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CYCLE COMPLEX OVER P! MINUS 3 POINTS : TOWARD
MULTIPLE ZETA VALUES CYCLES.

ISMAEL SOUDERES

ABSTRACT. In this paper, the author constructs a family of algebraic cycles
in Bloch’s cycle complex over P! minus three points which are expected to
correspond to multiple polylogarithms in one variable. Elements in this family
of weight p are in the cubical cycle group of codimension p in (P1\ {0, 1, c0}) x
(P1\ {1})?P~! and are, in weight greater or equal to 2, naturaly extended as
equidimensional cycles over over Al.

This allows to consider their fibers at the point 1 and this is one of the
main differences with the work of Gangl, Goncharov and Levin. Considering
the fiber at 1 makes it possible to think of these cycles as corresponding to
weight n multiple zeta values.

After the introduction, the author recalls some properties of Bloch’s cy-
cle complex and enlightens the difficulties on a few examples. Then a large
section is devoted to the combinatorial situation involving the combinatoric
of trivalent trees. In the last section, two families of cycles are constructed
as solutions to a “differential system” in Bloch’s cycle complex. One of this
families contains only cycles with empty fiber at 0 which should correspond to
multiple polylogarithms.
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1. INTRODUCTION

1.1. Multiple polylogarithms. The multiple polylogarithm functions were de-
fined in [Gon95| by the power series

2?1 2;12 an
Likl,...,km (Zl, ey Zm) = Z W ks % (Zi (S (C, |Zz| < 1).
1> >km 1 T2 Tom

They admit an analytic continuation to a Zariski open subset of C™. The case
m = 1 is nothing but the classical polylogarithm functions. The case z; = z and

Zo = --- = z; = 1 gives a one variable version of multiple polylogarithm function
2
-C . _ 1
L'Lkl,...,km (2) = le17~~~7knL (251, L..., 1) = Z k1 ks T "
N> >k 0120 m

When k; is greater or equal to 2, the series converge as z goes to 1 and one recovers
the multiple zeta value

. . 1
(k.o k) = Lig, g (1) = Lig,,.. g, (1,...,1) = Z U Tm——

To the tuple of integer (k1, ..., k) of weight n = " k;, we can associate a tuple
of 0 and 1

(Eny..oyer)=(0,...,0,1,..., 0,...,0,1)
~—— N——
k1 —1 times kp—1 times

which allows to write multiple polylogarithms as iterated integrals (z; # 0 for all %)

dtq A dt,,
Jti—eawwr th —enty

Likl,...,km (2’1, ey Zm) = (71)m /
A

where 7 is a path from 0 to 1 in C\ {z1,...,z,}, the integration domain A, is
the associated real simplex consisting of all m-tuples of points (y(¢1),...,7(tn))
with ¢; < t; for ¢ < j and where we have set x,, = zfl, Tp_i = (21+--2)7 ! for
ky+- 4k 1 +1<i<k+-+kandz = (21 2,)" L

As shown in [Gon0bal, iterated integrals have Hodge/motivic avatars living in
a Hopf algebra equivalent to the tannakian Hopf algebra of Q mixed Hodge-Tate
structure. Working with these motivic/Hodge iterated integrals allows to see more
structure, in particular the coproduct which is not visible on the level of numbers,
conjecturaly without losing any information.

4.3. Cvcles over X =P\ {0.1, 00} corresponding to multiple polvlogarithmd 65
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1.2. Multiple polylogarithms and algebraic cycles. Considering the relations
between the motivic word and the higher Chow groups in one hand (e.g. [Lev05]
Voe02]) and in the other hand the relations between multiple polylogarithm and
regulators (e.g. [Zag91l [Gon05b|), it is reasonable to ask whether there exists
avatars of the multiple polylogarithms in terms of algebraic cycles.

Given a number field K, in [BK94], Bloch and Kriz have constructed using
algebraic cycles, a graded Hopf algebra, isomorphic to the tannakian Hopf algebra
of the category of mixed Tate motive over K ([Spi0I] and latter [LevlI]), together
with a direct Hodge realization for this “cyclic motives”. Moreover for any integer
n greater or equal to 2 and any point z in K they have produced an algebraic cycle
Lif¥(z). This cycle Lif?(z) induces a motive. They have shown at Theorem 9.1
that the “bottom-left” coefficient of the periods matrix in the Hodge realization is
exactly —Liy (2)/(2im)™.

More recently, Gangl, Goncharov and Levin, using a combinatorial approach,
have built algebraic cycles corresponding to the multiple polylogarithm values
Liky.... k(21 - - -, 2m) with parameters z; in K* under the condition that the corre-
sponding z; (as defined above) are all distinct. In particular, all the z; but z; have to
be different from 1 and their methods does not gives algebraic cycles corresponding
to multiple zeta values.

1.3. Algebraic cycles over P!\ {0,1,00}. The goal of my project is to develop
a geometric construction for multiple polylogarithm cycles removing the previous
obstruction which will allow to have multiple zeta cycles.

A general idea underlying this project consists on looking cycles fibered over
a larger base and not just point-wise cycles for some fixed parameter (21, ..., 2m).
Levine, in [Lev11], shows that there exists a short exact sequence relating the Bloch-
Kriz Hopf algebra over Spec(K), its relative version over P!\ {0, 1, 00} and the Hopf
algebra associated to Goncharov and Deligne’s motivic fundamental group over
P!\ {0,1,00} which contains the motivic iterated integrals associated to multiple
polylogarithms in one variable.

As this one variable version of multiple polylogarithms gives multiple zeta values
for z = 1, it is natural to investigate first the case of Bloch-Kriz construction
over P\ {0,1,00} in order to obtain algebraic cycles corresponding to multiple
polylogarithms in one variable with a “good specialization” at 1. However before
computing any Hodge realization matrix periods, one needs first to obtain explicit
algebraic cycles over P!\ {0, 1,00} which can be specialized at 1 and have a chance
to correspond to multiple zeta values. This paper gives such a class of cycles and
final remarks gives some evidences that it is a good family by computing an integral
in low weight.

1.4. Strategy and Main results. Bloch and Kriz Hopf algebra and its relative
version over P!\ {0,1,00} is the H’ of the bar construction over a commutative
differential algebra (c.d.g.a) Ny build out of algebraic cycles. We will use this
construction in the case K = Q and X = Spec(Q) or X =P\ {0,1,00} or X = Al
This c.d.g.a comes form the cubical construction of the higher Chow groups and
one has with 0! =P\ {1} ~ Al
x = Q& (®p=1M3 (p))

where the N (p) are generated by codimension p cycles in X x [J??~" which are in
good position. The cohomology of the complex N%(p) give back the higher Chow
groups CH? (Spec(k), 2p — o).

As the HY of the bar construction over Nﬁl\{o,l,oo
model. The strategy to obtain our family of cycles is to follow the inductive
construction of this 1-minimal model which gives a generalized nilpotent c.d.g.a

} is related to its 1-minimal



4 ISMAEL SOUDERES

M = A(V) together with a map ¢ : M — N§1\{0711m} inducing an isomorphism
on the H® and the H! and an injection on the H.

More precisely this construction begins with the V3 = Hl( IF’l\{O,l,oo})' Then,
the inductive step of the 1-minimal model construction goes as follows, defining
Vig1 = Vi @ ker(H?(A*(V;)) — H?( P1\{0,1,00}))s One chooses specific representa-
tives in NEII\ {0,1,00} of basis elements of the above kernel considering the diagram

Pi

AX(V;) N]Igl\{o,l,oo}

d
b D e ¢ 0

)
£

de S N]P}l\{o,l,oo}

A particular choice of such a ¢ corresponding to b induces the map V41 N X
and allows the inductive construction to go on.

Hence, one wants first to find inductively linear combinations > a; jc; - ¢; that
have a zero differential and under what conditions they can be written as an explicit
boundary, that is as d(c) for some explicit cycle ¢ in Nx.

In weight p, the considered linear combinations are built out of elements obtained
in lower weight and under some geometric conditions (equidimensionality over Al
and empty fiber at 0), the cycle ¢ can be constructed easily. It is the pull-back of
> @ jc; - ¢j induce by the multiplication map (0! ~ A, X = Al):

X x Al x AZr—2 X x AZr—2

(t,S,.’L’l, - ,mgp_g) = (ts,xh .. .,ajgp_g).

Even though it is not formalized in their paper, it is reasonable to believe that
Bloch and Kriz used this idea to build the cycles Lif¥(z). Thus, we naturally
find back these cycles using the method described above. However, the cycles
corresponding to multiple polylogarithms built using this method are different from
the one proposed by Gangl, Goncharov and Levin.

In particular, the geometric conditions on ) «; ;¢;-¢; and the computation of the
pull-back in the above construction oblige the constructed cycles on P!\ {0, 1,00}
to admit an extension in N}, equidimensional over Al and with empty fiber at 0
or 1.

A complete description of the inductive construction is based on a combinatorial
setting using the colie algebra dual to the defined a differential d°¥ on trees which
is closely related to the differential in A'§. The main point of the combinatorial
setting is the following result (Theorem [3.44).

Theorem. For any Lyndon word W in the letters {0,1}, the element Ty (t) is
decomposable:

(1) dey (Tw (1)) = Y i,y Tw, () - Tow, (8) + > By Twi (1) - T (1)

where - denotes the disjoint union of trees and where W, W;, Wi and W, are
Lyndon of smaller length than W .
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This result gives us the combinatorial structure of the elements we want to built
and allows us to construct two explicit families of cycles in a general framework.
Modifying the above “differential system”, one inductively constructs cycles Ly
corresponding to Ty (t) and cycles L}, corresponding to the difference Ty (t) —
Tw (1). In this way, one obtains, at Theorem [£12] algebraic cycles that are expect
to correspond to multiple zeta values when specialized at 1.

Theorem. Let X = P!\ {0,1,00}. For any Lyndon word W in the letters {0,1}
of length p greater or equal to 2, there exists cycles Ly and Ly in Ny (p), that is
cycles of codimension 1 in X x %P~ such that

o Ly (resp. LY,) admits an equidimensional extension to A' with empty
fiber at O (resp. 1).
o Ly (resp. L}y ), as its extensions to A', satisfies

(2) d(Lw) = aijLw, - Lw, + Y beilw, - Liy,
(3) (resp. d(Lhy) =3 al; Ly - Ly + D 0L, - Lhy + D Lo L)

where coefficients a; j, a; ;, bi1, by, and ¢} are derived from () (see Defi-
nition [{.1] and Proposition [.3) and such that the above equations involved
only words of smaller length than p

In particular,

o Ly {t=1} gives an element of /\/'(52 which is expected to correspond to a
multiple zeta value as £W|{t:Z} is expected to correspond to a multiple
polylogarithm at z. The computation of the actual integral for W = 011 is
done in the last section.

e The two R.H.S in @) and (@) admit equidimensional extensions over Al
and have empty fiber at 0 (resp. 1). Their pull-back by the multiplication
(resp. a twisted multiplication) gives Ly (resp. Li).

The paper is organized as follows :

e The next section (Section [2)) is devoted to a general review of Bloch-Kriz cy-
cle complex. After recalling some basis definitions and properties of (Adams
graded) c.d.g.a, their 1-minimal model and the bar construction, we de-
tail the construction of the cycle complex. Then, we recall some of its
main properties (relation to higher Chow groups, localization long exact
sequence, etc.), some applications and the relations with mixed Tate mo-
tives. We conclude this section by applying our strategy to the nice example
of polylogarithms as described in [BK94] and present the main difficulties
trough a weight 3 example.

e Afterward in Section [B] we deal with the combinatorial situation first pre-
senting the trivalent trees attached to Lyndon words and their relations
with the free Lie algebra. Then, we present linear combinations of trees
Tw corresponding to the dual situation and study some of their properties.
From there, we review the construction of the differential graded algebra of
R-deco forest introduced in [GGL09| and study the behavior the sums Ty
under the differential d.,. This leads to Theorem [3.44] and some relations
satisfy by the coefficients appearing in this theorem (Cf. Equation () or
Equation (20)).

e Section M proves our main Theorem. It begins with a purely combinato-
rial statement relating the trees situation of Equation (28] to its modified
geometric version used at Theorem (Cf. also above Equations (2) and
@)). Then, we present some properties of equidimensional algebraic cycles
over P\ {0, 1,00} and A!, study the relation between the two situation and
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explain how the pull-back by the multiplication (resp. a twisted multipli-
cation) gives a homotopy between the identity and the fiber at 0 (resp. at
1) pulled-back to a cycle over Al by p : A — {pt}. Finally, the above work
allows us to construct inductively the desired families of cycle Ly and L3y,
at Theorem

e The last section is devoted to some concluding remarks. In particular, it
present a combinatorial description that make it possible to write explicitly
cycles Ly and L}, in terms of parametrized algebraic cycles. Then, com-
puting the integral attached to the cycle Lg11, we show that it specialization
at the point 1 is —2¢(2,1).

2. CYCLE COMPLEX OVER P!\ {0, 1,00}

2.1. 1-minimal model and bar construction. We recall here some facts about
the 1-minimal model of a commutative differential graded algebra. More details
can be found in [Sul77|, [DGMS75] or [BK87]. As explained in the introduction an
underlying goal of this paper is to give an explicit description of the 1-minimal model
of NEL\ {0,1,00} i1 teTms of explicit parametrized algebraic cycles over P!\ {0, 1, 00}.
An important idea in order to build the desired cycles is to follow step by step the
inductive construction of the 1-minimal model reviewed below.

2.1.1. Differential graded algebra. We recall some definitions and properties of com-
mutative differential graded algebra over Q.

Definition 2.1 (cdga). A commutative differential graded algebra A is a com-
mutative graded algebra (with unit) A = @, A™ over Q together with a graded
homomorphism d = @d”, d* : A» — A™*! such that

e I"tlodh =0
o ( satisfies the Leibniz rule

d(a-b) =d(a) b+ (—1)"a - d(b) fora e A", be A™.

We recall that a graded algebra is commutative if and only if for any homogeneous
elements a and b one has

ab = (—1)des(@ deg®)p,

Definition 2.2. A cdga A is
o connected if A" =0 for alln < 0and A°=Q- 1.
e cohomologically connected if H"(A) = 0 for all n < 0 and H*(4) = Q- 1.

In our context, the cdga involved are not necessarily connected but comes with
an Adams grading.

Definition 2.3 (Adams grading). An Adams graded cdga is a cdga A together
with a decomposition into subcomplex A = @©,>0A(p) such that
e A(0) = Q is the image of the algebra morphism Q — A.
e The Adams grading is compatible with the product of A, that is
Ar(p) - A'q) € AP (p+q).

However, no sign is introduced as a consequence of the Adams grading.

For an element a € A*, we call k the cohomological degree and denote it by
la| ;= k. In the case of an Adams graded cdga, for a € A*(p), we call p its weight

or Adams degree and denote it by (a) := p.
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2.1.2. 1-minimal model. We assume all the commutative differential graded algebra
to have an augmentation eA — Q. Note that an Adams graded cdga A has a
canonical augmentation A — Q with augmentation ideal A* = @®,>1 A(p).

We recall that the free commutative algebra A(FE) over a graded vector space
E = FE qq @ Eeven is the tensor product of the exterior algebra on the odd part
Eyqq and of the polynomial algebra on the even part Eeven,

A(E) = A (Eyqq) @ Sym™ (Eeven)-

Definition 2.4 (Hirsch extension). An Hirsch extension of a cdga (A, d) is a cdga
(A’,d") satisfying :

(1) There exists a 1 dimensional graded vector space V' = Qu of some degree k

such that
A'=A®AV)
(2) the restriction of d’ to A is d and
d(v) € AT A*.

where A" denotes the augmentation ideal.

Definition 2.5 (Generalized nilpotent cdga). A cdga A is generalized nilpotent if
there exists a sequence of sub-differential algebra

QcA cCc...cAC...

such that

e A=A

o A= A;_1 ® A(V}) is an Hirsch extension;
In particular, one has A = A(FE) for some graded vector space E. More precisely,
one should remark the following.
Remark 2.6. Equivalently to the above definition, a cdga (A, d) over Q is generalized
nilpotent if

(1) As a Q graded algebra A = A(E) where E = E 34 ® Eeven is a graded
vector space; that is

A= A(Eodd) ® Sym*(Eeven)-

(2) Forn >0, let A,y C A be the sub-algebra generated by elements of degree
<n. Set A(pq1,0) = Any and for ¢ > 0 define inductively A(,41,441) as the
sub-algebra define by A(,) and the set

{r € Ay ld(z) € Apngr,q41) )
Then, for all n > 0, one has
A = U A
q=0
Definition 2.7. Let A be a cdga. A n-minimal model of A is a map of cdga
s: Ma{n} — A

with M4{n} generalized nilpotent and generated (as an algebra) in degree < n such
that s induces an isomorphism on H* for 1 < k <n and an injection on gt

Theorem 2.8 ([Sul77], see also [BK8T]). Let A be a cohomologically connected cdga.
Then, for eachm = 1,2,... there exists an n-minimal model of A s: Ma{n} — A.
Moreover such an n-minimal model is unique up to non-canonical isomorphism.
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We will here be only interested in the case of the 1-minimal model. We would like
to recall below the construction of the 1-minimal model as described in [DGMST75]
as it explains our approach to build explicit cycles in /\/'Pfl\ {0.1,00}" It also illustrate
the non-canonicity of the 1-minimal model.

We recall below a possible construction for a 1-minimal model.

Inductive construction of a 1-minimal model.

Let A be a cohomologically connected cdga.

Initialization: Set V; = H'(A) totally of degree 1. Let (V1,n)1<n<dim(vy) be
a basis of V7 and choose representative a; ,, in A of each vy ,. Now, define
dy : Vi — V1 AV; to be the 0 map and sYl Vi — A by s(v1p) = a1 .

Finally, set M; = A(V1) and extend sYl to a cdga morphism s : My —
A.

Inductive step: Assume that one has constructed the cdga sp : My =

A(V) — A for k > 1. Define

Vit = Vi @ ker (H* (M) — H?*(A))

where ker(H?(Mj,) — H?(A)) is totally in degree 1. In order to define dy41
and sp41 one proceed as follow.

Let (vkt1.n) be a basis of ker(H*(Mj) — H?(A)). For each vy 1., choose
a representative in A%(V}), that is

Vktl,n = Zai,jvi Avj € H?(My,) = H*(A(V))

1,J
for some v; and v; in Vj,. Thus, the image of vi41 4 in HQ(A) is the class of

Z ai jsk(vi) - sp(v;) € A?

2%
which has differential 0. Moreover, as vy 1., is in ker(H?(My,) — H?(A)),
one has some cj41,, in A! such that

d(crs1,n) = Zai,jsk(%’) - 81(v5).
]

Now, one defines dgy1 : Vi1 —> Vi1 A Vig1 which extends dy by sending
Vkgin tO D, ; @i,j0; Avj and one defines sgffll : Vi1 — A which extends
s,‘;’“ by sending vi41,n tO Cit1,n- These definitions are summarized in the
following diagram

(4)

Sk A2 A3

A%(Vy)

di1
Vkgin D Qi Vi Avj ——— 3 o a; jsp(v;) - sp(vj) ——— 0

d

1
_— dekt1n € A

which describe the fact that vyi1 ., is in ker(H?(My) — H?(A)).

Finally, set Mj4+1 = A(Vi41) with differential induced by di+1 and sg41 :

My1 — A to be the morphisms of cdga extending s,‘cffll.
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One checks that s : M = UM}, — A provides a 1-minimal model. This is insured
by the fact that as each step creates some kernel in degree 2 which is killed at the
next step in order to obtain the injection on the HZ. (I

The main point of the above construction is to build the underlying vector space
V4 of the 1-minimal model M4{1} = A(A). As explained in [BK94], V4 is endowed
with a coLie algebra structure. It is a general fact for generalized nilpotent cdga.

Lemma 2.9 (|[BK94][Lemma 2.29]). Let M be a generalized nilpotent cdga and V
a vector space freely generating M as cdga. The differential on M induces

d:V —VAV

giwing V' a coLie algebra structure, that is V' is dual to a pro-finite dimensional Lie
algebra with d dual to the bracket where the relation do d = 0 is dual to Jacobi
identity.

If one begins with an Adams graded cdga A, one will add an Adams grading to
the above definition and properties. In particular, the construction of the 1-minimal

model works similarly but one includes the induction into a first induction on the
Adams degree.

2.1.3. Bar construction. The bar construction over a c.d.g.a has been used in var-
ious contexts and is reviewed in many places. However, as there do not seem to
exist a global sign convention, the main definitions in the cohomological setting are
recalled below following the (homological) description given in [VL12].

Let A be a c.d.g.a with augmentation € : A — Q, with product g4 and let AT
be the augmentation ideal AT = ker(e). Define s to be a degree —1 generator and
consider the degree 1 morphism

Qs ® Qs — Qs.
Definition 2.10. The bar construction B(A) over A is the tensor coalgebra over
the suspension of sA' 1= Qs ® AT.
e In particular, as vector space B(A) is given by :
B(A) =T(sAT) = @P(sAT)®".
n=0
e An homogeneous element a of tensor degree n is denoted using the bar
notation (]), that is
a=[say|...|san]

and its degree is
degp(a) =Y dega+(ai) =Y degy(a;) — 1.
i=1 i=1

e The coalgebra structure comes from the natural deconcatenation coproduct,
that is

n

A([say|...|sas)) = Z[saﬂ cosa;] @ [saiga] .- - |san)-
i=0

Remark 2.11. This construction can be can be related (Cf. [BK94]) to the total
complex associated to the simplicial complex
A®' . ...4)A®n4)A®(n71) —5 ..

The augmentation makes it possible to use directly AT without referring to the
tensor coalgebra over A and without the need of killing the degeneracies.
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However this simplicial presentation usually hides the need of working with the
shifted complex. Here, we use the extra —1 generator s which makes it easier to
understand the signs convention using the Kozul rules.

We associate to any bar element [saq| ... |sa,] the function n(i) giving its “partial”
degree
i i
n(i) = ZdegsA(Sak) = Z(degA(ak) - 1).
k=1 k=1
The original differential d4 induces a differential D; on B(A) given by
n
Di([sar|...|san]) = = > (=) Vsay|...|sda(as)| .. .|san]
i=1
where the initial minus from comes from the fact the differential on the shifted
complex sA is —d 4. Moreover, the multiplication on A induces another differential
D5 on B(A) given by
n
Dy([sar] ... |san]) = = > (=1)"D[sar]...[spa(ai, ait1)| ... |san]
i=1
where the signs are coming from Kozul commutation rules : the global sign in
front of the i-th terms of the sum can be written as (—1)70—1) (—1)des(s) dega(ai),
One checks that the two differentials anticommute providing B(A) with a total
differential.

Definition 2.12. The total differential on B(A) is defined by
dp(ay = D1+ Ds.

The last structure arising with the bar construction is the graded shuffle product

[sai|...|san) m [sani1] ... |SQntm] = Z (—1)‘5“(‘7) [sao1)] - 15Aa(n4m)]
oc€sh(n,m)
where sh(n, m) denotes the permutation of {1,...,n+m} such thatif 1 <i<j<n

orn+1<1i<j<n+mthen o(i) < o(j). The sign is the graded signature of the
permutation (for the degree in sA™) given by

egr(0) = Y deg a(sa;)deg (sa;) = Y (degy(a;) — 1)(degy(a;) — 1).
1<j i<j
a(i)>a(j) o(i)>o(j)

With this definitions, one can explicitly check the following.

Proposition 2.13. Let A be a (Adams graded) c.d.g.a. The operations A, dpa)
and m together with the obvious unit and counit give B(A) a structure of (Adams
graded) commutative graded differential Hopf algebra.

In particular, these operations induces on H°(B(A)), and more generally on
H*(B(A)), a (Adams graded) commutative Hopf algebra structure. This algebra is
graded in the case of H*(B(A)) and graded concentrated in degree O in the case of
H°(B(A)).

We recall that the set of indecomposable elements of an augmented c.d.g.a is
defined as the augmentation ideal I modulo products, that is I/I%. Applying
a general fact about Hopf algebra, the coproduct structure on H°(B(A)) (resp.
H*(B(A))) induces a coLie algebra structure on its set of indecomposables.

The bar construction is a quasi-isomorphism invariant and comparing a gener-
alized nilpotent c.d.g.a. to its bar construction shows (see [BK94])
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Proposition 2.14 (|[BK94]). Let A be a cohomologically connected c.d.g.a and let
oM — A

be a minimal model of A.
Defining QM (resp. QH*(B(A))) the set of indecomposable elements of M (resp.
H*(B(A))), there is an isomorphism of coLie algebra

pq QM ® sQ — QH"(B(A))
canonical after the choice of p.

2.2. General construction of Bloch-Kriz cycles complex. This subsection is
devoted to the construction of the cycle complex as presented in [Blo86l Blo97,
BK94| [Lev94].

Let K be a perfect field and let Og be the algebraic n-cube

Op = (P\ 1)™
When K = Q, we will drop the subscript and simply write [J" for [Jj. Insertion
morphisms s5 : Dﬁ{l — Oy are given by the identification
Op ' ~08 ! x {e} xOp™*
for ¢ = 0,00. Similarly, for I C {1,...,n} and € : T — {0,000}, one defines
L Dﬁ_lll — Og.

Definition 2.15. A face F of codimension p of OO0} is the image s5(0J"~P) for some
I and ¢ as above such that |I| = p.

In other word, a codimension p face of Uy is given by the equation z;, = ¢, for
kin {1,...,p} and e in {0,00} where z1,...,z, are the usual affine coordinates
on P!,

The permutation group &,, act on [g by permutation of the factor.
Remark 2.16.

e In some references as [Lev94| [LevII] for example, OF is defined to be the
usual affine space A™ and the faces by setting various coordinates equal to
0, or 1. This make the correspondence with the “usual” cube more natural.
However, the above presentation, which agree with [BK94] or [GGL09),
makes some comparisons and some formulas “nicer”. In particular, the
relation between the construction in the setting Of = P\ {1} and the
Chow group CH*(X )o is simpler.

e Let Cube be the subcategory of the category of finite sets whom objects are
n = {0,1}™ and morphisms are generated by forgetting a factor, inserting
0 or 1 and permutation of the factors ; these morphisms being subject to
natural relations. Similarly to the usual description of a simplicial object,
O is a functor from Cube into the category of smooth K-varieties and the
various Uy are geometric equivalents of n.

Now, let X be a smooth quasi-projective variety over K.

Definition 2.17. Let p and n be non negative integers. Let ZP(X,n) be the free
group generated closed irreducible sub-varieties of X x Oy of codimension p which
intersect all faces X x F properly (where F' is a face of (JF). That is:

W is smooth, closed and irreducible
Z<WCX><D§ such that ¢ codimxxrp(WNX x F)=p >
or WNXxF=1(
Remark 2.18.

o A sub-variety W of X x Og as above is admissible.
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o Asp;: g — D%71 is smooth, one has the corresponding induced pull-back:
pf: ZP(X,n—1) = ZP(X,n).

e 57 induces a regular closed embedding X X D%_l — X X D%_l which
is of local complete intersection. As we are considering only admissible
cycles, that is cycles in “good position” with respect to the faces, s; induces
§*: ZP(X,n) = ZP(X,n—1).

e The morphism 9 = 37 (—1)""1(s)"* — 5;°") induces a differential

ZP(X,n) — ZP(X,n—1).

One extends the action of &,, on g to an action of the semi-direct product
G, = (Z/2Z)" x &,, where each Z/27Z acts on [k by sending the usual affine
coordinates x to 1/x. The sign representation of &,, extends to a sign representation
G, — {£1}. Let Alt,, € Q[G,] be the corresponding projector.

Definition 2.19. Let p and k be integers with p > 0. One defines
N (p) = Alta,—k(2(X,2p — k) @ Q).
We will refer to k as the cohomological degree and to p as the weight.

Remark 2.20. In this presentation, we did not take care of degeneracies (images in
Z(X,n) of pf) because we use an alternating version with rational coefficients. For
more details, one should see the first section of [Lev09] which presents the general
setting of cubical objects. A similar remark was made in [BK94][after the equation

(4.1.3)].
Definition 2.21 (Cycle complex). for p and k as above, the pull-back
s$$* 1 ZP(X,2p—k) — ZP(X,2p—k — 1)

induces a morphism 95 : N% (p) — N (p). Thus, the differential 9 on ZP(X, 2p—
k) extends into a differential

2p—k
0= (~1)748 — ) : Nk (p) -2 NEF (p).
=1
Let N%(p) be the complex
Ne): - — NE(p) 2 NEH (p) — -

One defines the cycle complex as

Y = QPN

p=>1

Levine has shown in [Lev94|[§5] or [LevlI|[Example 4.3.2] the following propo-
sition.

Proposition 2.22. Concatenation of the cube factors and pull-back by the diagonal
XxOExXxOP 53X x X x0Op xOF 3 X x X x Optm 85 x x Optm
induced, after applying the Alt projector, a well-defined product:
Nx(p) ® Ny (q) — N5 (0 +q)
denoted by -

Remark 2.23. The smoothness hypothesis on X allows us to consider the pull-
back by the diagonal Ax : X — X x X which is in this case of local complete
intersection.

One has the following theorem (also stated in [BK94l [Blo97] for X = Spec(K)).



CYCLE COMPLEX OVER P! MINUS 3 POINTS 13

Theorem 2.24 ([Lev94]). The cycle complex Ny is a differential graded commu-
tative algebra. In weight p, its cohomology groups are the higher Chow group of
X:

H (Wx (p)) = CHP(X, 2p — k)q,
where CHP(X, 2p — k)q stand for CH?(X,2p — k) ® Q.
Moreover, one easily has flat pull-back and proper push-forward. Using Levine’s

work [Lev94], one has more general pull-back on the cohomology group; one could
also use Bloch moving Lemma [Blo94].

2.3. Some properties of Higher Chow groups. In this section, we present
some well-known properties of the higher Chow groups and some applications that
will be used later. Proof of the different statements can be found in [Blo86] or
[Lev9d].

2.3.1. Relation with higher K-theory. Higher Chow groups, in a simplicial version,
were first introduced in [Blo86| in order to understand better the K groups of
higher K-theory. Levine in [Lev94|[Theorem 3.1] gives a cubical version of the
desired isomorphisms:

Theorem 2.25 (|[Lev94]). Let X be a smooth quasi-projective K variety and let p,
k be two positive integers. One has :

CHP(X, 2p — /{Z)Q ~ Grﬁ Kgp_k(X) RQ

In particular, using the work of Borel [Bor74|, computing the K groups of a
number fields, one finds in the case K = Q and k£ = 2:

(5) CHY(Q,2p — 2)g = Gr} K2p2(Q) © Q =0

2.3.2. A'-homotopy invariance. From Levine [Lev94][Theorem 4.5], one deduces
the following proposition.

Proposition 2.26 ([Lev94]). Let X be as above and p be the projection p : X X
Al — X. The projection p induced a quasi-isomorphism for any positive integer

p
* ° q.i. °
PP NZ(p) = N3 war(p)
Moreover, an inverse of the quasi-isomorphism is given by i : H* (A Yni(P) —

H" (V% (p))-

Remark 2.27. The proof of Levine’s theorem also tells us how this quasi-isomorphism
arise using the multiplication map A! x A! — A! and this leads us to the proof
of Proposition 11l

We now apply the above result in the case of K = Q and X = Spec(Q), and use
the relation the K-theory via Equation (Gl).

Corollary 2.28. In the case of K = Q, the second cohomology group of N
vanishes:

Vp=1  HXWi(p) ~ CHP(A',2p — 2)g ~ CHP(Q,2p — 2)g = 0.
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2.3.3. Localization sequence. Let W be a smooth closed of pure codimension d sub-
variety of a smooth quasi-projective variety X. Let U denote the open complement
U=X\W. A version adapted to our needs of Theorem 3.4 in [Lev94] gives the
localization sequence for higher Chow groups.

Theorem 2.29 ([Lev94]). Let p be a positive integer and | an integer. There is a
long exact sequence

(6)
o — CHP(U,1 + 1)g — CHP (W, 1)g - CHP(X,1)g > CHP(U,1)g — - --

where i : W — X denotes the closed immersion and j : U — X the open one.

Remark 2.30. i, and j* are the usual push-forward for proper morphisms and pull-
back for flat ones.

In order to study the cycle complex over P!\ {0,1,00}, we begin by applying
the above theorem to the case where X = A!, U =P*\ 0,1,00 and W = {0,1}.

Corollary 2.31. We have the following description of H* (NH;I\{O,I,OO})'.
Hk(Nrpfl\{o,Loo}) ~ Hk(N@) @ Hkil(N@) ® QLo ® Hk*l(/\/‘@) ®QL4,
where Lo and Ly are in cohomological degree 1 and weight 1 (that is of codimension
1).
Proof. The above long exact sequence gives
o — CHPTY({0,1},1)g -2 CHP(AY, 1)g — CHP(X,1)g -2
CHP1({0,1},1— 1)g = CHP (A, 1 — 1)g —> -+ -

The map i, is induced by the inclusions iy and 4; of 0 and 1 in Al. As ig : Ngw —
N, {°0}, and more generally i* for any K point = of A, is a quasi-isomorphism inverse
to p*, the Cartesian diagram

0[ SpeT@))
Spec(Q) —— > A!

shows that i . (and respectively 41 .) are 0 on cohomology.

In particular, the sequence becomes short exact. Thus, using the homotopy
property and the fact that CH? ({0, 1},1) ~ CH?(Spec(Q), ) & CH?(Spec(Q), ) one
gets the following short exact sequence

0— CHP(Spec(Q), 1)g — CHP(X,1)g > CHP~!(Spec(Q), 1 — 1)§2—0
Thus, one obtains an isomorphism
CHP(X,1)g — CHP(A',1)g & CHP~'(Spec(Q), 1 — 1)§?.

The relation between the cohomology groups of Ny (p) and the higher Chow groups
conclude the proof. (I

Remark 2.32. The generators Ly and L; can be given in terms of explicit cycles in
NEi\ {0,100} (see Subsection ).
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2.4. Cycle complex over P!\ {0,1,00} and mixed Tate motives. Levine in
|[Lev1l] makes the link between the category of mixed Tate motive (in the sens of
Levine [Lev05] or Voevodsky [Voe0(]) over a base X and the cycle complex Nx. .
The relation between mixed Tate motives and the cycle complex has been developed
before for X = Spec(K), the spectrum of number field by Bloch and Kriz [BK94].

We now assume that K is a number field and X still denotes a smooth, quasi-
projective variety over K. We will work with Q coefficients.

Under more general conditions Cisinski and Déglise [CD09] have defined a tri-
angulated category DM(X) of (effective) motives over a base with the expected
property . Levine’s work [Lev93| [Levii] shows that if X satisfies the Beilinson-
Soulé vanishing conjecture then one obtains a tannakian category MTM(X) of
mixed Tate motives over X as the heart of a t-structure over DMT(X) the smallest
full triangulated subcategory of DM (X) generated by the Tate motive Qx (n). The
whole construction is summarized in [Lev1I].

Together with defining an avatar of Nx in DM(X), Levine [LevII|[Theorem 5.3.2
and beginning of the section 6.6] shows that when the motive of X is in DMT(K)
and satisfies the Beilinson-Soulé conjecture one can identify the tannakian group
associated with MTM(X) with the spectrum of the H° of the bar construction (see
Section ZI.3) over the cdga Nx:

GMTM(X) = SpeC(HO(B(NX)))-

Then, he used a relative bar-construction in order to relate the natural mor-
phisms

p* : DMT(Spec(K)) — DMT(X) ¥ : DMT(X) — DMT(Spec(K)),

induced by the structural morphism p : X — Spec(K) and a choice of a K-point z,
to the motivic fundamental group of X at the based point x defined by Goncharov
and Deligne, 7l (X, z) (see [Del89] and [DGO5]).

In particular, applying this to the the case X = P!\ {0,1,00} and K = Q, one
has the following result.

Theorem 2.33 ([Lev1i][Corollary 6.6.2]). Let z be a Q-point of X = P*\{0, 1,0},
one has a split exact sequence:

*

1 —— 7t (X, z) — Spec(H°(B(N))) AN Spec(H°(B(Ng))) —— 1

" \_/

z*

where p is the structural morphism p : P1\ {0,1,00} — Spec(Q).

We want to apply results of section 211 to the case A = N§ for X = Spec(Q),
X =A' and X =P\ {0,1, 00}.

Lemma 2.34. The cdga ngec((@), N2 and NEL\{O 1o} ar€ cohomologically con-
nected.

Proof. The case of N, follows by A' homotopy invariance from the case of N Spec(Q)
which is deduced from the works of Borel [Bor74] using the relation with the higher
Chow groups. One deduces the case of NEL\{OJ’OO} from the Spec(Q) case using
the localization long exact sequence as in Corollary 2311 O

Let coLq, cofar and coLx denote the colie algebra generating the 1-minimal
model of NS.peC(Q)’ N2 and ./\/'Ipfl\{O 1,00} Tespectively. The relation between the

indecomposable of the H° of the bar construction and the 1-minimal model (see
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[BK94, [Lev1l] or a short review in section [2.1.3) allows us to reformulate Theorem
2.33in terms of coLie algebras.

Proposition 2.35. One has a split exact sequence of coLie algebras:

0 coLq coLx coLgeom —— 0

where coLyeom is dual to the Lie algebra associated to w), (X, x).

In particular coLgeom is related to the graded dual of the free Lie algebra on two
generators Lie(Xo, X7).

2.5. Algebraic cycles corresponding to polylogarithms. Now, and until the
end of the article, X denotes P!\ {0,1, 00} and we assume that K = Q.

In this section, we present our strategy to build general cycles in Ny correspond-
ing to multiple polylogarithms on the simple case of the polylogarithms, £i,. We
will pay a special attention to the Totaro cycle which is known to correspond to
the function Liz(z) and then explain how the construction is generalized to ob-
tain cycles already present in [BK94] and [GGL09| corresponding to the functions
Lin(2).

2.5.1. Two weight 1 examples of cycles generating the H'. We want to build cycles
in Ny in order to obtain the inductive construction of the 1-minimal model. It will
mean to

(1) find in N% linear combinations of product of already built cycles that are

boundaries, that is d(c) for some ¢ in N} (see Equation (#));

(2) explicitly build the desired c.
But the first step begins with a basis of Hl(N Y). However, as we want only a
description of co£x relatively to coLg, we do not want to consider a full basis of
H'(N%). We have seen that H' (V%) (Corollary EZ3T)) is the direct sum of H* (N3)
and two copies of H?(NQ).

Lemma 2.36. Let I'g and I'y be respectively the graph of po : X — P\ {1} = O*
which sends t to t and the graph of p1 : X — P\ {1} = O which sends t to
1 —t. Then, Ty and 'y define admissible algebraic cycles in X x O, applying the
projector Alt on the alternating elements gives two elements Lo and Ly in Ny and
one has

H' (N1 0.1.00)) = HH(AVG) @ HY(AVG) ® QLo & HO(NG) © QL.

Speaking about parametrized cycles, we will usually omit the projector Alt and
write

Lo=[t;t] and  L;=[t1—1 cXx0Ot
where the notation [¢t; f(¢)] denotes the set
{(t, f(t) such that t € X)}.

Proof. First of all, one should remark that Lo and L; are codimension 1 cycles in
X x O = X x O?*1-1, Moreover as

LoNX x {e} = LoNnP'\ {0,1,00} x {e} =0,

for e = 0,00, Lo is admissible (intersect all the faces in the right codimension or not
at all) and gives an element of N} (1). Furthermore, the above intersection tells us
that 9(Lo) = 0. Similarly one shows that L; gives an element of N% (1) and that
d(Ly) = 0. Thus Lo and L; gives well defined class in H' (N (1)).
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In order to show that they are non trivial, one shows that, in the localization
sequence ([B)), their images by the boundary map

(] 6 (] (]
H' (N3 (1)) == HO(WF, (0) @ HY(WV?4(0))
are non-zero. It is enough to treat the case of Lo. Let Lo be the closure of Lg in
Al x O'. Indeed, Ly is given by the parametrized cycle
Lo=[t;t] c Al x O

and the intersection with the face u; =0 iﬂ)f codimension 1 in A! x {0} and the
intersection with u; = oo is empty. Hence L is admissible.

Thus, considering the definition of 4, & (Lo) is given by the intersection of the
differential of Ly with {0} and {1} on respectively, the first and second factor. The

above discussion on the admissibility of Lo tells us that §(Lg) is non zero on the
factor HO( {.0} (0)) and 0 on the other factor as the admissibility condition is trivial

in HY( {01 (0)) and the restriction of Lo to 1 is empty. The situation is reverse for
L. O

Later we will consider cycles depending on many parameters and denote by
[t; fl(tv)()a f2(tvx>a s 7fn(tax)] CX xO"
the (image under the projector Alt of the) restriction to X x 0" of the image of
X x (PHF X x (P

(t,x) } (t, f1(t, %), fa(t,%x), ..., fn(t,x)).

2.5.2. A weight 2 example: the Totaro cycle. One considers the linear combination
b= Lo- L1 € N2(2).
It is given as a parametrized cycle by
b=[t;t,1 —t] C X x I
or in terms of defining equations by
W, -UiT, =0 and UVo + Ui = ViVa

where T} and T3 denote the homogeneous coordinates on X = P\ {0, 1,00} and U,
V; the homogeneous coordinates on each factor (' = P!\ {1} of (J%. One sees that
the intersection of b with some faces (U; or V; = 0 for some #’s) is empty because
T, is different from 0 and oo in X and because U; is different from V; in 0. This
comments insures b is admissible.

Moreover it tells us that 9(b) = 0. So b gives a class

[b] € H*(N%(2)).
We will now show that this class is trivial.

Let b denote the algebraic closure of b in A! x D2._ As previously the intersection
with Al x F for any face F of [J? is empty ; and b (after applying the projector
Alt) gives

beNL(2).
Writing 041 the differential in A1, one has 941 (5) = 0 and a class
] € H2 (NG (2).
As, Corollary insures that H*(N?,(2)) = CH?(A',2) = 0, there exists ¢ €
N1 (2) such that
Op1 () = b.
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Moreover, one remarks that bjo = b|; = (). The multiplication map

m
Al x O x 02 — Al x 02 7 [t; 1, ug, us] %[ﬁ;u%u?,]

is flat. Hence, one can consider the pull-back by p of the cycle b. This pull-back is
given explicitly (after reparametrization) by

- t
pr(d) =1 - —, 21,1 —a1] C Al x O3,
Z1

This is nothing but Totaro’s cycle [Tot92], already described in [BK94l [Blo91]
and gives a well defined element in NV}, (2).

Definition 2.37. Let Lo; = Li5¥ denote the cycle

t
Loy =[t;1 — —,z1,1 —x] C X x [®
1

in N%(2).
From the parametrized expression above, one sees that:

Lemma 2.38. The cycle Ly satisfies the following properties
(1) O(Lo1) =b.
(2) Lo1 extends to Al that is it closure in Al x O3 gives a well defined element
in N (2).
(3) L01|t:0 = @ and L01|t:1 is well deﬁned.

Remark 2.39. Moreover, Ly, corresponds to the function ¢ — Lia(t) as shown in
[BK94] or in [GGLOY).

This conclude the first inductive step of the 1-minimal model construction de-
scribed at ().

2.5.3. Polylogarithms cycles. By induction, one builds Lif¥ = Lg..01. We define
Li{Y to be equal to L.

Lemma 2.40. For any integer n > 2 there exists cycles LiY in Ni(n) satisfying
(1) O(LiyY) = Lo - Li,” 4
(2) Li% extends to Al that is it closure in Al x 0?71 gives a well defined
element in N}, (n).
(3) Lif? [t=0 = 0 and Li¥ |1=1 is well defined.
(4) LijY is explicitly given as a parametrized cycle by

Tn—1

L2 2n—1
s Tp—1,1 — ,,Tn_g,...,l——,.’L'l,l—.’L'l]CXXD

[t;1—
Tn—1 Tn—2 Z1

Proof. For n = 2, we have already defined LisY = Lg; satisfying the expected
properties.

Assume that one has built the cycles Li;” for 2 < k < n. As previously, let b be
the product

t _
b=Lo Li%, = [t;t,1 — —— @ 0,1 — 222 g g 1= 22 21,1 — 2.
Tn—2 Tn—3 T

and b its algebraic closure in Al x [J?"~2,

Computing the differential with the Leibniz rule, one gets 9(b) = —Lg - Lo -
Li% , = 0 and b gives a class in H* (N3 (n)).
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Using the expression as parametrized cycle one computes the differential of b in

) 0= 3 (00 B) ~ 7% ,(B) =0

as many terms are empty because intersecting with a face u; = 0, 00 on a factor (1!
leads to a 1 appearing on another (I while the other terms cancel after applying
the projector Alt.

As in the case of Lis’, b gives a class in H*(N%(2)) = 0 by Corollary and
there exists ¢ € N}, such that

Op1 () = b.

As Li% | |1=o = 0, bls=o = 0 and the element € is given by the pull-back by the
multiplication
Al x O x 022 2, AL x 202

)

given in coordinates by

[t ur, ug, - . uop 1] > [T U2, - Un 1]

Reparametrizing the factor A' and the first (! factor, one writes ¢ = pu*(b)
explicitly as a parametrized cycle
t Ty T
c=[t1— — zp_1,1— n—l,xn,g,...,l - —2,501,1 — ] c Al x O* L
Tn—1 Tn—2 L1
Now, let Li’Y be the restriction of ¢ to N'i-(n) that is the parametrized cycle
t Ty x
Li% | = [t;1— —— 2p_1,1 — =L 2 5, 1= = 2y, 1 — 2] € X x O% 1
Tn—1 Tp—2 T

The different properties, d(Lif¥) = Lo - Li}” ,, extension to A, Lif¥ |;—o = ), can
now be derived easily either for the explicit parametric representation or using the
properties of ¢. O

Remark 2.41. In Equation (7)), the fact that 99, 1(5) = 0 is related to the induction
hypothesis Li;” | |;—o = () as in terms of cycles one has exactly

bN A x {0} x O?" 3 Li%Y | |s=o.
The other terms in the differential are related to the equation satisfied by Li}Y ;
in N3 (n — 1) and giving
d(b) =Ly Lo-Li}Y 5, =

and even if Ly is not defined in N}, the fact that Li;” |;—o = 0 insures that the
product really correspond to an element in N,.

Remark 2.42. e One finds back the expression given in [BK94] or in [GGL09]..
e Moreover, Li;Y corresponds to the function ¢ — Li,(¢) as shown in [BK94]
or in [GGL09|.

e The construction is given in full details for more general cycles in Section @
and is nothing but a direct application of Theorem £TI2 to the word 0---01
(with n — 1 zero).

The case of cycles Li;” is however simple enough to be treated by itself
as the “good” case.

e It is a general fact that pulling back by the multiplication preserve the
empty fiber at t = 0 property as proved in Proposition A9l
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2.6. Admissibility problem at ¢t = 1 in weight 3. It seems to the author that
the first attempt to define algebraic cycles corresponding not only to polylogarithms
but also to multiple polylogarithms was done by Gangl, Goncharov and Levin in
[GGLOY]. In their work, they have succeeded to build cycles corresponding to the
value Lin,  n,(21,...,2x) for fixed parameters z; in a number field F' with the
condition x; # 1 and x; # x; for i # j. However, their cycles are not admissible if
one removes the conditions on the x;. One develops in this section, the first example
where such a problem appears, beginning by a review of the general strategy.

2.6.1. Review of the strategy. In order to build the 1-minimal model of N§, we
have first given generators of Hl(/\f %)- Then, assuming, one has already built some
cycles ¢; in Ny, one want to find generators of
ker (H2 (A’(Q<¢>) — HQ(N)'()) )
In order to do so, we want to find linear combination of products
b= Zamci tCj € AQ(@ < ¢ >)

such that

e 0(b) =0 (that is b € H* (A2(Q < ¢; >))),

e b is a boundary (that is there exist ¢ in N% such that d(c) = b). This tells

us that b is in the kernel of (H* (A2(Q < ¢; >)) — H*(NVY).

The product Ny @ Ny, — N% being anti-commutative, we have above identified
the operations in A?(Q < ¢; >) and in N'%.
The strategy consists in looking for linear combinations

b= Zai,jci " Cj EN}(

satisfying

(1) 8(b) =0, B

(2) b extends to A! as b e N7y,

(3) 9a1(b) = 0.
Then as H?( s1) = 0 (Corollary 2.28), one gets a € given by the pull-back by the
multiplication A! x O — Al such that

aAl (E) = E

The desired c is the restriction of ¢ to X = P!\ {0,1, c0}.
Remark 2.43. The method described above was put in motion for the polylogarithm

example with b = Lo Li;? ;. The main result of Section Blis to give a first general
form for the b.

Below is the first example which uses the cycle L1 in b and where both geometric
and combinatorial key points arise.

2.6.2. The algebraic cycle Lgi11. The cycle Ly was defined previously, so was the
cycle Loo1 = Li5” by considering the product

b= LO . LOl-
Now, one would like to consider also the product
b=1Lo-Li €N%(3),

given as a parametrized cycle by

t
b=[t;1— —,z1,1—xy,1—t] <X x0O%
1

From this expression, one sees that 9(b) = 0 because ¢t € X can not be equal to 1.
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Let b be the closure of the defining cycle of b in A! x 0%, that is
- t
b= {(t,l —, 1,1 —x1,1 —t) such that t € A", z; € Pl}.
T

Let F be a face of 0% and u; denote the coordinates on each factor (0. One
necessarily has u; # 1. If F is contained in an hyperplane defined by us = oo or
uz = 00, then, as u; # 1, one gets

bNAY x F = 0.

Similarly, one gets an empty intersection of b with a face contained in uy = oo
because t € Al is different from oco. This remark reduces the case of F' contained
in u; = oo to the case F' contained in uy = 0 which gives an empty intersection as
uz # 1. By symmetry, the intersection with F' contain in uz = 0 is also empty.

In order to prove that b is admissible and give an element in N ;il it remains to
check the (co)dimension condition on the three remaining faces : u; = 0, ug = 0 and
u; = ug = 0. The intersection of b with the face u; = uq = 0 is empty as ug # 1.
The intersection b with the face defined by u1 = 0 or ug = 0 is 1 dimensional and
so of codimension 3 in A! x F.

Remark 2.44. Let FY denote the face of (0% defined by us = 0. The intersection of
b with X x FY is empty as t # 1 in X = P!\ {0,1, 00}.

From the above discussion, one gets a well defined element, written again b, in
2,(3). Computing the differential in N §1 gives, as the intersection with uy = 0 is
killed by the projector Alt,
GAl (5) = —L01|t:1 75 0

and b do not gives a class in H*(N2,).
In order to by pass this, one introduces the constant cycle Lg;(1) in N (2)
defined by

1
Loi(1) =[t;1 — —, 21,1 —x,1 —t] € X x 3.
T
The cycle Lg1(1) satisfies

Va € X Lotli=a = Lot|t=1-

and extends to a well defined cycles in NV}, (2).
Instead of considering the product Lg; - L1, one looks at the linear combination

(8) b= (Lo1 — Lo1(1)) - Ly € N2(3).

As above, one checks that b extends to a well defined element b in N2, (3). The
correction by —Lo1(1) - Ly insures that

a(b) = 07 aAl (5) = 07 B|t:0 =0.

Computing the pull-back by the multiplication p : A! x O' — A'; one wants to
define Lg11 in Ny (3) as the parametrized cycles

t
9) Lo =[t:1— —,1- 2 21,1~ 21,1 -y
i) X
t 1 5
+[ﬁ;1——,1—1‘2,1——,1‘1,1—$1] cX x0O
i) X

As, t # 1in X = P!\ {0,1, 00}, one easily check that Lg;; is an admissible on
X x [0° and gives a well defined element in N%(3). An explicit computation gives
also that

(10) d(Lo11) = b= (Lo1 — Lo1(1)) - L1.
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Remark 2.45. However, one should emphasis that

e L1 is not admissible on A! x [0° due to an issue at the point ¢ = 1.
e This non-admissibility problem is the same faced by Gangl, Goncharov and
Levin in [GGL09].

Section [ will explain how to obtain general cycles admissible at ¢ = 1 and the
particular example of a cycle L11 related to Lgi; above will be detailed at Section

BT

Remark 2.46. Even if Lgj; is not admissible at ¢ = 1, one could go on, looking for
“good” linear combination of product. In particular in weight 4, one could consider

(11) b= Lo- Loi1 + Loo1 - L1 — Loo1(1) - L1 + Lo1 - Lo (1)
and remark that

e The terms Lg- Lg11 + Loo1 - L1 correspond to a principal part related to the
free Lie algebra Lie(X(, X1) as explained in Section

e The term Lg1-Lo1(1) cancels with the the correction —Lg1(1)- L1 introduced
earlier for Lg11 and insures that 9(b) = 0. It corresponds to “a propagation”
of the correction introduced for Lgi1.

e The term —Lgp1(1) - Ly is similar to the correction —Lg;(1) - L introduced
earlier for Lo1; and insures that 91 (b) = 0.

e The two correction terms are related to the principal part by some special
differential on rooted trivalent trees as will be explained in Section 3.4

3. COMBINATORIAL SETTINGS

In this paper a plane or planar tree is a finite tree whose internal vertices are
of valency > 3 and where at each vertex a cyclic ordering of the incident edges are
given. We assume that all other vertices are of valency 1 and call them external
vertices.

A rooted tree is a planar tree as above with one distinguished external vertex
of valency 1 called its root. In particular a rooted tree has at least one edge. The
external vertices which are not the root are called leaves.

We will draw trees so that the root vertex is at the top and so that the cyclic
order around the vertices is displayed in counterclockwise direction.

3.1. Lyndon words and the free Lie algebra Lie(Xy, X7). The material devel-
oped in this section is detailed in full generality in [Reu93, [Reu03| and recalls the
basic definitions and some properties of the free Lie algebra on two generators and
its relations to trivalent trees and Lyndon words.

3.1.1. Trees and free Lie algebra. Recall that a Lie algebra over Q is a Q vector

space L, equipped with a bilinear mapping [, ] : L ® L — L, satisfying the two
following properties for any x,y, z in L:

(12) [z,2] =0

(Jacobi) [z, ylz] + [ly, 2], 2] + [[2, 2], y] = 0.

Remark 3.1. Note that applying the first relation to [ + y, x + y], one obtains the
antisymmetry relation

[x,y] = 7[ya ZL']
Thus, we may rewrite Jacobi identity as

[[z,y],z] = [:C, [yvzv]] + [[:L',Z,],y].
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Definition 3.2. Given a set S, a free Lie algebra on S over Q is a Lie algebra L
over Q together with a mapping i : S — L with the following universal property :

For each Lie algebra K and each mapping f : S — K, f factors uniquely through
L.

In what follows, we will only consider S to be a set with two elements, either
S = {0, 1} or §= {XQ,Xl}.

One is used to see the free Lie algebra on { X, X7 } as a subspace of Q < X, X1 >
(its enveloping algebra), the space of polynomials in two non commuting variables
Xo and X;. Let Lie(Xp, X1) denote this free Lie algebra.

In order to show the existence of free Lie algebras, one usually uses a tree rep-
resentation.

Definition 3.3. Let 73" denote the Q vector space generated by the set T of
rooted, planar, trivalent trees with leaves decorated by 0 and 1.

For two trees Ty, T in 7" defined T g T» to be the tree obtained by joining the
root (marked by a circle around the vertex) of 77 and 75 and adding a new root:

-}
! 2 Ty T

The set 7' is isomorphic to the free magma on {0,1} a branch * in a tree
corresponding to a bracketing in a well-formed expression.
The composition law 4 extends by bilinearity to 73™. Let 4. denote the ideal
of T§™ generated by the element of the form 7' 4 T" and
(Ty ATo) ATs + (T2 AT3) ATy + (T3 AT1) g T

The quotient 73" /I sac is a Lie algebra with bracket [, | given by A; in fact it is a
free Lie algebra on {0, 1}.

Identifying {0, 1} to {Xo, X1} by the obvious morphism and using the correspon-
dence A < [, ], one obtains

Lemma 3.4. The quotient 7€ = ’76”/[_],16 is isomorphic to Lie(Xo, X1).
For T in 7' let [T] denote its image in 7%
3.1.2. Hall set. Each tree T in T is either a letter T = C? for a € {0,1} or is of

the form T'= Ty A T ; one writes St for the set {(?, C?}
01

Definition 3.5 (JReu93]). A subset H of T is a Hall set if the following condi-
tions hold:

e H as a total order <.
o ST={7.9}cH.
01

o for any tree T' =Ty AT in H \ S7, one has T, € H and

(13) T < Ts.

e For any tree T =T1 A T> in 7"\ S7, T is in H if and only if
(14) T1, Ty are in H and T' < Tb,
(15) and either T} € Sy or T} = T’)\T” with T" > Ts.

Remark 3.6. In [Reu03], Reutenauer begins with a total order on T satisfying
T=T AT, e T"'\ S =T <Tb.
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Then, he defines the Hall set relative to the order < as the subset of 7/ containing
St and satisfying the last condition of the above definition (Equations (Id]) and
(IH)). This gives the existence of Hall sets.

Zorn’s Lemma (even if it may be overwhelming) implies that, beginning with a
Hall set as in Definition 3.5, the total order on H induces a total order on 7"
satisfying

T=T AT, e T""\ S =T <Tb.

Theorem 3.7 ([Reu03||Theorem 4]). Let H be a Hall set of T"*. The element [T]
for T in H form a basis of T"* ~ Lie(Xq, X1).

We would like to review below the algorithm showing that the elements [T'] for
T € H generate T adding some extra information that will be used latter.

The algorithm described in [Reu03][Section 9] goes essentially as follows. Con-
sider the total order < on 7% and let T = T} *TQ with Ty < T» be a tree in 7.
Then either T isin H or T}, =T" *T” with 7" < T, and we can also assume that
T’ < T". Then one writes in TLie

[T] = [Ty A T2] = [[Th = [[T"AT"], [T2]]
(7", [T"]], [T2]
(7], [T2), T"] + (177, ([T"], [T2]]]
(16) = [(T"AT) AT"] + [T A(T" A T2)]
and concludes using an induction on both the sum of the degrees of 77 and T5 and

the maximum of 7} and 75. This insures that the algorithm terminates.
In this algorithm, we want for latter use to keep track of

e brackets that are 0, that is there is a subtree of the form T /‘\T.
e evolution of the position of a distinguished leaf of the original tree.

In [Reu93|[proof of Theorem 4.9], Reutenauer gives the same algorithms but going
in the other direction : beginning with the smallest subtree Ty of T" which is not in
H. For our purpose, we will modify this first algorithm given by Reutenauer.

Let 7y'%;,, denote the set of finite sequences T of triples (77, g;, ki) in Trix Zx N*
such that for any 4, k; denotes the position (beginning on the left going to the right)
of a leaf of Tj.

Let T = (T}, ¢, ki)1<i<y be an element of 7&@5’”}1—”1 Define Dec(%) in ’Tt}-m
follows.

(1) for I in 1 <4 < N, beginning with T° = T, define T’ = (T}, ¢!, k})1<i<n, as
follows
Let j=N+1—1 If T, is in H then let T = T'~1.
(2) Else considers the smallest subtree T T" of T;il which is not in H. In
particular 77 and T” are in H. Then, either 77 < T”, or T = T" or
T" > T". Let n; be the number of leaves of T; and the position of the
leaves of T” (resp. T") in T} to be in {b}, f;} (resp. {fj + 1,f]} for
1<y, < fi< ff.
If T = T”: one defines T = -1
If T > T": let T} be the tree obtained from T;fl

(17) by replacing the subtree T'AT" by T" AT’
and let ¢! be —¢~". Define k! by
kLt if K < b’ or kit > f7,
kb= K-t + 1= f if b’ f’

fl (f’ b+ 1) 1ff;+1 kj1<f;'.
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Let Nl = Nl,1 and {Zl = (T;l, qé, kf)lgigm be defined by
(T}, qi, ki) = (T o kY
for i # j and by the triple( g,k:é)fori:j.
If T <T": as T’*T” is not in H one has T = tl}\tg with to < T".
Let the position of the leaves of 1 (resp. t2) be in {0, f;} (resp.
{fj/',l + 15 f]/}) Deﬁne Nl = Nl*l + 15 Qé = q§'+1 = Qé‘_l
Let T} be the tree obtained from T;_l
(18) by replacing the subtree T"AT" by (t1 AT") ta,
and let T} 41 be the tree obtained from T;il
(19) by replacing the subtree T"AT" by 1 A(T" At2).

This operation is exactly applying Jacobi on a subbracket, that is
Equation ([I6). We also need to see how the position kéfl changes and

define
k% ! ik < fl +Lor k> fY
Ky = ki = ii + = 5 i 7+ 1< K<

S R P Y
Now, one deﬁnes T = (T}, ¢, k) as

(T! gt kY = (T8, g kY for i < j,
(T}, ¢, k) = (T}, b, kL) for i = j,
(T}, d., k ):( 11 qg+1ak§+1) fori=j+1.
(T}, q, & ):(7111 },ki 1) for i > j+ 1.

Now, we have TV in N Fin» & Sequence of length Ny and regroup the

terms having same T; and k;.
(3) For ¥! = (Til,qé,kg)lgig]vl with [ < N, if there exists 1 < ig < jo < IV
such that Tlo = T}O and kzl-o = k:éo, then set Njy; = N; — 1 and T+ =

(T, gl 1€l.+1)1<z'<z\rl+1 by
(T g kY = (T, 4L, KD for i < g and g < i < jo,
(T L kT = (T, 41+ 4 k) for i = o,
(TFY g k) = (T, dhgs ki) for i > jo.

This part of the algorithm stops when all the couple (T}, k!) are different
for some L large enough (< 2Ny + 1).

The decomposition algorithm described above tells us that beginning with a
triple (Tp,1,k), k being the position of one of the leaves of Ty, the sequence
Dec™(Ty,1,k) is constant for n large enough. Let T = (T}, ¢, ki)1<i<ny be its
constant values. One gets the following

Lemma 3.8. With the above notations, the decomposition of [To] in T in terms
of [T] for T in H is given by

To] = Z a[Ti]

Remarks that not all the 7} are in the Hall set H. However, those which are not
in H contain a subtree of the form T )\T and thus, the corresponding bracket [T;]

is zero in T L.
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3.1.3. Lyndon words. We are here interested in some particular Hall, the one in-
duced by the Lyndon words. Let S be the set {0,1} and S* denote the set of finite
words in the letters 0,1. Let < be the lexicographic order on S* such 0 < 1.

Definition 3.9 (Lyndon words). A Lyndon word W in S* is a nonempty word
which is smaller than all its nontrivial proper right factors; that is W # () and

W=UV withUV#0) = W<V
Remark that 0 and 1 are Lyndon words.
Example 3.10. The Lyndon words of length < 4 are
0, 1, 01, 001, 011, 0001, 0011, O111.
They are ordered by the lexicographic order which gives
0 < 0001 <001 <0011 <01 <011 <0111 < 1.
In order to associate a tree to a Lyndon word, we need the following definition.

Definition 3.11 (Standard factorization). Let W be a word in S* of length > 2.
The standard factorization of W is the decomposition
UV eSS \0

W =UV with { and V is the smallest nontrivial proper right factor of W.

One has the following property of Lyndon words.

Proposition 3.12 (|[Reu93|[proof of Theorem 5.1]). Let W be a Lyndon word with
standard factorization W = UV . Then , U and V are Lyndon words and either U
is a letter or has standard factorization U = U Us with Uy =2 V.

To any Lyndon word W we associate a tree ry in 7% If W =0 or W = 1, set
T0 = C? T1 = C?
0 1

For a Lyndon word W of length > 2, let W = UV be its standard factorization
and set
TW = TU *Tv.

Let Hr, be the set {7} where W runs through the Lyndon words in the letters
0,1. Endow Hj with the total order < induced by the ordering of the Lyndon
words W given by the lexicographic order on S*.

For any Lyndon word, let [IW] be the image of 7 in 7X% and let Lyn be the
set of the Lyndon words.

Definition 3.13. For a Lyndon word W, we say that 7y is a Lyndon tree and
that [W] is a Lyndon bracket.

Theorem 3.14. The set Hy, is a Hall set and the family ((W])werLyn forms a basis
Of TLie'

Moreover, a basis of T2% A T is then given by the family ([W;] A [Wa]) for
W1, Wy Lyndon words such that W7 < Ws. In these basis, the bracket is then given
by

(20) (W1 A W] W25 (W], (2] = Y Al w W]
WeLyn

Example 3.15. In length < 3, one has

7’02?, lec?a T01 = ia 70012&, 7’0112/&
’ ' o1 001

)
011



CYCLE COMPLEX OVER P! MINUS 3 POINTS 27

and in length 4

Too01 = ;)\ s Tooll = &\ ,  Tol1l = /& .

0001 0011 0111

3.2. Trivalent trees and duality. Let 76”’< be the quotient of 725” the ideal
(for A) Is generated by
Tl}\Tg + Tg}\Tl.
Let T is a tree in 7" with subtree T1 /O\TQ and let 7" be the tree T in which one
has replaced T} /\TQ by 15 /\Tl In T 6< , one has the relation
T=-T.

From the total order on Hy, one gets a total order < on T, Let B< be the
set of trees T in T such that

=TT *TQ is subtree of T = Ty < Tb.
Writing 7' € 8= also for the image of T in Tt” ', one sees that
Lemma 3.16. The set B< induces a basis of 76”’< also denoted by B<.

We will now, identify 76”"< with its dual by the means of the basis B<.
Let I, denote the image of the ideal I s4. in ’76”‘. The Lie algebra 7 %% is then

isomorphic to the quotient 76” "< /I 74c and, using the identification between 76”"<
and its dual, one can identify the dual of 7% with a subspace 7°°F C ’76”"’<.

Definition 3.17. Let (Tw-)weryn in 7% denote the dual basis of the basis
(WD) weLyn of the free Lie algebra T,

The Ty~ are linear combinations of trees in B<. One should remark that any
Lyndon tree Ty is in B< and that by definition its coefficient in Ty« is 1.

Example 3.18. Up to length < 3, one has Ty = Ty that is

To*:(?a Tl*:?, Tor- = )@\7 Too1- = 2\, T011*X
0 1 $

001 011

In length 4, appears the first linear combination

e /3% TOOH*_% & e K&

0001 0011 0111

As the Lie bracket on 7% is induced by * S TIEATIE — TPt is also induced
by A on 76”’<. By duality, one obtains a differential
dL' . TcoL — TcoL A TcoL
e -

dual to the Lie bracket and induced by the map 74" — 7™ A T{™ also denote
by drie :

(21) drie - i — 7af.

T: T:
T Ty 1 2

The property that dr;. o drie = 0 on TF is dual to the Jacobi identity on 7%,
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Proposition 3.19. By duality, one has in Tl :
[ ) To* = C?, Tl* = C?;
0 1
o dric(To+) = dpie(T1+) = 0;
e for all Lyndon words W of length > 2,

(22) dLie (TW*) = Z a%th TWl* A\ TW2*

Wi<Wy
Wi, Wa€Lyn

where the O‘%I,W2 are defined by equation (20).

Moreover one can build the linear combinations Ty~ inductively by

(23) Ty~ = Z a%17W2 TWI* /‘\TW;

for W of length greater or equal to 2. Here )\ denotes the bilinear map T°°F ®
Teok — Tl induced by 4.

Lemma 3.20. Let W be a Lyndon word of length greater or equal to 2.

o For the lexicographic order one has 0 < W < 1
o A leaf of a tree in the sum Ty~ decorated by 1 is always a Tight leaf.
o A leaf of a tree in the sum Ty~ decorated by 0 is always a left leaf.

Proof. Let W be a Lyndon word. As 0 is the smallest non empty word in letters

0 and 1, one has 0 < W. Writing W = Ue with ¢ in {0,1} and U non empty, one

has W < e. Thus, one gets ¢ = 1 which conclude the first part of the lemma.
Now, the inductive construction of the family Ty« given by Equation (23]

(Proposition [3.19)

TW* = Z Oz%l WZTWI )\Tw*
Wi1<Wsy
Wi,Wa€Lyn
shows that Ty« is always add as a left factor and T7- always as a right factor.
Induction on the length concludes the lemma. (I

Definition 3.21. Let T be a tree in 7. Its image in 7%* decomposes on the

Lyndon basis as
[1]= > Wl
WeLyn

Duality implies that
Lemma 3.22. Let W be a Lyndon word. Then Ty~ decomposes on the basis B<

as
Ty = Z T
TeB<
where the c}¥ are the ones defined at Definition [3.21l.

In view of Theorem 344, we need to express the coefficients ¢V in terms of
the coefficients c%l and 0%2 for some subtrees 77 and T, of T. We give below the
necessary definitions and lemmas to give such a decomposition of the ¢}¥ (Theorem
B30). The rest of this subsection will be devoted into proving this decomposition.

Definition 3.23. For a tree T, let Ler(T) = {l1,...,1,} be the set of its leaves
numbered from left to right and let LeX-(T') be the set of leaves with decoration
equal to 1.

The position of a leaf I; will be its number 7 and we shall write i € Le(T') (resp.
i € Le!(T)) to a denote the position of a leaf (resp. of a leaf decorated by 1).



CYCLE COMPLEX OVER P! MINUS 3 POINTS 29

Definition 3.24. Let T be a tree in 7% and i the position of one of its leaves
decorated by € = 0,1. Let v denotes the vertex just above this leaf and 77 the
(other) subtree just below v:

x

T ¢

We shall write (1'/4 )T for the subtree Ty and ' (/i ) or T \ir, for the tree
obtained from T by deleting the subtree T} and the i-th leaf and by changing the
vertex v into a leaf with decoration ¢ :

(T/¢) ::;? NI/ ) =T\ = T
1 :
Definition 3.25 (Insertion). Let 77 and T» be two trees in 7% and i be the

position of a leaf in Ty and ¢ its decoration. We assume that this leaf is a “right
tree”. We denote by T» A i T} the tree obtained from 75 by replacing the i-th leaf

by a vertex v with left subtree T} and right subtree a leaf decorated by ¢ :

T2: ? = TQA’L‘Tl:: S
: Tl/\a

In case we need an insertion on a “left leaf”, we will use the notation * A i

In the pictures describing definition 3.24] and 325l we have drawn the important
part in a right subtree, the definitions remains valid in case the considered leaf is
in a left subtree.

Definition 3.26. if e denotes a leaf of a tree, we extend the above notation to the
leaf e:

(T/ ¥ )T’ : (T/ ¢ ) = T\eTlv Ty Ae Ty.

Let B3~ denote the set of trees T in 7' such that there exists one and only one
subtree of T of the form Ty A T1.
Looking closely at the insertion/quotient operation one obtains the following.

Lemma 3.27. o Let T be a tree in B= and e a leaf in Le*(T). Then, there
is a unique tuple (Th,Ts, f,e(T, f)) with Th in B=<, Ty € B<UB~, f in
Lef, and (T, e) in {£1} such that

T\eT’: E(T, €)T2 and (T/ e )T =T.

o Let Ty, Ty be trees in B=<UB= with Ty in B=< and [ in LelTZ. Then, there
exists a unique tree T in B< U B~ and a unique (11, Ty, f) such that

(T, To, )T =Ty Af Th.

and, one write

T:=Ty Af Ty.

In the case where T is in B=, then £(T1,T», f) = 1.
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There is a unique leaf e € Ley (T3 Af Ty) such that

T\eT/: E(T, G)TQ and (T/ N )T = T1

and it will be denoted by pr, 1, (f) or simply by ©(f) if the context is clear
enough.
If T, as above, is in B= such that T \e is up to a sign also in B< then with
the above notations

T=T, pT1 and e(T,e)er, 1,f = 1.

Definition 3.28. Let T be a tree in 7%, ¢ the position of one of its leaves and
let T = (T}, g5, kj)1<j<n be the constant value of Dec®™ (T, 1,1%) for n large enough.

Let T be a tree in B< U B~ and k the position of one of its leaves, define the
coefficient C;Okl as

Tk _ | gjif 3j such that T =T; and k = k;
“Toi =\ 0 otherwise.

For any Lyndon word W, the coefficient c;‘é"z’-k will be denoted simply by 0% Iz

Lemma 3.29. o Let Ty be a tree in T'%, i the position of one of its leaves
and let T be a tree in B< U B~ then

T .__ T,k
CTO = Z CTOJ-
keLe(T)

does not depend on i. Moreover, if k denotes the position of one of the

leaves of T, one has
Tk _ T
Z “Ty,i = CTo-
i€Le(Tp)
If T = mw for some Lyndon word W, one has c}o = c% which makes the
above notations consistent.
o With the above notations, as the algorithm Dec does not change the leaves,

one has for i (resp k) the position of a leaf decorated by 1 of Ty (resp. of
T)

c% = Z c;[’fl resp. cgu = Z c%fl
keLel(T) i€Lel (Tp)

o Let V be in B=, and let T’*T’ be its symmetric subtree, k be a leaf in
Let(V') in the left factor T' and k' its symmetric in the right factor T'. Let
T5 be a tree in B<.

Then, one has

Sk VK
z : To,f — 2 : To,f"

fELe%,2 fELe%W2
Proof. In order to see that
T _ T,k
Ty = E €Ty i
keLe(T)

does not depend on i, it is enough to remark that the trees arising from Dec do
not depend on the marked leaves but only on the original sequence of trees. Now,
fix T and k. Let T = (T}, q;,k;)1<;<n be the constant value of Dec®™(Ty,1,4) for
n large enough and some position iy of a leaves of Ty such that

T =Tj for some j with ¢; # 0.
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Then, for any position ¢ of a leaf of T there exists integers j; 1, ..., ji,, such that
Vie{l,...,li}q T =T, and gqj, #0

where T; = (T}, i, ki, j)1<j<n stands for the constant value of Dec®™(Tp, 1,1) for
n large enough (remark that N and the n large enough do not depend on 7). As
the algorithm Dec does not change the leaves, if T appears then the leaf in position
k has to “comes from” some leaves in T and the sum

E : Qi,j;
i€Le(To),le{l,....l; }

s.t
T= le L and k:ki'jil

is equal to the total coefficient of T" in the decomposition of Tj.
The last part of the lemma is a direct application of the previous point. ([l

Let W be a Lyndon word and consider Ty« its associated dual tree written on

the basis B< as
Ty~ = Z T
TeB<

Theorem 3.30. We fix W an Lyndon word. Let T be a tree in B= appearing in
Tw+, i the position of one of its leaves decorated by 1.

As T is in B<, the i-th leaves which is decorated by 1 is a right subtree (Lemma
[Z.20):

Now, let Ty denote (T/yi )", To be ' (T'/ii ) =T \iz, and j =i — Le'(T4).
Necessarily, Ty is in B and either Ty is in B~ or can be written as Ty =
e(T,i)Ty with Ty in B<.
Then, the coefficients c}¥ satisfy

(24) ¥ = Z Z Z cre(T, i)z g’“[v]v e

Ui€Lyn Us€Lyn ke Lel (Uz)

+ Z Z Z C%E(T’i gfzym Uy

Ur€Lyn VeEDB= keLel (V)

Remark 3.31. The proof also shows the following. Let T"in 8= and ¢ the position of
one of its leaves decorated by 1 such that 71 = (T/4 )" and To ="' (T/y ) = T \iry
are both in B< and let j =i — Le!(T}) . Then, as in the theorem, one has

=2 > X ensierier

Ui€Lyn Uz€Lyn ke Lel (Uz)
ok W
20> 2 o °
7€ T, Ak Ui
Ur€Lyn VEDB= keLel (V)

Proof. Considering the definition of ¢}V, the proof follows from writing down [T in
two different ways in the Lyndon basis. By definition, one has

= > e eTh

Wo€Lyn
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and as T} is also in B<,

M= Y &pth]  eThe

U,€Lyn

As, T =T, Aj T1, linearity of the Lie brackets gives

[T]= Y Ty pi Ud] e Thie

UieLyn

Now, [I»] can be written as

L] =eT )Tl = Y > eTieptUel+ Y, > ey [V].

Us€Lyn keLel (Uy) VEB= keLel(V)

Lemma below insures that for any Lyndon word Uy
T A h] = > Y E(T,i)c%:ik [Us Ak Uh]+

UxeLyn k€ Lel(Usz)
YooY TVt eTh
VeEB=keLel (V)

and decomposing each bracket [Us Ak Ui] and [V Ak U] in the Lyndon basis gives

SO YD MNP DL UOR

UieLynUze€Lyn ke Le' (Uz) WoELyn

Z Z Z Z i)er, Clkzcz/o Ak 0 [(Wo) eThe

Ui€eLyn VEDB= keLel (V) WoELyn

which concludes the proof of Theorem [3.30 (I

Lemma 3.32. Let T = (T}, q;,k;j)1<j<n be a sequence in ’Tt}-m with k; in Le' (T})
for all j and set

T = Dec(T) = (T}, ¢}, k) )1<j<n-

j,
Let T be a tree in T, In the Lie algebra T one has

N N’
Y alTy pe T) = qj[T; 4 T
j=1 j=1

Proof. The total number of leaves in the trees involved in equations ([IT), (I8) and
(I3 stays constant, thus the formulas defining k:é in terms of the k; shows that
for any j k} is the position of a leaf of T}. Hence the right hand side of the above
equations is well defined.

The second part of the algorithm Dec which regroups the different terms of the
sequence with same tree and same position commutes with the insertion procedure
as it does not change the trees.

So we need only to consider the first part of the algorithm which performs for
each tree T one operation on the smallest subtree A )\B which is not a Lyndon
tree. Thus, it is enough to prove the above equality in the case where only one of
the T} is changed; say T. With the notations from the algorithm, one need to

prove that
N

Z *k T) = an H

j=1



CYCLE COMPLEX OVER P! MINUS 3 POINTS 33

By definition, (T},q;,k;) = (T}, qj,kj) for j <N —1 and the N — 1 first terms

R
of the above sums are equal. We are reduced to show that

Ny
(25) an[Tn v T = Z an [Ty Jen T
j=N

with N7y = N or N; = N + 1 depending on the smallest subtree A)\B of Ty which
is not a Lyndon tree.
Write Ty as

v
To 1« ky-th position
where v denotes the vertex just above the ky-th leaf.

If the whole subtree is moved or not affected at all by operations given at
To 1
equations (IT), (I8) and (), then the identity (25 is satisfied. Similarly if A /‘\B
is contained in Tj.
Thus, we are interested in the following cases :

o A=Tyand B =9 with A > B,
1

« A= A and B < 9,
1
T() 1
o A=Ty=T{ATy and B =} with Ty < B.
1

In the first case, identity ([25]) follows from

[Tl (7, 7 = =707 (o)) e T
where [T] (resp. [Tp]) denotes the image of T (resp. Tp) in T .

The second case, corresponding to operations (I8) and ([I3), follows from Jacobi
identity written as

([X,Y], 2] = [X,[Y, Z]| + [[X, 2], Y]
applied to X = [Tp], ¥ = [[T],@E] and Z = [B]. Similarly, the third case, also

1

corresponding to operations (I8)) and (IJ), follows from the above formula applied

to X = [Tg], Y = [T{] and Z = [[T], 7). O
1

3.3. The differential graded algebra of R-deco forests. In [GGL09|, Gang],
Goncharov and Levin have defined a combinatorial algebra built out of trees, the
algebra of R-deco forest, with a differential d., that imitate the behavior of the
differential dg in Ny for cycles related to special linear combinations of trees. Even if
we will not use their forest cycling map which maps (particular linear combinations
of) trees to (admissible) cycles, an equivalent of the R-deco forest algebra will
encode the combinatoric of our problem.

In this subsection, definitions and properties of the forest algebra are recalled.
Unless specified otherwise a tree is a planar rooted tree with leaves decorated by
0 and 1. Remark that trees are not assumed to be trivalent has in the previous
sections.
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Definition 3.33. e Let T be a planar rooted tree with leaves decorated by
0 and 1 and root decorated by ¢, 0 or 1. Let E(T) denote the set of edges
of T.

e An oriented tree (T,w) is a tree as above together with a bijective map
w:EBE(T) —{1,...,|(T)}.

e Similarly to Definition 323} one defines Le7(T') and LeX-(T) as the sets of
leaves of T and the set of leaves decorated by 1 respectively.

e For an oriented tree (T, w), the orientation of T' induces an order on Les(T")
and Le%—(T) respectively and the position of a leaf will denote its position
with respect to that order and we shall write i € Le(T) (resp. i € Le'(T)
) for the position of a leaf.

e A forest is a disjoint union of planar rooted trees with leaves decorated by
0 and 1.

e The above definitions extend naturally to forests. For a forest F', we shall
write E(F), Ley(F) and LeX-(F). Similarly, we will speak of oriented forest
(F,w) and of position of leaves i € Le(F) and i € Le!(F).

Let the weight of a forest F' (resp. and oriented (F,w)) be the number of its leaves
wt(F) = |Ler(F)| and its (cohomological) degree be e(F) = 2wt(F) — |E(F)].

Let V*(p) be the vector space generated by oriented forests (F,w) of weight
wt(F) = p and such that e(F) = k. Adding an extra generator 1 in weight 0 and
degree 0, V°(0) := Q11, we define

V*® = @pzo @1 VF().
Definition 3.34. Disjoint union of forests extends to oriented forests with 1l as
neutral element as follows. Let (Fiwr) and (Fa,ws) be two oriented forests, define

(Frwr) - (F2,we) = (F1 U Fy, w)
where w : E(Fy U Fy) — {1,...,|E(F1)| + |E(F2)|} is defined by

_fowile) fee R
w(e) —{ wole) + |[E(F)| ifeec Fy

For ¢ a permutation of {1,...,n} for some positive integer n, let e(c) denote
the signature of o.
Definition 3.35. Let I be the ideal generated by elements of the form

o (T,w)—e(0)(T,0 0ow) for (T,w) an oriented tree and ¢ a permutation of

{1,...,#E(T)}

0
e oriented trees with root decorated by 0, that is C? , W
T

1
e the tree T with any orientation.
0

Let F§ be the (graded) quotient
Fo=V*/IL

The extended disjoint union - makes F¢ into a graded commutative algebra (for
the cohomological degree), that is oriented forests “commute” via the rule

(F1,w1) - (Fa,wa) = (1)) (B wy) - (Fy,wy).
Definition 3.36. A rooted plane tree has a canonical numbering of its edge, start-

ing from the root edge, which is induced by the cyclic order of the edges at internal
vertices. We will speak of its canonical orientation or of its canonical numbering.
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Example 3.37. An example of this canonical ordering is shown at Figure [I} we
recall that by convention we draw trees with the root at the top and the cyclic
order at internal vertices counterclockwise.

FIGURE 1. A tree with its canonical orientation, that is the canon-
ical numbering of its edge.

Now, we define on F§ a differential of degree 1, that is a linear map
. ° o+1
d:Fy — Fy
satisfying d> = 0 and the Leibniz rule
d((Fi,w) - (Fy,ws)) = d((Fy,w1)) - (Fa,ws) + (=1 T (P, w1) - d((Fy, ws)).

The set of rooted planar trees decorated as above endowed with their canonical
orientation forms a set of representative for the permutation relation and it gener-
ates F( as an algebra. Hence, we will define this differential first on trees endowed
with their canonical orientation and then extend the definition by Leibniz rule.

The differential of an oriented tree (T, w) will be a linear combination of oriented
forests where the trees appearing arise by contracting an edge of 7" and fall into
two types depending whether the edge in internal or not. We will need the notion
of splitting.

Definition 3.38. A splitting of a tree T at an internal vertex v is the disjoint
union of the trees which arise as T; U v where the T; are the connected component
of T'\ v. Moreover

e the planar structure of T and its decorations of leaves induce a planar
structure on each T; U v and decorations of leaves ;

e an ordering of the edges of T induces an orientation of the forest Li;(T; Uv);

e if T as a root r then v becomes the root for all T; U v which do not contain
r, and if v has a decoration then it keeps its decoration in all the T; U v.

Definition 3.39. Let ¢ be an edge of a tree T. The contraction of T along e
denoted T'/e is given as follows:

(1) If the tree consists on a single edge, its contraction is the empty tree.

(2) If e is an internal edge, then T'/e is the tree obtain from T' by contracting
e and identifying the incident vertices to a single vertex.

(3) If e is the edge containing the root vertex then T'/e is the forest obtained
by first contracting e to the internal incident vertex w (which inherit the
decoration of the root) and then by splitting at w; w becoming the new
root of all trees in the forest T'/e.

(4) If e is an external edge not containing the root vertex then T'/e is the forest
obtained as follow: first one contracts e to the internal incident vertex w
(which inherit the decoration of the leaf) and then one performs a splitting
at w.

Example 3.40. Two examples are given below. In Figure[Zl one contracts the root
vertex and in Figure Bl a leaf is contracted.
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t
contracting /T\ splitting at t t
along e internal vertex T T T
p q T

FI1GURE 2. Contracting the root

t t
contracting splitting at
T a5 T T
L]
along e internal vertex T
p q

FiGURE 3. Contracting a leaf

S
Q

Now, Let e be an edge of an oriented tree (T, w) with w the canonical orientation
of T. As an edge f of T'/e is also an edge of T, there is a natural orientation i.w
on T'/e given as follows :
iew(f) = w(f) if w(f) <w(e)
Vf e E(T/e . .
PR Gy =w(f) =1 itw(f) > wle).
Definition 3.41. Let (T,w) be a tree endowed with it canonical orientation, on
defines dq, (T, w) as

dey(T,w) = Z (—1)*©OY(T /e, iw).
ecE(T)
One extends d., to all oriented trees by the relation
dey(Ty0 ow) = €(0)dey (T, w)

and to Fg by linearity and the Leibniz rule.
In particular d., maps a tree with at most one edge to 0 (which correspond by
convention to the empty tree).

As proved in [GGL09], d.,, extended with the Leibniz rule, induces a differential
on Fg.
Proposition 3.42. The map dey : F§ — Fg makes F§ into a commutative
differential graded algebra. In particular diy =

We will give examples of explicit computations of this differential in the next
subsection.

3.4. “Differential equations” for tree sums dual to Lyndon brackets. The
canonical orientation of a tree allows us to define two maps

¢ Ty — Fy, (resp. ¢y TS — F)
sending a rooted trivalent tree with leaves decorated by 0 and 1 to the same tree
with its canonical numbering and the root decorated by ¢ (resp. by 1).
The symmetry relation in 76”"< is compatible with the permutation relation in
F{ as the considered trees in ’76”’< are trivalent. We will use the same notation

to denote an element 7 in 76”"< and its image by ¢; and denotes by 7(1) its image
by ¢1.
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Example 3.43. We give below the image by ¢; and ¢ of some (linear combinations
of) tress given at example B.I8 together with the numbering of the edges. Up to
weight 3, the images by ¢; are

t el
t t ey
Tor = |e, Ti== J|e, Tp= = , Toorx = e,
. . eo es €2
0 1
€4 €5
o 1
o 0 1

and in weight 4

t t
el €1
€3
€4

€7

25 €6
[ . .
0 1 1

Too11+ =
e
e
L]
0

Some images by ¢; are given below:

Qe
ce_©
_

—e

(e}
(e}
=

and

The linear combination of trivalent trees given by the Ty« have a special behavior
under the differential d., given in the following theorem.

Theorem 3.44. Let W be a Lyndon word of length = 2. In F§, the image of Ty~
under dey is decomposable, that is dey(Tw+) is a sum of products. More precisely ,

(26) dey(Tw=) = > oy Toe - Tve + Y Ay Ty - Ty (1)

U<v UV
where U and V' are Lyndon words, the ozgfv are the ones defined at Equation (20)
and the ﬂg,/v rational numbers.

Remark 3.45. From the definition of d.,, one sees Equation (26]) involves only W
and Lyndon words U, V such that the length of W is equal to the length of U plus
the one of V. In particular, aE{V = 6(‘}‘,/\/ =0 as soon as U or V has length greater
or equal to W.

The coefficients O‘Efv are defined only for U < V. In particular, ozlﬂ/v,a% and

w
oy are not defined.
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Before proving the above theorem, we give some examples.

Example 3.46. As said before, the trees are endowed with their canonical num-
bering. We recall that a tree with root decorated by 0 is 0 in Fg. As applying an
odd permutation to the numbering change the sign of the tree, using the trivalency
of the tree Ty~ shows that some trees arising from the computation of d., are 0 in
JF{ because they contain a symmetric subtree.

1
Using the fact that the tree ? is 0 in Fg, one computes in weight 3, dey(To11+)

0

and in weight 4, d., (T0011*

>
>

L d L]
0 0 1 0 1 0 1

We give below an example in weight 5, dey(To1011+) :

v A A

01 0 1 0o 1 7

AT &&
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where the last term arises from the part of the differential associated to edges e and
f. In the computations above, we have regrouped terms together and not written
the one that were 0. The result can be summarized by

TOll* =T01* . Tl* + Tl* . TOl* (1)
Toor1+ =To~ - Tor1+ + Toor= - T1+ + T1+ - Toor= (1) + To1+ - To1-(1)
Toi011+ =To1+ - To11+ + Toor1+ - Ti+ + Ti» - Toor1+ (1) + 2T011+ - To1+(1)

and should be compare with equations (I0) and (II).

The proof of Theorem [3.44] will be decomposed in three part:

e proving that terms of the form a[V}fVTU* - Ty~ arise;

o proving that dey(Tiw+) is decomposable, in other words that it is a sum of
products;

e proving that products that are not terms arising from aE{VTU* - Ty« can
be regroup together and give terms of the form BIVXVTU* - Ty« (1) for some
rational number ﬂ(‘f v

The coefficients ﬂ(‘f v are in fact integers and the proof gives a precise formula.
However the exact expression will not be used latter.
First of all, one decomposes the differential d., in four parts :

dcy = droot + dint + le + dl1

where d,o0t i the term corresponding to the root edge, d;,+ the one corresponding
to internal edges, d) and d; corresponding respectively to the external edges that
are not the root edge with leaves decorated by 0 and 1.

One remarks that d? is zero. Indeed, if e is an external edge with leaf decorated
by 0 of a tree T', the corresponding term of df (T') is given by the forest 7'/e where
one of the tree is of the form

"7

T/
which is 0 in .7-'@.
Now, let T be a rooted trivalent tree in 7t as above. It can be endowed with its
canonical ordering and root decoration given by ¢ to obtain a tree in ¢;(7T") in Fg.

We have defined at Equation @I) a map dri. : T§"™ — 7™ AT that contract
and split the root edge of T giving two trees with two new roots. The fact that we
have exactly two trees comes form the trivalency hypothesis in TQS”. Using again

the trivalency of the trees, ¢; extends to a map 74" ATg"™ — F¢ where the wedge
product is replaced by the product in ]-'@. As d,o0t consists also in contracting the
root edge and splitting, one has

droot (¢t (T)) = ¢t (dLie (T))

In particular, as the Ty - are by definition the dual basis to the basis of 7%
given by Lyndon brackets and using Proposition [3.19 one finds omitting ¢;

droot(TW*> = Z O‘E{VTU* . TV*'
U<v

Now, let’s prove that the non decomposable terms arising from d;,; cancel each
other.

Lemma 3.47. Let W be a Lyndon in 0 and 1. Then one has
dint (TW*) =0
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Proof. One proves the lemma by induction on the length of W. If the length of W
is less or equal to 2, there is nothing to prove as the corresponding tree do not have
any internal edges.

Let T be a rooted planar tree (with decoration) and e and edge of T. One
has a natural direction on the edges of T, going away from the root. Considering
this direction, the edge e goes from a vertex v to a vertex w. The depth of e is
the minimal number of edges one has to go trough in order to go from the root
vertex to the vertex w. Thus an edge of depth 2 is an edge connected to the edge
containing the root vertex.

Using the inductive construction of Ty«

TW* = Z CYU, VWTU* *Tv*
Uu<v

and the fact that Ty« is trivalent, one sees that

terms corresponding

. ) = — w ; * *
dint (T ) to edge of depth 2 [;/ U, V¥ dine(Tur+) A Tv

+ > alU, VW Ty Adine(Tv+).
U<Vv

In the above formula, the signs are taking into account the canonical numbering of
the respective trees. Using the induction hypothesis, it is enough to check that the
terms corresponding to edges of depth 2 cancel each other. Writing Ty~ as

Tw» = § VT,
TeB<

one considers a tree 7' in B< such that c¢/¥ is non zero. As W is of length at least
3, T can be written in one of the following form

T 1 T
(a) ¢/ \t (b) f (c) e
A

T Te T3 Ty e Ts ) L €

where € is equal to 0 or 1.

As T is trivalent, edges labeled by e have an even number and those labeled
by f an odd number with the natural numbering of 7. Computing in each case
the terms of d;,; coming from the depth 2 edges and taking into account the signs
arising from the natural numbering, one gets for each cases

”/?“AA&

Ty Ty T3 Ty T, To Ts Ty

: J\ o J\
5 T> Ts T T> €

and
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In the other hand, applying dr;. erases the root and create two new trees. Com-
puting di;, (T) in 73", one obtains in 73" A T¢™ A T for each cases

(TT /T\ /T\ TT (b)—TAiAi (c)iAiAT.

T1 T1 T3 T4

Permuting the Wedge factors mtroduces a minus sign when the permutation is a
transposition as does permuting the trivalent subtrees in the former formula.
Thus, up to a global minus sign, in d;,+(Tw+) each term arising from the depth 2
edges is given by gluing together the three wedge factor of the corresponding term
in d92,(Tw~). These different terms cancel each other because d92, (Tyw~) = 0. As
a consequence, in dc, (Tyw+) terms arising from the depth 2 edges cancel each other
and din:(Tw~) = 0. O

We will now prove the main part of Theorem B.44l It is enough to prove that
terms in de, (Tw~) coming from the leaves decorated by 1 gives

> BTy - Ty-(1).
UV
Lemma 3.48. Let W be a word in 0 ans 1. One has

d} (Tw-) =>_ BvTu- - Ty-(1).
uU,v

Proof. The definition of d., gives dey(To+) = dey(T1+) = 0 and dey (To1+) = To+ - T1»
and we will assume that W as length greater or equal to 3.

All considered trees T are endowed with their canonical numbering wp. The
computation of dj (Ty~) gives

d} (Tw-) = Z e di(T) = Z oy Z (T/e,iewr).
TeB< Te®B< ecLel

Let T be a tree in B< such that ¢}V is non zero. Lemma [3.20 shows that a leaf
e in T decorated by 1 is always a right leaf:

I

T= "

T

where T1 = (T/¢ )". Thus, if the edge e has number 4, one sees that

(T/eyiewr) = (=1)' "N (=) DCP =) (T\ery wp ) - (Th(1), wry)
= (T\STUWT?m) : (T1(1>awT1>

where 20 — 1 is the number of edges in 77 and - is the product in F§; the natural
ordering of T begin the same as the one of T1(1).
Thus, omitting the natural numbering, one can write

dj (Tw+) Z Z o Therr - (T/¢ )" (1).
TEB< ecLel

Using Lemma 327 and the fact that ¢'Y, = 0 for any 7’ in 8=, one can rewrite the
above sum as

d} (Tw~) = Z Z Z W &(Ty, T, f)T> Ti(1)

T €B<To€B<UB= fecLel, 1
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and as the permutation relations kill terms 75 in 8=

& (Tw+) = Z Z Z W (T, Ty, )Tz - Ta(1).
T1EB< THeB< fGLe <—
Now, applying Theorem and its remark to T5 Af Ty and leaf e = o, 1, (f) =

©(f), one decomposes the coefficients ¥ and, as T, is in B<, obtains
T, Af Th
—

UUDEIDIEDDED VD DD SEND I &

T eB< TreB< fEL61 UieLyn Ux€Lyn k€Le' (Us)
Us,k W
e(Ty A Tlv@(f))CijCU Ak v (T1,T2,f)T2'T1(1)
DD D DD DD DD D
T eB< TreB< fELe1 U,eLyn VeB= kELe )

e(Ty Af T1,<P(f))0¥2],€f r/v Ak v (Tl,T2,f)T2 T (1).

As lemma [B.27 shows that e(T5 Af Ty, 0(f)E(Th, Ts, f) = 1, one gets

d (Tw-) =

)IEDIED DD DD DD DI L 3 T R0

T1EB< THLeB< feLel UieLyn UzeLyn keLe' (Us)

+ Z Z Z Z Z Z CTl c;ff r/V )\k T2 ’ Tl(l)'

T1EB< TLeB< fELe;2 UiELyn VEB= keLel (V)

Now, permuting the summation symbols gives

di (Ty+) =

22 X X 2 e g, B RO

UieLynUs€eLyn kELel UQ)T1€%< ToeB< fELeT

P IRDIEDVRD DD DD DI L )

UieLyn VEDB=T keLel (V) T1€B< TeB< feLeT

then, collecting terms depending on 7} leads to

1
dy (Tw+) =
U2,k W 1
cr T - et T (
22 2 2 2wy g, | 2 en)
U,eLyn UzeLyn kGLel(UQ)TQG‘B< fELe,} TEB<

5 SID SHD VD S SISV N I o ) B

U,eLynVeB= kELel(V) ToeB< fELe,} T,eB<



CYCLE COMPLEX OVER P! MINUS 3 POINTS 43

that is
d} (Ty+) =

)OI DD DEND DD DI vl a2 T (D)

UireLyn UseLyn ke Le' (Us) To€B< fGLe%
Vik W
2 2 2 D ey g, T ()
Ur€Lyn VeB= keLel (V) T2€B< fELeT

Doing the same for terms in 75, one has

dj (Tw-) =
PONEDDRED DENCASTI 1D DI B DIl ECY Rt
UreLynUseLynkeLel(Uz) ' \To€B< \ feLel,
Vik
T2 G| 2| 2 ey ) Tu ),
UieLyn VeB= keLel (V) — ToeB< fELe%“

As, for a fixed k by Lemma [3.29 ZfGLel cgj;ﬁ = CT , the first term of the above

sum is equal to

w
2. 2|2 e gy | o T ()
UieLyn UseLyn \keLel(V) —
which is the desired term in 8} 1, Tv; Ty (1).
For the second term, V contains a symmetric subtree of the form T’ /‘\ T'. If a leaf
k in Le!(V) is not in this symmetric subtree, then the tree V Ak U; also contains

this symmetric subtree and thus the coefficient ¢V’ is 0.

v Ak 0,
If the leaf k is in the left T” then there exists another leaf k&’ in Le! (V') symmetric
to k' in the right T” factor. Then, one has
W W

= C
% Ak U v Ak/ o

and Lemma [B.29 insures that the remaining terms of the second sum cancel each
other. O

3.5. Relations among the coefficients arising from the differential equa-
tions. From Equation (20]), one deduces quadratic relations between coefficients
aE{V and ﬁ}}/v for U, V, W Lyndon words.

We begin by some obvious remarks for the case where U or V is equal to one of
the Lyndon word 0 or 1.

From Lemma [3.220, one derives the following facts about coefficients ozg,/v, a‘éfl,

ﬁ&’a and ﬁgvv for € in {0,1}.
Lemma 3.49. Let W be a Lyndon word of length greater or equal to 2 and write
dey(Tw~) as in Theorem [T 74):
dey(Tw) = > afyToe - Ty+ + > By Tue - Ty-(1).
Uu<v U,v
The following holds :
L4 B(I)/YV = 6\12/0 = 0;
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L4 /BU,l = 0;
wo_ W
* By =ag;-
In particular, Boo = B1,1 = 0.

1
Proof. Let W be a Lyndon word of length greater or equal to 2. First, as ? is 0
0
in F§, one gets B‘V,'fO = 0.
In dey(Tw+), trees t? and t? arise only by contracting a root edge or by
0 1

contracting the edge e in the two following situation

t t
(ii ’ 16 ’
0 T T 1
Hence, BK/V = a“//‘ﬁ and as a tree with root decorated by 0 is 0 in Fg, one has

ﬂgf/v = 0. From the definition of d.,, one sees that a product TT;- (1) for some tree
T can only arise from a subtree of type

11
As, Ty~ is a linear combination of trees in B<, none of the appearing trees can
contain a symmetric subtree as the one above which insures that 6“2/ 1 =0. (I
Lemma 3.50. The family of elements given by
{Tw~ s.t. W Lyndon word} U{Tw-(1) s.t. W # 0,1 Lyndon word}

is linearly independent in F.
As a consequence the following families consist of linearly independent elements:

o For U and V running trough Lyndon words in 0,1:
{TU*Tv* U< V} U {TU*T\/*(1> |0 <0,V 7é 0, 1}
o for the U;, running through Lyndon words
{TUfTUZ* TU;} U {TUXTU!; TUg (1)} U {TU; TUg (1)TU§ (1)} U {TUfo (1)TUf1 (1)TU{‘2 (1)},
where the U; are subject to the constraint below

— U1 < U2 < Ug, U4 < U5, Ug < Ug, U10 < U11 < U12
— Us, Us, Ug, U1, Ur1,U12 # 0, 1

Proof. As a basis of T the elements Ty~ where W runs through all Lyndon words
are linearly independent in ’76”’< and hence their images by ¢; are also linearly
independent. Indeed, adding the root decoration ¢ introduce no relation. Moreover,
as ¢; endowed each tree with its canonical numbering, the permutation relation in
JF§ play no role as the canonical numbering produces a set of representative for the
tree. It is important to remark here that no products are involved in the element
Tw~. A similar argument shows that the elements Ty« (1) (W # 0,1 Lyndon word)
are linearly independent in /3. One concludes the first part remarking that in Fg,
no relation involves both trees with root decorated by ¢ and 1.

The second part of the lemma which involved products of trees follows from
the fact that the permutation relations on a product of tree endowed with their
canonical numbering keeps tracts of the order of terms in the product. The trees
involved here being all trivalent, their product is anti-commutative. All involved
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trees being endowed with their canonical numbering their is no further relation
than anticommutativity. [l

Now, we described some quadratic relations satisfy by the coefficients a‘gfv and
BY/y- Those relations are nothing but writing dZ, (Tw-) = 0 in terms of the above
linearly independent families.

Fix W a Lyndon word of length greater or equal to 3 and a, b and ¢ three Lyndon
words of smaller length. We define, with the restriction a < b < ¢, a coefficient
Ta<b<c; With the restriction a < b, a coefficient s,<; . and, with the restriction
b < c a coeflicient t, y<.. In the definitions below, all indices are Lyndon words
and we have dropped the superscript W. Latter on, we will generally not write the
superscript W when the context is clear enough. We set:

(27) Tgf/byc = Z (auyaabuyc — Qb0+ ozuﬁcozgyb)

u<a

§ u u u

+ (705(1#051),0 - auybaa,c + au,caa,b)
§ u u u

+ (_aa,uab,c + ab,uaa,c + auacaa,b)

§ u u u
+ (704a,u04b7c + Oéb,ua(LC - ac,uaa7b) :
c<u

(28) SZV<b,c = Z Bu,caz,b + Z au,aﬁl’ic + Z _auabﬁg,c

u<a u<b
+ E *aa,uﬂac+§ ab,uﬂ;c

u>a u>b
(29) e =D BucBiy+ Y —BusBlet > Baw(—0t, — B+ BYy)
u u u

Proposition 3.51. One has the following relations:

w W W
Ta<b<e = Sa<b,c - ta,b<c =0
for a, b and c respecting the constraints from the above definition.

Proof. First, we remark that for any Lyndon word M one has
dey(Tag- (1) = > ofh yToe (1) - Ty (1) + > Bty T (1) - Ty (1),
U<v UV

as one just changes the label of the root which does not change the combinatoric
of dey.

We fix W a Lyndon word of length greater or equal to 3, a, b and ¢ three Lyndon
words of smaller length. In the following computations, all indices corresponds to
Lyndon words.

Beginning with

dey(Tw) = > affyTu- Ty + Y By Ty - Ty-(1),
U<v UV
one computes dz, (Tyw+) as

A2y (Tw+) = Y aplydey(Tu-) - Tv- + > —ap/yTue - dey(Tv+)
U<v U<v

+ 3 B vdey(Tu-) Ty« (1) + > =By Tue - dey(Tv-(1)).
U,\v Uv
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Later on we will omit the - for the product. Developing the expression of d., on
the right hand side, one obtains that diy(TW*) is equal to

(A7) Z Z Oégva%,wTv;Tv;Tw
U<V Vi< Vs

(43) + 30N agyBY v Ty Tvy (1) Ty
U<V Vi,V

(Ag) + Z Z _O‘IVJYVC“&,UQTU*TU{"TUE
U<V Uy <Us

(AT) + 3N —allyBY, v, To-Tu: Tug (1)
U<V Uy,U2

(Ag) +Z Z ﬂgf‘/a‘UG,‘@TVfT‘@*TV* (1)
U,V Vi<Va

(A%) +3 > BYBY v Tve Ty (D) Ty- (1)
U, v vi,Va

(A7) +>° > —BYvat, v Tu-Tu; (1)Tu; (1)
U,V Ui <Us>

(A%) +> > =BYvBY v TuTu; (D Tu; (1)
U,V U,,Uz2

We expand the above sum in terms of the family
{TUT TU;‘ TU; } U {TUZ TU; TUg (1)} U {TU;‘ TU; (1)TU3 (1)} U {TUiko (1)TU;‘1 (1)TU;‘2 (1)}

where the U; satisfy the constraints from Lemma[3.50l In order to do so, one should
remark that, as 1<? = 0 in Fg, there is no terms in Tp- (1) and that Lemma [3.49
0

insures that there is no terms in Ty Ty Ti-(1) or in Ty:Tys (1)T1-(1). Obviously
dZ,(Tw-) does not give any terms in Ty (1)Tyr, (1)Tys, (1).
We assume now that a < b < ¢. The coefficient of T,«Tp«T.+ can only come from

the sum (A7]) and (AZ)).
From the sum (A7), one gets

Za‘{}f‘/a%yw ifa=Vi<b=Voa<c=V

Uu<v
Z_QKVQ‘I{LVZ fa=M1<b=V<ec=W
Uu<v
Zanyvaglyvé 1fa:V<b:‘/1<C:‘/2
Uu<v

which gives, in terms of words a, b and ¢ and using u as independent variable in

the sum signs,
W _u W _u W _u
E au,caa,b + E _au,baa,c + E au,aab,c'
u<c u<b u<a

Similarly, the sums (A3]) contributes to the coefficient of T« Ty« T« for
w w w
Z _ac,uaz,b + Z +ab,ua3,c + Z _aa,ua}ic'
c<u b<u a<u

Reorganizing the sums, one sees that the coefficient of Ty« Ty« Te+ is exactly ro<p<c.
Using the fact that d., is a differential, that is diy = 0, one obtains

Ta<b<c = 0.
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We now assume that a < b. Lemma insures that sq<p,1 = 0. Thus we can
assume that ¢ # 1. As Tp-(1) is 0 in Fg we can also discard that case. Thus, we
assume that ¢ # 0, 1.

The coefficient of T,«Tp+T,~(1) can only come from the sum , and
(Az).

From the sum , one gets

S —alvBl v, fa=Vi<b=V,c=V
Uu<v
S avBiy,  fa=V<b=W, c=V
Uu<v
which gives, in terms of words a, b and ¢ and using v as independent variable in

the sum signs,
W pu W pu
E 7au,bﬂa,c + E au,aﬂb,c'
u<b u<a

Similarly, the sums (A}]) contributes to the coefficient of T« Ty« T« for

W pu W pu
E ab,u a,c+§ :7O[a,uﬂb,c'

b<u a<u

Finally the sum (AZ)) contributes (with Vi = a, Vo = b, and V = ¢) for
Z BZI,/CO[Z,IJ'

The coefficient of To+Tp+Te+(1) is then exactly Sq<p.. Thus as previously, one
obtains
Sa<b,c = 0.

We now compute the coefficient of T,=Tp«(1)Te+(1) with the condition b < e.
Lemma [349 insures that ¢4 5<1 = 0 and tg p<. = 0. Thus we can assume that ¢ # 1
and a # 0. As Tp<(1) is 0 in F§ we can also discard the case b = 0. Thus, we
assume that b, ¢ # 0, 1.

The coefficient of T,+Tp(1)Tex (1) can only come from the sum , and

(As)-
From the sum , one gets

S BBy,  ifa=W,b=Va<c=V
U
S BBy, ifa=W,b=V<c=V,
U

which gives, in terms of words a, b and ¢ and using v as independent variable in

the sum signs,
E W pu E W ou
ﬂu,c a,b =+ 7ﬂu,b a,c*
u u

From the sum (AZ]), one gets
S BBl p, Ha=Ub=Ui<c=U,

U
Zﬁgﬁvﬁg@ ifa=Ub=U,<c=U.
U

So, sum (AZ]) contributes, in terms of words a, b and ¢ and using u as independent
variable in the sum signs, for

w w
Z _Ba,uﬁl’ic + Z ﬁa,u g,b‘
u u
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Finally, from the sum (A?)) with U = a, b = U; and ¢ = Us, one gets:
Z /Bau b,c*

Hence, the coefficient of Ta*Tb*( )Te *( ), which is 0, is exactly tq p<c; that is
putting together the terms coming from (A7) and .

Z Bu,c g,b + Z _Bu,b g,c + Z ﬁa,u _Bl’lf,c + Bg,b + _ag,c) = ta,b<c =0.

4. FROM TREES TO CYCLES

In this section we define two “differential systems” for algebraic cycles, one cor-
responding to cycles with empty at ¢ = 0 and another corresponding to cycles with
empty fiber at ¢ = 1. Then, we show that there exists two families of cycles in
N satisfying these systems induced by two families of cycles in Its L

In order to define the systems, we need to twist the coefficients obtained in the
tree differential system from Theorem [3.44l In the first subsection, we consider

only a combinatorial setting which will be applied later to the cdga NEL\ {0,1,00}"

4.1. A combinatorial statement.

Definition 4.1. Let W be a Lyndon word and U, V two Lyndon words. We set :

(30) afy =apy + By —BVy for U<V
b[‘/}fv = fﬂgfv for any U, V
and
ayy = —ally for 0 < U <V,
b’UV—aUV—l—bUV for0 < U <V,
(31) b’VUffaUVquVU for 0<U <V,
agVV:aOV for any V,
b WU =0y for any U.

It is also convenient to define b’y oy = =y, v.o=0.

As detailed in Remark 4 the above definitions correspond to rewriting the
differential system ([3.44) in terms of two others but related families of independent
vectors in Fg.

Consider now the two following differential system in a cdga (A, 04)

(ED-21) da(Aw) = > afyAvAv + Zb VA AL

u<v

and

(ED-2Y)  da(Aly) = > dyvALAL + Y Vv AvAL + Y dovAiAy,
o<U<V U, v 1%

Remark 4.2. o If W is the Lyndon word 0 or 1, then the coefficients alv}fv,

bl v a’I[/JVV and b'(} v,v are equal to 0.

e Let W be a Lyndon word. By Remark 345 if the length of U plus the one

of V is not equal to the length of W, then the coefficients aUy, blv}fv, a’EVV

and b’EVV are equal to 0. In particular, Equation (ED=2[) and Equation

involve only Lyndon words of length smaller than the length of
w.
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e From Lemma [3.49 and Definition 4] one sees that

a¥y=a'y, =0 = =0 and by = bl =00y =bye=0.
Proposition 4.3. Let (A,04) be a cdga and p be an integer > 2. Assume that

there exists element Ay (resp. Ay,) in A for any Lyndon word of length k with

2 < k < p—1 satisfying (ED=2A) (resp. (ED-2AY)) and elements Ay and A, such
that

d(Ag) = d(A1) = 0.

Let W be a Lyndon word of length p. Let A4 be defined by

As= > afvAvAy + Zb VAU AL,

Uu<v

and A1 by

At = Y d Py ALAL + Zb’WVAUAV,
Uu<v

Then, one has

04(Aa) =04(Aa1) =0

The definition of 24 and A 41 only involve only words of length strictly smaller
than the one of W.

Proof. From Definition 1] we remark that for any Wy of length < p, one has

(32) a(Aw,) — 0a(Ay,) =

3y (aUVAUAV +alls AL AL + alls, Ay Al — alts, Ay AL, )
o<U<V<1

Similarly, one has
(33)

Ar—Wp = Y (afvAvAv + o)y ALAY +ally Av AL — afly Au A} .
o<U<V<1

First we want to prove that 94(204) = 0. One computes

0a(a) = D afyOalAv)Av + Y —allyAvda(Ay)
U<v Uu<v

+3 b vOa(A)AY + ) —bly Auda(AY).
U,V U,v
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Rewriting the above equation, in order to use differences 94(Aw,) — 04(Aw,) and
thus work only with coefficients aEVO v, and bEVOV , gives:

(B{") Oa(An) = Uszw bV ) da(Av) Ay
(B3 + iv —atly — bty ) Auda(Av)
(By™) + UZ —0lly Avda(Av)
(Bf) + UZ by Oa(Av) AL
31) ST
(By™) + UZ bl 0a(Ay)A

i<y
(B#) + U<ZV by Au (04(Av) — 0a(A}))
(B5™) + 30l Au (9a(Av) — 0.4(A}))
(B§) + UUZV by Av (04(Av) — 04(A}))

The signs are computed using the fact that N’y is graded commutative and the fact
that elements Ay, and A%/VO are of degree 1 while their differentials are of degree
2.

Now, using the induction hypothesis, one can write 94(24) in terms of the
following products (u, v and w are Lyndon words):

AyA Ay, A ALAL A ALAL and ALALAL
which gives

Z ’ru<v<cA A A + Z Su<v wAUAUA}u—i_

u<v<w u<71

Ztu v<wA AlAl + Z pu<v<wA11¢A111A11u'

u<v<w
v<w

Fix v < v < w, terms in 7% v<w can not come from the above sums , E

or . In one hand sum, gives
w w U
Z (aU,V —byu) Z av, v, Avy Ay, Ay
U<v Vi<Va

plus extra terms which do not contribute to 7% ~b<e- 10 the other hand, sum
gives

Z b‘V[/jU Z a‘U,l Va AV AV1 AV2

U<vVv 0<Vi<Va<1

plus extra terms which do not contrlbute to ri?, .. Hence, as aEVUOl = 0 for any
Uy, Wy, the contribution of (B{))) and ( is given by the sum

w U w w U
E E ay vy, v, AV1 AV2 Ay + E E (aUy — bva)thVZ A()AV2 Ay.
U<V 0<V1<V2<1 U<V 0<Va<1
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Similar remarks hold for sums , 1' and 1' and the contribu-

tion to %, is given by
(34) Z Z ar v ay, v, Av, Av, Ay
U<V 0<Vi< V<l

(35) + Z Z (aE{V —b%)a%,wAOAVZAV
U<V 0<Va<1

(36) + Z Z 7agfvagl,U2AUAU1AU2
U<V 0<U; <Uz<1

(37) + Z Z (—agyv — by )ag v, Au Ao Au,
U<V 0<Us<1

(38) +30 —bpaly, AvAoAu,.
U 0<U2<1

First, we assume that u > 0. Then, sums @), B7), B8) do not contribute to
Tl y<w and a computation, similar to the computation giving rq<p<. at the previ-
ous section, gives (dropping superscripts W)

(39)
cy — m m m m
Tu<v<w = E a’mfwau,v + E _aw,mau,v + E _amﬂ/a’u,w + E aU7ma’u,w+
m<w w<m m<v v<m
§ m § m
a’mﬁua’v,w + a’u,ma’v,w'
m<u u<m

Now, we expand each products of the type a,, way, as

am,uavm,w =(m,u + Bmgu — ﬂu,m)(avm,w + @Tw - L;n,v)
=0y + Om uBy iy — CmuBy
+ Bm,uy iy + BmuBoiw — BmubBi v
- ﬂu,mavm,w - ﬂu,mﬂg}w + ﬂu,mﬂmy-
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Taking care of signs and permutation of the indices, we obtain regrouping some
summation signs

cy — m m m
Tu<v<w = E amﬁuav,w + E 7amﬁﬂau,w + E amﬁwau,v

m<u m<v m<w

+ Z — QO T Z Qi gy T Z —Qlp,m Oy
u<m v<<m w<m

+ Z am,uﬁg?w + Z _am,vﬁﬁw + Z am,wﬁgjy
m<u m<v m<w

+ Z _au,mﬁgw + Z av,mﬁmw + Z _aw,mﬂ;’?v
u<m v<m w<m

+ Z *am,uﬂﬂv + Z O‘m,vﬂﬂu + Z *am,wﬂg?u
m<u m<v m<w

+ Z au,mﬂzjn,v + Z 70‘71,771/33}71;, + Z aw,mﬂg?u
u<m v<m w<m

+ Z ﬁm,uagw + Z _ﬁm,’uamw + Z ﬁm,wamu
m#u m#v m#w

+ Z _Bu,ma:;r:w + Z ﬁv,maum,w + Z _6w7maum,v
m#u m#v w#EmM

+ Z 5m,u63?w + Z _5m,v6$w + Z BW,WBITU
m#u m#v m#w

) BumBly+ D BomBrw+ > —BumBl
m#u m#v m#w

+ Z 7/8’!71,7151717,1) + Z ﬂm,vﬂﬂiu + Z 7ﬂm,wﬂg?u
m#u m#v w#EmM

) BumBry+ Y —BomBuat Y BumBil
m#u m#v m#w

The two first line of the above sums are equal to 7y <y<w. The remaining terms
are reorganized into the six following sums:

§ : m § : m § : m § : m
ﬂm,uav,w + am,vﬂw7u + *am,wﬂv,u + *av,mﬂw;u
m#u m<v m<w v<m
§ m
+ awymﬂv,u
w<m
§ m § m § m § m
7ﬂm,v0¢u,w + *am,uﬂw,y + am,wﬂu,y + O‘u,mﬂw;u
m#v m<u m<w u<m
§ m
+ *aw,mﬂu,m
w<m
m m m m
E ﬂmywo‘u,v + E O‘myuﬂv,w + E 7O‘myvﬂu,w + E 7O‘uymﬂw,v

m#Aw m<u m<v u<m
§ m
+ O['u,m/Bw,uv

v<m
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D BunwBle + > BB+ Y —Bumw + Y —BumBi

m#w m#v m#u m#u

+ 3 BumBi e,

m#u

> BBl A D BB+ > Bomly + D> BomBit

mZ£w m#u m#uv m#v

+ Z _ﬁv,mﬁﬂua

m¥#v

> BmwBut Y —BmuBus+ D —Bumy+ > —BumBi,

m##v m#u m#Aw m#Aw
+ > BumBl:
m#w
It is then easy to recognized that

cy _
Tu<v<w = Tu<v<w T Sv<w,u = Su<w,w + Su<v,w + tu,v<w - tv,u<w + tw,u<v

as the extra needed equality cases in the sums cancel each other. Finally, using

Proposition B.51] one obtains
cy _
Tu<v<w = 0.

Now, we assume that v = 0. Sum (B4) does not contribute to r%,_,, as 0 <
U < V. Sum (B8] contribute (0 = U, U; = v and Uy = w) for

Z A0, m 0y -
o<m
Similarly, sums (30) and (B7)) contribute respectively for
Z _(am,v - bmav)ag,Lw Z (am,w - bm7w)a’707}'u
m<v m<w

and

>~ (avm = bom)agi, D (=auwm = bum)ag,

v<m w<m

when sum (B8) contributes for
v
bv,vaoﬁw - bw,waO,v-

. ey .
Thus, with v = 0 r,2,,, can be written as

(40)
cy _ m m m m
Tu<v<w = E am,’wau,v + E _aw,mau,v + E _amﬂ/a’u,w + E aU7ma’u,w+
m<w w<m m<v v<m
§ m § m E m E m
a’mﬁua’v,w + a’u,ma’v,w + 7bw1ma’u,v + 7b717ma’u,w'
m<u u<m m m

The two extra terms arising cancel with
+ Z ﬂvﬁm(iaum,w - ;r:w + ﬂ'g},u)
m#w

and

+ Z Bw,m(_amv - ZTU + Bz;rfu)

m#Aw
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equality terms adding up to gives the remaining missing equality terms. As By w, =
Bw,,0 = 0 the other terms appearing in ¢, ,< and ¢y, 4<, vanish and one can write
foru=0

cy —
Tu<'u<w = Tu<v<w + 5v<w,u - 5u<w,v + 5u<v,w + tu,v<w - 0

Now, we assume only that u < v and we will show that s, ,, = 0 by a similar
computatlon. Here all sums , ey . contribute. Precisely, the contribution

to sy, is induced by
(41) Z Z (GETV - byU)b\%,wAVlA\l/zAV
U<V vi,Va

(42) + Z Z —agy = by )by, v, AvAu, Ay,
U<V U1,U2

(43) +3 0N b, v, AvAu, A,
U Up,Us

(44) + Z Z bE{Vagl,VQAVlAU2A\1/
U<V Vi<V,

(45) JFZ Z by v avs v, Av Av, Ay
U Vi<V,

(46) + Z Z by,Uagl,UQAlevéAlU
U<V Ui<U2z

(47) + Z Z bU VaU1 UQAUAUIA
U<V 0<U1<U2<1

(48) +3° > wval, n,AvAu, A,
U<V 0<U1<U2<1

(49) +Y > —bpal, v AvAn, Ay,
U 0<Ui<U2<1

(50) + Z Z bU UaUl v, Av Av, Ay,
U 0<U;1<U2<1

(51) + 3 > —wWudll v, AvAy A,
U<V 0< Vi< Va1

(52) + 3> Wyal ,AvAn Ay,

U<V o<V <Va<1
The same types of arguments as before show that sum ({I)) contributes for

Z _(am,v - bv,m)bmw + Z (am,u - )b;nwa

m<v m<u

sum ([@2) for
*bu,ubqviw + bv,vbzﬂu

and sum (3) for

Z —(—ay,m — Z —Cyym — )b;”w.

v<m u<m

Sums (@), @5) and @B) contributes to s, , for

m
g bm7wau7v.
m
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The above contribution to s¢ can be written as

u<v w
m m
g bm wau v T § —Qm, b ,w + E am,ubv,w + § av,mbu,w+
m<v m<u v<m
m m m
E 7a’uﬁmbv,w + E b’Uymbu,w + E 7bu7mbv w
u<m m m

The other sums do not always contribute depending on the relative place of w with
respect to u < v.

We assume for a time that u < v < w. Then, sums {J)), (BU) and ([G2) do not
contribute. From sums [{@T), [@9) and (&I arises a contribution in

m m
Z _buamav,w + Z b’U,ma’u,w'
m m

cy .
Hence, s;,%, ., is equal to

u<vw mewauU+vam +Z bum
+Z amuqurZamuUerZavmqurz —Qy,mby

m<v m<u v<m u<m
m m
+ § _buama’v,w + E bUJTla’u,w‘
m m

Expanding ), _, @muby', and Y2, . —aumby, in terms of a’s and #’s and can-
celing terms in 3, m, gives

ZamuUw+Z aumyw+z bum

m<u u<m
*Z amuﬂyw+zaumﬂyw+z ﬂmuﬂ

m<u u<m

Similarly, one has

Z _am,vbmw + Z av,mbmw + va,mbumw

m<v v<m
—Zamvﬂuw‘i’z aumﬂuw+Zﬂmvﬂ

m<v v<m

Using these remarks and expanding by ,,,by",, in terms of the a’s and J’s, se
can be written as

u<vw Z Bmwauv'i‘z ﬁmwﬁ +Zﬁmw6m
+Z_amuﬁyw+zaumﬁyw+z ﬁmuﬁ

u<'u w

m<u u<m
+ Y Bl Y OtvmﬂqurZﬂmuﬂ
m<v v<m

§ m § m
+ 7bu7ma"u,w + bv,mau,w-
m m

We remark that

Z —Brwlyy + Y —Cm B+ Y CumBil

m<u u<m

m m —
+ § am,vﬂu,w + E 7O‘v,mﬂu,w - 7Su<v,c-

m<v v<m
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Then, expanding >, —by,mal’ ' in terms of ’s and 3 ’s, we compute

Z —bu,maﬂfw + Z _ﬁm,wﬁ + Z ﬁm vﬁ = —tyu<w

and
Z _bv,mamw + Z ﬁm,wﬁqy}u + Z _Bm,uﬁzw = t’u,u<w-

Hence, for u < v < w

cy _ —
Su<v,w = TSu<v,e T tu,v<w + tv,u<w =0.

In the case where u < w < v, an identical computation shoes that the sum
> m —bumay’, is replace by > b, may;,, and one finds

cy _ _
Su<vw = —Su<v,e T tuw<v T loucw = 0.

When w < u < v, both sums ) —bymay, and Y b, may,, are replaced by
> m bumay, , and Z by, may, ,, respectively which gives:

cy _ —
Su<v w — ~Su<v,c + tu aw<y T tv aw<u — 0.

In the case where w = u (resp w = v), there is no contribution in ) —by may’,
(resp. in Y7 by mai’,) to si%, . However, in this case a cancellation arises in the
other terms; that is for u = w

Zﬂmvwﬂg?u + Z 7ﬂm,uﬂg?w =0

and for v = w
S BB+ Y BB =0

Thus, the above discussion gives in these cases either s, , = Su<u,c+tu,w<v =0
or su<v w = —Su<v,c + tv,u<w = 0 which concludes the case of su<v w-

In order to show that 9.4 (A4) = 0, we still need to check that ¢;”,,, = 0 for all
admissible choices of u, v, and w. We fix Lyndon words u, v < w. As by induction,
94(Aw,) do not produce any product of the form AllfoA‘l/ov the sums ,

and 1) do not contribute. Thus the coefficient t;”, ,, comes from

) S 3 W v A AL AL
U<V vi,Vo

(54) + Z Z by b, v, Au, At A
U<V U;1,U2

(55) +Z Z bU U1 U2AU1A A%]
U Uy,Us

(56) +3 N olval, v, AvAl, AL,
U<V 0<U1<U2<1

(57) D Y bivap, nAvAl A,
U 0<Ui<Uz2<1

(58) + 3 ) wWyal 1, AvAy A,

U<V 0<U1<U2<1

First we should remark that the last three sums do not contribute if either v or w
is equal to 0 or 1. In this case, previous comments (cf. Lemma [F49) insure that
the first three sums contribute for 0 as the various products of the form bg‘fvb%%
involved are 0. Thus we can assume that 0 < v < w < 1.
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The last three sums contribute for
Z bu,m @y + buuy ) + Z bu,m @y 'y = Zbu,ma;n,w-
u<m m<u m
Sum (B3) contributes for
Z *bm,vbu,w + Z bm,wbu,w;
m<v m<w
sum (B4) contributes for
Z _bm,vbu,w + Z bm,wbu,w;
m>v m>w

and sum (B8) gives the equality case. Finally, one has
tfﬁv<w = Z _b’m,’ubu,w + Z bm,wbu,w + Z bu,mamw = tu,v<w =0.
m m m

As no terms in AL AL AL can arise from 94(24) we have shown that
o4(Aa) =0.

We now need to show that 04(241) = 0. In order to avoid working with the o’
and b, we will show that 94(A4 — A1) = 0. One has

Ws— A= > afy (AvAv + AGAY + AvAp — AuAy)
o<U<V<1
= Y apy ((Au — Ap)(Av — A}))
o<U<V<1
and

6A(QLA — QlAl) = Z agfv(aA(AU) - aA(Allj))AV
o<U<V<1

+ Y —allyv(0a(Av) — da(A})AY
o<U<V<1

+ > —ally Au(9a(Av) — 9a(A}))

o<U<V <1

+ Y allyAL(Ba(Ay) — 4(AL)).

o<U<V <1

Again, using the induction hypothesis, this expression decomposes in terms of
products of the form

AuAvAw, AuAyAL, A ALAL and ALALAL.

The computations are closely related to what was done in order to prove that
OA(AL) = 0 but generally speaking the situation here is much more symmetric. In
particular it is easy to see that

a.A(Q[A - Q[A1> = Z (Tiy<v<wAuAvAw - sz<v<wA11¢A111A11u>+

u<v<w

terms in AUAUA}U and AUA}JAL.

The situations for coefficients of A, A4, Al and A,ALAL are very similar, so we
will discuss only the case of A, A,AL.
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Computing d4(2A4 — A41) using the induction hypothesis, the contribution to
Ay AyAL (u < v) comes from

w U 1
E E —ay v av, v, Ay, Ay, Ay
0<U<V<10<Vi<Va<1
w U 1
+ E E ay v ay, v, Av, Ay, Av

0<U<V<10<Vi<Va<l

w U 1

+ E E —ay vay, v, Av, Av, Ay
0<U<V<10<Va<Va<l

WV 1
+ Z Z ag,vay, v, AvAv, Ay,

0<U<KV<10<U; <U2<1

WV 1
+ Y > —alval, v, AvAu, A,
0<U<V<10<U; <Us<1
WV 1
+ Z Z ag,y ay, u, Ay Av, Au, .-
0<U<KV<10<U1<U2<1
Depending on the relative position of w with respect to v and v not all sums
contribute. Assuming that u < v < w, the second and fifth sums do not contribute
and the coefficient of A, A, AL is given by

ey
Tuvw = 0.

In the case where u < w < v (resp. w < u < v) the coeflicient will be given
by ri¥, ., (vesp. —rg¥, ). As previously, in the equality cases (w = v or w = u)

cancellations arise among the different sums. In the case w = v, the second and
fifth sums do not contribute and the coefficient of A, A, A} is given by

amavau,w + _a%ma’u,w + _am,wau,v + a’wﬂnau,v

m<v v<m m<w w<m

which is 0 for v = w. O

Remark 4.4. For any Lyndon words, let Tj:. denote the difference Ty« — Ty« (1).
The above computations for A4 can be seen as writing the differential d., (Tw~) in
terms of the following independent families

Ty« -Ty= for U <V, Ty-- T‘l/* for any Lyndon words U, V'

and remarking that dfy = 0. For A1, these computations correspond to the
differential d., (T};.) written in terms of

T[}* T for 0<U <V <1, Ty~ -T{. and Tp- - Ty~ for any Lyndon words U,V

together with the fact that dgy =

In this context showing that A4 and 2A4: have differential 0 is obvious as it
is just a change of basis. However, latter on we will not have relations as simple
as Tg. = Tw+ — Tyw~(1) and relying on a change of basis argument may still be
possible but would certainly demand great attention. Proposition will be used
to prove Theorem

4.2. Equidimensional cycles. We recall that the base field is Q and that all
varieties considered below are QQ varieties.

Definition 4.5 (Equidimensionality). Let Y be an irreducible smooth variety

e Let Zé’q(Y, n) denote the free abelian group generated by irreducible closed
subvarieties Z C Y x 0" such that for any faces F' of 0", the intersection
ZNY x F is empty or the restriction of p; : Y xO" — Y to

ZN(Y xF) —Y



CYCLE COMPLEX OVER P! MINUS 3 POINTS 59

is equidimensional of relative dimension dim(F) — p.

e We say that elements of ZZ (Y,n) are equidimensional over Y with respect
any faces or simply equidimensional.

e Following the definition of N (p), let Ne% " (p) denote

NyEE(p) = Alt (22,(Y,2p — k) 2 Q) .

Definition 4.6. Let C be an element of Ay decomposed in terms of cycles as
C=> 4%, q€<Q
iel
where [ is a finite set and where the Z; are irreducible closed subvarieties of Y x 0™
intersecting all the faces of 0™ properly (that is in codimension p;).

e The support of C' is define has

Supp(C) = (J Zi-

e For C in NyT *(p), we will say that C' has empty fiber at a point y in Y if
for any ¢ in [ the fiber of Z; — Y at y is empty.

Proposition 4.7. Let Y be an irreducible smooth variety.
(1) The differential Oy on Ny induces a differential :

N E(p) 25 Nt R (p)

which makes Ny* *(p) into a sub-complex of N3 (p).

(2) NJP® = ®p=oNTT *(p) is a subalgebra (sub-cdga) of Ny.

(3) Assume that Z or Z' has an empty fiber at a pointy in'Y. Then the fiber
aty of Z - Z' is empty.

Proof. As the generators of Z¥, (Y,2p — k) are equidimensional over Y when in-
tersected with any faces, they stay equidimensional over Y with respect to any
faces when intersected with a codimension 1 face because a face intersected with a
codimension 1 face is another face or the intersection is empty. This gives the first
point.

Let Z (resp. Z') a generator of ZZ (Y,2p — k) (vesp. ZZ,(Y,2q — 1)) for p, g,
k and [ integers. By definition, for any face F C 00?P~% (resp. F’ C [%071), the
projection

pr:ZN(XxF)—Y (resp. p1: Z'N(X x F') —Y)
is equidimensional of relative dimension dim(F)—p (resp. dim(F’)—q) or the above
intersections are empty.

Let F and F’ be two faces has above and assume that none of the above inter-
sections is empty. Then,

ZXxZ'NY XY xFxF)cY xY xpro-k=t

is equidimensional over Y x Y of relative dimension dim(F') + dim(F’) —p —¢. In
particular for any point x in the image of the diagonal A : Y — Y X Y, one has

dim(ZxZ'N(Y xY x Fx F'),) =
dim(Z x Z'n ({z} x F x F')) =
dim({z}) + dim(F) + dim(F’) —p — ¢
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and Z x Z' N (im(A) x F x F’) is equidimensional over Y of relative dimension
dim(F) + dim(F’) — p — g by any of the two projections Y x ¥ — Y. If either
ZN(Y x F)or Z'N(Y x F') is empty then the intersection

ZxZ'N(Y XY x FxF)
is empty and so is Z x Z' N (im(A) x F x F').
From this, we deduce that
(Axid)"WZx2Z)~ZxZ'N (im(A) X DQ(”+q)‘k‘l)
is equidimensional over Y with respect to any faces. Hence,
7Z-7' = Alt((A xid)"1(Z x Z')) e Ny
and the product in Ny induces a cdga structure on Ny?* which makes it into a
sub-cdga.

Moreover, from the above computation, one see that if the fiber of Z is empty
at a point y, then, denoting with a subscript y the various fibers at y, one has

(Axid) N Zx2Z)y=2ZxZ' n({(y,y)} x DP*CTD+1) = 7 % 7! = ).
The same holds if Z’ is empty at y which gives the last point of the proposition. [

In order to compare situation in Ny and in N}, we will use the following
proposition.

Proposition 4.8. Let Yy be an open dense subset of Y an irreducible smooth variety
and let j : Yo — Y the inclusion. Then the restriction of cycles from Y to Yy
induces a morphism of cdga
NG s N,
Moreover, Let C' be in /\/'{/0 and be decomposed in terms of cycles as
C=> 4%, ¢¢cQ
il
where I is a finite set. Assume that for any i, the Zariski closure Z; of Z; in Y x O™

intersected with any face F' of O™ is equidimensional overY of relative dimension

dim(F) — p;. Define C' as
Cl = Zq'LZa

iel
then,
C'e NY*° and C=j%C" e Nf/g".

Proof. Tt is enough to prove the proposition for generators of Ny*® and Ny™*.
Let Z (resp. Z') be an irreducible, closed subvariety of codimension p (resp. p’)
Y x 02°=% (resp. of Y x 02!~} such that for any face F (resp. F') of )20+
(resp. of O2P'~F) the intersection
ZN({Y x F) (resp. Z' x (Y x F"))

is equidimensional over Y of relative dimension dim(F) — p (resp. dim(F") —p’).

Let Zy and Z| be the intersections Z NYy and Z' NY;. As, for any faces F' of
D2p—k

ZoN (Yo x F)=(ZN(Y x F))NY, x 0%~k
(resp. ZiN (Yo x F) = (Z'0 (Y x F)) N Yy x DQP’*’“’) ,

Zy and Z|, are equidimensional with respect to any face over Y, with relative di-
mension dim(F) — p (resp. dim(F");). This also shows that j* commutes with the
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differential on Ny?* and on Ny”*. In order to show that j* commute with the
product structure, it suffices to remark that

Zo X Zh = (Z x Z') N Yy x Y x PP —h=k v oy x O2p+p)—k—k

Let C and C’ be as in the proposition. The fact that C’ is in Ny?* follows
directly from the definition. To prove that

C=j(C") e Ng°,
we can assume that I contains only one element 1 and that g; = 1. Then it follows

from the fact that Z,, = Z; NY, C Y.
O

Proposition 4.9 (multiplication and equimensionality). Let m : Al x A} — Al
be the multiplication map sending (z,y) to xy and let 7 : O =P\ {1} — Al be
1

the isomorphism sending the affine coordinates u to = . The map T sends oo to

0, 0 to 1 and extends as a map from P! to P! sending 1 to oo.
Maps m and T are in particular flat and equidimensional of relative dimension
1 and 0 respectively.

Consider the following commutative diagram for a positive integer n

(mo(id al X 7)) xid On

Al x O x O Al x O"
PalxO1 JPA\l
mo (id T
Al x O e Al
Pyl J
Al

In the following statement, p, k and n will denote positive integers subject to the
relation n = 2p — k

e the composition m = (mo (id 1 7)) X id gn induces a group morphism
1 m" 1 1
ZP (A%n) — 28 (A" x 0O, n)
which extends into a morphism of complexes for any p
Wl (p) T N T (0)-
e Moreover, one has a natural morphism
hzl,n : qu(Al x O'n) — qu(Al,n +1)
given by regrouping the O’s factors.
o The composition p* = hk, , © " gives a morphism

* ,k ,k—
@ NEE R () — N2 R (p)

sending equidimensional cycles with empty fiber at 0 to equidimensional
cycles with empty fiber at 0.

o Let 0 : A — Al be the involution sending the natural affine coordinate t
to 1 —t. Twisting the multiplication m by 0 via

Al x O xO" —— Al xO"

9Xidgn+1J ]hﬁdgn

Al x O xO —2 Al x O7
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gives a morphism
k k=1
VNG (p) — NP (p)
sending equidimensional cycles with empty fiber at 1 to equidimensional

cycles with empty fiber at 1.

Proof. Tt is enough to work with generators of ZZ, (A, n). Let Z be an irreducible
subvariety of A' x (0" such that for any faces F of (0", the first projection

par: ZN (A x F) — Al
is equidimensional of relative dimension dim(F') — p or empty. Let F' be a face of
O”. First, We want to show that under the projection A' x O x O® — Al x O,

m N Z)n(A' xO' x F) — A x O
is equidimensional of relative dimension dim(F') —p or empty. This follows from the
fact that ZN(A! x F) is equidimensional over A! and m is flat and equidimensional
of relative dimension 1 (hence are m x 7 and m). The map m is identity on the O™
factor, thus for Z C Al x " as above and a codimension 1 face F of 0", m~(Z)
satisfies
m N Z)N (A" x O x F) =m 1 (Zn(A' x F))
which makes m* into a morphism of complex.
Moreover, assuming that the fiber of Z at 0 is empty, as m restricted to
{0} xO' x O

factors trough the inclusion {0} x 00" — Al x 00", the intersection

m~N(Z)n ({0} x O x O

is empty. Hence the fiber of m=1(Z) over {0} x O (resp. over {0}) by pa1xmn
(resp. pa1 © paix) is empty.
Now, let Z be an irreducible subvariety of A! x O! x (" such that for any face
F of O™
ZN(A'xO'x F) — Al xO*
is equidimensional of relative dimension dim(F') — p. Let F’ be a face of
ortl =0 xOm.
The face F' is either of the form [J! x F or of the form {¢} x F with F a face of
O™ and € € {0,00}. If F” is of the first type, as
ZNA'xO'x F) — Al xO!
is equidimensional and as A! x 0! — A! is equidimensional of relative dimension
1, the projection
ZNA'xO x F) — Al
is equidimensional of relative dimension
dim(F) —p+ 1 = dim(F’) — p.
If F’ is of the second type, by symmetry of the role of 0 and co, we can assume
that € = 0. Then, the intersection
ZN(A' x {0} x F)
is nothing but the fiber of Z N (A! x O x F) over A! x {0}. Hence, it has pure
dimension dim(F) — p + 1.
Moreover, denoting with a subscript the fiber, the composition

Zﬂ(Alx{O}xF):(Zﬂ(Alxmle))Alx{O}—)Al><{0}—>A1
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is equidimensional of relative dimension
dim(F) — p = dim(F’) — p.

This shows that hgl » gives a well define morphism and that it preserves the fiber
at a point x in A'; in particular if Z has an empty fiber at 0, so does hf, (Z).

Finally, the last part of the proposition is deduced from the fact that 6 exchanges
the role of 0 and 1. O

Remark 4.10. We have remarked that m sends cycles with empty fiber at 0 to cycles
with empty fiber at any point in {0} x OJ'. Similarly m sends cycles with empty
fiber at 0 to cycles that also have an empty fiber at any point in A! x {co}.

From the proof of Levine’s Proposition 4.2 in [Lev94], we deduce that p* gives
a homotopy between pj o ify and id where i is the zero section {0} — Al and py
the projection onto the point {0}.

Proposition 4.11. Notations are the ones from Proposition [.9 above. Let ig
(resp. i1) be the inclusion of 0 (resp. 1) in Al.

io: {0} — AY iy {1} — Al

and let py and p1 be the corresponding projections p. : A — {e} for e =0, 1.

Then, u* provides a homotopy between

py oy and id : g‘f"' — N

and similarly v* provides a homotopy between
pioi; and id : NiP* — NGP°.

In other words, one has

Oprop* +p* o0y =id —pgoil and Oprov™ +v* 004 =id —pj 04}

The proposition follows from commuting the different compositions involved and
the relation between the differential on Aef’;ml and the one on N{?® via the map

P
hAl,n'

Proof. We denote by iy and i, o the zero section and the infinity section A! —
Al x[O'. The action of § only exchanges the role of 0 and 1 in A', hence it is enough
to prove the statement for u*. As previously, in order to obtain the proposition for
Nt *(p), it is enough to work on the generators of Zp (A, n) with n = 2p — k.

By the previous proposition L9, m* commutes with the differential on ZZ, (Al e)
and on 2% (A' x 00" e). As the morphism x* is defined by p* = hy, , om*, the
proof relies on computing du1 o hY, . Let Z be a generator of ZZ, (A x O n). In
particular,

ZcA'xO' xO"
and h},  (Z) is also given by Z but viewed in
Al x O

The differentials denoted by 9}5" on 22, (A',n+1) and 0f1 ,;, on 22, (A x O, n)
are both given by intersections with the codimension 1 faces but the first (I factor
in O™ gives two more faces and introduces a change of sign. Namely, using an
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extra subscript to indicate in which cycle groups the intersections take place, one
has

n+1
O (W n(2)) =D (1)1 (B (2) = 975 (2))
n+1
=00 11 (2) = 075 (Z Z )72 (00 (2) = 0554(2))
it o(2) — )= 3 (1) (0 40 (2) — 0%, 0 (2))

=1
=iy 0(Z) —i% n(2)

D (B ey 0 s (2) = Wy © 05000 (2))

—i5,0(Z) = higs _y © Oprxn (2).

—*
=10,0

|
SHZE
-
|

Thus, one can compute dp1 0 p* + p* 0 G1 on Z, (Al n) as

Opr o p* +p* 0 9p1 =0p1 0 hp1 o™ + hpr 1 0m" 091
=iggom’ — i Dom — hat p—1 005 om*
+ hat 1 00p om”

=igpom’ —is, gom"
The morphism 7* o0 ° m™* is induced by

Al =0 AL Ot T AT AL T Al

2 (2,50) ——— (2,0) ——— 0
which factors through
AUEE AT Ot T AL AL T AL

lpo JidAl

Al o Al

Thus,
s ~ % - * * ek
i gom’ = (ip 0 po)* = p§ o -

Similarly 4§ 5 om* is induced by

AUEE AT Ot T AL AL AL

xt (2,0) (x,1) —— x
which factors through id 41 : A — A! and one has
ippom’ =id

which concludes the proof of the proposition. O
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4.3. Cycles over X = P!\ {0,1,00} corresponding to multiple polyloga-

rithms. Set Lo = Lo and £1 = L; where Ly and L; are the cycles in N}((l)

defined in Section induced by the graph or t — t and ¢t — 1 —t from X — P!,
Consider the two following differential systems

(ED-L) Lw)= > allyLuLly +> bvLuLy
U<V U,v
and
(ED-£Y)  a(Lh) = > dpvLhry + > v vLultl +3 dovLoly
o<U<V U,v \4

where coefficients a}}fv, bg‘fv, a’gv and b’gv are the ones defined at Definition ET1
These differential equations are exactly the differential system considered in sec-

tion 11

Theorem 4.12. Let j be the inclusion X — A'. For any Lyndon word of length
p greater or equal to 2, there exists two cycles Ly and L, in N (p) such that :

o Ly, Ll are elements in Ny Y(p).

e There exists cycles Ly, Ll in Ity 1(p) such that

Lw =j"(Lw) and Ly =j (L)

e The restriction of Ly (resp. £1) to the fiber t =0 (resp. t = 1) is empty.
e The cycle Ly (resp. LY, ) satisfies the equation (ED=L) (resp (ED-LY))) in

eq, ®

N% and the same holds for its extension Ly (resp. L) to Ny

The rest of the section is essentially devoted into proving the above theorem.
Let Az and Az1 denote the R.H.S of (ED=Z) and (ED-L£T) respectively. The proof
works by induction and will be developed as follows

e Reviewing the cycles Lo; and £}, presented in subsection in order to
show that they gives the desired cycles for W = 01.

e Proving that Az and Ag: have differential 0 in N§. This has essentially
been proved in Proposition 3

e Extending A, and A1 to A! and proving in Lemma 14 that the differ-
ential stay 0 in N},.

e Finally constructing Ly and Ly, by pull-back by the multiplication and
pull-back by the twisted multiplication at Lemma

e Proving that the pull-back by the (twisted) multiplication preserves the
equidimensionality property and has empty fiber at t = 0 (resp. ¢t = 1) was
done at Proposition

e Showing that Ly and L3 satisfy the expected differential equations fol-
lows from the homotopy property of the (twisted) multiplication given in
Proposition A111

Proof. We initiate the induction with the only Lyndon word of length 2: W = 01.
Example 4.13. In Section 2.5 we have already considered the product
b= Lol = [t;t,1 —1]. C X x O

In other word, b is, up to projection on the alternating elements, nothing but the
graph of the function X — (P!)? sending ¢ to (t,1 —t). Its closure b in A x 12
is induced by the graph of ¢ — (t,1 —t) viewed as a function from A to (P*)%:

b=[t;t,1 -1 CA' x[O%

From this expression, one sees that d41(b) = 0.
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Proposition [£.7] already insure that b is equidimensional over X as it is the case
for both £y and £1. Then, in order to show that b is equidimensional over A', it
is enough to look the fiber over 0 and 1. In both case, the fiber is empty and b is
equidimensional over A'. Now, set

Loi = p*(b) and Lo = v*(b)
where 1* and v* are defined as in Proposition[£.9l The same proposition shows that
Lo1 and L, are equidimensional over A and more precisely elements of N’ 12).

The fibers at 0 and 1 of b being empty and as 941 (5) = 0, one conclude from
Proposition 1] that

Op1 (Lot) = O (L];) = b.
Finally, we define
Loy =j"(Lor) and  L§, = j*(LE)

where j is the inclusion X — A! and conclude using Proposition E8
One can explicitly compute the two pull-backs and obtain a parametric repre-

sentation

t x—t
Lo =[t;1— E,x,l—z], E(l)l = [t;ﬁ,x,l—z].

In order to compute the pull-back, one should remark that if u =1 — ¢/ then

t
1—wu

Computing the pull-back by u*, is then just rescaling the new ' factor which
arrives in first position. The case of v* is similar but using the fact that for u = ;”—:i
one has

t—u

1—u
Let W be a Lyndon word of length p greater or equal to 3. For now on, we
assume that Theorem holds for any word of length strictly less p. We set

Ae =" alyLuLly + Y by LuLy,
u<v u,v

and
Ap =Y apyLhLl + 3 by Lol
U<v U,V

Remark shows that A, and A,: only involved Lyndon words U and V' such
that the sum of the length of U and the length of V' equal the one of W; in particular
the various coefficients are 0 as soon as U or V has length greater or equal to W.

In order to apply the general strategy detailed in Section 2.6.1] we need first to
show 8(AL) = a(A51> = 0.

The induction hypothesis gives the existence of Ly and £}, for any U and V
of smaller length, and by definition 9(Ly) = 9(Lci1) = 0. So the combinatorial
Proposition shows that

O(Az) = 9(Ag1) = 0.

Lemma 4.14 (extension to A'). Let Az (resp. A1) denotes the algebraic cycles
in Z(A' x 0%~2) obtained by taking the Zariski closure in Al x 0?P=2 of each term
in the formal sum defining Ag (resp. Agi). Then
o Ar and Ap1 are equidimensional over AT with respect to any faces of (12P~2;
that is Az and Apy are in Ny© %(p).
o Ap has empty fiber at 0 and Az has empty fiber at 1.
o 01(Az) = 04 (Agr) = 0
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Proof. Cases of A and Az:1 are very similar, thus we will only discuss the case of
Ar.

Let Ly and Ly for U and V Lyndon words different from 0 and 1 of respective
length ¢ and ¢’ smaller than p the length of W. Note that in Az only appears U
and V such that g + ¢’ = p.

Induction hypothesis tells us that Ly (resp. L£{;) and Ly (resp. L) extend
to equidimensional cycles over A! with respect to any faces by taking the Zariski
closure in A' x O* of each term of their defining sums; that is

Lu, L e NP (q) and Ly, L, e NP (q).
Thus, Proposition .8 insures that
Ly - Ly =Ly-Lv and Ly -LL =ZLy-LL, e NP2 (p).

and that the above products have empty fiber at 0 because it is the case for Ly .

In order to show that A, extend in an equidimensional cycle over Al, it is now
enough to study the products Lo - Ly and £; - £, as thanks to Lemma .29 those
are the only types of product involving £y and £, which are not equidimensional
over Al

The Zariski closure Ly of Lo in A' x ' is not equidimensional with respect to
all the face as in particular

LoN (A x {0}) — A!

is not dominant. However, Lo is well defined in N}, (1) even if it is not equidimen-
sional over A! and 0 is the only problematic point. In the other hand Ly is by the
induction hypothesis empty at 0. This remark allows us to shows that Lo - Ly is
equidimensional over A' and have empty fiber at 0.

Now, let E_O\O and E\O denote respectively the Zariski closure of Ly and Ly in
A\ {0}. Let Z be an irreducible component of Supp(Ly) and let Z (resp. 7\0)
denotes the Zariski closure of Z in

Al xO%71  (resp. in A'\ {0} x O%P71).

7 (resp. 7\0) is then an irreducible component of Supp(L) (resp. Supp(m\o))
and all irreducible components of Supp(Ly) (resp. Supp(E\O)) are of this type.

Let I' denote the graph of id : P! — P!, Then one has

_ 0 _

Lo = Alt(F|XXx), Eo\ = Alt(F|A1\{O}><A1\{O}) and Ly = Alt(F|A1XA1).

We will write simply I'x, I's1\j0) and T'y1 for the restriction of I' to respectively
X x X, AL\ {0} x A1\ {0} and Al x Al

It is enough to show that I'y1 - Z is equidimensional over Al (here - denotes the
product in A?,).

By the induction hypothesis, Z is equidimensional with respect to any faces over
A'; in particular Z (resp. 7\0) is equidimensional with respect to any faces over X
(resp. A"\ {0}). Thus, for any face F' of 0! and any face F’ of 0*®~1~1 one has

I'x N (X x F) is equidimensional over X
(resp. Tany (o3 N ((A"\ {0}) x F') is equidimensional over A" \ {0})
and
ZN(X x F') is equidimensional over X
(resp. 7N ((A"\ {0}) x F") is equidimensional over A"\ {0}) .
Hence, the intersections

TxxZ)N(Xx X xFxF)CcXxX xO%?
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and
(rAl\{O} x 7\0) N (AN {0} x AL\ {0} x F x F') € A1\ {0} x AL\ {0} x 0%P~2

are respectively equidimensional over X x X and over A\ {0} x A\ {0}, or empty.
In particular, in the case where the intersection is non-empty,

(rAl\{O} X 7\0) N (A {0} x AT\ {0} x F x F') — AM\ {0} x A"\ {0}

is equidimensional of relative dimension dim(F') + dim(F’) —p — 2.

Let x be a point of im(A). Then, either z is a point of im(Ax1\f03) and as a
point in A\ {0} x A\ {0}, the equidimensionality shows that if the intersection
below is not empty one has

dim ((Tar X Z) N (z x F x F'))) =
dim ((Targoy x 2"7) (@ x F x F'))) = dim(x) + dim(F) + dim(F') — p - 2

Or z is the point (0,0) and, writing T'g (resp. Zo ) the fiber at 0 under the first
projection of At x O (resp. A x 0?P=D=1) one has

(Tar x Z) N ({(0,0)} x Fx F') =To x ZoN ({(0,0)} x F x F') =0
because by induction hypothesis Zy = 0.
From the above discussion, we obtain that the intersection of
(A xid) " (I'x Z) =T x Zn (im(A) x O%7?)
with any faces is equidimensional over A! and that
Lo Z=Alt((Axid)""(T x 2))

is equidimensional over A! with respect to any faces of (0%?~2. Moreover Ly - Z has
an empty fiber at 0.

Thus, Lo - Ly is equidimensional with respect to any faces and has empty fiber
at 0. A similar argument (using 1 instead of 0 and using the fact that E is empty
at 1) shows that Li- E%, is equidimensional over A! and has empty fiber at 1.

Now, we need to show that

Op(Az) = 0.
By induction, terms of the form Ly (resp. L3,) satisfy the differential system

(ED=Z) (vesp. ([ED-LT) provide the length of U (resp. V') is greater than 2. Hence,
In order to show that 941 (Az) = 0, it is enough to show that

Ou(Lo-Lu) = —Lo- 0 (Lu)  and  Ou(Ly-LY) = —Ly-0u (L}).

All terms involved in 941 (Az) will then satisfy exactly the same differential equa-
tions as the ones involved in 9(Az) = 0. Thus, in order to show that 941 (Az) = 0,
it will be enough to apply the same computations used to prove that 9(Az) = 0
(Proposition [A.3)).

As previously said, even if £ is not equidimensional over A! it is a well defined
element of A}, (1) and one has

1 (Lo) = [0;0] c Al x°
which is of codimension 1. The differential graded algebra structure on N2, shows
that
O (Lo - L) =1[0;0]- Ly — Lo - Op1 (Lu)-
The product [0; 0]- Ly is obtained from the product [0; 0]-Z where Z is an irreducible
component of Supp(Ly ). The previous computations show that

[0;0]- Z = A7 (T x Zo) =0
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The above equality insures that as a cycle [0;0] - Ly = 0 and that
O (Lo Lu) = —Lo - Op1 (Lvr);

similarly,

Opi (L1 Lyy) = —L1- O (L)
Thus, we have obtained that
I (Ag) =0.
A similar discussion shows that
Ou1 (A1) = 0.

The equality
8A1 (A_L> =0 (resp. 8A1 (A—L‘,l> = 0)
shows that Az (resp. A1) gives a class in H*(NV?,). As Corollary [ insures that
this cohomology group is 0, Az (resp. A1) is the boundary of some cycle ¢ (resp.
) in N},. Lemma [LT5 below gives this ¢ (resp. ¢’) explicitly and, after restriction
to X, concludes the proof of Theorem

[l
Lemma 4.15. Define Ly and @ in Nt Y(p) by
Lw = p*(Az) and E =v*(Ap)
where p* and v are the morphisms defined in Proposition [.9
Let j : X — Al be the natural inclusion of P\ {0,1,00} into Al and define
Lw and L}, by
Then Lw and L3y satisfy conditions of Theorem [J.13.
Proof. As in Proposition EETT] let ig (resp. 41) be the inclusion of 0 (resp. 1) in Al:
io: {0} — AY iy {1} — AL
and let pp and p; be the corresponding projection p; : Al — {e} for e = 0, 1.
Proposition insures that Ly (resp. Ll ) is equidimensional over Al with
respect to any faces and has an empty fiber at ¢ = 0 (resp. ¢ = 1); in particular
i5(Az) = i3 (Ag1) = 0. Moreover, Proposition .11] allows to compute da1 (L) as
8A1 (m) :8A1 o ‘LL* (A_L)
=id (Az) — pg o ip(Az) — 1" 0 O (Ag)
=A.
because dy1(Az) = 0 and if(Az) = 0.
Using again Proposition £.11] a similar computation gives

O (Lyy) = Ay
because dp1(Ag1) =0 and if (A1) = 0.
Now, as L
Lw =j"(Lw) and Ly =j"(Liy),
Ly and Lj;, are equidimensional with respect to any faces over X by Proposition
A8 and their closure in A' x (0?71 are exactly Ly and E As j* is a morphism

of cdga, Ly and L}, satisfy the expected differential equations as do Lw and E;
that is
8(£W> = AL and (9(,6‘1/[/) = ALI.
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This conclude the proof of the Lemma and of Theorem O

5. CONCLUDING REMARKS

5.1. Some Examples up to weight 5. We describe in this section some inter-
esting examples of cycles Ly and L1, for W up to length 5.

We have already seen in the previous section, at Example EI3] the weight 2
examples Lo; and L};. We recall below their parametric representations

t r—1
E()l:[t;l—g,:c,l—z], Eélz[t;m,x,l—z].
They satisfy
I(Lo1) = A(Lh,) = LoLy.

In Lemma [2:40] we have defined cycles Li}” for any integers k > 2 with Lis¥ =
Lo1 = Lp1. Fix k an integer greater or equal to 2 and let W be the Lyndon word

W= 0---01.
——
k—1 times
A simple induction and the construction of the cycle Li;” show that
Ly’ = Lw.

We have previously considered a weight 3 example Lg;; in order to make more
apparent where the different problems were. In particular, it satisfies

0(Lo11) = (Lor — Lo1(1))Ly.

However, the closure of Lgi; over Al is not equidimensional as the fiber at 1 is
not an admissible cycle. In the next example, we use Theorem [L.12] for the word
011 and give an explicit parametrized description of Ly11.

Example 5.1 (Weight 3 example). The cycle Lo11 in N7 '(3) is defined by

Lo = p*(—=L1Lyy)-
The product E_lﬁ—(ln is given in terms of parametrized cycle by

N —t
LiLy = [t;1 —t, %,x, 11—zl

Following the comment in Example T3] one computes easily the pull-back by u*
and obtains after restriction to X (and renumbering = as 1)
X1 — T2

t
£011 = —[t;l— —,1—$2

) axlal_xl]-
Xro 56171

The cycle L};; satisfies the same differential equation as Lo11 but is given by the
pull-back v*. Thus, a description of £{;; as parametrized cycle is

1'2715 X1 — T2
171‘2,

5511:*[15; 7$171*$1]-

,%2—17 .Tl—l

Computing the differentials of Lo11 and L};; using the above expressions gives back
d(Lo11) = d(Ly11) = —L1Lo;-

In weight 4, arises the first linear combination in the differential equation. In
weight 5 arises the first case where the differential equation for Ly and L}, are
not the same. There are actually two such examples in weight 5.
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Example 5.2. The cycle Lyg11 satisfies
A(Loo11) = LoLo11 — L1Lyy — Lo1 Ly

As L}, is the restriction of v*(LoLo1), one gets

$2—t i)
Ll =[t— 20,1 - = 21,1 —x
001 [zzfl 2 P 1]
and
t T T —x
(59) Loott = —[t;1 — —, 3,1 — 21 — @9, =2 2,1 — xy]
I3 i) .Tl—l
7[t71 _51 x7z2 ':613, 251 ;1'1;17:61]
3
t —
7[t;]‘i_717B;1‘27171'25u7x171 1"1]
I3 i) .Tl—l

Consider the Lyndon word 00101. Its corresponding tree Tpp101+ is

and computing de,(Too101+) gives
dey(Too101+) = Too1+To1+ — Tooo1+T1+ — T1+Too01+ (1)

Finally, Loo101 and L3y, satisfy respectively

(60) A(Loo101) = Loo1 - Lo1 + L1L0o1
and
(61) A(Loor01) = —Loo1 - L1 + Loor - Ly — Lo - Looy + L1+ Lioo1-

5.2. A combinatorial representation for the cycles : trees with colored
edges. In this subsection, we give a combinatorial approach to describe cycles Ly
and L}, as parametrized cycles using trivalent trees with two types of edge.

Definition 5.3. Let 7!l be the Q vector space generated by rooted trivalent trees
such that

e the edges can be of two types: | or |;

e the root vertex is decorated by t
e other external vertices are decorated by 0 or 1.

We say that such a tree is a rooted colored tree or simply a colored tree.

We define two bilinear maps 71! ® 71l — Tl as follows on the colored trees:
o Let Ty /‘\Tg be the colored tree given by joining the two root of 7} and T5

and adding a new root and a new edge of type | :
Ty *TQ = l
T T

where the dotted edges denote either type of edges.
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o Let T1 }{TQ be the colored tree given by joining the two root of 77 and T

and adding a new root and a new edge of type | :

Ti: “T2
where the dotted edges denote either type of edges.
Definition 5.4. Let Ty and ¥; be the colored tree defined by

‘Iozti? and ‘Ilzt?,

0 1

For any Lyndon word W of length greater or equal to 2, let Ty (resp. Ti;,) be
the linear combination of colored trees given by

Tw = > alyTuATv + D> _ b vIv AT,
U<v u,v

and respectively by
T = Z a/IVJYVTllJ ATy + Z b/EfVTU ATV + Z a'o,vTo f Tv.
UV v

0<U<V
To a colored tree T' with p external leaves and a root, one associates a function
fri X x (PPN — X x (P1)2P~1 as follows :

e Endow T with its natural order as trivalent tree.

e This induces a numbering of the edges of T : (e1,e2,...,e2p—1).

e The edges being oriented away from the root, the numbering of the edges
induces a numbering of the vertices, (v1,vs,...,v2p) such that the root is
V1.

e Associate variables z1, ..., z,_1 to each internal vertices such that the num-
bering of the variable is opposite to the order induced by the numbering
of the vertices (first internal vertices has variable x,_1, second internal
vertices has variable z,_» and so on).

ae

e For each edge e; = , oriented from a to b, define a function
b

1—% if e; is of type |,
f’i(a’ab): b—

b——? if e; is of type | .

e Finally fr: X x (PH)P~! — X x (P})?P~! is defined by

fT(tv'rlv e zp*l) = (ta f17 RS f?pfl)'
Let I'(T) be the intersection of the the image of fr with X x 0% ~!. One can
formally extend the definition of T' from 7! into the direct sum @,,>; 2P (X x[0?P~1).
Proposition 5.5. The map I satisfies :
e For any Lyndon word of length p, I'(Tw) is in ZF,(X,2p —1) @ Q
[ Alt(F(‘Zo)) = EO and Alt(F(‘Zl)) = El
e For any Lyndon word of length p > 2,

Alt(T(Zw)) = Lw  and  Alt(T(Ty,)) = Ly
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Proof. The fact that I'(Tg) (resp. I'(%1)) is the graph of ¢ — ¢ (resp. t — 1 —t)
follows from the definition. Thus one already has T'(To) (resp. I'(%1)) in 2 (X, 1)
and

Alt(l—‘(go)) = £0 and Alt(l—‘(gl)) = £1.

Then, the proposition is deduced by induction because, as already remarked
in Example T3] in order to compute the pull-back by p* one sets the former
parameter t to a new variable x, and parametrizes the new (' factor arriving in
first position by 1 — % (t is again the parameter over X). The case of v* is similar
Tn—t O

but parametrizing the new O' factor by pr—

Remark 5.6. Considering that L is empty at 1 and the symmetry of the situation
between 0 and 1, one could write £} instead of £y and similarly T} instead of
Tp. This cosmetic change of notations will in particular make Definition 1] more
uniform with respect to the cases where either U or V is equal to 0 or 1.

However, it will add some modifications in the proof of Proposition 3] relating
relations among a’s, a’’s, b’s and b"’s coefficients with relations between a’s and 3’s
coeflicients.

5.3. An integral associated to Ly11. We present here a sketch of how to asso-
ciate an integral to the cycle Lp17. The author will directly follow the algorithm
describe in [GGLO09|[Section 9] and put in detailed practice in [GGLOT7]. There
will be no general review of the direct Hodge realization from Bloch-Kriz motives
[BK94|[Section 8 and 9]. Gangl, Goncharov and Levine construction seems to con-
sist in setting particular choices of representatives in the intermediate jacobians for
their algebraic cycles.

The author will not extend this description and will not generalized here the
computations below. Relating Bloch and Kriz approach to the explicit algorithms
described by Gangl, Goncharov and Levine and the application to our particular
family of cycles Ly will be the topics of a future paper as it requires, in particular,
a family £§, of element in H(B(N%)) not at our disposal yet.

Let’s recall the expression of L£y1; as parametrized cycle:

t X1 — T2

Lo = —[t;1 - —,1 -2y, ———=, 21,1 —x1].
X9 xr, — 1

One wants to bound L1 by an algebraic-topological cycle in a larger bar con-

struction (not described here) introducing topological variables s; in real simplices
AT ={0<s1 <~ <8 <11

Let d* : A" — A"~! denotes the simplicial differential

n

d* = (=1}
k=0

where i : A?7! — A7" is given by the face sy = sg41 in A” with the usual

conventions for k = 0, n.
Let’s define

Sgt r1 — T2

Col=[t1— 21—y, 22

011 [ T 2 T — 1

for sz going from 0 to 1. Then, ds(Cg’lll) = Lo11 as s3 = 0 implies that the first

cubical coordinate is 1.
Now the algebraic boundary 0 of Cg’lll is given by the intersection with the
codimension 1 faces of [1°

Tr1 — S3t

8(087111):%1*5315, p—] , 1,1 — ).
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We can again bound this cycle by introducing a new simplicial variable 0 < s5 < s3
and the cycle
xr, — Sgt

Co = [t 1 — sgt, ————
011 [a 3 I —82/83

y L1, 1- 501] .

The intersections with the faces of the simplex {0 < so < s3 < 1} given by so =0
and s3 = 1 lead to empty cycles (as at least one cubical coordinates equals 1).
Thus, the simplicial boundary of 08’121 satisfies

s (1S, s, T] — S3t
d (00121) = *8(00111) = —[t;1 — s3t, 1

7':61;1 7561]-

Its algebraic boundary is given by
8(08’121) = —[t; 1 — s3t, sot, 1 — sot] + [t; 1 — sst, 8—2, 1— 8—2]
S3 S3

Finally, we introduce a last simplicial variable 0 < s1 < s2 and a purely topological
cycle

O3 = —[t:1— sgt, sat, 1 — spt] + [t 1 — sgt, 22,1 — 2L
53 53

whose simplicial differential is (up to negligible terms) given by the face s; = so:

dS(C’gﬁ) = 78(05151) = [t; 1 — sst, sat, 1 — sat] — [t; 1 — sst, 8—2, 1-— 8—2]

S3 S3

and whose algebraic boundary is 0.
Finally one has

(d* + 5)(03’111 + Cgﬁ + Cgﬁ) = Lo11

up to negligible terms.
Now, we fix the situation at the fiber ¢y and following Gangl, Goncharov and
Levin, we associate to the algebraic cycle Lo11|i=¢, the integral Ipi1(to) of the

standard volume form
L dadzdz

(2im)3 2 29 23
over the simplex given by Cg;}. That is :

1 to d83 d82 A to d81

(217T)3 /0<51<52<53<1 1-— toSg S92 1-— toSl

+ 1 / tong / dSQ A dSl
(2im)? Jocss<1 1 — 1053 Jocs, <ot S22 1—s1

Taking care of the change of sign due to the numbering, the first term in the
above sum is (for tp # 0 and up to the factor (2im)~3) equal to

d d d
Li(1c,2(t0) = / St S N N
0

—1 —1
Ss1<se<sa<l tg - — 81 S22 tg  —s3

Ip11(to) = —

while the second term equals (up to the same multiplicative factor)
—Li%(to)LiS(1).

Globally the integral is well defined for tg = 0 and, which is the interesting part,
also for typ = 1 as the divergencies as ty goes to 1 cancel each other in the above
sums. A simple computation and the shuffle relation for Li$ (o) LiS (tg) shows that
the integral associated to the fiber of Lg11 at tg = 1 is

(2im) Lot (1) = —2LiS (1) = —2¢(2,1).
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