smaller than the sample size. We are thus in the setting of fused sparsity with

M = [I n 0 n×k ]. Setting N = [0 k×n I k ],
we define the Scaled Robust Dantzig Selector (SRDS) as a solution ( θ, ω, σ) of the problem:

minimize ω 1 subject to        √ n Aθ + √ n ω -Y ∞ ≤ λσ, A ⊤ (Aθ + √ n ω -Y ) = 0, nµσ 2 + Y ⊤ (Aθ + √ nω) ≤ Y 2 2 .
(P2)

Once again, this can be recast in a SOCP and solved with great efficiency by standard algorithms. Furthermore, the results of the previous section provide us with strong theoretical guarantees for the SRDS. To state the corresponding result, we will need a notation for the largest and the smallest singular values of 1 √ n A denoted by ν * and ν * respectively.

Theorem 3.1. Let us fix a tolerance level δ ∈ (0, 1) and define λ = 2nγ log(n/δ). Assume that the tuning parameters γ, µ > 0

satisfy µ γ ≤ 1 -k n -2 n (n -k) log(1/δ) + log(1/δ) .
Let Π denote the orthogonal projector onto the k-dimensional subspace of R n spanned by the columns of A. If the vector ω * is s-sparse and the matrix √ n(I n -Π) satisfies the condition RE(s, 1) with some κ > 0 then, with probability at least 1 -5δ, it holds:

ω -ω * 1 ≤ 4 κ 2 ( σ + σ * )s 2γ log(n/δ) n + σ * κ 2s log(1/δ) n , (11) 
(I n -Π)( ω -ω * ) 2 ≤ 2( σ + σ * ) κ 2s log(n/δ) n + σ * 2 log(1/δ) n . (12) 
If, in addition, √ n (I n -Π) satisfies the condition RE(s, s, 1) with some κ > 0 then, with a probability at least 1 -6δ, we have:

ω -ω * 2 ≤ 4( σ + σ * ) κ 2 2s log(n/δ) n + σ * κ 2 log(1/δ) n θ -θ * 2 ≤ ν * ν 2 * 4( σ + σ * ) κ 2 2s log(n/δ) n + σ * κ 2 log(1/δ) n + σ * ( √ k + 2 log(1/δ)) √ n
Moreover, with a probability at least 1 -7δ, the following inequality holds:

σ ≤ σ * µ 1/2 + λ ω * 1 nµ + s 1/2 σ * log(n/δ) nκµ 1/2 + (σ * + ω * 1 )µ -1/2 2 log(1/δ) n . (13) 
All the comments made after Theorem 2.1, especially those concerning the tuning parameters and the rates of convergence, hold true for the risk bounds in Theorem 3.1 as well. Furthermore, the restricted eigenvalue condition in the latter theorem is much simpler and deserves a special attention.

In particular, one can remark that the failure of RE(s, 1) for √ n(I n -Π) implies that there is 

a unit vector δ in Im(A) such that |δ (1) | + . . . + |δ (n-s) | ≤ |δ (n-s+1) | + . . . + |δ (n) |,
(A) = inf u∈S k-1 1 n n i=1 |a i u|- 2s A 2,∞ √ n . If ζ s (A) > 0, then √ n (I n - Π)
satisfies both RE(s, 1) and RE(s, s, 1) with κ(s, 1) ≥ κ(s, s, 1) The proof of the lemma can be found in the supplementary material.

≥ ζ s (A)/ (ν * ) 2 + ζ s (A) 2 . SFDS Lasso Square-Root Lasso | β -β * |2 | σ -σ * | | β -β * |2 | β -β * |2 | σ -σ * | ( T,
One can take note that the problem (P2) boils down to computing ( ω, σ) as a solution to

minimize ω 1 subject to √ n (I n -Π)( √ nω -Y ) ∞ ≤ λσ, nµσ 2 + √ n[(I n -Π)Y ] ⊤ ω ≤ (I n -Π)Y 2 2 .
and then setting θ

= (A ⊤ A) -1 A ⊤ (Y - √ n ω).

Experiments

For the empirical evaluation we use a synthetic dataset with randomly drawn Gaussian design matrix X and the real-world dataset fountain-P11 3 , on which we apply our methodology for computing the fundamental matrices between consecutive images.

Comparative evaluation on synthetic data

We randomly generated a n × p matrix X with independent entries distributed according to the standard normal distribution. Then we chose a vector β * ∈ R p that has exactly s nonzero elements all equal to one. The indexes of these elements were chosen at random. Finally, the response Y ∈ R n was computed by adding a random noise σ * N n (0, I n ) to the signal Xβ * . Once Y and X available, we computed three estimators of the parameters using the standard sparsity penalization (in order to be able to compare our approach to the others): the SFDS, the Lasso and the squareroot Lasso (SqRL). We used the "universal" tuning parameters for all these methods: (λ, µ) = ( 2n log(p), 1) for the SFDS, λ = 2 log(p) for the SqRL and λ = σ * 2 log(p) for the Lasso. Note that the latter is not really an estimator but rather an oracle since it exploits the knowledge of the true σ * . This is why the accuracy in estimating σ * is not reported in Table 1. To reduce the well known bias toward zero [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF][START_REF] Sun | Comments on: ℓ1-penalization for mixture regression models[END_REF], we performed a post-processing for all of three procedures. It consisted in computing least squares estimators after removing all the covariates corresponding to vanishing coefficients of the estimator of β * . The results summarized in Table 1 show that the SFDS is competitive with the state-of-the-art methods and, a bit surprisingly, is sometimes more accurate than the oracle Lasso using the true variance in the penalization. We stress however that the SFDS is designed for being applied in-and has theoretical guarantees for-the broader setting of fused sparsity.

Robust estimation of the fundamental matrix

To provide a qualitative evaluation of the proposed methodology on real data, we applied the SRDS to the problem of fundamental matrix estimation in multiple-view geometry, which constitutes an essential step in almost all pipelines of 3D reconstruction [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Szeliski | Computer Vision: Algorithms and Applications[END_REF]. In short, if we have two images I and I ′ representing the same 3D scene, then there is a 3×3 matrix F, called fundamental matrix, such that a point x = (x, y) in I 1 matches with the point

x ′ = (x ′ , y ′ ) in I ′ only if [x; y; 1] F [x ′ ; y ′ ; 1] ⊤ = 0.
Clearly, F is defined up to a scale factor: if F 33 = 0, one can assume that F 33 = 1. Thus, each pair x ↔ x ′ of matching points in images I and I ′ yields a linear constraint on the eight remaining coefficients of F. Because of the quantification and the presence of noise in images, these linear relations are satisfied up to some error. Thus, estimation of F from a family of matching points {x i ↔ x ′ i ; i = 1, . . . , n} is a problem of linear regression. Typically, matches are computed by comparing local descriptors (such as SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF]) and, for images of reasonable resolution, hundreds of matching points are found. The computation of the fundamental matrix would not be a problem in this context of large sample size / low dimension, if the matching algorithms were perfectly correct. However, due to noise, repetitive structures and other factors, a non-negligible fraction of detected matches are wrong (outliers). Elimination of these outliers and robust estimation of F are crucial steps for performing 3D reconstruction.

Here, we apply the SRDS to the problem of estimation of F for 10 pairs of consecutive images provided by the fountain dataset [START_REF] Strecha | On benchmarking camera calibration and multi-view stereo for high resolution imagery[END_REF]: the 11 images are shown at the bottom of Fig. 1. Using SIFT descriptors, we found more than 17.000 point matches in most pairs of images among the 10 pairs we are considering. The CPU time for computing each matrix using the SeDuMi solver [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] was about 7 seconds, despite such a large dimensionality. The number of outliers and the estimated noise-level for each pair of images are reported in Table 2. We also showed in Fig. 1 the 218 outliers for the first pair of images. They are all indeed wrong correspondncies, even those which correspond to the windows (this is due to the repetitive structure of the window).

Conclusion and perspectives

We have presented a new procedure, SFDS, for the problem of learning linear models with unknown noise level under the fused sparsity scenario. We showed that this procedure is inspired by the penalized maximum likelihood but has the advantage of being computable by solving a secondorder cone program. We established tight, nonasymptotic, theoretical guarantees for the SFDS with a special attention paid to robust estimation in linear models. The experiments we have carried out are very promising and support our theoretical results.

In the future, we intend to generalize the theoretical study of the performance of the SFDS to the case of non-Gaussian errors ξ i , as well as to investigate its power in variable selection. The extension to the case where the number of lines in M is larger than the number of columns is another interesting topic for future research.

Step I: Evaluation of the probability of B Let us check that the conditions involved in the definition of B are satisfied with probability at least 1 -5δ. Since all the diagonal entries of

1 n M ⊤ † X ⊤ XM † are equal to 1, we have (XM † ) j 2 2
= n for all j = 1, ..., q. Then we have:

P(A c ) = P M ⊤ † X ⊤ (I n -mm ⊤ )(I n -Π)ξ ∞ ≥ 2n log(q/δ) ≤ q j=1 P |(XM † ) ⊤ j (I n -mm ⊤ )(I n -Π)ξ| ≥ 2n log(q/δ) = q j=1 P |η| (XM † ) ⊤ j (I n -mm ⊤ )(I n -Π) 2 ≥ 2n log(q/δ)
where η ∼ N (0, 1). Using the inequality (XM † ) ⊤ j (I nmm ⊤ )(I n -Π) 2 ≤ (XM † ) j 2 and the well known bound on the tails of the Gaussian distribution, we get

P(A c ) ≤ q j=1 P |η| (XM † ) ⊤ j 2 ≥ 2n log(q/δ) = q P |η| √ n ≥ 2n log(q/δ) = 2q P η ≥ 2 log(q/δ) ≤ 2q exp{- 1 2 ( 2 log(q/δ)) 2 } = 2δ.
For the set B, we recall that ξ ⊤ (I n -Π)ξ is a chi-squared random variable with nr degrees of freedom: ξ ⊤ (I n -Π)ξ ∼ χ 2 (nr). Therefore:

P(B c ) = P(χ 2 (n -r) ≤ n -r -2 (n -r) log(1/δ)) ≤ e -log(1/δ) = δ
Finally, to bound the probability of C c , we use that m ⊤ (I n -Π)ξ ∼ (I n -Π)m 2 N (0, 1). This yields:

P(C c ) = P(|η| (I n -Π)m 2 ≥ 2 log(1/δ)) ≤ P(|η| m 2 ≥ 2 log(1/δ)) ≤ 2P(η ≥ 2 log(1/δ)) = 2δ.
Because of B = A ∩ B ∩ C, we can conclude that:

P(B c ) ≤ P(A c ) + P(B c ) + P(C c ) ≤ 5δ
or, equivalently, P(B) ≥ 1 -5δ.

Step II: feasibility of β The goal here is to check that if λ and µ satisfy the condition:

λ 2 µ ≥ 2n 2 log(q/δ) n -r -2 (n -r) log(1/δ) -2 log(1/δ) (16) 
then, on the event B, there exists σ ≤ σ * / √ µ such that the pair ( β, σ) is feasible.

The matrix I nmm ⊤ is the orthogonal projector onto the (n -1)-dimensional subspace of R n containing all the vectors orthogonal to X β. Therefore, using [START_REF] Iouditski | On the accuracy of l1-filtering of signals with block-sparse structure[END_REF], we arrive at

Y ⊤ (Y -X β) = (Xβ * ) ⊤ (Y -X β) + σ * ξ ⊤ (Y -X β) = σ * ξ ⊤ (I n -Π)(I n -mm ⊤ )Xβ * + (σ * ) 2 ξ ⊤ (I n -mm ⊤ )(I n -Π)ξ = (σ * ) 2 ξ ⊤ (I n -Π)(I n -mm ⊤ )Πξ + (σ * ) 2 ξ ⊤ (I n -mm ⊤ )(I n -Π)ξ = (σ * ) 2 ξ ⊤ (I n -Π)(I n -mm ⊤ )(I n -Π)ξ = (σ * ) 2 (I n -Π)ξ 2 2 -(σ * ) 2 [m ⊤ (I n -Π)ξ] 2 .
On the event B, we have:

(I n -Π)ξ 2 2 ≥ n -r -2 (n -r) log(1/δ), [m ⊤ (I n -Π)ξ] 2 ≤ 2 log(1/δ). So we know: Y ⊤ (Y -X β) ≥ (σ * ) 2 n -r -2 (n -r) log(1/δ) -2 log(1/δ) ≥ (σ * ) 2 nµ Setting σ = σ * n -r -2 (n -r) log(1/δ) -2 log(1/δ)
1/2 (nµ) -1/2 we get that the pair ( β, σ)

satisfies the third constraint and that σ ≤ σ * / √ µ. It is obvious that the second constraint is satisfied as well. To check the first constraint, we note that

M ⊤ † X ⊤ (Y -X β) = σ * M ⊤ † X ⊤ 1 (I n -mm ⊤ )(I n -Π)ξ, and therefore M ⊤ † X ⊤ (Y -X β ∞ = σ * M ⊤ † X ⊤ 1 (I n -mm ⊤ )(I n -Π)ξ ∞ ≤ σ * 2n log(q/δ).
Under the condition stated in [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] above, the right-hand side of the last inequality is upper bounded by λ σ. This completes the proof of the fact that the pair ( β, σ) is a feasible solution on the event B.

Step III: proof of ( 7) and ( 8) On the event B, the pair ( β, σ) is feasible and therefore M β 1 ≤ M β 1 . Let ∆ = M β -M β and J be the set of indexes corresponding to the nonzero elements of Mβ * . We have |J| ≤ s. Note that J is also the set of indexes corresponding to nonzero elements of M β ∝ M β = Mβ * . This entails that:

(I n -Π)XM † ∆ 2 2 = ∆ ⊤ M ⊤ † X ⊤ (I n -Π) 2 XM † ∆ = ∆ ⊤ M ⊤ † X ⊤ (I n -Π)XM † ∆ ≤ ∆ 1 M ⊤ † X ⊤ (I n -Π)XM † ∆ ∞ . (17) 
Using the relations M † M = I p -N † N and (I n -Π)XN † = 0 yields

M ⊤ † X ⊤ (I n -Π)XM † ∆ ∞ = M ⊤ † X ⊤ (I n -Π)XM † M( β -β) ∞ = M ⊤ † X ⊤ (I n -Π)(X β -X β) ∞ .
Taking into account the fact that both β and β satisfy the second constraint, we get Π(X β -

X β) = Π(X β -Y ) -Π(X β -Y ) = 0.
From the first constraint, we deduce:

M ⊤ † X ⊤ (I n -Π)XM † ∆ ∞ = M ⊤ † X ⊤ (X β -X β) ∞ ≤ λ( σ + σ). (18) 
To bound ∆ 1 , we use a standard argument from [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF]:

∆ J c 1 = M β J c 1 = M β 1 -M β J 1 .
Since β is a feasible solution while β is an optimal one, M β 1 ≤ M β 1 , and we have:

∆ J c 1 ≤ M β 1 -M β J 1 = M β J 1 -M β J 1 ≤ (M β -M β) J 1 = ∆ J 1 .
This yields the bound

∆ 1 ≤ 2 ∆ J 1 ≤ 2s 1/2 ∆ J 2
and also allows us to use the condition of RE(s, 1), which implies that:

∆ J 2 ≤ (I n -Π)XM † ∆ 2 κ √ n . (19) 
Combining these estimates, we get

(I n -Π)XM † ∆ 2 2 ≤ 2λ( σ + σ * ) √ s (I n -Π)XM † ∆ 2 κ √ n ,
and, after simplification

(I n -Π)XM † ∆ 2 ≤ 2λ( σ + σ * ) √ s κ √ n , ∆ J 2 ≤ 2λ( σ + σ * ) √ s nκ 2 . (20) 
Furthermore:

∆ 1 = ∆ J 1 + ∆ J c 1 ≤ 2 ∆ 1 ≤ 2 √ s ∆ 2 ≤ 4λ( σ + σ * ) s nκ 2 
So we have:

M β -M β 1 ≤ 4λ( σ + σ * ) s nκ 2 , (I n -Π)X( β -β) 2 ≤ 2λ( σ + σ * ) √ s κ √ n
To complete this step, we decompose ββ into the sum of the terms ββ * and β *β and estimate the latter in prediction norm and in ℓ 1 -norm. For the ℓ 1 -norm, this gives

M β -Mβ * 1 = σ * ξ ⊤ (I n -Π)X β X β 2 2 Mβ * 1 = σ * |m ⊤ (I n -Π)ξ| Mβ * 1 X β 2 ≤ σ * 2 log(1/δ) Mβ * 1 (I n -Π)X β 2 = σ * 2 log(1/δ) Mβ * 1 (I n -Π)XM † Mβ * 2 ≤ σ * 2 log(1/δ) √ s Mβ * 2 (I n -Π)XM † Mβ * 2 ≤ σ * 2 log(1/δ) √ s κ √ n = 2 log(1/δ) σ * √ s κ √ n .
While for the prediction norm:

(I n -Π)X( β -β * ) 2 = (I n -Π)XM † M( β -β * ) 2 = σ * (I n -Π)XM † ξ ⊤ (I n -Π)X β X β 2 2 Mβ * 2 = σ * |m ⊤ (I n -Π)ξ| (I n -Π)XM † Mβ * 2 X β 2 ≤ σ * |m ⊤ (I n -Π)ξ| (I n -Π)XM † Mβ * 2 (I n -Π)X β 2 = σ * |m ⊤ (I n -Π)ξ| (I n -Π)XM † Mβ * 2 (I n -Π)XM † Mβ * 2 ≤ σ * 2 log(1/δ).
We conclude that:

M β -Mβ * 1 ≤ 4λ( σ + σ * ) s nκ 2 + 2 log(1/δ)σ * √ s κ √ n (I n -Π)X( β -β * ) 2 ≤ 2λ( σ + σ * ) √ s κ √ n + σ * 2 log(1/δ).
To finish, we remark that

X( β -β * ) 2 ≤ (I n -Π)X( β -β * ) 2 + Π(X β -Y ) 2 + σ * Πξ 2 = (I n -Π)X( β -β * ) 2 + σ * Πξ 2 (in view of the second constraint) ≤ 2λ( σ + σ * ) √ s κ √ n + σ * ( 2 log(1/δ) + r + 2 log(1/δ)),
the last inequality being true with a probability at least 1 -6δ.

Step IV: Proof of (9) Here we define J 0 a subset of {1, ..., q} corresponding to the s largest value coordinates of ∆ outside of J, so J 1 = J ∪ J 0 . It is easy to see that the kth largest in absolute value element of

∆ J c satisfies |∆ J c | (k) ≤ ∆ J c 1 /k. Thus, ∆ J c 1 2 2 ≤ ∆ J c 2 1 k≥s+1 1 k 2 ≤ 1 s ∆ J c 2 1
On the event B, with c 0 = 1 we get:

∆ J c 1 2 ≤ ∆ J 1 √ s ≤ s s ∆ J 2 ≤ ∆ J1 2 Then, on B, ∆ 2 ≤ ∆ J c 1 2 + ∆ J1 2 ≤ 2 ∆ J1 2
On the other hand, from [START_REF] Städler | ℓ1-penalization for mixture regression models[END_REF],

(I n -Π)XM † ∆ 2 2 ≤ 2λ( σ + σ * ) √ s ∆ J 2 ≤ 2λ( σ + σ * ) √ s ∆ J1 2
Combining this inequality with the Assumption RE(s, s, 1),

(I n -Π)XM † ∆ 2 √ n ∆ J1 2 ≥ κ, κ √ n ∆ J1 2 ≤ (I n -Π)XM † ∆ 2
we obtain on B,

∆ J1 2 ≤ 2 σ + σ κ 2
√ sλ n with the condition ∆ 2 ≤ 2 ∆ J1 2 , we get:

M β -M β 2 ≤ 4 σ + σ κ 2 √ sλ n .
In addition, we have: Putting these estimates together and using the obvious inequality

M β -Mβ * 2 ≤ M β -M β 2 + M β -Mβ * 2
we arrive at

M β -Mβ * 2 ≤ 4 σ + σ * κ 2 √ sλ n + σ * κ 2 log(1/δ) n .
Replacing λ = 2nγ log(p/δ), we get the inequality in [START_REF] Gautier | High-dimensional instrumental variables regression and confidence sets[END_REF].

Step V: proof of an upper bound on σ To complete the proof, one needs to check that σ is of the order of σ * . This is done by using the following chain of relations:

nµ σ 2 ≤ Y 2 2 -Y ⊤ X β = Y ⊤ (Y -X β) = (β * ) ⊤ X ⊤ (Y -X β) + σ * ξ ⊤ (Y -X β) = (β * ) ⊤ M ⊤ M ⊤ † X ⊤ (Y -X β) + (β * ) ⊤ N ⊤ N ⊤ † X ⊤ (Y -X β) + σ * ξ ⊤ (Y -X β).
The second term of the last expression vanishes since β satisfies the second constraint. To bound the first term, we will use the first constraint while for bounding the third term, we will use the relation Since ν * is the largest eigenvalue of ( 1 n A ⊤ A) 1/2 , we have

1 √ n A ⊤ (ω * -ω) 2 ≤ ν * ω * -ω 2 ≤ 4ν * ( σ + σ * ) κ 2
2s log(n/δ) n + ν * σ * κ 2 log(1/δ) n .

To bound σ * n A ⊤ ξ 2 = 1 √ n (A ⊤ A) 1/2 ξ 2 we denote by {ν i } the eigenvalues of 1 √ n (A ⊤ A) 1/2 and use the singular value decomposition of A ⊤ :

A ⊤ = U∆V ⊤
where U is a k × k orthogonal matrix, V is a n × n orthogonal matrix and ∆ is a k × n matrix with (assume n > k):

∆ = [diag{ν 1 , . . . , ν k }, 0 k×(n-k) ].

Setting η = V ⊤ ξ, we get

A ⊤ ξ 2 2 = U∆V ⊤ ξ 2 2 = ∆V ⊤ ξ 2 2 = ∆η 2 2 ≤ ν * (η 2 1 + ... + η 2 k ) ν * η 1:k 2 2
. Using the well-known inequality on the tails of chi-squared distribution:

P( η 1:k 2 2 ≥ k + 2 √ kx + 2x) ≤ e -x
with x = log(1/δ), we obtain that with a probability at least 1δ:

η 1:k 2 2 ≤ k + 2 k log(1/δ) + 2 log(1/δ) ≤ ( √ k + 2 log(1/δ)) 2 .
Combined with the previous estimates, this leads to the desired result.

C Proof of Lemma 3.2

Let J be a subset of {1, . . . , n} of cardinality s and let δ be a vector of R n satisfying δ J c 1 ≤ δ J 1 . Let us denote by δ 1 the projection of δ onto the image of A and by δ 2 the projection onto the orthogonal complement. We are interested in lower bounding the quotient

δ 2 2 δ 1 2 2 + δ 2 2 2 = δ 2 2 / δ 1 2 1 + ( δ 2 2 / δ 1 2 ) 2 . ( 21 
)
To this end, we use the following sequence of inequalities:

δ 1 1 = (δ 1 ) J c 1 + (δ 1 ) J 1 ≤ δ J c 1 + (δ 2 ) J c 1 + s δ 1 ∞ ≤ δ J 1 + (δ 2 ) J c 1 + s δ 1 ∞ ≤ (δ 1 ) J 1 + δ 2 1 + s δ 1 ∞ ≤ √ n δ 2 2 + 2s δ 1 ∞
This entails that

δ 2 2 ≥ δ 1 1 -2s δ ∞ √ n ≥ δ 1 2 inf w∈Im(A) w 1 -2s w ∞ √ n w 2
Let v ∈ R k be a vector such that Av = w. We have w ∞ = Av ∞ ≤ A 2,∞ v 2 . Furthermore, w 2 = Av 2 ≤ √ nν * v 2 . Thus

δ 2 2 δ 2 2 ≥ inf v 1 nν * Av 1 v 2 - 2s A 2,∞ ν * √ n ≥ ζ s (A) ν * .
Injecting this bound in [START_REF] Strecha | On benchmarking camera calibration and multi-view stereo for high resolution imagery[END_REF], the assertion of the lemma follows.
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 1 Figure 1: Qualitative results on fountain dataset. Top left: the values of ωi for the first pair of images. There is a clear separation between outliers and inliers. Top right: the first pair of images and the matches classified as wrong by SRDS. Bottom: the eleven images of the dataset.
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  where δ (k) stands for the kth smallest (in absolute value) entry of δ. To gain a better understanding of how restrictive this assumption is, let us consider the case where the rows a 1 , . . . , a n of A are i.i.d. zero mean Gaussian vectors. Since δ ∈ Im(A), its coordinates δ i are also i.i.d. Gaussian random variables (they can be considered N (0, 1) due to the homogeneity of the inequality we are interested in). The inequality |δ (1) | + . . . + |δ (n-s) | ≤ |δ (n-s+1) | + . . . + |δ (n) | can be written as 1 | + . . . + |δ (n) |). While the left-hand side of this inequality tends to E[|δ 1 |] > 0, the right-hand side is upper-bounded by 2s n max i |δ i |, which is on the order of 2s

	n Therefore, if 2s i |δ i | ≤ 2 n (|δ (n-s+1) √ n log n √ log n n	.

is small, the condition RE(s, 1) is satisfied. This informal discussion can be made rigorous by studying large deviations of the quantity max δ∈Im(A)\{0} δ ∞ / δ 1 . A simple sufficient condition entailing RE(s, 1) for √ n(I n -Π) is presented in the following lemma. Lemma 3.2. Let us set ζ s

Table 1 :

 1 p, s * , σ * ) Comparing our procedure SFDS with the (oracle) Lasso and the SqRL on a synthetic dataset. The average values and the standard deviations of the quantities | ββ * |2 and | σσ * | over 500 trials are reported.They represent respectively the accuracy in estimating the regression vector and the level of noise.

		Ave	StD	Ave	StD	Ave	StD	Ave	StD	Ave	StD
	(200, 400, 2, .5)	0.04 0.03 0.18 0.14	0.07 0.05	0.06 0.04 0.20 0.14
	(200, 400, 2, 1)	0.09 0.05 0.42 0.35	0.16 0.11	0.13 0.09 0.46 0.37
	(200, 400, 2, 2)	0.23 0.17 0.75 0.55	0.31 0.21	0.25 0.18 0.79 0.56
	(200, 400, 5, .5)	0.06 0.01 0.28 0.11	0.13 0.09	0.11 0.06 0.18 0.27
	(200, 400, 5, 1)	0.20 0.05 0.56 0.10	0.31 0.04	0.25 0.02 0.66 0.05
	(200, 400, 5, 2)	0.34 0.11 0.34 0.21	0.73 0.25	0.47 0.29 0.69 0.70
	(200, 400, 10, .5) 0.10 0.01 0.36 0.02	0.15 0.00	0.10 0.01 0.36 0.02
	(200, 400, 10, 1) 0.19 0.09 0.27 0.26	0.31 0.04	0.19 0.09 0.27 0.26
	(200, 400, 10, 2) 1.90 0.20 4.74 1.01	0.61 0.08	1.80 0.04 3.70 0.48

Table 2 :

 2 Quantitative results on fountain dataset.

		1	2	3	4	5	6	7	8	9	10 Average
	σ	0.13 0.13 0.13 0.17 0.16 0.17 0.20 0.18 0.17 0.11	0.15
	ω 0 100 n ω 0	218 1.3 0.46 1.37 0.52 1.13 1.84 0.12 0.19 1.49 1.02 80 236 90 198 309 17 31 207 8	139.4 0.94

We denote by In the n × n identity matrix. For a vector v, we use the standard notation v 1, v

and v ∞ for the ℓ1, ℓ2 and ℓ∞ norms, corresponding respectively to the sum of absolute values, the square root of the sum of squares and the maximum of the coefficients of v.

Here and in the sequel, the inverse of a singular matrix is understood as MoorePenrose pseudoinverse.

available at http://cvlab.epfl.ch/ ˜strecha/multiview/denseMVS.html

Supplementary material to "Fused sparsity and robust estimation for linear models with unknown variance" submitted to NIPS 2012 This supplement contains the proofs of the theoretical results stated in the main paper.

A Proof of Theorem 2.1

Let us begin with some simple relations one can deduce from the definitions

We introduce the following vector:

which satisfies

and

The main point in the present proof is the following: if we set

then, with high probability, for some σ > 0, the pair ( β, σ) is feasible (i.e., satisfies the constraint of the optimization problem we are dealing with). In what follows, we will repeatedly use the following property: for

Most of subsequent arguments will be derived on an event B, having probability close to one, which can be represented as B = A ∩ B ∩ C, where:

for some δ ∈ (0, 1) close to zero. For the convenience of the reader, we recall that r

On the event B, we have:

Also with a probability at least 1δ:

So combining all these relations, we get with probability at least 1 -7δ:

All the subsequent relations, even if it is not explicitly mentioned, are true on an event of probability at least 1 -7δ. Combining simple algebra and the condition RE(s), we get that:

Then,

From the fact that √ a 2 + b 2 + c ≤ a + b + c 2b , we have:

This yields the desired result.

B Proof of Theorem 3.1

All the claims of this theorem, except the bound on θθ * 2 are direct consequences of the corresponding claims in Theorem 2.1. Therefore, we focus here only on the proof of an upper bound on θθ * 2 taking all the other claims of Theorem 3.1 as granted.

Since ( β, ω, σ) is a feasible solution to (SRDS), it satisfies the second constraint:

which implies that

Recall that ν * stands for the smallest eigenvalue of ( 1 n A ⊤ A) 1/2 . This yields