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CYCLE COMPLEX OVER P1 MINUS 3 POINTS : TOWARD

MULTIPLE ZETA VALUES CYCLES.

ISMAEL SOUDÈRES

Abstract. In this paper, the author constructs a family of algebraic cycles
in Bloch’s cycle complex over P1 minus three points which are expected to
correspond to multiple polylogarithms in one variable. Elements in this family
of weight p are in the cubical cycle group of codimension p in (P1 \{0, 1,∞})×
(P1 \ {1})2p−1 and are, in weight greater or equal to 2, naturaly extended as
equidimensional cycles over over A1.

This allows to consider their fibers at the point 1 and this is one of the
main differences with the work of Gangl, Goncharov and Levin. Considering
the fiber at 1 makes it possible to think of these cycles as corresponding to
weight n multiple zeta values.

After the introduction, the author recalls some properties of Bloch’s cy-
cle complex and enlightens the difficulties on a few examples. Then a large
section is devoted to the combinatorial situation involving the combinatoric
of trivalent trees. In the last section, two families of cycles are constructed
as solutions to a “differential system” in Bloch’s cycle complex. One of this
families contains only cycles with empty fiber at 0 which should correspond to
multiple polylogarithms.
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1. Introduction

1.1. Multiple polylogarithms. The multiple polylogarithm functions were de-
fined in [Gon95] by the power series

Lik1,...,km
(z1, . . . , zm) =

∑

n1>···>km

zn1
1

nk1
1

zn2
2

nk2
2

· · ·
znm
m

nkm
m

(zi ∈ C, |zi| < 1).

They admit an analytic continuation to a Zariski open subset of Cm. The case
m = 1 is nothing but the classical polylogarithm functions. The case z1 = z and
z2 = · · · = zm = 1 gives a one variable version of multiple polylogarithm function

LiCk1,...,km
(z) = Lik1,...,km

(z1, 1, . . . , 1) =
∑

n1>···>km

zn1
1

nk1
1 nk2

2 · · ·n
km
m

.

When k1 is greater or equal to 2, the series converge as z goes to 1 and one recovers
the multiple zeta value

ζ(k1, . . . , km) = LiCk1,...,km
(1) = Lik1,...,km

(1, . . . , 1) =
∑

n1>···>km

1

nk1
1 nk2

2 · · ·n
km
m

.

To the tuple of integer (k1, . . . , km) of weight n =
∑

ki, we can associate a tuple
of 0 and 1

(εn, . . . , ε1) := ( 0, . . . , 0︸ ︷︷ ︸
k1−1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
kp−1 times

, 1)

which allows to write multiple polylogarithms as iterated integrals (zi 6= 0 for all i)

Lik1,...,km
(z1, . . . , zm) = (−1)m

∫

∆γ

dt1
t1 − ε1x1

∧
dtm

tn − εnxn

where γ is a path from 0 to 1 in C \ {x1, . . . , xn}, the integration domain ∆γ is
the associated real simplex consisting of all m-tuples of points (γ(t1), . . . , γ(tn))
with ti < tj for i < j and where we have set xn = z−1

1 , xn−i = (z1 · · · zl)−1 for
k1 + · · ·+ kl−1 + 1 6 i < k1 + · · ·+ kl and x1 = (z1 · · · zm)−1.

As shown in [Gon05a], iterated integrals have Hodge/motivic avatars living in
a Hopf algebra equivalent to the tannakian Hopf algebra of Q mixed Hodge-Tate
structure. Working with these motivic/Hodge iterated integrals allows to see more
structure, in particular the coproduct which is not visible on the level of numbers,
conjecturaly without losing any information.
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1.2. Multiple polylogarithms and algebraic cycles. Considering the relations
between the motivic word and the higher Chow groups in one hand (e.g. [Lev05,
Voe02]) and in the other hand the relations between multiple polylogarithm and
regulators (e.g. [Zag91, Gon05b]), it is reasonable to ask whether there exists
avatars of the multiple polylogarithms in terms of algebraic cycles.

Given a number field K, in [BK94], Bloch and Kriz have constructed using
algebraic cycles, a graded Hopf algebra, isomorphic to the tannakian Hopf algebra
of the category of mixed Tate motive over K ([Spi01] and latter [Lev11]), together
with a direct Hodge realization for this “cyclic motives”. Moreover for any integer
n greater or equal to 2 and any point z in K they have produced an algebraic cycle
Licyn (z). This cycle Licyn (z) induces a motive. They have shown at Theorem 9.1
that the “bottom-left” coefficient of the periods matrix in the Hodge realization is
exactly −Lin(z)/(2iπ)n.

More recently, Gangl, Goncharov and Levin, using a combinatorial approach,
have built algebraic cycles corresponding to the multiple polylogarithm values
Lik1,...,km

(z1, . . . , zm) with parameters zi in K∗ under the condition that the corre-
sponding xi (as defined above) are all distinct. In particular, all the zi but z1 have to
be different from 1 and their methods does not gives algebraic cycles corresponding
to multiple zeta values.

1.3. Algebraic cycles over P1 \ {0, 1,∞}. The goal of my project is to develop
a geometric construction for multiple polylogarithm cycles removing the previous
obstruction which will allow to have multiple zeta cycles.

A general idea underlying this project consists on looking cycles fibered over
a larger base and not just point-wise cycles for some fixed parameter (z1, ..., zm).
Levine, in [Lev11], shows that there exists a short exact sequence relating the Bloch-
Kriz Hopf algebra over Spec(K), its relative version over P1\{0, 1,∞} and the Hopf
algebra associated to Goncharov and Deligne’s motivic fundamental group over
P1 \ {0, 1,∞} which contains the motivic iterated integrals associated to multiple
polylogarithms in one variable.

As this one variable version of multiple polylogarithms gives multiple zeta values
for z = 1, it is natural to investigate first the case of Bloch-Kriz construction
over P1 \ {0, 1,∞} in order to obtain algebraic cycles corresponding to multiple
polylogarithms in one variable with a “good specialization” at 1. However before
computing any Hodge realization matrix periods, one needs first to obtain explicit
algebraic cycles over P1 \ {0, 1,∞} which can be specialized at 1 and have a chance
to correspond to multiple zeta values. This paper gives such a class of cycles and
final remarks gives some evidences that it is a good family by computing an integral
in low weight.

1.4. Strategy and Main results. Bloch and Kriz Hopf algebra and its relative
version over P1 \ {0, 1,∞} is the H0 of the bar construction over a commutative
differential algebra (c.d.g.a) N •

X build out of algebraic cycles. We will use this
construction in the case K = Q and X = Spec(Q) or X = P1 \{0, 1,∞} or X = A1.
This c.d.g.a comes form the cubical construction of the higher Chow groups and
one has with �1 = P1 \ {1} ≃ A1:

N •
X = Q⊕ (⊕p>1N

•
k (p))

where the Nn
X(p) are generated by codimension p cycles in X×�2p−n which are in

good position. The cohomology of the complex N •
X(p) give back the higher Chow

groups CHp(Spec(k), 2p− •).
As the H0 of the bar construction over N •

P1\{0,1,∞} is related to its 1-minimal

model. The strategy to obtain our family of cycles is to follow the inductive
construction of this 1-minimal model which gives a generalized nilpotent c.d.g.a
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M = Λ(V ) together with a map φ : M −→ N •
P1\{0,1,∞} inducing an isomorphism

on the H0 and the H1 and an injection on the H2.
More precisely this construction begins with the V1 = H1(N •

P1\{0,1,∞}). Then,

the inductive step of the 1-minimal model construction goes as follows, defining
Vi+1 = Vi ⊕ ker(H2(Λ•(Vi)) −→ H2(N •

P1\{0,1,∞})), one chooses specific representa-

tives in N •
P1\{0,1,∞} of basis elements of the above kernel considering the diagram

Λ2(Vi) N 2
P1\{0,1,∞}

b
∑

αi,jci · cj 0

∃c ∈ N 1
P1\{0,1,∞}

ϕi

d

d

A particular choice of such a c corresponding to b induces the map Vi+1
ϕi+1
−→ N •

X

and allows the inductive construction to go on.
Hence, one wants first to find inductively linear combinations

∑
αi,jci · cj that

have a zero differential and under what conditions they can be written as an explicit
boundary, that is as d(c) for some explicit cycle c in N 1

X .
In weight p, the considered linear combinations are built out of elements obtained

in lower weight and under some geometric conditions (equidimensionality over A1

and empty fiber at 0), the cycle c can be constructed easily. It is the pull-back of∑
αi,jci · cj induce by the multiplication map (�1 ≃ A1, X = A1):

X × A1 × A2p−2 X × A2p−2

(t, s, x1, . . . , x2p−2) (ts, x1, . . . , x2p−2).

Even though it is not formalized in their paper, it is reasonable to believe that
Bloch and Kriz used this idea to build the cycles Licyn (z). Thus, we naturally
find back these cycles using the method described above. However, the cycles
corresponding to multiple polylogarithms built using this method are different from
the one proposed by Gangl, Goncharov and Levin.

In particular, the geometric conditions on
∑

αi,jci ·cj and the computation of the
pull-back in the above construction oblige the constructed cycles on P1 \ {0, 1,∞}
to admit an extension in N •

A1 equidimensional over A1 and with empty fiber at 0
or 1.

A complete description of the inductive construction is based on a combinatorial
setting using the coLie algebra dual to the defined a differential dcy on trees which
is closely related to the differential in N •

X . The main point of the combinatorial
setting is the following result (Theorem 3.44).

Theorem. For any Lyndon word W in the letters {0, 1}, the element TW (t) is
decomposable:

(1) dcy(TW (t)) =
∑

αi,jTWi
(t) · TWj

(t) +
∑

βi,jTWk
(t) · TWl

(1)

where · denotes the disjoint union of trees and where Wi, Wj, Wk and Wl are
Lyndon of smaller length than W .
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This result gives us the combinatorial structure of the elements we want to built
and allows us to construct two explicit families of cycles in a general framework.
Modifying the above “differential system”, one inductively constructs cycles LW
corresponding to TW (t) and cycles L1W corresponding to the difference TW (t) −
TW (1). In this way, one obtains, at Theorem 4.12, algebraic cycles that are expect
to correspond to multiple zeta values when specialized at 1.

Theorem. Let X = P1 \ {0, 1,∞}. For any Lyndon word W in the letters {0, 1}
of length p greater or equal to 2, there exists cycles LW and L1W in N 1

X(p), that is
cycles of codimension 1 in X ×�2p−1 such that

• LW (resp. L1W ) admits an equidimensional extension to A1 with empty
fiber at 0 (resp. 1).

• LW (resp. L1W ), as its extensions to A1, satisfies

d(LW ) =
∑

ai,jLWi
· LWj

+
∑

bk,lLWk
· L1Wl

(2)
(
resp. d(L1W ) =

∑
a′i,jL

1
Wi
· L1Wj

+
∑

b′k,lLWk
· L1Wl

+
∑

c′lL0 · LWl

)
(3)

where coefficients ai,j, a
′
i,j, bk,l, b

′
k,l and c′l are derived from (1) (see Defi-

nition 4.1 and Proposition 4.3) and such that the above equations involved
only words of smaller length than p

In particular,

• LW |{t=1} gives an element of N •
Q which is expected to correspond to a

multiple zeta value as LW |{t=z} is expected to correspond to a multiple
polylogarithm at z. The computation of the actual integral for W = 011 is
done in the last section.
• The two R.H.S in (2) and (3) admit equidimensional extensions over A1

and have empty fiber at 0 (resp. 1). Their pull-back by the multiplication
(resp. a twisted multiplication) gives LW (resp. L1W ).

The paper is organized as follows :

• The next section (Section 2) is devoted to a general review of Bloch-Kriz cy-
cle complex. After recalling some basis definitions and properties of (Adams
graded) c.d.g.a, their 1-minimal model and the bar construction, we de-
tail the construction of the cycle complex. Then, we recall some of its
main properties (relation to higher Chow groups, localization long exact
sequence, etc.), some applications and the relations with mixed Tate mo-
tives. We conclude this section by applying our strategy to the nice example
of polylogarithms as described in [BK94] and present the main difficulties
trough a weight 3 example.
• Afterward in Section 3, we deal with the combinatorial situation first pre-

senting the trivalent trees attached to Lyndon words and their relations
with the free Lie algebra. Then, we present linear combinations of trees
TW corresponding to the dual situation and study some of their properties.
From there, we review the construction of the differential graded algebra of
R-deco forest introduced in [GGL09] and study the behavior the sums TW

under the differential dcy. This leads to Theorem 3.44 and some relations
satisfy by the coefficients appearing in this theorem (Cf. Equation (1) or
Equation (26)).
• Section 4 proves our main Theorem. It begins with a purely combinato-

rial statement relating the trees situation of Equation (26) to its modified
geometric version used at Theorem 4.12 (Cf. also above Equations (2) and
(3)). Then, we present some properties of equidimensional algebraic cycles
over P1\{0, 1,∞} and A1, study the relation between the two situation and
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explain how the pull-back by the multiplication (resp. a twisted multipli-
cation) gives a homotopy between the identity and the fiber at 0 (resp. at
1) pulled-back to a cycle over A1 by p : A1 → {pt}. Finally, the above work
allows us to construct inductively the desired families of cycle LW and L1W
at Theorem 4.12.
• The last section is devoted to some concluding remarks. In particular, it

present a combinatorial description that make it possible to write explicitly
cycles LW and L1W in terms of parametrized algebraic cycles. Then, com-
puting the integral attached to the cycle L011, we show that it specialization
at the point 1 is −2ζ(2, 1).

2. Cycle complex over P1 \ {0, 1,∞}

2.1. 1-minimal model and bar construction. We recall here some facts about
the 1-minimal model of a commutative differential graded algebra. More details
can be found in [Sul77], [DGMS75] or [BK87]. As explained in the introduction an
underlying goal of this paper is to give an explicit description of the 1-minimal model
of N •

P1\{0,1,∞} in terms of explicit parametrized algebraic cycles over P1 \ {0, 1,∞}.

An important idea in order to build the desired cycles is to follow step by step the
inductive construction of the 1-minimal model reviewed below.

2.1.1. Differential graded algebra. We recall some definitions and properties of com-
mutative differential graded algebra over Q.

Definition 2.1 (cdga). A commutative differential graded algebra A is a com-
mutative graded algebra (with unit) A = ⊕nA

n over Q together with a graded
homomorphism d = ⊕dn, dn : An −→ An+1 such that

• dn+1 ◦ dn = 0
• d satisfies the Leibniz rule

d(a · b) = d(a) · b+ (−1)na · d(b) for a ∈ An, b ∈ Am.

We recall that a graded algebra is commutative if and only if for any homogeneous
elements a and b one has

ab = (−1)deg(a) deg(b)ba.

Definition 2.2. A cdga A is

• connected if An = 0 for all n < 0 and A0 = Q · 1.
• cohomologically connected if Hn(A) = 0 for all n < 0 and H0(A) = Q · 1.

In our context, the cdga involved are not necessarily connected but comes with
an Adams grading.

Definition 2.3 (Adams grading). An Adams graded cdga is a cdga A together
with a decomposition into subcomplex A = ⊕p>0A(p) such that

• A(0) = Q is the image of the algebra morphism Q −→ A.
• The Adams grading is compatible with the product of A, that is

Ak(p) ·Al(q) ⊂ Ak+l(p+ q).

However, no sign is introduced as a consequence of the Adams grading.

For an element a ∈ Ak, we call k the cohomological degree and denote it by
|a| := k. In the case of an Adams graded cdga, for a ∈ Ak(p), we call p its weight

or Adams degree and denote it by (̃a) := p.
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2.1.2. 1-minimal model. We assume all the commutative differential graded algebra
to have an augmentation εA −→ Q. Note that an Adams graded cdga A has a
canonical augmentation A −→ Q with augmentation ideal A+ = ⊕p>1A(p).

We recall that the free commutative algebra Λ(E) over a graded vector space
E = Eodd ⊕ Eeven is the tensor product of the exterior algebra on the odd part
Eodd and of the polynomial algebra on the even part Eeven,

Λ(E) = Λ∗(Eodd)⊗ Sym∗(Eeven).

Definition 2.4 (Hirsch extension). An Hirsch extension of a cdga (A, d) is a cdga
(A′, d′) satisfying :

(1) There exists a 1 dimensional graded vector space V = Qv of some degree k
such that

A′ = A⊗ Λ(V )

(2) the restriction of d′ to A is d and

d(v) ∈ A+ · A+.

where A+ denotes the augmentation ideal.

Definition 2.5 (Generalized nilpotent cdga). A cdga A is generalized nilpotent if
there exists a sequence of sub-differential algebra

Q ⊂ A1 ⊂ . . . ⊂ Al ⊂ . . .

such that

• A =
⋃
Al

• Al = Al−1 ⊗ Λ(Vl) is an Hirsch extension;

In particular, one has A = Λ(E) for some graded vector space E. More precisely,
one should remark the following.

Remark 2.6. Equivalently to the above definition, a cdga (A, d) over Q is generalized
nilpotent if

(1) As a Q graded algebra A = Λ(E) where E = Eodd ⊕ Eeven is a graded
vector space; that is

A = Λ(Eodd)⊗ Sym∗(Eeven).

(2) For n > 0, let A(n) ⊂ A be the sub-algebra generated by elements of degree
6 n. Set A(n+1,0) = A(n) and for q > 0 define inductively A(n+1,q+1) as the
sub-algebra define by A(n) and the set

{x ∈ A(n+1) | d(x) ∈ A(n+1,q+1)}.

Then, for all n > 0, one has

A(n+1) =
⋃

q>0

A(n+1,q).

Definition 2.7. Let A be a cdga. A n-minimal model of A is a map of cdga

s : MA{n} −→ A

with MA{n} generalized nilpotent and generated (as an algebra) in degree 6 n such

that s induces an isomorphism on Hk for 1 6 k 6 n and an injection on Hn+1

Theorem 2.8 ([Sul77], see also [BK87]). Let A be a cohomologically connected cdga.
Then, for each n = 1, 2, . . . there exists an n-minimal model of A s : MA{n} −→ A.

Moreover such an n-minimal model is unique up to non-canonical isomorphism.
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We will here be only interested in the case of the 1-minimal model. We would like
to recall below the construction of the 1-minimal model as described in [DGMS75]
as it explains our approach to build explicit cycles in N •

P1\{0,1,∞}. It also illustrate

the non-canonicity of the 1-minimal model.
We recall below a possible construction for a 1-minimal model.

Inductive construction of a 1-minimal model.
Let A be a cohomologically connected cdga.

Initialization: Set V1 = H1(A) totally of degree 1. Let (v1,n)16n6dim(V1) be
a basis of V1 and choose representative a1,n in A of each v1,n. Now, define

d1 : V1 −→ V1 ∧ V1 to be the 0 map and sV1
1 : V1 −→ A by s(v1,n) = a1,n.

Finally, set M1 = Λ(V1) and extend sV1
1 to a cdga morphism s : M1 −→

A.
Inductive step: Assume that one has constructed the cdga sk : Mk =

Λ(Vk) −→ A for k > 1. Define

Vk+1 = Vk ⊕ ker
(
H2(Mk) −→ H2(A)

)

where ker(H2(Mk)→ H2(A)) is totally in degree 1. In order to define dk+1

and sk+1 one proceed as follow.
Let (vk+1,n) be a basis of ker(H2(Mk)→ H2(A)). For each vk+1,n choose

a representative in Λ2(Vk), that is

vk+1,n =



∑

i,j

ai,jvi ∧ vj


 ∈ H2(Mk) = H2(Λ(Vk))

for some vi and vj in Vk. Thus, the image of vk+1,n in H2(A) is the class of
∑

i,j

ai,jsk(vi) · sk(vj) ∈ A2

which has differential 0. Moreover, as vk+1,n is in ker(H2(Mk) → H2(A)),
one has some ck+1,n in A1 such that

d(ck+1,n) =
∑

i,j

ai,jsk(vi) · sk(vj).

Now, one defines dk+1 : Vk+1 −→ Vk+1 ∧Vk+1 which extends dk by sending

vk+1,n to
∑

i,j ai,jvi ∧ vj and one defines s
Vk+1

k+1 : Vk+1 −→ A which extends

sVk

k by sending vk+1,n to ck+1,n. These definitions are summarized in the
following diagram

(4)

Λ2(Vk) A2 A3

vk+1,n

∑
i,j ai,jvi ∧ vj

∑
i,j ai,jsk(vi) · sk(vj) 0

∃ ck+1,n

sk d

dk+1

d

sk+1
∈ A1

which describe the fact that vk+1,n is in ker(H2(Mk)→ H2(A)).
Finally, set Mk+1 = Λ(Vk+1) with differential induced by dk+1 and sk+1 :

Mk+1 −→ A to be the morphisms of cdga extending s
Vk+1

k+1 .
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One checks that s : M = ∪Mk −→ A provides a 1-minimal model. This is insured
by the fact that as each step creates some kernel in degree 2 which is killed at the
next step in order to obtain the injection on the H2. �

The main point of the above construction is to build the underlying vector space
VA of the 1-minimal model MA{1} = Λ(A). As explained in [BK94], VA is endowed
with a coLie algebra structure. It is a general fact for generalized nilpotent cdga.

Lemma 2.9 ([BK94][Lemma 2.29]). Let M be a generalized nilpotent cdga and V
a vector space freely generating M as cdga. The differential on M induces

d : V −→ V ∧ V

giving V a coLie algebra structure, that is V is dual to a pro-finite dimensional Lie
algebra with d dual to the bracket where the relation d ◦ d = 0 is dual to Jacobi
identity.

If one begins with an Adams graded cdga A, one will add an Adams grading to
the above definition and properties. In particular, the construction of the 1-minimal
model works similarly but one includes the induction into a first induction on the
Adams degree.

2.1.3. Bar construction. The bar construction over a c.d.g.a has been used in var-
ious contexts and is reviewed in many places. However, as there do not seem to
exist a global sign convention, the main definitions in the cohomological setting are
recalled below following the (homological) description given in [VL12].

Let A be a c.d.g.a with augmentation ε : A −→ Q, with product µA and let A+

be the augmentation ideal A+ = ker(ε). Define s to be a degree −1 generator and
consider the degree 1 morphism

Qs⊗Qs −→ Qs.

Definition 2.10. The bar construction B(A) over A is the tensor coalgebra over
the suspension of sA+ := Qs⊗ A+.

• In particular, as vector space B(A) is given by :

B(A) = T (sA+) =
⊕

n>0

(sA+)⊗n.

• An homogeneous element a of tensor degree n is denoted using the bar
notation (|), that is

a = [sa1| . . . |san]

and its degree is

degB(a) =

n∑

i=1

degsA+(ai) =

n∑

i=1

degA(ai)− 1.

• The coalgebra structure comes from the natural deconcatenation coproduct,
that is

∆([sa1| . . . |san]) =
n∑

i=0

[sa1| . . . |sai]⊗ [sai+1| . . . |san].

Remark 2.11. This construction can be can be related (Cf. [BK94]) to the total
complex associated to the simplicial complex

A⊗• : · · · → A⊗n → A⊗(n−1) → · · ·

The augmentation makes it possible to use directly A+ without referring to the
tensor coalgebra over A and without the need of killing the degeneracies.
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However this simplicial presentation usually hides the need of working with the
shifted complex. Here, we use the extra −1 generator s which makes it easier to
understand the signs convention using the Kozul rules.

We associate to any bar element [sa1| . . . |san] the function η(i) giving its “partial”
degree

η(i) =
i∑

k=1

degsA(sak) =
i∑

k=1

(degA(ak)− 1).

The original differential dA induces a differential D1 on B(A) given by

D1([sa1| . . . |san]) = −
n∑

i=1

(−1)η(i−1)[sa1| . . . |sdA(ai)| . . . |san]

where the initial minus from comes from the fact the differential on the shifted
complex sA is −dA. Moreover, the multiplication on A induces another differential
D2 on B(A) given by

D2([sa1| . . . |san]) = −
n∑

i=1

(−1)η(i)[sa1| . . . |sµA(ai, ai+1)| . . . |san]

where the signs are coming from Kozul commutation rules : the global sign in
front of the i-th terms of the sum can be written as (−1)η(i−1)(−1)deg(s) degA(ai).
One checks that the two differentials anticommute providing B(A) with a total
differential.

Definition 2.12. The total differential on B(A) is defined by

dB(A) = D1 +D2.

The last structure arising with the bar construction is the graded shuffle product

[sa1| . . . |san]x [san+1| . . . |san+m] =
∑

σ∈sh(n,m)

(−1)εgr(σ)[saσ(1)| . . . |saσ(n+m)]

where sh(n,m) denotes the permutation of {1, . . . , n+m} such that if 1 6 i < j 6 n
or n+1 6 i < j 6 n+m then σ(i) < σ(j). The sign is the graded signature of the
permutation (for the degree in sA+) given by

εgr(σ) =
∑

i<j
σ(i)>σ(j)

degsA(sai) degsA(saj) =
∑

i<j
σ(i)>σ(j)

(degA(ai)− 1)(degA(aj)− 1).

With this definitions, one can explicitly check the following.

Proposition 2.13. Let A be a (Adams graded) c.d.g.a. The operations ∆, dB(A)

and x together with the obvious unit and counit give B(A) a structure of (Adams
graded) commutative graded differential Hopf algebra.

In particular, these operations induces on H0(B(A)), and more generally on
H∗(B(A)), a (Adams graded) commutative Hopf algebra structure. This algebra is
graded in the case of H∗(B(A)) and graded concentrated in degree 0 in the case of
H0(B(A)).

We recall that the set of indecomposable elements of an augmented c.d.g.a is
defined as the augmentation ideal I modulo products, that is I/I2. Applying
a general fact about Hopf algebra, the coproduct structure on H0(B(A)) (resp.
H∗(B(A))) induces a coLie algebra structure on its set of indecomposables.

The bar construction is a quasi-isomorphism invariant and comparing a gener-
alized nilpotent c.d.g.a. to its bar construction shows (see [BK94])
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Proposition 2.14 ([BK94]). Let A be a cohomologically connected c.d.g.a and let

ϕ : M −→ A

be a minimal model of A.
Defining QM (resp. QH∗(B(A))) the set of indecomposable elements of M (resp.

H∗(B(A))), there is an isomorphism of coLie algebra

ϕQ : QM ⊗ sQ
∼
−→ QH∗(B(A))

canonical after the choice of ϕ.

2.2. General construction of Bloch-Kriz cycles complex. This subsection is
devoted to the construction of the cycle complex as presented in [Blo86, Blo97,
BK94, Lev94].

Let K be a perfect field and let �n
K be the algebraic n-cube

�n
K = (P1 \ 1)n.

When K = Q, we will drop the subscript and simply write �n for �n
Q. Insertion

morphisms sεi : �
n−1
K −→ �n

K are given by the identification

�
n−1
K ≃ �

i−1
K × {ε} ×�

n−i
K

for ε = 0,∞. Similarly, for I ⊂ {1, . . . , n} and ε : I → {0,∞}, one defines

sεI : �
n−|I|
K −→ �n

K.

Definition 2.15. A face F of codimension p of �n
K is the image sεI(�

n−p) for some
I and ε as above such that |I| = p.

In other word, a codimension p face of �n
K is given by the equation xik = εk for

k in {1, . . . , p} and εk in {0,∞} where x1, . . . , xn are the usual affine coordinates
on P1.

The permutation group Sn act on �n
K by permutation of the factor.

Remark 2.16.

• In some references as [Lev94, Lev11] for example, �n
K is defined to be the

usual affine space An and the faces by setting various coordinates equal to
0, or 1. This make the correspondence with the “usual” cube more natural.
However, the above presentation, which agree with [BK94] or [GGL09],
makes some comparisons and some formulas “nicer”. In particular, the
relation between the construction in the setting �1

K = P1 \ {1} and the

Chow group CH1(X)Q is simpler.
• Let Cube be the subcategory of the category of finite sets whom objects are

n = {0, 1}n and morphisms are generated by forgetting a factor, inserting
0 or 1 and permutation of the factors ; these morphisms being subject to
natural relations. Similarly to the usual description of a simplicial object,
�•

K is a functor from Cube into the category of smooth K-varieties and the
various �n

K are geometric equivalents of n.

Now, let X be a smooth quasi-projective variety over K.

Definition 2.17. Let p and n be non negative integers. Let Zp(X,n) be the free
group generated closed irreducible sub-varieties of X ×�n

K of codimension p which
intersect all faces X × F properly (where F is a face of �n

K). That is:

Z

〈
W ⊂ X ×�n

K such that





W is smooth, closed and irreducible
codimX×F (W ∩X × F ) = p
or W ∩X × F = ∅

〉

Remark 2.18.

• A sub-variety W of X ×�n
K as above is admissible.



12 ISMAEL SOUDÈRES

• As pi : �
n
K → �

n−1
K is smooth, one has the corresponding induced pull-back:

p∗i : Zp(X,n− 1)→ Zp(X,n).
• sεi induces a regular closed embedding X × �

n−1
K → X × �

n−1
K which

is of local complete intersection. As we are considering only admissible
cycles, that is cycles in “good position” with respect to the faces, sεi induces
sε ∗i : Zp(X,n)→ Zp(X,n− 1).

• The morphism ∂ =
∑n

i=1(−1)
i−1(s0,∗i − s∞,∗

i ) induces a differential

Zp(X,n) −→ Zp(X,n− 1).

One extends the action of Sn on �n
K to an action of the semi-direct product

Gn = (Z/2Z)n ⋊ Sn where each Z/2Z acts on �1
K by sending the usual affine

coordinates x to 1/x. The sign representation of Sn extends to a sign representation
Gn 7−→ {±1}. Let Altn ∈ Q[Gn] be the corresponding projector.

Definition 2.19. Let p and k be integers with p > 0. One defines

N k
X(p) = Alt2p−k(Z(X, 2p− k)⊗Q).

We will refer to k as the cohomological degree and to p as the weight.

Remark 2.20. In this presentation, we did not take care of degeneracies (images in
Z(X,n) of p∗i ) because we use an alternating version with rational coefficients. For
more details, one should see the first section of [Lev09] which presents the general
setting of cubical objects. A similar remark was made in [BK94][after the equation
(4.1.3)].

Definition 2.21 (Cycle complex). for p and k as above, the pull-back

sε ∗i : Zp(X, 2p− k) −→ Zp(X, 2p− k − 1)

induces a morphism ∂ε
i : N k

X(p) −→ N k+1
X (p). Thus, the differential ∂ onZp(X, 2p−

k) extends into a differential

∂ =

2p−k∑

i=1

(−1)i−1(∂0
i − ∂∞

i ) : N k
X(p)

∂
−→ N k+1

X (p).

Let N •
X(p) be the complex

N •
X(p) : · · · −→ N k

X(p)
∂
−→ N k+1

X (p) −→ · · ·

One defines the cycle complex as

N •
X = Q

⊕

p>1

N •
X(p).

Levine has shown in [Lev94][§5] or [Lev11][Example 4.3.2] the following propo-
sition.

Proposition 2.22. Concatenation of the cube factors and pull-back by the diagonal

X ×�
n
K ×X ×�

m
K

∼
→ X ×X ×�

n
K × �

m
K

∼
→ X ×X ×�

n+m
K

∆X←− X ×�
n+m
K

induced, after applying the Alt projector, a well-defined product:

N k
X(p)⊗N l

X(q) −→ N k+l
X (p+ q)

denoted by ·

Remark 2.23. The smoothness hypothesis on X allows us to consider the pull-
back by the diagonal ∆X : X −→ X × X which is in this case of local complete
intersection.

One has the following theorem (also stated in [BK94, Blo97] for X = Spec(K)).



CYCLE COMPLEX OVER P1 MINUS 3 POINTS 13

Theorem 2.24 ([Lev94]). The cycle complex N •
X is a differential graded commu-

tative algebra. In weight p, its cohomology groups are the higher Chow group of
X:

Hk(NX(p)) = CHp(X, 2p− k)Q,

where CHp(X, 2p− k)Q stand for CHp(X, 2p− k)⊗Q.

Moreover, one easily has flat pull-back and proper push-forward. Using Levine’s
work [Lev94], one has more general pull-back on the cohomology group; one could
also use Bloch moving Lemma [Blo94].

2.3. Some properties of Higher Chow groups. In this section, we present
some well-known properties of the higher Chow groups and some applications that
will be used later. Proof of the different statements can be found in [Blo86] or
[Lev94].

2.3.1. Relation with higher K-theory. Higher Chow groups, in a simplicial version,
were first introduced in [Blo86] in order to understand better the K groups of
higher K-theory. Levine in [Lev94][Theorem 3.1] gives a cubical version of the
desired isomorphisms:

Theorem 2.25 ([Lev94]). Let X be a smooth quasi-projective K variety and let p,
k be two positive integers. One has :

CHp(X, 2p− k)Q ≃ Grpλ K2p−k(X)⊗Q

In particular, using the work of Borel [Bor74], computing the K groups of a
number fields, one finds in the case K = Q and k = 2:

(5) CHp(Q, 2p− 2)Q ≃ Grpλ K2p−2(Q)⊗Q = 0

2.3.2. A1-homotopy invariance. From Levine [Lev94][Theorem 4.5], one deduces
the following proposition.

Proposition 2.26 ([Lev94]). Let X be as above and p be the projection p : X ×
A1 −→ X. The projection p induced a quasi-isomorphism for any positive integer
p

p∗ : N •
X(p)

q.i.
−→ N •

X×A1(p)

Moreover, an inverse of the quasi-isomorphism is given by i∗0 : Hk(N •
X×A1(p)) −→

Hk(N •
X(p)).

Remark 2.27. The proof of Levine’s theorem also tells us how this quasi-isomorphism
arise using the multiplication map A1 × A1 −→ A1 and this leads us to the proof
of Proposition 4.11.

We now apply the above result in the case of K = Q and X = Spec(Q), and use
the relation the K-theory via Equation (5).

Corollary 2.28. In the case of K = Q, the second cohomology group of N •
A1

vanishes:

∀ p > 1 H2(N •
A1(p)) ≃ CHp(A1, 2p− 2)Q ≃ CHp(Q, 2p− 2)Q = 0.
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2.3.3. Localization sequence. Let W be a smooth closed of pure codimension d sub-
variety of a smooth quasi-projective variety X . Let U denote the open complement
U = X \W . A version adapted to our needs of Theorem 3.4 in [Lev94] gives the
localization sequence for higher Chow groups.

Theorem 2.29 ([Lev94]). Let p be a positive integer and l an integer. There is a
long exact sequence
(6)

· · · −→ CHp(U, l+ 1)Q −→ CHp−d(W, l)Q
i∗−→ CHp(X, l)Q

j∗

−→ CHp(U, l)Q −→ · · ·

where i : W → X denotes the closed immersion and j : U → X the open one.

Remark 2.30. i∗ and j∗ are the usual push-forward for proper morphisms and pull-
back for flat ones.

In order to study the cycle complex over P1 \ {0, 1,∞}, we begin by applying
the above theorem to the case where X = A1, U = P1 \ 0, 1,∞ and W = {0, 1}.

Corollary 2.31. We have the following description of Hk(N •
P1\{0,1,∞}):

Hk(N •
P1\{0,1,∞}) ≃ Hk(N •

Q)⊕Hk−1(N •
Q)⊗QL0 ⊕Hk−1(N •

Q)⊗QL1,

where L0 and L1 are in cohomological degree 1 and weight 1 (that is of codimension
1).

Proof. The above long exact sequence gives

· · · −→ CHp−1({0, 1}, l)Q
i∗−→ CHp(A1, l)Q −→ CHp(X, l)Q

δ
−→

CHp−1({0, 1}, l− 1)Q
i∗−→ CHp(A1, l − 1)Q −→ · · ·

The map i∗ is induced by the inclusions i0 and i1 of 0 and 1 in A1. As i∗0 : N •
A1 −→

N •
{0}, and more generally i∗x for any K point x of A1, is a quasi-isomorphism inverse

to p∗, the Cartesian diagram

∅ Spec(Q))

Spec(Q) A1

ix

i0

�

shows that i0,∗ (and respectively i1,∗) are 0 on cohomology.
In particular, the sequence becomes short exact. Thus, using the homotopy

property and the fact that CHp({0, 1}, l) ≃ CHp(Spec(Q), l)⊕CHp(Spec(Q), l) one
gets the following short exact sequence

0−→CHp(Spec(Q), l)Q −→ CHp(X, l)Q
δ
−→ CHp−1(Spec(Q), l − 1)⊕2

Q −→0

Thus, one obtains an isomorphism

CHp(X, l)Q
∼
−→ CHp(A1, l)Q ⊕ CHp−1(Spec(Q), l − 1)⊕2

Q .

The relation between the cohomology groups of N •
X(p) and the higher Chow groups

conclude the proof. �

Remark 2.32. The generators L0 and L1 can be given in terms of explicit cycles in
N •

P1\{0,1,∞} (see Subsection 2.5).
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2.4. Cycle complex over P1 \ {0, 1,∞} and mixed Tate motives. Levine in
[Lev11] makes the link between the category of mixed Tate motive (in the sens of
Levine [Lev05] or Voevodsky [Voe00]) over a base X and the cycle complex NX . .
The relation between mixed Tate motives and the cycle complex has been developed
before for X = Spec(K), the spectrum of number field by Bloch and Kriz [BK94].

We now assume that K is a number field and X still denotes a smooth, quasi-
projective variety over K. We will work with Q coefficients.

Under more general conditions Cisinski and Déglise [CD09] have defined a tri-
angulated category DM(X) of (effective) motives over a base with the expected
property . Levine’s work [Lev93, Lev11] shows that if X satisfies the Beilinson-
Soulé vanishing conjecture then one obtains a tannakian category MTM(X) of
mixed Tate motives over X as the heart of a t-structure over DMT(X) the smallest
full triangulated subcategory of DM(X) generated by the Tate motive QX(n). The
whole construction is summarized in [Lev11].

Together with defining an avatar ofNX in DM(X), Levine [Lev11][Theorem 5.3.2
and beginning of the section 6.6] shows that when the motive of X is in DMT(K)
and satisfies the Beilinson-Soulé conjecture one can identify the tannakian group
associated with MTM(X) with the spectrum of the H0 of the bar construction (see
Section 2.1.3) over the cdga NX :

GMTM(X) ≃ Spec(H0(B(NX))).

Then, he used a relative bar-construction in order to relate the natural mor-
phisms

p∗ : DMT(Spec(K)) −→ DMT(X) x∗ : DMT(X) −→ DMT(Spec(K)),

induced by the structural morphism p : X → Spec(K) and a choice of a K-point x,
to the motivic fundamental group of X at the based point x defined by Goncharov
and Deligne, π1

mot(X, x) (see [Del89] and [DG05]).
In particular, applying this to the the case X = P1 \ {0, 1,∞} and K = Q, one

has the following result.

Theorem 2.33 ([Lev11][Corollary 6.6.2]). Let x be a Q-point of X = P1\{0, 1,∞},
one has a split exact sequence:

1 π1
mot(X, x) Spec(H0(B(NX))) Spec(H0(B(NQ))) 1

p∗

x∗

where p is the structural morphism p : P1 \ {0, 1,∞} −→ Spec(Q).

We want to apply results of section 2.1 to the case A = N •
X for X = Spec(Q),

X = A1 and X = P1 \ {0, 1,∞}.

Lemma 2.34. The cdga N •
Spec(Q), N

•
A1 and N •

P1\{0,1,∞} are cohomologically con-

nected.

Proof. The case of N •
A1 follows by A1 homotopy invariance from the case ofN •

Spec(Q)

which is deduced from the works of Borel [Bor74] using the relation with the higher
Chow groups. One deduces the case of N •

P1\{0,1,∞} from the Spec(Q) case using

the localization long exact sequence as in Corollary 2.31. �

Let coLQ, coLA1 and coLX denote the coLie algebra generating the 1-minimal
model of N •

Spec(Q), N
•
A1 and N •

P1\{0,1,∞} respectively. The relation between the

indecomposable of the H0 of the bar construction and the 1-minimal model (see
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[BK94, Lev11] or a short review in section 2.1.3) allows us to reformulate Theorem
2.33 in terms of coLie algebras.

Proposition 2.35. One has a split exact sequence of coLie algebras:

0 coLQ coLX coLgeom 0

where coLgeom is dual to the Lie algebra associated to π1
mot(X, x).

In particular coLgeom is related to the graded dual of the free Lie algebra on two
generators Lie(X0, X1).

2.5. Algebraic cycles corresponding to polylogarithms. Now, and until the
end of the article, X denotes P1 \ {0, 1,∞} and we assume that K = Q.

In this section, we present our strategy to build general cycles in N •
X correspond-

ing to multiple polylogarithms on the simple case of the polylogarithms, L in. We
will pay a special attention to the Totaro cycle which is known to correspond to
the function L i2(z) and then explain how the construction is generalized to ob-
tain cycles already present in [BK94] and [GGL09] corresponding to the functions
L in(z).

2.5.1. Two weight 1 examples of cycles generating the H1. We want to build cycles
in N •

X in order to obtain the inductive construction of the 1-minimal model. It will
mean to

(1) find in N 2
X linear combinations of product of already built cycles that are

boundaries, that is d(c) for some c in N 1
X (see Equation (4));

(2) explicitly build the desired c.

But the first step begins with a basis of H1(N •
X). However, as we want only a

description of coLX relatively to coLQ, we do not want to consider a full basis of

H1(N •
X). We have seen that H1(N •

X) (Corollary 2.31) is the direct sum of H1(N •
Q)

and two copies of H0(N •
Q).

Lemma 2.36. Let Γ0 and Γ1 be respectively the graph of ρ0 : X −→ P1 \ {1} = �1

which sends t to t and the graph of ρ1 : X −→ P1 \ {1} = �1 which sends t to
1− t. Then, Γ0 and Γ1 define admissible algebraic cycles in X × �1, applying the
projector Alt on the alternating elements gives two elements L0 and L1 in N 1

X and
one has

H1(N •
P1\{0,1,∞}) ≃ H1(N •

Q)⊕H0(N •
Q)⊗QL0 ⊕H0(N •

Q)⊗QL1.

Speaking about parametrized cycles, we will usually omit the projector Alt and
write

L0 = [t; t] and L1 = [t; 1− t] ⊂ X ×�1

where the notation [t; f(t)] denotes the set

{(t, f(t) such that t ∈ X)}.

Proof. First of all, one should remark that L0 and L1 are codimension 1 cycles in
X ×�1 = X ×�2∗1−1. Moreover as

L0 ∩X × {ε} = L0 ∩ P1 \ {0, 1,∞}× {ε} = ∅,

for ε = 0,∞, L0 is admissible (intersect all the faces in the right codimension or not
at all) and gives an element of N 1

X(1). Furthermore, the above intersection tells us
that ∂(L0) = 0. Similarly one shows that L1 gives an element of N 1

X(1) and that

∂(L1) = 0. Thus L0 and L1 gives well defined class in H1(N •
X(1)).
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In order to show that they are non trivial, one shows that, in the localization
sequence (6), their images by the boundary map

H1(N •
X(1))

δ
−→ H0(N •

{0}(0))⊕H0(N •
{1}(0))

are non-zero. It is enough to treat the case of L0. Let L0 be the closure of L0 in
A1 ×�1. Indeed, L0 is given by the parametrized cycle

L0 = [t; t] ⊂ A1 ×�1

and the intersection with the face u1 = 0 is of codimension 1 in A1 × {0} and the
intersection with u1 =∞ is empty. Hence L0 is admissible.

Thus, considering the definition of δ, δ(L0) is given by the intersection of the
differential of L0 with {0} and {1} on respectively, the first and second factor. The
above discussion on the admissibility of L0 tells us that δ(L0) is non zero on the
factor H0(N •

{0}(0)) and 0 on the other factor as the admissibility condition is trivial

in H0(N •
{0}(0)) and the restriction of L0 to 1 is empty. The situation is reverse for

L1. �

Later we will consider cycles depending on many parameters and denote by

[t; f1(t,x), f2(t,x), . . . , fn(t,x)] ⊂ X ×�n

the (image under the projector Alt of the) restriction to X ×�n of the image of

X × (P1)k X × (P1)n

(t,x) (t, f1(t,x), f2(t,x), . . . , fn(t,x)).

2.5.2. A weight 2 example: the Totaro cycle. One considers the linear combination

b = L0 · L1 ∈ N
2
X(2).

It is given as a parametrized cycle by

b = [t; t, 1− t] ⊂ X ×�
2

or in terms of defining equations by

T1V1 − U1T2 = 0 and U1V2 + U2V1 = V1V2

where T1 and T2 denote the homogeneous coordinates on X = P1\{0, 1,∞} and Ui,
Vi the homogeneous coordinates on each factor �1 = P1 \ {1} of �2. One sees that
the intersection of b with some faces (Ui or Vi = 0 for some i’s) is empty because
T2 is different from 0 and ∞ in X and because Ui is different from Vi in �1. This
comments insures b is admissible.

Moreover it tells us that ∂(b) = 0. So b gives a class

[b] ∈ H2(N •
X(2)).

We will now show that this class is trivial.
Let b denote the algebraic closure of b in A1×�2. As previously the intersection

with A1 × F for any face F of �2 is empty ; and b (after applying the projector
Alt) gives

b ∈ N 2
A1(2).

Writing ∂A1 the differential in NA1 , one has ∂A1(b) = 0 and a class

[b] ∈ H2(N •
A1(2)).

As, Corollary 2.28 insures that H2(N •
A1(2)) = CH2(A1, 2) = 0, there exists c ∈

N 1
A1(2) such that

∂A1(c) = b.
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Moreover, one remarks that b|0 = b|1 = ∅. The multiplication map

A1 ×�1 ×�2 A1 ×�2
µ

, [t;u1, u2, u3] [ t
1−u1

;u2, u3]

is flat. Hence, one can consider the pull-back by µ of the cycle b. This pull-back is
given explicitly (after reparametrization) by

µ∗(b) = [t; 1−
t

x1
, x1, 1− x1] ⊂ A1 ×�3.

This is nothing but Totaro’s cycle [Tot92], already described in [BK94, Blo91]
and gives a well defined element in N 1

A1(2).

Definition 2.37. Let L01 = Licy2 denote the cycle

L01 = [t; 1−
t

x1
, x1, 1− x1] ⊂ X ×�3

in N 1
X(2).

From the parametrized expression above, one sees that:

Lemma 2.38. The cycle L01 satisfies the following properties

(1) ∂(L01) = b.
(2) L01 extends to A1 that is it closure in A1×�3 gives a well defined element

in N 1
A1(2).

(3) L01|t=0 = ∅ and L01|t=1 is well defined.

Remark 2.39. Moreover, L01 corresponds to the function t 7→ Li2(t) as shown in
[BK94] or in [GGL09].

This conclude the first inductive step of the 1-minimal model construction de-
scribed at (4).

2.5.3. Polylogarithms cycles. By induction, one builds Licyn = L0···01. We define
Licy1 to be equal to L1.

Lemma 2.40. For any integer n > 2 there exists cycles Licyn in N 1
X(n) satisfying

(1) ∂(Licyn ) = L0 · Li
cy
n−1

(2) Licyn extends to A1 that is it closure in A1 × �2n−1 gives a well defined
element in N 1

A1(n).
(3) Licyn |t=0 = ∅ and Licyn |t=1 is well defined.
(4) Licyn is explicitly given as a parametrized cycle by

[t; 1−
t

xn−1
, xn−1, 1−

xn−1

xn−2
, xn−2, . . . , 1−

x2

x1
, x1, 1− x1] ⊂ X ×�

2n−1

Proof. For n = 2, we have already defined Licy2 = L01 satisfying the expected
properties.

Assume that one has built the cycles Licyk for 2 6 k 6 n. As previously, let b be
the product

b = L0 · Li
cy
n−1 = [t; t, 1−

t

xn−2
, xn−2, 1−

xn−2

xn−3
, xn−3, . . . , 1−

x2

x1
, x1, 1− x1].

and b its algebraic closure in A1 ×�2n−2.
Computing the differential with the Leibniz rule, one gets ∂(b) = −L0 · L0 ·

Licyn−2 = 0 and b gives a class in H2(N •
X(n)).
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Using the expression as parametrized cycle one computes the differential of b in
N •

A1

(7) ∂A1(b) =

2n−2∑

i=1

(∂0
A1,i(b)− ∂∞

A1,i(b)) = 0

as many terms are empty because intersecting with a face ui = 0,∞ on a factor �1

leads to a 1 appearing on another �1 while the other terms cancel after applying
the projector Alt.

As in the case of Licy2 , b gives a class in H2(N •
A1(2)) = 0 by Corollary 2.28 and

there exists c ∈ N 1
A1 such that

∂A1(c) = b.

As Licyn−1 |t=0 = ∅, b|t=0 = ∅ and the element c is given by the pull-back by the
multiplication

A1 ×�1 ×�2n−2 A1 ×�2n−2
µ

,

given in coordinates by

[t;u1, u2, . . . , u2n−1] [ t
1−u1

;u2, . . . , u2n−1] .

Reparametrizing the factor A1 and the first �1 factor, one writes c = µ∗(b)
explicitly as a parametrized cycle

c = [t; 1−
t

xn−1
, xn−1, 1−

xn−1

xn−2
, xn−2, . . . , 1−

x2

x1
, x1, 1− x1] ⊂ A1 ×�2n−1.

Now, let Licyn be the restriction of c to N 1
X(n) that is the parametrized cycle

Licyn−1 = [t; 1−
t

xn−1
, xn−1, 1−

xn−1

xn−2
, xn−2, . . . , 1−

x2

x1
, x1, 1− x1] ⊂ X ×�

2n−1.

The different properties, d(Licyn ) = L0 ·Li
cy
n−1, extension to A1, Licyn |t=0 = ∅, can

now be derived easily either for the explicit parametric representation or using the
properties of c. �

Remark 2.41. In Equation (7), the fact that ∂0
A1,1(b) = 0 is related to the induction

hypothesis Licyn−1 |t=0 = ∅ as in terms of cycles one has exactly

b ∩ A1 × {0} ×�2n−3 Licyn−1 |t=0.

The other terms in the differential are related to the equation satisfied by Licyn−1

in N 1
X(n− 1) and giving

∂(b) = L0 · L0 · Li
cy
n−2 = 0

and even if L0 is not defined in N •
A1 the fact that Licyk |t=0 = 0 insures that the

product really correspond to an element in N •
A1 .

Remark 2.42. • One finds back the expression given in [BK94] or in [GGL09]..
• Moreover, Licyn corresponds to the function t 7→ Lin(t) as shown in [BK94]

or in [GGL09].
• The construction is given in full details for more general cycles in Section 4

and is nothing but a direct application of Theorem 4.12 to the word 0 · · · 01
(with n− 1 zero).

The case of cycles Licyk is however simple enough to be treated by itself
as the “good” case.

• It is a general fact that pulling back by the multiplication preserve the
empty fiber at t = 0 property as proved in Proposition 4.9.
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2.6. Admissibility problem at t = 1 in weight 3. It seems to the author that
the first attempt to define algebraic cycles corresponding not only to polylogarithms
but also to multiple polylogarithms was done by Gangl, Goncharov and Levin in
[GGL09]. In their work, they have succeeded to build cycles corresponding to the
value Lin1,...,nk

(x1, . . . , xk) for fixed parameters xi in a number field F with the
condition xi 6= 1 and xi 6= xj for i 6= j. However, their cycles are not admissible if
one removes the conditions on the xi. One develops in this section, the first example
where such a problem appears, beginning by a review of the general strategy.

2.6.1. Review of the strategy. In order to build the 1-minimal model of N •
X , we

have first given generators of H1(N •
X). Then, assuming, one has already built some

cycles ci in N 1
X , one want to find generators of

ker
(
H2

(
Λ2(Q < ci >)

)
−→ H2(N •

X)
)
.

In order to do so, we want to find linear combination of products

b =
∑

αi,jci · cj ∈ Λ2(Q < ci >)

such that

• ∂(b) = 0 (that is b ∈ H2
(
Λ2(Q < ci >)

)
),

• b is a boundary (that is there exist c in N 1
X such that ∂(c) = b). This tells

us that b is in the kernel of (H2
(
Λ2(Q < ci >)

)
→ H2(N •

X).

The product N 1
X ⊗N

1
X −→ N

2
X being anti-commutative, we have above identified

the operations in Λ2(Q < ci >) and in N •
X .

The strategy consists in looking for linear combinations

b =
∑

αi,jci · cj ∈ N
1
X

satisfying

(1) ∂(b) = 0,
(2) b extends to A1 as b ∈ N 2

A1 ,

(3) ∂A1(b) = 0.

Then as H2(N •
A1) = 0 (Corollary 2.28), one gets a c given by the pull-back by the

multiplication A1 ×�1 −→ A1 such that

∂A1(c) = b.

The desired c is the restriction of c to X = P1 \ {0, 1,∞}.

Remark 2.43. The method described above was put in motion for the polylogarithm
example with b = L0 Li

cy
n−1. The main result of Section 3 is to give a first general

form for the b.

Below is the first example which uses the cycle L1 in b and where both geometric
and combinatorial key points arise.

2.6.2. The algebraic cycle L011. The cycle L01 was defined previously, so was the
cycle L001 = Licy3 by considering the product

b = L0 · L01.

Now, one would like to consider also the product

b = L01 · L1 ∈ N 2
X(3),

given as a parametrized cycle by

b = [t; 1−
t

x1
, x1, 1− x1, 1− t] ⊂ X ×�4.

From this expression, one sees that ∂(b) = 0 because t ∈ X can not be equal to 1.
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Let b be the closure of the defining cycle of b in A1 ×�4, that is

b =

{
(t, 1−

t

x1
, x1, 1− x1, 1− t) such that t ∈ A1, x1 ∈ P1

}
.

Let F be a face of �4 and ui denote the coordinates on each factor �1. One
necessarily has ui 6= 1. If F is contained in an hyperplane defined by u2 = ∞ or
u3 =∞, then, as u1 6= 1, one gets

b ∩ A1 × F = ∅.

Similarly, one gets an empty intersection of b with a face contained in u4 = ∞
because t ∈ A1 is different from ∞. This remark reduces the case of F contained
in u1 =∞ to the case F contained in u2 = 0 which gives an empty intersection as
u3 6= 1. By symmetry, the intersection with F contain in u3 = 0 is also empty.

In order to prove that b is admissible and give an element in N 2
A1 it remains to

check the (co)dimension condition on the three remaining faces : u1 = 0, u4 = 0 and

u1 = u4 = 0. The intersection of b with the face u1 = u4 = 0 is empty as u2 6= 1.
The intersection b with the face defined by u1 = 0 or u4 = 0 is 1 dimensional and
so of codimension 3 in A1 × F .

Remark 2.44. Let F 0
4 denote the face of �4 defined by u4 = 0. The intersection of

b with X × F 0
4 is empty as t 6= 1 in X = P1 \ {0, 1,∞}.

From the above discussion, one gets a well defined element, written again b, in

N 2
A1(3). Computing the differential in NA1

X gives, as the intersection with u1 = 0 is
killed by the projector Alt,

∂A1(b) = −L01|t=1 6= 0

and b do not gives a class in H2(N •
A1).

In order to by pass this, one introduces the constant cycle L01(1) in N 1
X(2)

defined by

L01(1) = [t; 1−
1

x1
, x1, 1− x1, 1− t] ⊂ X ×�3.

The cycle L01(1) satisfies

∀a ∈ X L01|t=a = L01|t=1.

and extends to a well defined cycles in N 1
A1(2).

Instead of considering the product L01 · L1, one looks at the linear combination

(8) b = (L01 − L01(1)) · L1 ∈ N
2
X(3).

As above, one checks that b extends to a well defined element b in N 2
A1(3). The

correction by −L01(1) · L1 insures that

∂(b) = 0, ∂A1(b) = 0, b|t=0 = ∅.

Computing the pull-back by the multiplication µ : A1 × �1 −→ A1; one wants to
define L011 in N •

X(3) as the parametrized cycles

(9) L011 = [t; 1−
t

x2
, 1−

x2

x1
, x1, 1− x1, 1− x2]

+ [t; 1−
t

x2
, 1− x2, 1−

1

x1
, x1, 1− x1] ⊂ X ×�5

As, t 6= 1 in X = P1 \ {0, 1,∞}, one easily check that L011 is an admissible on
X ×�5 and gives a well defined element in N •

X(3). An explicit computation gives
also that

(10) d(L011) = b = (L01 − L01(1)) · L1.
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Remark 2.45. However, one should emphasis that

• L011 is not admissible on A1 ×�5 due to an issue at the point t = 1.
• This non-admissibility problem is the same faced by Gangl, Goncharov and

Levin in [GGL09].

Section 4 will explain how to obtain general cycles admissible at t = 1 and the
particular example of a cycle L011 related to L011 above will be detailed at Section
5.1.

Remark 2.46. Even if L011 is not admissible at t = 1, one could go on, looking for
“good” linear combination of product. In particular in weight 4, one could consider

(11) b = L0 · L011 + L001 · L1 − L001(1) · L1 + L01 · L01(1)

and remark that

• The terms L0 ·L011+L001 ·L1 correspond to a principal part related to the
free Lie algebra Lie(X0, X1) as explained in Section 3.2.

• The term L01 ·L01(1) cancels with the the correction−L01(1)·L1 introduced
earlier for L011 and insures that ∂(b) = 0. It corresponds to “a propagation”
of the correction introduced for L011.

• The term −L001(1) ·L1 is similar to the correction −L01(1) ·L1 introduced
earlier for L011 and insures that ∂A1(b) = 0.

• The two correction terms are related to the principal part by some special
differential on rooted trivalent trees as will be explained in Section 3.4.

3. Combinatorial settings

In this paper a plane or planar tree is a finite tree whose internal vertices are
of valency > 3 and where at each vertex a cyclic ordering of the incident edges are
given. We assume that all other vertices are of valency 1 and call them external
vertices.

A rooted tree is a planar tree as above with one distinguished external vertex
of valency 1 called its root. In particular a rooted tree has at least one edge. The
external vertices which are not the root are called leaves.

We will draw trees so that the root vertex is at the top and so that the cyclic
order around the vertices is displayed in counterclockwise direction.

3.1. Lyndon words and the free Lie algebra Lie(X0, X1). The material devel-
oped in this section is detailed in full generality in [Reu93, Reu03] and recalls the
basic definitions and some properties of the free Lie algebra on two generators and
its relations to trivalent trees and Lyndon words.

3.1.1. Trees and free Lie algebra. Recall that a Lie algebra over Q is a Q vector
space L, equipped with a bilinear mapping [ , ] : L ⊗ L −→ L, satisfying the two
following properties for any x, y, z in L:

[x, x] = 0(12)

[[x, y]z] + [[y, z], x] + [[z, x], y] = 0.(Jacobi)

Remark 3.1. Note that applying the first relation to [x+ y, x+ y], one obtains the
antisymmetry relation

[x, y] = −[y, x].

Thus, we may rewrite Jacobi identity as

[[x, y], z] = [x, [y, z, ]] + [[x, z, ], y].
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Definition 3.2. Given a set S, a free Lie algebra on S over Q is a Lie algebra L
over Q together with a mapping i : S → L with the following universal property :

For each Lie algebra K and each mapping f : S → K, f factors uniquely through
L.

In what follows, we will only consider S to be a set with two elements, either
S = {0, 1} or S = {X0, X1}.

One is used to see the free Lie algebra on {X0, X1} as a subspace of Q < X0, X1 >
(its enveloping algebra), the space of polynomials in two non commuting variables
X0 and X1. Let Lie(X0, X1) denote this free Lie algebra.

In order to show the existence of free Lie algebras, one usually uses a tree rep-
resentation.

Definition 3.3. Let T tri
Q denote the Q vector space generated by the set T tri of

rooted, planar, trivalent trees with leaves decorated by 0 and 1.
For two trees T1, T2 in T tri defined T1 T2 to be the tree obtained by joining the

root (marked by a circle around the vertex) of T1 and T2 and adding a new root:

T1 T2

:=

T1 T2

The set T tri is isomorphic to the free magma on {0, 1} a branch in a tree
corresponding to a bracketing in a well-formed expression.

The composition law extends by bilinearity to T tri
Q . Let IJac denote the ideal

of T tri
Q generated by the element of the form T T and

(T1 T2) T3 + (T2 T3) T1 + (T3 T1) T2.

The quotient T tri
Q /IJac is a Lie algebra with bracket [ , ] given by ; in fact it is a

free Lie algebra on {0, 1}.
Identifying {0, 1} to {X0, X1} by the obvious morphism and using the correspon-

dence ↔ [ , ], one obtains

Lemma 3.4. The quotient T Lie = T tri
Q /IJac is isomorphic to Lie(X0, X1).

For T in T tri let [T ] denote its image in T Lie

3.1.2. Hall set. Each tree T in T tri is either a letter T =
a

for a ∈ {0, 1} or is of

the form T = T1 T2 ; one writes ST for the set {
0

,
1

}.

Definition 3.5 ([Reu93]). A subset H of T tri is a Hall set if the following condi-
tions hold:

• H as a total order <.
• ST = {

0

,
1

} ⊂ H .

• for any tree T = T1 T2 in H \ ST , one has T2 ∈ H and

T < T2.(13)

• For any tree T = T1 T2 in T tri \ ST , T is in H if and only if

T1, T2 are in H and T < T2,(14)

and either T1 ∈ ST or T1 = T ′ T ′′ with T ′′ > T2.(15)

Remark 3.6. In [Reu03], Reutenauer begins with a total order on T tri satisfying

T = T1 T2 ∈ T
tri \ ST ⇒ T < T2.
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Then, he defines the Hall set relative to the order < as the subset of T tri containing
ST and satisfying the last condition of the above definition (Equations (14) and
(15)). This gives the existence of Hall sets.

Zorn’s Lemma (even if it may be overwhelming) implies that, beginning with a
Hall set as in Definition 3.5, the total order on H induces a total order on T tri

satisfying
T = T1 T2 ∈ T

tri \ ST ⇒ T < T2.

Theorem 3.7 ([Reu03][Theorem 4]). Let H be a Hall set of T tri. The element [T ]
for T in H form a basis of T Lie ≃ Lie(X0, X1).

We would like to review below the algorithm showing that the elements [T ] for
T ∈ H generate T Lie adding some extra information that will be used latter.

The algorithm described in [Reu03][Section 9] goes essentially as follows. Con-
sider the total order < on T tri and let T = T1 T2 with T1 < T2 be a tree in T tri.

Then either T is in H or T1 = T ′ T ′′ with T ′′ < T2 and we can also assume that

T ′ < T ′′. Then one writes in T Lie

[T ] = [T1 T2] = [[T1], [T2]] =
[
[T ′ T ′′], [T2]

]

= [[[T ′], [T ′′]], [T2]]

= [[[T ′], [T2]], T
′′] + [[T ′], [[T ′′], [T2]]]

=
[
(T ′ T2) T ′′

]
+
[
T ′ (T ′′ T2)

]
(16)

and concludes using an induction on both the sum of the degrees of T1 and T2 and
the maximum of T1 and T2. This insures that the algorithm terminates.

In this algorithm, we want for latter use to keep track of

• brackets that are 0, that is there is a subtree of the form T T .
• evolution of the position of a distinguished leaf of the original tree.

In [Reu93][proof of Theorem 4.9], Reutenauer gives the same algorithms but going
in the other direction : beginning with the smallest subtree T0 of T which is not in
H . For our purpose, we will modify this first algorithm given by Reutenauer.

Let T tri
N,Fin denote the set of finite sequences T of triples (Ti, qi, ki) in T tri×Z×N∗

such that for any i, ki denotes the position (beginning on the left going to the right)
of a leaf of Ti.

Let T = (Ti, qi, ki)16i6N be an element of T tri
N,Fin. Define Dec(T) in T tri

N,Fin as
follows.

(1) for l in 1 6 i 6 N , beginning with T0 = T, define Tl = (T l
i , q

l
i, k

l
i)16i6Nl

as
follows

Let j = N + 1− l. If T l−1
j is in H then let Tl = Tl−1.

(2) Else considers the smallest subtree T ′ T ′′ of T l−1
j which is not in H . In

particular T ′ and T ′′ are in H . Then, either T ′ < T ′′, or T ′ = T ′′ or
T ′ > T ′′. Let nj be the number of leaves of Tj and the position of the
leaves of T ′ (resp. T ′′) in T l

j to be in {b′j, f
′
j} (resp. {f ′

j + 1, f ′′
j } for

1 6 b′j 6 f ′
j < f ′′

j .

If T
′ = T

′′: one defines Tl = Tl−1.
If T

′ > T
′′: let T l

j be the tree obtained from T l−1
j

(17) by replacing the subtree T ′ T ′′ by T ′′ T ′

and let qlj be −ql−1
j . Define klj by

klj =





kl−1
j if kl−1

j < b′j or kl−1
j > f ′′

j ,

kl−1
j + f ′′

j − f ′
j if b′j 6 kl−1

j 6 f ′
j ,

kl−1
j − (f ′

j − b′j + 1) if f ′
j + 1 6 kl−1

j 6 f ′′
j .
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Let Nl = Nl−1 and Tl = (T l
i , q

l
i, k

l
i)16i6Nl

be defined by

(T l
i , q

l
i, k

l
i) = (T l−1

i , ql−1
i , kl−1

i )

for i 6= j and by the triple (T l
j , q

l
j , k

l
j) for i = j.

If T
′ < T

′′: as T ′ T ′′ is not in H , one has T ′ = t1 t2 with t2 < T ′′.
Let the position of the leaves of t1 (resp. t2) be in {b′j, f

′
j,1} (resp.

{f ′
j,1 + 1, f ′

j}). Define Nl = Nl−1 + 1, qlj = qlj+1 = ql−1
j .

Let T l
j be the tree obtained from T l−1

j

(18) by replacing the subtree T ′ T ′′ by (t1 T ′′) t2,

and let T l
j+1 be the tree obtained from T l−1

j

(19) by replacing the subtree T ′ T ′′ by t1 (T ′′ t2).

This operation is exactly applying Jacobi on a subbracket, that is
Equation (16). We also need to see how the position kl−1

j changes and
define

klj = klj+1 =





kl−1
j if kl−1

j < f ′
j,1 + 1 or kl−1

j > f ′′
j ,

kl−1
j + f ′′

j − f ′
j if f ′

j,1 + 1 6 kl−1
j 6 f ′

j,

kl−1
j − (f ′

j − f ′
j,1 + 1) if f ′

j + 1 6 kl−1
j 6 f ′′

j .

Now, one defines Tl = (T l
i , q

l
i, k

l
i) as

(T l
i , q

l
i, k

l
i) = (T l−1

i , ql−1
i , kl−1

i ) for i < j,

(T l
i , q

l
i, k

l
i) = (T l

j , q
l
j , k

l
j) for i = j,

(T l
i , q

l
i, k

l
i) = (T l

j+1, q
l
j+1, k

l
j+1) for i = j + 1.

(T l
i , q

l
i, k

l
i) = (T l−1

i−1 , q
l−1
i−1, k

l−1
i−1) for i > j + 1.

Now, we have TN in T tri
N,Fin, a sequence of length NN and regroup the

terms having same Ti and ki.
(3) For Tl = (T l

i , q
l
i, k

l
i)16i6Nl

with l 6 N , if there exists 1 6 i0 < j0 6 Nl

such that T l
i0

= T l
j0

and kli0 = klj0 , then set Nl+1 = Nl − 1 and Tl+1 =

(T l+1
i , ql+1

i , kl+1
i )16i6Nl+1

by

(T l+1
i , ql+1

i , kl+1
i ) = (T l

i , q
l
i, k

l
i) for i < i0 and i0 < i < j0,

(T l+1
i , ql+1

i , kl+1
i ) = (T l

i , q
l
i + qlj , k

l
i) for i = i0,

(T l+1
i , ql+1

i , kl+1
i ) = (T l

i+1, q
l
i+1, k

l
i+1) for i > j0.

This part of the algorithm stops when all the couple (T l
i , k

l
i) are different

for some L large enough (6 2NN + 1).

The decomposition algorithm described above tells us that beginning with a
triple (T0, 1, k), k being the position of one of the leaves of T0, the sequence
Dec◦n(T0, 1, k) is constant for n large enough. Let T = (Ti, qi, ki)16i6N be its
constant values. One gets the following

Lemma 3.8. With the above notations, the decomposition of [T0] in T Lie in terms
of [T ] for T in H is given by

[T0] =

N∑

i=1

qi[Ti].

Remarks that not all the Ti are in the Hall set H . However, those which are not
in H contain a subtree of the form T T and thus, the corresponding bracket [Ti]

is zero in T Lie.
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3.1.3. Lyndon words. We are here interested in some particular Hall, the one in-
duced by the Lyndon words. Let S be the set {0, 1} and S∗ denote the set of finite
words in the letters 0, 1. Let < be the lexicographic order on S∗ such 0 < 1.

Definition 3.9 (Lyndon words). A Lyndon word W in S∗ is a nonempty word
which is smaller than all its nontrivial proper right factors; that is W 6= ∅ and

W = UV with U, V 6= ∅ ⇒ W < V.

Remark that 0 and 1 are Lyndon words.

Example 3.10. The Lyndon words of length 6 4 are

0, 1, 01, 001, 011, 0001, 0011, 0111.

They are ordered by the lexicographic order which gives

0 < 0001 < 001 < 0011 < 01 < 011 < 0111 < 1.

In order to associate a tree to a Lyndon word, we need the following definition.

Definition 3.11 (Standard factorization). Let W be a word in S∗ of length > 2.
The standard factorization of W is the decomposition

W = UV with

{
U, V ∈ S∗ \ ∅
and V is the smallest nontrivial proper right factor of W.

One has the following property of Lyndon words.

Proposition 3.12 ([Reu93][proof of Theorem 5.1]). Let W be a Lyndon word with
standard factorization W = UV . Then , U and V are Lyndon words and either U
is a letter or has standard factorization U = U1U2 with U2 > V .

To any Lyndon word W we associate a tree τW in T tri. If W = 0 or W = 1, set

τ0 =
0

τ1 =
1

.

For a Lyndon word W of length > 2, let W = UV be its standard factorization
and set

τW = τU τV .

Let HL be the set {τW } where W runs through the Lyndon words in the letters
0, 1. Endow HL with the total order < induced by the ordering of the Lyndon
words W given by the lexicographic order on S∗.

For any Lyndon word, let [W ] be the image of τW in T Lie and let Lyn be the
set of the Lyndon words.

Definition 3.13. For a Lyndon word W , we say that τW is a Lyndon tree and
that [W ] is a Lyndon bracket.

Theorem 3.14. The set HL is a Hall set and the family ([W ])W∈Lyn forms a basis
of T Lie.

Moreover, a basis of T Lie ∧ T Lie is then given by the family ([W1] ∧ [W2]) for
W1,W2 Lyndon words such that W1 < W2. In these basis, the bracket is then given
by

(20) [W1] ∧ [W2]
[ , ]
7−→ [[W1], [W2]] =

∑

W∈Lyn

αW
W1,W2

[W ].

Example 3.15. In length 6 3, one has

τ0 =
0

, τ1 =
1

, τ01 =
0 1

, τ001 =

0 0 1

, τ011 =

0 1 1

,
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and in length 4

τ0001 =

0 0 0 1

, τ0011 =

0 0 1 1

, τ0111 =

0 1 1 1

.

3.2. Trivalent trees and duality. Let T tri,<
Q be the quotient of T tri

Q the ideal

(for ) Is generated by

T1 T2 + T2 T1.

Let T is a tree in T tri with subtree T1 T2 and let T ′ be the tree T in which one

has replaced T1 T2 by T2 T1. In T tri,<
Q , one has the relation

T = −T ′.

From the total order on HL, one gets a total order < on T tri. Let B< be the
set of trees T in T tri such that

T ′ = T1 T2 is subtree of T ⇒ T1 < T2.

Writing T ∈ B
< also for the image of T in T tri,<

Q , one sees that

Lemma 3.16. The set B< induces a basis of T tri,<
Q also denoted by B

<.

We will now, identify T tri,<
Q with its dual by the means of the basis B<.

Let I<Jac denote the image of the ideal IJac in T tri,<
Q . The Lie algebra T Lie is then

isomorphic to the quotient T tri,<
Q /IJac and, using the identification between T tri,<

Q

and its dual, one can identify the dual of T Lie with a subspace T coL ⊂ T tri,<
Q .

Definition 3.17. Let (TW∗)W∈Lyn in T coL denote the dual basis of the basis
([W ])W∈Lyn of the free Lie algebra T Lie.

The TW∗ are linear combinations of trees in B<. One should remark that any
Lyndon tree τW is in B

< and that by definition its coefficient in TW∗ is 1.

Example 3.18. Up to length 6 3, one has TW∗ = τW that is

T0∗ =
0

, T1∗ =
1

, T01∗ =
0 1

, T001∗ =

0 0 1

, T011∗ =

0 1 1

.

In length 4, appears the first linear combination

T0001∗ =

0 0 0 1

, T0011∗ =

0 0 1 1

+

0 0 1 1

, T0111∗ =

0 1 1 1

.

As the Lie bracket on T Lie is induced by : T tri∧T tri → T tri; it is also induced

by on T tri,<
Q . By duality, one obtains a differential

dLie : T
coL −→ T coL ∧ T coL

dual to the Lie bracket and induced by the map T tri
Q −→ T tri

Q ∧ T tri
Q also denote

by dLie :

(21) dLie :

T1 T2

7−→
T1

∧
T2

.

The property that dLie ◦ dLie = 0 on T coL is dual to the Jacobi identity on T Lie.
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Proposition 3.19. By duality, one has in T coL:

• T0∗ =
0

, T1∗ =
1

;

• dLie(T0∗) = dLie(T1∗) = 0;
• for all Lyndon words W of length > 2,

(22) dLie(TW∗) =
∑

W1<W2
W1,W2∈Lyn

αW
W1,W2

TW∗

1
∧ TW∗

2

where the αW
W1,W2

are defined by equation (20).

Moreover one can build the linear combinations TW∗ inductively by

(23) TW∗ =
∑

W1<W2
W1,W2∈Lyn

αW
W1,W2

TW∗

1
TW∗

2

for W of length greater or equal to 2. Here denotes the bilinear map T coL ⊗

T coL −→ T coL induced by .

Lemma 3.20. Let W be a Lyndon word of length greater or equal to 2.

• For the lexicographic order one has 0 < W < 1
• A leaf of a tree in the sum TW∗ decorated by 1 is always a right leaf.
• A leaf of a tree in the sum TW∗ decorated by 0 is always a left leaf.

Proof. Let W be a Lyndon word. As 0 is the smallest non empty word in letters
0 and 1, one has 0 < W . Writing W = Uε with ε in {0, 1} and U non empty, one
has W < ε. Thus, one gets ε = 1 which conclude the first part of the lemma.

Now, the inductive construction of the family TW∗ given by Equation (23)
(Proposition 3.19)

TW∗ =
∑

W1<W2
W1,W2∈Lyn

αW
W1,W2

TW∗

1
TW∗

2

shows that T0∗ is always add as a left factor and T1∗ always as a right factor.
Induction on the length concludes the lemma. �

Definition 3.21. Let T be a tree in T tri. Its image in T Lie decomposes on the
Lyndon basis as

[T ] =
∑

W∈Lyn

cWT [W ].

Duality implies that

Lemma 3.22. Let W be a Lyndon word. Then TW∗ decomposes on the basis B<

as
TW∗ =

∑

T∈B<

cWT T

where the cWT are the ones defined at Definition 3.21.

In view of Theorem 3.44, we need to express the coefficients cWT in terms of

the coefficients cU1

T1
and cU2

T2
for some subtrees T1 and T2 of T . We give below the

necessary definitions and lemmas to give such a decomposition of the cWT (Theorem
3.30). The rest of this subsection will be devoted into proving this decomposition.

Definition 3.23. For a tree T , let LeT (T ) = {l1, . . . , ln} be the set of its leaves
numbered from left to right and let Le1T (T ) be the set of leaves with decoration
equal to 1.

The position of a leaf li will be its number i and we shall write i ∈ Le(T ) (resp.
i ∈ Le1(T )) to a denote the position of a leaf (resp. of a leaf decorated by 1).
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Definition 3.24. Let T be a tree in T tri and i the position of one of its leaves
decorated by ε = 0, 1. Let v denotes the vertex just above this leaf and T1 the
(other) subtree just below v:

εT1

v

We shall write
(
T/ i

)r
for the subtree T1 and l

(
T/ i

)
or T \iT1 for the tree

obtained from T by deleting the subtree T1 and the i-th leaf and by changing the
vertex v into a leaf with decoration ε :

(
T/ i

)r
:=

T1

l
(
T/ i

)
= T \iT1 :=

ε

Definition 3.25 (Insertion). Let T1 and T2 be two trees in T tri and i be the
position of a leaf in T2 and ε its decoration. We assume that this leaf is a “right
tree”. We denote by T2 i T1 the tree obtained from T2 by replacing the i-th leaf

by a vertex v with left subtree T1 and right subtree a leaf decorated by ε :

T2 =

ε

⇒ T2 i T1 :=

εT1

In case we need an insertion on a “left leaf”, we will use the notation l i .

In the pictures describing definition 3.24 and 3.25 we have drawn the important
part in a right subtree, the definitions remains valid in case the considered leaf is
in a left subtree.

Definition 3.26. if e denotes a leaf of a tree, we extend the above notation to the
leaf e:

(T/ e )
r
, l (T/ e ) = T \eT1 , T2 e T1.

Let B= denote the set of trees T in T tri such that there exists one and only one
subtree of T of the form T1 T1.

Looking closely at the insertion/quotient operation one obtains the following.

Lemma 3.27. • Let T be a tree in B< and e a leaf in Le1(T ). Then, there
is a unique tuple (T1, T2, f, ε(T, f)) with T1 in B<, T2 ∈ B< ∪B=, f in
Le1T2

and ε(T, e) in {±1} such that

T \eT ′= ε(T, e)T2 and (T/ e )
r
= T1.

• Let T1, T2 be trees in B< ∪B= with T1 in B< and f in Le1T2
. Then, there

exists a unique tree T in B< ∪B= and a unique ε̃(T1, T2, f) such that

ε̃(T1, T2, f)T = T2 f T1.

and, one write

T := T2 f T1.

In the case where T is in B=, then ε̃(T1, T2, f) = 1.
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There is a unique leaf e ∈ Le1(T2 f T1) such that

T \eT ′= ε(T, e)T2 and (T/ e )
r
= T1

and it will be denoted by ϕT1,T2(f) or simply by ϕ(f) if the context is clear
enough.

If T , as above, is in B< such that T \eT ′ is up to a sign also in B< then with
the above notations

T = T2 f T1 and ε(T, e)εT1,T2,f = 1.

Definition 3.28. Let T0 be a tree in T tri, i the position of one of its leaves and
let T = (Tj , qj , kj)16j6N be the constant value of Dec◦n(T, 1, i) for n large enough.

Let T be a tree in B< ∪B= and k the position of one of its leaves, define the

coefficient cT,k
T0,i

as

cT,k
T0,i

=

{
qj if ∃ j such that T = Tj and k = kj
0 otherwise.

For any Lyndon word W , the coefficient cτW ,k
T0,i

will be denoted simply by cW,k
T0,i

.

Lemma 3.29. • Let T0 be a tree in T tri, i the position of one of its leaves
and let T be a tree in B< ∪B= then

cTT0
:=

∑

k∈Le(T )

cT,k
T0,i

does not depend on i. Moreover, if k denotes the position of one of the
leaves of T , one has

∑

i∈Le(T0)

cT,k
T0,i

= cTT0
.

If T = τW for some Lyndon word W , one has cτWT0
= cWT0

which makes the
above notations consistent.

• With the above notations, as the algorithm Dec does not change the leaves,
one has for i (resp k) the position of a leaf decorated by 1 of T0 (resp. of
T )

cTT0
=

∑

k∈Le1(T )

cT,k
T0,i


resp. cTT0

=
∑

i∈Le1(T0)

cT,k
T0,i


 .

• Let V be in B=, and let T ′ T ′ be its symmetric subtree, k be a leaf in

Le1(V ) in the left factor T ′ and k′ its symmetric in the right factor T ′. Let
T2 be a tree in B<.

Then, one has
∑

f∈Le1
T2

cV,kT2,f
=

∑

f∈Le1
T2

cV,k
′

T2,f
.

Proof. In order to see that

cTT0
=

∑

k∈Le(T )

cT,k
T0,i

does not depend on i, it is enough to remark that the trees arising from Dec do
not depend on the marked leaves but only on the original sequence of trees. Now,
fix T and k. Let T = (Tj , qj, kj)16j6N be the constant value of Dec◦n(T0, 1, i0) for
n large enough and some position i0 of a leaves of T0 such that

T = Tj for some j with qj 6= 0.
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Then, for any position i of a leaf of T0 there exists integers ji,1, . . . , ji,li such that

∀ l ∈ {1, . . . , li}q T = Ti,ji,l and qi,ji,l 6= 0

where Ti = (Ti,j , qi,j , ki,j)16j6N stands for the constant value of Dec◦n(T0, 1, i) for
n large enough (remark that N and the n large enough do not depend on i). As
the algorithm Dec does not change the leaves, if T appears then the leaf in position
k has to “comes from” some leaves in T0 and the sum

∑

i∈Le(T0),l∈{1,...,li}
s.t

T=Ti,ji,l
and k=ki,ji,l

qi,ji,l

is equal to the total coefficient of T in the decomposition of T0.
The last part of the lemma is a direct application of the previous point. �

Let W be a Lyndon word and consider TW∗ its associated dual tree written on
the basis B< as

TW∗ =
∑

T∈B<

cWT T.

Theorem 3.30. We fix W an Lyndon word. Let T be a tree in B< appearing in
TW∗ , i the position of one of its leaves decorated by 1.

As T is in B
<, the i-th leaves which is decorated by 1 is a right subtree (Lemma

3.20):

T =

ε

.

Now, let T1 denote
(
T/ i

)r
, T2 be l

(
T/ i

)
= T \iT1 and j = i− Le1(T1).

Necessarily, T1 is in B< and either T2 is in B= or can be written as T2 =
ε(T, i)T2 with T2 in B<.

Then, the coefficients cWT satisfy

(24) cWT =
∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

cU1

T1
ε(T, i)cU2,k

T2,i
cW
U2 k U1

+
∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

cU1

T1
ε(T, i)cV,k

T2,i
cW
V k U1

.

Remark 3.31. The proof also shows the following. Let T in B= and i the position of
one of its leaves decorated by 1 such that T1 =

(
T/ i

)r
and T2 = l

(
T/ i

)
= T \iT1

are both in B< and let j = i− Le1(T1) . Then, as in the theorem, one has

cWT =
∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

cU1

T1
ε(T, i)cU2,k

T2,i
cW
U2 k U1

+
∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

cU1

T1
ε(T, i)cV,k

T2,i
cW
V k U1

.

Proof. Considering the definition of cWT , the proof follows from writing down [T ] in
two different ways in the Lyndon basis. By definition, one has

[T ] =
∑

W0∈Lyn

cW0

T [W0] ∈ T Lie
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and as T1 is also in B<,

[T1] =
∑

U1∈Lyn

cU1

T1
[U1] ∈ T Lie.

As, T = T2 j T1, linearity of the Lie brackets gives

[T ] =
∑

U1∈Lyn

cU1

T1
[T2 j U1] ∈ T Lie.

Now, [T2] can be written as

[T2] = ε(T, i)[T2] =
∑

U2∈Lyn

∑

k∈Le1(U2)

ε(T, i)cU2,k

T2,j
[U2] +

∑

V ∈B=

∑

k∈Le1(V )

ε(T, i)cV,k
T2,i

[V ].

Lemma 3.32 below insures that for any Lyndon word U1

[T2 j U1] =
∑

U2∈Lyn

∑

k∈Le1(U2)

ε(T, i)cU2,k

T2,i
[U2 k U1]+

∑

V ∈B=

∑

k∈Le1(V )

ε(T, i)cV,k
T2,i

[V k U1] ∈ T Lie

and decomposing each bracket [U2 k U1] and [V k U1] in the Lyndon basis gives

[T ] =
∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

∑

W0∈Lyn

ε(T, i)cU1

T1
cU2,k

T2,i
cW0

U2 k U1

[W0]+

∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

∑

W0∈Lyn

ε(T, i)cU1

T1
cV,k
T2,i

cW0

V k U1

[W0] ∈ T Lie

which concludes the proof of Theorem 3.30. �

Lemma 3.32. Let T = (Tj, qj , kj)16j6N be a sequence in T tri
N,Fin with kj in Le1(Tj)

for all j and set

T
′ = Dec(T) = (T ′

j , q
′
j , k

′
j)16j6N ′ .

Let T be a tree in T tri. In the Lie algebra T Lie one has

N∑

j=1

qj [Tj
kj T ] =

N ′∑

j=1

q′j [T
′
j

k′

j T ].

Proof. The total number of leaves in the trees involved in equations (17), (18) and
(19) stays constant, thus the formulas defining k′j in terms of the kj shows that

for any j k′j is the position of a leaf of T ′
j . Hence the right hand side of the above

equations is well defined.
The second part of the algorithm Dec which regroups the different terms of the

sequence with same tree and same position commutes with the insertion procedure
as it does not change the trees.

So we need only to consider the first part of the algorithm which performs for
each tree Tj one operation on the smallest subtree A B which is not a Lyndon
tree. Thus, it is enough to prove the above equality in the case where only one of
the Tj is changed; say TN . With the notations from the algorithm, one need to
prove that

N∑

j=1

qj [Tj
kj T ] =

N1∑

j=1

q1j [T
1
j

k1
j T ].
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By definition, (Tj , qj , kj) = (T 1
j , q

1
j , k

1
j ) for j 6 N − 1 and the N − 1 first terms

of the above sums are equal. We are reduced to show that

(25) qN [TN kN T ] =

N1∑

j=N

q1N [T 1
N

k1
N T ]

with N1 = N or N1 = N +1 depending on the smallest subtree A B of TN which
is not a Lyndon tree.

Write TN as

TN =

1T0

v

kN -th position

where v denotes the vertex just above the kN -th leaf.

If the whole subtree

T0 1

is moved or not affected at all by operations given at

equations (17), (18) and (19), then the identity (25) is satisfied. Similarly if A B
is contained in T0.

Thus, we are interested in the following cases :

• A = T0 and B =
1

with A > B,

• A =

T0 1

and B <
1

,

• A = T0 = T ′
0 T ′′

0 and B =
1

with T ′′
0 < B.

In the first case, identity (25) follows from

[[T0], [[T ],
1

]] = −[[[T ],
1

], [T0]] ∈ T Lie

where [T ] (resp. [T0]) denotes the image of T (resp. T0) in T Lie.
The second case, corresponding to operations (18) and (19), follows from Jacobi

identity written as

[[X,Y ], Z] = [X, [Y, Z]] + [[X,Z], Y ]

applied to X = [T0], Y = [[T ],
1

] and Z = [B]. Similarly, the third case, also

corresponding to operations (18) and (19), follows from the above formula applied

to X = [T ′
0], Y = [T ′′

0 ] and Z = [[T ],
1

]. �

3.3. The differential graded algebra of R-deco forests. In [GGL09], Gangl,
Goncharov and Levin have defined a combinatorial algebra built out of trees, the
algebra of R-deco forest, with a differential dcy that imitate the behavior of the
differential ∂Q inNQ for cycles related to special linear combinations of trees. Even if
we will not use their forest cycling map which maps (particular linear combinations
of) trees to (admissible) cycles, an equivalent of the R-deco forest algebra will
encode the combinatoric of our problem.

In this subsection, definitions and properties of the forest algebra are recalled.
Unless specified otherwise a tree is a planar rooted tree with leaves decorated by
0 and 1. Remark that trees are not assumed to be trivalent has in the previous
sections.
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Definition 3.33. • Let T be a planar rooted tree with leaves decorated by
0 and 1 and root decorated by t, 0 or 1. Let E(T ) denote the set of edges
of T .

• An oriented tree (T, ω) is a tree as above together with a bijective map
ω : E(T ) −→ {1, . . . , |(T )|}.

• Similarly to Definition 3.23, one defines LeT (T ) and Le1T (T ) as the sets of
leaves of T and the set of leaves decorated by 1 respectively.

• For an oriented tree (T, ω), the orientation of T induces an order on LeT (T )
and Le1T (T ) respectively and the position of a leaf will denote its position
with respect to that order and we shall write i ∈ Le(T ) (resp. i ∈ Le1(T )
) for the position of a leaf.

• A forest is a disjoint union of planar rooted trees with leaves decorated by
0 and 1.

• The above definitions extend naturally to forests. For a forest F , we shall
write E(F ), LeT (F ) and Le1T (F ). Similarly, we will speak of oriented forest
(F, ω) and of position of leaves i ∈ Le(F ) and i ∈ Le1(F ).

Let the weight of a forest F (resp. and oriented (F, ω)) be the number of its leaves
wt(F ) = |LeT (F )| and its (cohomological) degree be e(F ) = 2wt(F )− |E(F )|.

Let V k(p) be the vector space generated by oriented forests (F, ω) of weight
wt(F ) = p and such that e(F ) = k. Adding an extra generator 11 in weight 0 and
degree 0, V 0(0) := Q11, we define

V • = ⊕p>0 ⊕k V
k(p).

Definition 3.34. Disjoint union of forests extends to oriented forests with 11 as
neutral element as follows. Let (F1ω1) and (F2, ω2) be two oriented forests, define

(F1ω1) · (F2, ω2) = (F1 ∪ F2, ω)

where ω : E(F1 ∪ F2) −→ {1, . . . , |E(F1)|+ |E(F2)|} is defined by

ω(e) =

{
ω1(e) if e ∈ F1

ω2(e) + |E(F1)| if e ∈ F2

For σ a permutation of {1, . . . , n} for some positive integer n, let ε(σ) denote
the signature of σ.

Definition 3.35. Let I be the ideal generated by elements of the form

• (T, ω) − ε(σ)(T, σ ◦ ω) for (T, ω) an oriented tree and σ a permutation of
{1, . . . ,#E(T )}

• oriented trees with root decorated by 0, that is


 0

T

, ω




• the tree
1

0

with any orientation.

Let F•
Q be the (graded) quotient

F•
Q := V •/I.

The extended disjoint union · makes F•
Q into a graded commutative algebra (for

the cohomological degree), that is oriented forests “commute” via the rule

(F1, ω1) · (F2, ω2) = (−1)e(F1)e(F2)(F2, ω2) · (F1, ω1).

Definition 3.36. A rooted plane tree has a canonical numbering of its edge, start-
ing from the root edge, which is induced by the cyclic order of the edges at internal
vertices. We will speak of its canonical orientation or of its canonical numbering.
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Example 3.37. An example of this canonical ordering is shown at Figure 1; we
recall that by convention we draw trees with the root at the top and the cyclic
order at internal vertices counterclockwise.

e3 e4

e2
e5

e1

t

0 1 1

Figure 1. A tree with its canonical orientation, that is the canon-
ical numbering of its edge.

Now, we define on F•
Q a differential of degree 1, that is a linear map

d : F•
Q −→ F

•+1
Q

satisfying d2 = 0 and the Leibniz rule

d((F1, ω1) · (F2, ω2)) = d((F1, ω1)) · (F2, ω2) + (−1)e(F1)(F1, ω1) · d((F2, ω2)).

The set of rooted planar trees decorated as above endowed with their canonical
orientation forms a set of representative for the permutation relation and it gener-
ates F•

Q as an algebra. Hence, we will define this differential first on trees endowed
with their canonical orientation and then extend the definition by Leibniz rule.

The differential of an oriented tree (T, ω) will be a linear combination of oriented
forests where the trees appearing arise by contracting an edge of T and fall into
two types depending whether the edge in internal or not. We will need the notion
of splitting.

Definition 3.38. A splitting of a tree T at an internal vertex v is the disjoint
union of the trees which arise as Ti ∪ v where the Ti are the connected component
of T \ v. Moreover

• the planar structure of T and its decorations of leaves induce a planar
structure on each Ti ∪ v and decorations of leaves ;

• an ordering of the edges of T induces an orientation of the forest ⊔i(Ti∪v);
• if T as a root r then v becomes the root for all Ti ∪ v which do not contain

r, and if v has a decoration then it keeps its decoration in all the Ti ∪ v.

Definition 3.39. Let e be an edge of a tree T . The contraction of T along e
denoted T/e is given as follows:

(1) If the tree consists on a single edge, its contraction is the empty tree.
(2) If e is an internal edge, then T/e is the tree obtain from T by contracting

e and identifying the incident vertices to a single vertex.
(3) If e is the edge containing the root vertex then T/e is the forest obtained

by first contracting e to the internal incident vertex w (which inherit the
decoration of the root) and then by splitting at w; w becoming the new
root of all trees in the forest T/e.

(4) If e is an external edge not containing the root vertex then T/e is the forest
obtained as follow: first one contracts e to the internal incident vertex w
(which inherit the decoration of the leaf) and then one performs a splitting
at w.

Example 3.40. Two examples are given below. In Figure 2, one contracts the root
vertex and in Figure 3, a leaf is contracted.
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e

t

p q r

contracting

;

along e

t

p q r

splitting at

;

internal vertex

t
t

t

p q r

Figure 2. Contracting the root

e

t

p q r

contracting

;

along e

t

p q

r

splitting at

;

internal vertex

r r

t

p q

r

Figure 3. Contracting a leaf

Now, Let e be an edge of an oriented tree (T, ω) with ω the canonical orientation
of T . As an edge f of T/e is also an edge of T , there is a natural orientation ieω
on T/e given as follows :

∀f ∈ E(T/e)
ieω(f) = ω(f) if ω(f) < ω(e)
ieω(f) = ω(f)− 1 if ω(f) > ω(e).

Definition 3.41. Let (T, ω) be a tree endowed with it canonical orientation, on
defines dcy(T,w) as

dcy(T, ω) =
∑

e∈E(T )

(−1)ω(e)−1(T/e, ieω).

One extends dcy to all oriented trees by the relation

dcy(T, σ ◦ ω) = ε(σ)dcy(T, ω)

and to F•
Q by linearity and the Leibniz rule.

In particular dcy maps a tree with at most one edge to 0 (which correspond by
convention to the empty tree).

As proved in [GGL09], dcy, extended with the Leibniz rule, induces a differential
on F•

Q.

Proposition 3.42. The map dcy : F•
Q −→ F•

Q makes F•
Q into a commutative

differential graded algebra. In particular d2cy = 0.

We will give examples of explicit computations of this differential in the next
subsection.

3.4. “Differential equations” for tree sums dual to Lyndon brackets. The
canonical orientation of a tree allows us to define two maps

φt : T
tri,<
Q −→ F•

Q, (resp. φ1 : T tri,<
Q −→ F•

Q)

sending a rooted trivalent tree with leaves decorated by 0 and 1 to the same tree
with its canonical numbering and the root decorated by t (resp. by 1).

The symmetry relation in T tri,<
Q is compatible with the permutation relation in

F•
Q as the considered trees in T tri,<

Q are trivalent. We will use the same notation

to denote an element τ in T tri,<
Q and its image by φt and denotes by τ(1) its image

by φ1.
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Example 3.43. We give below the image by φt and φ1 of some (linear combinations
of) tress given at example 3.18 together with the numbering of the edges. Up to
weight 3, the images by φt are

T0∗ = e1

t

0

, T1∗ = e1

t

1

, T01∗ =
e2 e3

e1

t

0 1

, T001∗ =
e2

e4 e5

e3

e1

t

0 0 1

,

and in weight 4

T0011∗ =
e2

e5 e6

e4

e7

e3

e1

t

0 0 1 1

+

e3

e5 e6

e4

e2

e7

e1

t

0 0 1 1

.

Some images by φ1 are given below:

T01∗(1) =
e2 e3

e1

1

0 1

, T001∗(1) =
e2

e4 e5

e3

e1

1

0 0 1

,

and

T0011∗(1) =
e2

e5 e6

e4
e7

e3

e1
1

0 0 1 1

+

e3
e5 e6

e4

e2

e7

e1
1

0 0 1 1

The linear combination of trivalent trees given by the TW∗ have a special behavior
under the differential dcy given in the following theorem.

Theorem 3.44. Let W be a Lyndon word of length > 2. In F•
Q, the image of TW∗

under dcy is decomposable, that is dcy(TW∗) is a sum of products. More precisely ,

(26) dcy(TW∗) =
∑

U<V

αW
U,V TU∗ · TV ∗ +

∑

U,V

βW
U,V TU∗ · TV ∗(1)

where U and V are Lyndon words, the αW
U,V are the ones defined at Equation (20)

and the βW
U,V rational numbers.

Remark 3.45. From the definition of dcy, one sees Equation (26) involves only W
and Lyndon words U , V such that the length of W is equal to the length of U plus
the one of V . In particular, αW

U,V = βW
U,V = 0 as soon as U or V has length greater

or equal to W .
The coefficients αW

U,V are defined only for U < V . In particular, αW
1,V ,αW

U,0 and

αW
U,U are not defined.



38 ISMAEL SOUDÈRES

Before proving the above theorem, we give some examples.

Example 3.46. As said before, the trees are endowed with their canonical num-
bering. We recall that a tree with root decorated by 0 is 0 in F•

Q. As applying an
odd permutation to the numbering change the sign of the tree, using the trivalency
of the tree TW∗ shows that some trees arising from the computation of dcy are 0 in
F•

Q because they contain a symmetric subtree.

Using the fact that the tree
1

0

is 0 in F•
Q, one computes in weight 3, dcy(T011∗)

:

dcy




t

0 1 1




=

t

0 1

·

t

1

+

1

1

·

1

0 1

and in weight 4, dcy(T0011∗)

dcy




t

0 0 1 1

+

t

0 0 1 1




=

t

0

·

t

0 1 1

+

t

0 0 1

·

t

1

+

t

1

·

1

0 0 1

+

t

0 1

·

1

0 1

.

We give below an example in weight 5, dcy(T01011∗) :

dcy




t

0 1 0 1 1

+

t

0 0 1 1 1

+

t

0 0 1 1 1




=

t

0 1

·

t

0 1 1

+




t

0 0 1 1

+

t

0 0 1 1



·

t

1

+

t

1

·




1

0 0 1 1

+

1

0 0 1 1




+ 2

t

0 1 1

·

1

0 1

e f
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where the last term arises from the part of the differential associated to edges e and
f . In the computations above, we have regrouped terms together and not written
the one that were 0. The result can be summarized by

T011∗ =T01∗ · T1∗ + T1∗ · T01∗(1)

T0011∗ =T0∗ · T011∗ + T001∗ · T1∗ + T1∗ · T001∗(1) + T01∗ · T01∗(1)

T01011∗ =T01∗ · T011∗ + T0011∗ · T1∗ + T1∗ · T0011∗(1) + 2T011∗ · T01∗(1)

and should be compare with equations (10) and (11).

The proof of Theorem 3.44 will be decomposed in three part:

• proving that terms of the form αW
U,V TU∗ · TV ∗ arise;

• proving that dcy(TW∗) is decomposable, in other words that it is a sum of
products;
• proving that products that are not terms arising from αW

U,V TU∗ · TV ∗ can

be regroup together and give terms of the form βW
U,V TU∗ · TV ∗(1) for some

rational number βW
U,V .

The coefficients βW
U,V are in fact integers and the proof gives a precise formula.

However the exact expression will not be used latter.
First of all, one decomposes the differential dcy in four parts :

dcy = droot + dint + d0l + d1l

where droot is the term corresponding to the root edge, dint the one corresponding
to internal edges, d0l and d1l corresponding respectively to the external edges that
are not the root edge with leaves decorated by 0 and 1.

One remarks that d0l is zero. Indeed, if e is an external edge with leaf decorated
by 0 of a tree T , the corresponding term of d0l (T ) is given by the forest T/e where
one of the tree is of the form

0

T ′

which is 0 in F•
Q.

Now, let T be a rooted trivalent tree in T tri as above. It can be endowed with its
canonical ordering and root decoration given by t to obtain a tree in φt(T ) in F•

Q.

We have defined at Equation (21) a map dLie : T tri
Q −→ T tri

Q ∧ T tri
Q that contract

and split the root edge of T giving two trees with two new roots. The fact that we
have exactly two trees comes form the trivalency hypothesis in T tri

Q . Using again

the trivalency of the trees, φt extends to a map T tri
Q ∧T tri

Q −→ F•
Q where the wedge

product is replaced by the product in F•
Q. As droot consists also in contracting the

root edge and splitting, one has

droot(φt(T )) = φt(dLie(T )).

In particular, as the TW∗ are by definition the dual basis to the basis of T Lie

given by Lyndon brackets and using Proposition 3.19 one finds omitting φt

droot(TW∗) =
∑

U<V

αW
U,V TU∗ · TV ∗ .

Now, let’s prove that the non decomposable terms arising from dint cancel each
other.

Lemma 3.47. Let W be a Lyndon in 0 and 1. Then one has

dint(TW∗) = 0
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Proof. One proves the lemma by induction on the length of W . If the length of W
is less or equal to 2, there is nothing to prove as the corresponding tree do not have
any internal edges.

Let T be a rooted planar tree (with decoration) and e and edge of T . One
has a natural direction on the edges of T , going away from the root. Considering
this direction, the edge e goes from a vertex v to a vertex w. The depth of e is
the minimal number of edges one has to go trough in order to go from the root
vertex to the vertex w. Thus an edge of depth 2 is an edge connected to the edge
containing the root vertex.

Using the inductive construction of TW∗

TW∗ =
∑

U<V

αU, VWTU∗ TV ∗

and the fact that TW∗ is trivalent, one sees that

dint(TW∗) =
terms corresponding
to edge of depth 2

−
∑

U<V

αU, V Wdint(TU∗) TV ∗

+
∑

U<V

αU, VWTU∗ dint(TV ∗).

In the above formula, the signs are taking into account the canonical numbering of
the respective trees. Using the induction hypothesis, it is enough to check that the
terms corresponding to edges of depth 2 cancel each other. Writing TW∗ as

TW∗ =
∑

T∈B<

cWT T,

one considers a tree T in B< such that cWT is non zero. As W is of length at least
3, T can be written in one of the following form

(a) e f

t

T1 T2 T3 T4

(b) f

t

ε T2 T3

(c) e

t

T1 T2 ε

where ε is equal to 0 or 1.
As T is trivalent, edges labeled by e have an even number and those labeled

by f an odd number with the natural numbering of T . Computing in each case
the terms of dint coming from the depth 2 edges and taking into account the signs
arising from the natural numbering, one gets for each cases

(a) − f

t

T1 T2 T3 T4

+ e

t

T1 T2 T3 T4

and

(b)

t

ε T2 T3

(c) −

t

T1 T2 ε

.
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In the other hand, applying dLie erases the root and create two new trees. Com-
puting d◦2Lie(T ) in T tri

Q , one obtains in T tri
Q ∧ T tri

Q ∧ T tri
Q for each cases

(a)

T1

∧

T1

∧

T3 T4

−

T1 T2

∧

T3

∧

T4

(b) −
ε

∧
T2

∧
T3

(c)
T1

∧
T2

∧
ε

.

Permuting the wedge factors introduces a minus sign when the permutation is a
transposition as does permuting the trivalent subtrees in the former formula.

Thus, up to a global minus sign, in dint(TW∗) each term arising from the depth 2
edges is given by gluing together the three wedge factor of the corresponding term
in d◦2Lie(TW∗). These different terms cancel each other because d◦2Lie(TW∗) = 0. As
a consequence, in dcy(TW∗) terms arising from the depth 2 edges cancel each other
and dint(TW∗) = 0. �

We will now prove the main part of Theorem 3.44. It is enough to prove that
terms in dcy(TW∗) coming from the leaves decorated by 1 gives

∑

U,V

βW
U,V TU∗ · TV ∗(1).

Lemma 3.48. Let W be a word in 0 ans 1. One has

d1l (TW∗) =
∑

U,V

βW
U,V TU∗ · TV ∗(1).

Proof. The definition of dcy gives dcy(T0∗) = dcy(T1∗) = 0 and dcy(T01∗) = T0∗ ·T1∗

and we will assume that W as length greater or equal to 3.
All considered trees T are endowed with their canonical numbering ωT . The

computation of d1l (TW∗) gives

d1l (TW∗) =
∑

T∈B<

cWT d1l (T ) =
∑

T∈B<

cWT
∑

e∈Le1
T

(T/e, ieωT ).

Let T be a tree in B
< such that cWT is non zero. Lemma 3.20 shows that a leaf

e in T decorated by 1 is always a right leaf:

T =

1

e

T1

where T1 = (T/ e )
r
. Thus, if the edge e has number i, one sees that

(T/e, ieωT ) = (−1)i−1(−1)(2l−1)(2p−1−i)(T \eT1 , ωT \eT1
) · (T1(1), ωT1)

= (T \eT1 , ωT \eT1
) · (T1(1), ωT1)

where 2l − 1 is the number of edges in T1 and · is the product in F•
Q; the natural

ordering of T1 begin the same as the one of T1(1).
Thus, omitting the natural numbering, one can write

d1l (TW∗) =
∑

T∈B<

∑

e∈Le1
T

cWT T \eT ′ · (T/ e )
r
(1).

Using Lemma 3.27 and the fact that cWT ′ = 0 for any T ′ in B
=, one can rewrite the

above sum as

d1l (TW∗) =
∑

T1∈B<

∑

T2∈B<∪B=

∑

f∈Le1T2

cW

T2 f T1

ε̃(T1, T2, f)T2 · T1(1)
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and as the permutation relations kill terms T2 in B=

d1l (TW∗) =
∑

T1∈B<

∑

T2∈B<

∑

f∈Le1
T2

cW

T2 f T1

ε̃(T1, T2, f)T2 · T1(1).

Now, applying Theorem 3.30 and its remark to T2 f T1 and leaf e = ϕT1,T2(f) =

ϕ(f), one decomposes the coefficients cW

T2 f T1

and, as T2 is in B<, obtains

d1l (TW∗) =
∑

T1∈B<

∑

T2∈B<

∑

f∈Le1T2

∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

cU1

T1

ε(T2 f T1, ϕ(f))c
U2,k
T2,f

cW
U2 k U1

ε̃(T1, T2, f)T2 · T1(1)

+
∑

T1∈B<

∑

T2∈B<

∑

f∈Le1T2

∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

cU1

T1

ε(T2 f T1, ϕ(f))c
V,k
T2,f

cW
V k U1

ε̃(T1, T2, f)T2 · T1(1).

As lemma 3.27 shows that ε(T2 f T1, ϕ(f))ε̃(T1, T2, f) = 1, one gets

d1l (TW∗) =
∑

T1∈B<

∑

T2∈B<

∑

f∈Le1T2

∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

cU1

T1
cU2,k
T2,f

cW
U2 k U1

T2 · T1(1)

+
∑

T1∈B<

∑

T2∈B<

∑

f∈Le1T2

∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

cU1

T1
cV,kT2,f

cW
V k U1

T2 · T1(1).

Now, permuting the summation symbols gives

d1l (TW∗) =
∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

∑

T1∈B<

∑

T2∈B<

∑

f∈Le1
T2

cU1

T1
cU2,k
T2,f

cW
U2 k U1

T2 · T1(1)

+
∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

∑

T1∈B<

∑

T2∈B<

∑

f∈Le1
T2

cU1

T1
cV,kT2,f

cW
V k U1

T2 · T1(1),

then, collecting terms depending on T1 leads to

d1l (TW∗) =

∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

∑

T2∈B<

∑

f∈Le1
T2

cU2,k
T2,f

cW
U2 k U1

T2 ·




∑

T1∈B<

cU1

T1
T1(1)





+
∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

∑

T2∈B<

∑

f∈Le1
T2

cV,kT2,f
cW
V k U1

T2 ·




∑

T1∈B<

cU1

T1
T1(1)



 ,
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that is

d1l (TW∗) =
∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

∑

T2∈B<

∑

f∈Le1
T2

cU2,k
T2,f

cW
U2 k U1

T2 · TU∗

1
(1)

+
∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

∑

T2∈B<

∑

f∈Le1
T2

cV,kT2,f
cW
V k U1

T2 · TU∗

1
(1).

Doing the same for terms in T2, one has

d1l (TW∗) =

∑

U1∈Lyn

∑

U2∈Lyn

∑

k∈Le1(U2)

cW
U2 k U1




∑

T2∈B<




∑

f∈Le1
T2

cU2,k
T2,f


T2


 · TU∗

1
(1)

+
∑

U1∈Lyn

∑

V ∈B=

∑

k∈Le1(V )

cW
V k U1




∑

T2∈B<




∑

f∈Le1
T2

cV,kT2,f


T2


 · TU∗

1
(1).

As, for a fixed k by Lemma 3.29
∑

f∈Le1
T2

cU2,k
T2,f

= cU2

T2
, the first term of the above

sum is equal to

∑

U1∈Lyn

∑

U2∈Lyn




∑

k∈Le1(V )

cW
U2 k U1


TU∗

2
· TU∗

1
(1)

which is the desired term in βW
U1,U2

TU∗

2
TU∗

1
(1).

For the second term, V contains a symmetric subtree of the form T ′ T ′. If a leaf

k in Le1(V ) is not in this symmetric subtree, then the tree V k U1 also contains

this symmetric subtree and thus the coefficient cW
V k U1

is 0.

If the leaf k is in the left T ′ then there exists another leaf k′ in Le1(V ) symmetric
to k′ in the right T ′ factor. Then, one has

cW
V k U1

= −cW
V k′

U1

and Lemma 3.29 insures that the remaining terms of the second sum cancel each
other. �

3.5. Relations among the coefficients arising from the differential equa-

tions. From Equation (26), one deduces quadratic relations between coefficients
αW
U,V and βW

U,V for U , V , W Lyndon words.
We begin by some obvious remarks for the case where U or V is equal to one of

the Lyndon word 0 or 1.
From Lemma 3.20, one derives the following facts about coefficients αW

0,V , αW
V,1,

βW
V,ε and βW

ε,V for ε in {0, 1}.

Lemma 3.49. Let W be a Lyndon word of length greater or equal to 2 and write
dcy(TW∗) as in Theorem 3.44:

dcy(TW∗) =
∑

U<V

αW
U,V TU∗ · TV ∗ +

∑

U,V

βW
U,V TU∗ · TV ∗(1).

The following holds :

• βW
0,V = βW

V,0 = 0,
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• βU,1 = 0,
• βW

1,U = αW
U,1.

In particular, β0,0 = β1,1 = 0.

Proof. Let W be a Lyndon word of length greater or equal to 2. First, as
1

0

is 0

in F•
Q, one gets βW

V,0 = 0.

In dcy(TW∗), trees t

0

and t

1

arise only by contracting a root edge or by

contracting the edge e in the two following situation

e

t

T0

,
e

t

1T

.

Hence, βW
1,V = αW

V,1 and as a tree with root decorated by 0 is 0 in F•
Q, one has

βW
0,V = 0. From the definition of dcy, one sees that a product TT1∗(1) for some tree

T can only arise from a subtree of type

...

11

.

As, TW∗ is a linear combination of trees in B<, none of the appearing trees can
contain a symmetric subtree as the one above which insures that βW

V,1 = 0. �

Lemma 3.50. The family of elements given by

{TW∗ s.t. W Lyndon word} ∪ {TW∗(1) s.t. W 6= 0, 1 Lyndon word}

is linearly independent in F•
Q.

As a consequence the following families consist of linearly independent elements:

• For U and V running trough Lyndon words in 0, 1:

{TU∗TV ∗ |U < V } ∪ {TU∗TV ∗(1) | 0 < U, V 6= 0, 1}

• for the Ui, running through Lyndon words

{TU∗

1
TU∗

2
TU∗

3
} ∪ {TU∗

4
TU∗

5
TU∗

6
(1)} ∪ {TU∗

7
TU∗

8
(1)TU∗

9
(1)} ∪ {TU∗

10
(1)TU∗

11
(1)TU∗

12
(1)},

where the Ui are subject to the constraint below
– U1 < U2 < U3, U4 < U5, U8 < U9, U10 < U11 < U12

– U6, U8, U9, U10, U11, U12 6= 0, 1

Proof. As a basis of T coL the elements TW∗ where W runs through all Lyndon words
are linearly independent in T tri,<

Q and hence their images by φt are also linearly
independent. Indeed, adding the root decoration t introduce no relation. Moreover,
as φt endowed each tree with its canonical numbering, the permutation relation in
F•

Q play no role as the canonical numbering produces a set of representative for the
tree. It is important to remark here that no products are involved in the element
TW∗ . A similar argument shows that the elements TW∗(1) (W 6= 0, 1 Lyndon word)
are linearly independent in F•

Q. One concludes the first part remarking that in F•
Q,

no relation involves both trees with root decorated by t and 1.
The second part of the lemma which involved products of trees follows from

the fact that the permutation relations on a product of tree endowed with their
canonical numbering keeps tracts of the order of terms in the product. The trees
involved here being all trivalent, their product is anti-commutative. All involved
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trees being endowed with their canonical numbering their is no further relation
than anticommutativity. �

Now, we described some quadratic relations satisfy by the coefficients αW
U,V and

βW
U,V . Those relations are nothing but writing d2cy(TW∗) = 0 in terms of the above

linearly independent families.
Fix W a Lyndon word of length greater or equal to 3 and a, b and c three Lyndon

words of smaller length. We define, with the restriction a < b < c, a coefficient
ra<b<c; with the restriction a < b, a coefficient sa<b,c and, with the restriction
b < c a coefficient ta,b<c. In the definitions below, all indices are Lyndon words
and we have dropped the superscript W . Latter on, we will generally not write the
superscript W when the context is clear enough. We set:

(27) rWa,b,c =
∑

u<a

(
αu,aα

u
b,c − αu,bα

u
a,c + αu,cα

u
a,b

)

+
∑

a<u<b

(
−αa,uα

u
b,c − αu,bα

u
a,c + αu,cα

u
a,b

)

+
∑

b<u<c

(
−αa,uα

u
b,c + αb,uα

u
a,c + αu,cα

u
a,b

)

+
∑

c<u

(
−αa,uα

u
b,c + αb,uα

u
a,c − αc,uα

u
a,b

)
.

(28) sWa<b,c =
∑

u

βu,cα
u
a,b +

∑

u<a

αu,aβ
u
b,c +

∑

u<b

−αu,bβ
u
a,c

+
∑

u>a

−αa,uβ
u
b,c +

∑

u>b

αb,uβ
u
a,c

(29) tWa,b<c =
∑

u

βu,cβ
u
a,b +

∑

u

−βu,bβ
u
a,c +

∑

u

βa,u

(
−αu

b,c − βu
b,c + βu

c,b

)

Proposition 3.51. One has the following relations:

rWa<b<c = sWa<b,c = tWa,b<c = 0

for a, b and c respecting the constraints from the above definition.

Proof. First, we remark that for any Lyndon word M one has

dcy(TM∗(1)) =
∑

U<V

αA
U,V TU∗(1) · TV ∗(1) +

∑

U,V

βA
U,V TU∗(1) · TV ∗(1),

as one just changes the label of the root which does not change the combinatoric
of dcy.

We fix W a Lyndon word of length greater or equal to 3, a, b and c three Lyndon
words of smaller length. In the following computations, all indices corresponds to
Lyndon words.

Beginning with

dcy(TW∗) =
∑

U<V

αW
U,V TU∗ · TV ∗ +

∑

U,V

βW
U,V TU∗ · TV ∗(1),

one computes d2cy(TW∗) as

d2cy(TW∗) =
∑

U<V

αW
U,V dcy(TU∗) · TV ∗ +

∑

U<V

−αW
U,V TU∗ · dcy(TV ∗)

+
∑

U,V

βW
U,V dcy(TU∗) · TV ∗(1) +

∑

U,V

−βW
U,V TU∗ · dcy(TV ∗(1)).
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Later on we will omit the · for the product. Developing the expression of dcy on
the right hand side, one obtains that d2cy(TW∗) is equal to

∑

U<V

∑

V1<V2

αW
U,V α

U
V1,V2

TV ∗

1
TV ∗

2
TV ∗(AT

1 )

+
∑

U<V

∑

V1,V2

αW
U,V β

U
V1,V2

TV ∗

1
TV ∗

2
(1)TV ∗(AT

2 )

+
∑

U<V

∑

U1<U2

−αW
U,V α

V
U1,U2

TU∗TU∗

1
TU∗

2
(AT

3 )

+
∑

U<V

∑

U1,U2

−αW
U,V β

V
U1,U2

TU∗TU∗

1
TU∗

2
(1)(AT

4 )

+
∑

U,V

∑

V1<V2

βW
U,V α

U
V1,V2

TV ∗

1
TV ∗

2
TV ∗(1)(AT

5 )

+
∑

U,V

∑

V1,V2

βW
U,V β

U
V1,V2

TV ∗

1
TV ∗

2
(1)TV ∗(1)(AT

6 )

+
∑

U,V

∑

U1<U2

−βW
U,V α

V
U1,U2

TU∗TU∗

1
(1)TU∗

2
(1)(AT

7 )

+
∑

U,V

∑

U1,U2

−βW
U,V β

V
U1,U2

TU∗TU∗

1
(1)TU∗

2
(1)(AT

8 )

We expand the above sum in terms of the family

{TU∗

1
TU∗

2
TU∗

3
} ∪ {TU∗

4
TU∗

5
TU∗

6
(1)} ∪ {TU∗

7
TU∗

8
(1)TU∗

9
(1)} ∪ {TU∗

10
(1)TU∗

11
(1)TU∗

12
(1)}

where the Ui satisfy the constraints from Lemma 3.50. In order to do so, one should

remark that, as 1

0

= 0 in F•
Q, there is no terms in T0∗(1) and that Lemma 3.49

insures that there is no terms in TU∗

4
TU∗

5
T1∗(1) or in TU∗

7
TU∗

8
(1)T1∗(1). Obviously

d2cy(TW∗) does not give any terms in TU∗

10
(1)TU∗

11
(1)TU∗

12
(1).

We assume now that a < b < c. The coefficient of Ta∗Tb∗Tc∗ can only come from
the sum (AT

1 ) and (AT
3 ).

From the sum (AT
1 ), one gets





∑

U<V

αW
U,V α

U
V1,V2

if a = V1 < b = V2 < c = V

∑

U<V

−αW
U,V α

U
V1,V2

if a = V1 < b = V < c = V2

∑

U<V

αW
U,V α

U
V1,V2

if a = V < b = V1 < c = V2

which gives, in terms of words a, b and c and using u as independent variable in
the sum signs, ∑

u<c

αW
u,cα

u
a,b +

∑

u<b

−αW
u,bα

u
a,c +

∑

u<a

αW
u,aα

u
b,c.

Similarly, the sums (AT
3 ) contributes to the coefficient of Ta∗Tb∗Tc∗ for

∑

c<u

−αW
c,uα

u
a,b +

∑

b<u

+αW
b,uα

u
a,c +

∑

a<u

−αW
a,uα

u
b,c.

Reorganizing the sums, one sees that the coefficient of Ta∗Tb∗Tc∗ is exactly ra<b<c.
Using the fact that dcy is a differential, that is d2cy = 0, one obtains

ra<b<c = 0.
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We now assume that a < b. Lemma 3.49 insures that sa<b,1 = 0. Thus we can
assume that c 6= 1. As T0∗(1) is 0 in F•

Q we can also discard that case. Thus, we
assume that c 6= 0, 1.

The coefficient of Ta∗Tb∗Tc∗(1) can only come from the sum (AT
2 ), (AT

4 ) and
(AT

5 ).
From the sum (AT

2 ), one gets





∑

U<V

−αW
U,V β

U
V1,V2

if a = V1 < b = V, c = V2

∑

U<V

αW
U,V β

U
V1,V2

if a = V < b = V1, c = V2

which gives, in terms of words a, b and c and using u as independent variable in
the sum signs, ∑

u<b

−αW
u,bβ

u
a,c +

∑

u<a

αW
u,aβ

u
b,c.

Similarly, the sums (AT
4 ) contributes to the coefficient of Ta∗Tb∗Tc∗ for

∑

b<u

αW
b,uβ

u
a,c +

∑

a<u

−αW
a,uβ

u
b,c.

Finally the sum (AT
5 ) contributes (with V1 = a, V2 = b, and V = c) for

∑

u

βW
u,cα

u
a,b.

The coefficient of Ta∗Tb∗Tc∗(1) is then exactly sa<b,c. Thus as previously, one
obtains

sa<b,c = 0.

We now compute the coefficient of Ta∗Tb∗(1)Tc∗(1) with the condition b < c.
Lemma 3.49 insures that ta,b<1 = 0 and t0,b<c = 0. Thus we can assume that c 6= 1
and a 6= 0. As T0∗(1) is 0 in F•

Q we can also discard the case b = 0. Thus, we
assume that b, c 6= 0, 1.

The coefficient of Ta∗Tb∗(1)Tc∗(1) can only come from the sum (AT
6 ), (AT

7 ) and
(AT

8 ).
From the sum (AT

6 ), one gets





∑

U

βW
U,V β

U
V1,V2

if a = V1, b = V2 < c = V

∑

U

−βW
U,V β

U
V1,V2

if a = V1, b = V < c = V2

which gives, in terms of words a, b and c and using u as independent variable in
the sum signs, ∑

u

βW
u,cβ

u
a,b +

∑

u

−βW
u,bβ

u
a,c.

�

From the sum (AT
8 ), one gets





∑

U

−βW
U,V β

U
U1,U2

if a = U, b = U1 < c = U2

∑

U

βW
U,V β

U
U1,U2

if a = U, b = U2 < c = U1.

So, sum (AT
8 ) contributes, in terms of words a, b and c and using u as independent

variable in the sum signs, for
∑

u

−βW
a,uβ

u
b,c +

∑

u

βW
a,uβ

u
c,b.
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Finally, from the sum (AT
7 ) with U = a, b = U1 and c = U2, one gets:

∑

u

−βW
a,uα

u
b,c.

Hence, the coefficient of Ta∗Tb∗(1)Tc∗(1), which is 0, is exactly ta,b<c; that is
putting together the terms coming from (AT

7 ) and (AT
8 ):

∑

u

βW
u,cβ

u
a,b +

∑

u

−βW
u,bβ

u
a,c +

∑

u

βW
a,u

(
−βu

b,c + βu
c,b +−α

u
b,c

)
= ta,b<c = 0.

4. From trees to cycles

In this section we define two “differential systems” for algebraic cycles, one cor-
responding to cycles with empty at t = 0 and another corresponding to cycles with
empty fiber at t = 1. Then, we show that there exists two families of cycles in
N eq, 1

X satisfying these systems induced by two families of cycles in N eq, 1
A1 .

In order to define the systems, we need to twist the coefficients obtained in the
tree differential system from Theorem 3.44. In the first subsection, we consider
only a combinatorial setting which will be applied later to the cdga N •

P1\{0,1,∞}.

4.1. A combinatorial statement.

Definition 4.1. Let W be a Lyndon word and U , V two Lyndon words. We set :

(30)
aWU,V = αW

U,V + βW
U,V − βW

V,U for U < V

bWU,V = −βW
U,V for any U, V

and

(31)

a′
W
U,V = −aWU,V for 0 < U < V,

b′
W
U,V = aWU,V + bWU,V for 0 < U < V,

b′
W
V,U = −aWU,V + bWV,U for 0 < U < V,

a′
W
0,V = a0,V for any V,

b′
W
U,U = bWU,U for any U.

It is also convenient to define b′
W
0,V = b′

W
V,0 = 0.

As detailed in Remark 4.4, the above definitions correspond to rewriting the
differential system (3.44) in terms of two others but related families of independent
vectors in F•

Q.
Consider now the two following differential system in a cdga (A, ∂A)

(ED-A) ∂A(AW ) =
∑

U<V

aWU,V AUAV +
∑

U,V

bWU,V AUA
1
V ,

and

(ED-A1) ∂A(A
1
W ) =

∑

0<U<V

a′
W
U,V A

1
UA

1
V +

∑

U,V

b′
W
U,V AUA

1
V +

∑

V

a′0,V A0AV ,

Remark 4.2. • If W is the Lyndon word 0 or 1, then the coefficients aWU,V ,

bWU,V , a′
W
U,V and b′

W
U,V are equal to 0.

• Let W be a Lyndon word. By Remark 3.45, if the length of U plus the one

of V is not equal to the length of W , then the coefficients aWU,V , bWU,V , a′
W
U,V

and b′
W
U,V are equal to 0. In particular, Equation (ED-A) and Equation

(ED-A1) involve only Lyndon words of length smaller than the length of
W .
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• From Lemma 3.49 and Definition 4.1, one sees that

aWU,1 = a′
W
U,1 = bWU,1 = b′

W
U,1 = 0 and bW0,V = bWU,0 = b′

W
0,V = b′

W
V,0 = 0.

Proposition 4.3. Let (A, ∂A) be a cdga and p be an integer > 2. Assume that
there exists element AU (resp. A1

V ) in A for any Lyndon word of length k with
2 6 k 6 p − 1 satisfying (ED-A) (resp. (ED-A1)) and elements A0 and A1 such
that

d(A0) = d(A1) = 0.

Let W be a Lyndon word of length p. Let AA be defined by

AA =
∑

U<V

aWU,V AUAV +
∑

U,V

bWU,V AUA
1
V ,

and AA1 by

AA1 =
∑

U<V

a′
W
U,V A

1
UA

1
V +

∑

U,V

b′
W
U,V AUA

1
V ,

Then, one has

∂A(AA) = ∂A(AA1) = 0.

The definition of AA and AA1 only involve only words of length strictly smaller
than the one of W .

Proof. From Definition 4.1, we remark that for any W0 of length < p, one has

(32) ∂A(AW0 )− ∂A(A
1
W0

) =
∑

0<U<V <1

(
aW0

U,V AUAV + aW0

U,V A
1
UA

1
V + aW0

U,V AV A
1
U − aW0

U,V AUA
1
V

)
.

Similarly, one has
(33)

AA − AA1 =
∑

0<U<V <1

(
aWU,V AUAV + aWU,V A

1
UA

1
V + aWU,V AV A

1
U − aWU,V AUA

1
V

)
.

First we want to prove that ∂A(AA) = 0. One computes

∂A(AA) =
∑

U<V

aWU,V ∂A(AU )AV +
∑

U<V

−aWU,V AU∂A(AV )

+
∑

U,V

bWU,V ∂A(AU )A
1
V +

∑

U,V

−bWU,V AU∂A(A
1
V ).



50 ISMAEL SOUDÈRES

Rewriting the above equation, in order to use differences ∂A(AW0 )− ∂A(AW0) and

thus work only with coefficients aW0

U0,V0
and bW0

U0,V0
, gives:

∂A(AA) =
∑

U<V

(aWU,V − bWV,U)∂A(AU )AV(BA
1 )

+
∑

U<V

(−aWU,V − bWU,V )AU∂A(AV )(BA
2 )

+
∑

U

−bWU,UAU∂A(AU )(B
′,A
2 )

+
∑

U<V

bWU,V ∂A(AU )A
1
V(BA

3 )

+
∑

U

bWU,U∂A(AU )A
1
U(BA

4 )

+
∑

U<V

bWV,U∂A(AV )A
1
U(B

′,A
3 )

+
∑

U<V

bWU,V AU

(
∂A(AV )− ∂A(A

1
V )

)
(BA

5 )

+
∑

U

bWU,UAU

(
∂A(AU )− ∂A(A

1
U )

)
(B

′,A
5 )

+
∑

U<V

bWV,UAV

(
∂A(AU )− ∂A(A

1
U )

)
(BA

6 )

The signs are computed using the fact that N •
X is graded commutative and the fact

that elements AW0 and A1
W0

are of degree 1 while their differentials are of degree
2.

Now, using the induction hypothesis, one can write ∂A(AA) in terms of the
following products (u, v and w are Lyndon words):

AuAvAw, AuAvA
1
w, AuA

1
vA

1
w, and A1

uA
1
vA

1
w,

which gives

∂A(AA) =
∑

u<v<w

rcyu<v<cAuAvAw +
∑

u<v,
w

scyu<v,wAuAvA
1
w+

∑

u,
v<w

tcyu,v<wAuA
1
vA

1
w +

∑

u<v<w

pcyu<v<wA
1
uA

1
vA

1
w.

Fix u < v < w, terms in rcyu<v<w can not come from the above sums (BA
3 ), (B

′,A
3 )

or (BA
4 ). In one hand sum, (BA

1 ) gives
∑

U<V

(aWU,V − bWV,U)
∑

V1<V2

aUV1,V2
AV1AV2AV

plus extra terms which do not contribute to rcya<b<c. In the other hand, sum (BA
6 )

gives

∑

U<V

bWV,U
∑

0<V1<V2<1

aUV1,V2
AV AV1AV2

plus extra terms which do not contribute to rcya<b<c. Hence, as aW0

U0,1
= 0 for any

U0,W0, the contribution of (BA
1 ) and (BA

6 ) is given by the sum
∑

U<V

∑

0<V1<V2<1

aWU,V a
U
V1,V2

AV1AV2AV +
∑

U<V

∑

0<V2<1

(aWU,V − bWV,U )a
U
V1,V2

A0AV2AV .
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Similar remarks hold for sums (BA
2 ), (B

′,A
2 ), (BA

5 ) and (B
′,A
5 ) and the contribu-

tion to rcya<b<c is given by

∑

U<V

∑

0<V1<V2<1

aWU,V a
U
V1,V2

AV1AV2AV(34)

+
∑

U<V

∑

0<V2<1

(aWU,V − bWV,U )a
U
V1,V2

A0AV2AV(35)

+
∑

U<V

∑

0<U1<U2<1

−aWU,V a
V
U1,U2

AUAU1AU2(36)

+
∑

U<V

∑

0<U2<1

(−aWU,V − bWU,V )a
V
0,U2

AUA0AU2(37)

+
∑

U

∑

0<U2<1

−bWU,Ua
U
0,U2

AUA0AU2 .(38)

First, we assume that u > 0. Then, sums (35), (37), (38) do not contribute to
rcyu<v<w and a computation, similar to the computation giving ra<b<c at the previ-
ous section, gives (dropping superscripts W )

(39)

rcyu<v<w =
∑

m<w

am,wa
m
u,v +

∑

w<m

−aw,mamu,v +
∑

m<v

−am,va
m
u,w +

∑

v<m

av,mamu,w+

∑

m<u

am,ua
m
v,w +

∑

u<m

au,mamv,w.

Now, we expand each products of the type am,ua
m
v,w as

am,ua
m
v,w =(αm,u + βm,u − βu,m)(αm

v,w + βm
v,w − βm

w,v)

=αm,uα
m
v,w + αm,uβ

m
v,w − αm,uβ

m
w,v

+ βm,uα
m
v,w + βm,uβ

m
v,w − βm,uβ

m
w,v

− βu,mαm
v,w − βu,mβm

v,w + βu,mβm
w,v.
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Taking care of signs and permutation of the indices, we obtain regrouping some
summation signs

rcyu<v<w =
∑

m<u

αm,uα
m
v,w +

∑

m<v

−αm,vα
m
u,w +

∑

m<w

αm,wα
m
u,v

+
∑

u<m

−αu,mαm
v,w +

∑

v<m

αv,mαm
u,w +

∑

w<m

−αw,mαm
u,v

+
∑

m<u

αm,uβ
m
v,w +

∑

m<v

−αm,vβ
m
u,w +

∑

m<w

αm,wβ
m
u,v

+
∑

u<m

−αu,mβm
v,w +

∑

v<m

αv,mβm
u,w +

∑

w<m

−αw,mβm
u,v

+
∑

m<u

−αm,uβ
m
w,v +

∑

m<v

αm,vβ
m
w,u +

∑

m<w

−αm,wβ
m
v,u

+
∑

u<m

αu,mβm
w,v +

∑

v<m

−αv,mβm
w,u +

∑

w<m

αw,mβm
v,u

+
∑

m 6=u

βm,uα
m
v,w +

∑

m 6=v

−βm,vα
m
u,w +

∑

m 6=w

βm,wα
m
u,v

+
∑

m 6=u

−βu,mαm
v,w +

∑

m 6=v

βv,mαm
u,w +

∑

w 6=m

−βw,mαm
u,v

+
∑

m 6=u

βm,uβ
m
v,w +

∑

m 6=v

−βm,vβ
m
u,w +

∑

m 6=w

βm,wβ
m
u,v

+
∑

m 6=u

−βu,mβm
v,w +

∑

m 6=v

βv,mβm
u,w +

∑

m 6=w

−βw,mβm
u,v

+
∑

m 6=u

−βm,uβ
m
w,v +

∑

m 6=v

βm,vβ
m
w,u +

∑

w 6=m

−βm,wβ
m
v,u

+
∑

m 6=u

βu,mβm
w,v +

∑

m 6=v

−βv,mβm
w,u +

∑

m 6=w

βw,mβm
v,u.

The two first line of the above sums are equal to ru<v<w. The remaining terms
are reorganized into the six following sums:

∑

m 6=u

βm,uα
m
v,w +

∑

m<v

αm,vβ
m
w,u +

∑

m<w

−αm,wβ
m
v,u +

∑

v<m

−αv,mβm
w,u

+
∑

w<m

αw,mβm
v,u

∑

m 6=v

−βm,vα
m
u,w +

∑

m<u

−αm,uβ
m
w,v +

∑

m<w

αm,wβ
m
u,v +

∑

u<m

αu,mβm
w,v

+
∑

w<m

−αw,mβm
u,v,

∑

m 6=w

βm,wα
m
u,v +

∑

m<u

αm,uβ
m
v,w +

∑

m<v

−αm,vβ
m
u,w +

∑

u<m

−αu,mβm
w,v

+
∑

v<m

αv,mβm
w,u,



CYCLE COMPLEX OVER P1 MINUS 3 POINTS 53

∑

m 6=w

βm,wβ
m
u,v +

∑

m 6=v

−βm,vβ
m
u,w +

∑

m 6=u

−βu,mαm
v,w +

∑

m 6=u

−βu,mβm
v,w

+
∑

m 6=u

βu,mβm
w,v,

∑

m 6=w

−βm,wβ
m
v,u +

∑

m 6=u

βm,uβ
m
v,w +

∑

m 6=v

βv,mαm
u,w +

∑

m 6=v

βv,mβm
u,w

+
∑

m 6=v

−βv,mβm
w,u,

∑

m 6=v

βm,vβ
m
w,u +

∑

m 6=u

−βm,uβ
m
w,v +

∑

m 6=w

−βw,mαm
u,v +

∑

m 6=w

−βw,mβm
u,v

+
∑

m 6=w

βw,mβm
v,u.

It is then easy to recognized that

rcyu<v<w = ru<v<w + sv<w,u − su<w,v + su<v,w + tu,v<w − tv,u<w + tw,u<v

as the extra needed equality cases in the sums cancel each other. Finally, using
Proposition 3.51, one obtains

rcyu<v<w = 0.

Now, we assume that u = 0. Sum (34) does not contribute to rcy0<v<w as 0 6

U < V . Sum (36) contribute (0 = U , U1 = v and U2 = w) for
∑

0<m

a0,mamv,w.

Similarly, sums (35) and (37) contribute respectively for
∑

m<v

−(am,v − bm,v)a
m
0,w

∑

m<w

(am,w − bm,w)a
m
0,v

and ∑

v<m

−(−av,m − bv,m)am0,w
∑

w<m

(−aw,m − bw,m)am0,v,

when sum (38) contributes for

bv,va
v
0,w − bw,wa0,v.

Thus, with u = 0 rcyu<v<w can be written as

(40)

rcyu<v<w =
∑

m<w

am,wa
m
u,v +

∑

w<m

−aw,mamu,v +
∑

m<v

−am,va
m
u,w +

∑

v<m

av,mamu,w+

∑

m<u

am,ua
m
v,w +

∑

u<m

au,mamv,w +
∑

m

−bw,mamu,v +
∑

m

−bv,mamu,w.

The two extra terms arising cancel with

+
∑

m 6=w

βv,m(−αm
u,w − βm

u,w + βm
w,u)

and

+
∑

m 6=w

βw,m(−αm
u,v − βm

u,v + βm
v,u)
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equality terms adding up to gives the remaining missing equality terms. As β0,W0 =
βW0,0 = 0 the other terms appearing in tv,u<w and tw,u<v vanish and one can write
for u = 0

rcyu<v<w = ru<v<w + sv<w,u − su<w,v + su<v,w + tu,v<w = 0.

Now, we assume only that u < v and we will show that scyu<v,w = 0 by a similar

computation. Here all sums (BA
1 ), ..., (BA

6 ) contribute. Precisely, the contribution
to scyu<v,w is induced by

∑

U<V

∑

V1,V2

(aWU,V − bWV,U )b
U
V1,V2

AV1A
1
V2
AV(41)

+
∑

U<V

∑

U1,U2

(−aWU,V − bWU,V )b
V
U1,U2

AUAU1A
1
U2

(42)

+
∑

U

∑

U1,U2

−bWU,V b
U
U1,U2

AUAU1A
1
U2

(43)

+
∑

U<V

∑

V1<V2

bWU,V a
U
V1,V2

AV1AU2A
1
V(44)

+
∑

U

∑

V1<V2

bWU,Ua
U
V1,V2

AV1AV2A
1
U(45)

+
∑

U<V

∑

U1<U2

bWV,Ua
V
U1,U2

AV1AV2A
1
U(46)

+
∑

U<V

∑

0<U1<U2<1

−bWU,V a
V
U1,U2

AUAU1A
1
U2

(47)

+
∑

U<V

∑

0<U1<U2<1

bWU,V a
V
U1,U2

AUAU2A
1
U1

(48)

+
∑

U

∑

0<U1<U2<1

−bWU,Ua
U
V1,V2

AUAU1A
1
U2

(49)

+
∑

U

∑

0<U1<U2<1

bWU,Ua
U
U1,U2

AUAU2A
1
U1

(50)

+
∑

U<V

∑

0<V1<V2<1

−bWV,Ua
U
V1,V2

AV AV1A
1
V2

(51)

+
∑

U<V

∑

0<V1<V2<1

bWV,Ua
U
V1,V2

AV AV2A
1
V1
.(52)

The same types of arguments as before show that sum (41) contributes for
∑

m<v

−(am,v − bv,m)bmu,w +
∑

m<u

(am,u − bu,m)bmv,w,

sum (42) for

−bu,ub
u
v,w + bv,vb

v
u,w

and sum (43) for
∑

v<m

−(−av,m − bv,m)bmu,w +
∑

u<m

(−au,m − bu,m)bmv,w.

Sums (44), (45) and (46) contributes to scyu<v,w for

∑

m

bm,wa
m
u,v.
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The above contribution to scyu<v,w can be written as

∑

m

bm,wa
m
u,v +

∑

m<v

−am,vb
m
u,w +

∑

m<u

am,ub
m
v,w +

∑

v<m

av,mbmu,w+

∑

u<m

−au,mbmv,w +
∑

m

bv,mbmu,w +
∑

m

−bu,mbmv,w.

The other sums do not always contribute depending on the relative place of w with
respect to u < v.

We assume for a time that u < v < w. Then, sums (48), (50) and (52) do not
contribute. From sums (47), (49) and (51) arises a contribution in

∑

m

−bu,mamv,w +
∑

m

bv,mamu,w.

Hence, scyu<v,w is equal to

scyu<v,w =
∑

m

bm,wa
m
u,v +

∑

m

bv,mbmu,w +
∑

m

−bu,mbmv,w

+
∑

m<v

−am,vb
m
u,w +

∑

m<u

am,ub
m
v,w +

∑

v<m

av,mbmu,w +
∑

u<m

−au,mbmv,w

+
∑

m

−bu,mamv,w +
∑

m

bv,mamu,w.

Expanding
∑

m<u am,ub
m
v,w and

∑
u<m−au,mbmv,w in terms of α’s and β’s and can-

celing terms in βu,m, gives

∑

m<u

am,ub
m
v,w +

∑

u<m

−au,mbmv,w +
∑

m

−bu,mbmv,w

=
∑

m<u

−αm,uβ
m
v,w +

∑

u<m

αu,mβm
v,w +

∑

m

−βm,uβ
m
v,w.

Similarly, one has
∑

m<v

−am,vb
m
u,w +

∑

v<m

av,mbmu,w +
∑

m

bv,mbmu,w

=
∑

m<v

αm,vβ
m
u,w +

∑

v<m

−αv,mβm
u,w +

∑

m

βm,vβ
m
u,w.

Using these remarks and expanding bv,mbmu,w in terms of the α’s and β’s, scyu<v,w

can be written as

scyu<v,w =
∑

m

−βm,wα
m
u,v +

∑

m

−βm,wβ
m
u,v +

∑

m

βm,wβ
m
v,u

+
∑

m<u

−αm,uβ
m
v,w +

∑

u<m

αu,mβm
v,w +

∑

m

−βm,uβ
m
v,w

+
∑

m<v

αm,vβ
m
u,w +

∑

v<m

−αv,mβm
u,w +

∑

m

βm,vβ
m
u,w

+
∑

m

−bu,mamv,w +
∑

m

bv,mamu,w.

We remark that
∑

m

−βm,wα
m
u,v +

∑

m<u

−αm,uβ
m
v,w +

∑

u<m

αu,mβm
v,w

+
∑

m<v

αm,vβ
m
u,w +

∑

v<m

−αv,mβm
u,w = −su<v,c.
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Then, expanding
∑

m−bu,mamv,w in terms of α′s and β ’s, we compute
∑

m

−bu,mamv,w +
∑

m

−βm,wβ
m
u,v +

∑

m

βm,vβ
m
u,w = −tu,v<w

and ∑

m

−bv,mamu,w +
∑

m

βm,wβ
m
v,u +

∑

m

−βm,uβ
m
v,w = tv,u<w.

Hence, for u < v < w

scyu<v,w = −su<v,c − tu,v<w + tv,u<w = 0.

In the case where u < w < v, an identical computation shoes that the sum∑
m−bu,mamv,w is replace by

∑
m bu,mamw,v and one finds

scyu<v,w = −su<v,c + tu,w<v + tv,u<w = 0.

When w < u < v, both sums
∑

m−bu,mamv,w and
∑

m bv,mamu,w are replaced by∑
m bu,mamw,v and

∑
m−bv,mamw,u respectively which gives:

scyu<v,w = −su<v,c + tu,w<v − tv,w<u = 0.

In the case where w = u (resp. w = v), there is no contribution in
∑

m−bu,mamv,w
(resp. in

∑
m bv,mamu,w) to scyu<v,w. However, in this case a cancellation arises in the

other terms; that is for u = w
∑

m

βm,wβ
m
v,u +

∑

m

−βm,uβ
m
v,w = 0

and for v = w ∑

m

−βm,wβ
m
u,v +

∑

m

βm,vβ
m
u,w = 0.

Thus, the above discussion gives in these cases either scyu<v,w = −su<v,c+tu,w<v = 0
or scyu<v,w = −su<v,c + tv,u<w = 0 which concludes the case of scyu<v,w.

In order to show that ∂A(AA) = 0, we still need to check that tcyu,v<w = 0 for all
admissible choices of u, v, and w. We fix Lyndon words u, v < w. As by induction,
∂A(AW0 ) do not produce any product of the form A1

U0
A1

V0
, the sums (BA

1 ), (BA
2 )

and (B
′,A
2 ) do not contribute. Thus the coefficient tcyu,v<w comes from

∑

U<V

∑

V1,V2

bWU,V b
U
V1,V2

AV1A
1
V2
A1

V(53)

+
∑

U<V

∑

U1,U2

bWV,Ub
V
U1,U2

AU1A
1
U2
A1

U(54)

+
∑

U

∑

U1,U2

bWU,Ub
U
U1,U2

AU1A
1
U2
A1

U(55)

+
∑

U<V

∑

0<U1<U2<1

bWU,V a
V
U1,U2

AUA
1
U1
A1

U2
(56)

+
∑

U

∑

0<U1<U2<1

bWU,V a
U
U1,U2

AUA
1
U1
A1

U2
(57)

+
∑

U<V

∑

0<U1<U2<1

bWV,Ua
U
V1,V2

AV A
1
V1
A1

V2
.(58)

First we should remark that the last three sums do not contribute if either v or w
is equal to 0 or 1. In this case, previous comments (cf. Lemma 3.49) insure that
the first three sums contribute for 0 as the various products of the form bWU,V b

U
V1,V2

involved are 0. Thus we can assume that 0 < v < w < 1.
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The last three sums contribute for
∑

u<m

bu,mamv,w + bu,ua
u
v,w +

∑

m<u

bu,mamv,w =
∑

m

bu,mamv,w.

Sum (53) contributes for
∑

m<v

−bm,vbu,w +
∑

m<w

bm,wbu,w,

sum (54) contributes for
∑

m>v

−bm,vbu,w +
∑

m>w

bm,wbu,w,

and sum (55) gives the equality case. Finally, one has

tcyu,v<w =
∑

m

−bm,vbu,w +
∑

m

bm,wbu,w +
∑

m

bu,mamv,w = tu,v<w = 0.

As no terms in A1
uA

1
vA

1
w can arise from ∂A(AA) we have shown that

∂A(AA) = 0.

We now need to show that ∂A(AA1) = 0. In order to avoid working with the a′

and b′, we will show that ∂A(AA − AA1) = 0. One has

AA − AA1 =
∑

0<U<V <1

aWU,V

(
AUAV +A1

UA
1
V +AV A

1
U −AUA

1
V

)

=
∑

0<U<V <1

aWU,V

(
(AU − A1

U )(AV −A1
V )

)

and

∂A(AA − AA1) =
∑

0<U<V <1

aWU,V (∂A(AU )− ∂A(A
1
U ))AV

+
∑

0<U<V <1

−aWU,V (∂A(AU )− ∂A(A
1
U ))A

1
V

+
∑

0<U<V <1

−aWU,V AU (∂A(AV )− ∂A(A
1
V ))

+
∑

0<U<V <1

aWU,V A
1
U (∂A(AV )− ∂A(A

1
V )).

Again, using the induction hypothesis, this expression decomposes in terms of
products of the form

AuAvAw, AuAvA
1
w, AuA

1
vA

1
w, and A1

uA
1
vA

1
w.

The computations are closely related to what was done in order to prove that
∂A(AL) = 0 but generally speaking the situation here is much more symmetric. In
particular it is easy to see that

∂A(AA − AA1) =
∑

u<v<w

(rcyu<v<wAuAvAw − rcyu<v<wA
1
uA

1
vA

1
w)+

terms in AuAvA
1
w and AuA

1
vA

1
w.

The situations for coefficients of AuAvA
1
w and AuA

1
vA

1
w are very similar, so we

will discuss only the case of AuAvA
1
w.
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Computing ∂A(AA − AA1) using the induction hypothesis, the contribution to
AuAvA

1
w (u < v) comes from

∑

0<U<V <1

∑

0<V1<V2<1

−aWU,V a
U
V1,V2

AV1A
1
V2
AV

+
∑

0<U<V <1

∑

0<V1<V2<1

aWU,V a
U
V1,V2

AV2A
1
V1
AV

+
∑

0<U<V <1

∑

0<V2<V2<1

−aWU,V a
U
V1,V2

AV1AV2A
1
V

+
∑

0<U<V <1

∑

0<U1<U2<1

aWU,V a
V
U1,U2

AUAU1A
1
U2

+
∑

0<U<V <1

∑

0<U1<U2<1

−aWU,V a
V
U1,U2

AUAU2A
1
U1

+
∑

0<U<V <1

∑

0<U1<U2<1

aWU,V a
V
U1,U2

A1
UAU1AU2 .

Depending on the relative position of w with respect to u and v not all sums
contribute. Assuming that u < v < w, the second and fifth sums do not contribute
and the coefficient of AuAvA

1
w is given by

−rcyu,v,w = 0.

In the case where u < w < v (resp. w < u < v) the coefficient will be given
by rcyu,w,v (resp. −rcyw,u,v). As previously, in the equality cases (w = v or w = u)
cancellations arise among the different sums. In the case w = v, the second and
fifth sums do not contribute and the coefficient of AuAvA

1
w is given by

∑

m<v

am,va
m
u,w +

∑

v<m

−av,mamu,w +
∑

m<w

−am,wa
m
u,v +

∑

w<m

aw,mamu,v

which is 0 for v = w. �

Remark 4.4. For any Lyndon words, let T 1
U∗ denote the difference TW∗ − TW∗(1).

The above computations for AA can be seen as writing the differential dcy(TW∗) in
terms of the following independent families

TU∗ · TV ∗ for U < V, TU∗ · T 1
V ∗ for any Lyndon words U, V

and remarking that d2cy = 0. For AA1 , these computations correspond to the

differential dcy(T
1
W∗) written in terms of

T 1
U∗ ·T 1

V ∗ for 0 < U < V < 1, TU∗ ·T 1
V ∗ and T0∗ ·TV ∗ for any Lyndon words U, V

together with the fact that d2cy = 0.
In this context showing that AA and AA1 have differential 0 is obvious as it

is just a change of basis. However, latter on we will not have relations as simple
as T 1

U∗ = TW∗ − TW∗(1) and relying on a change of basis argument may still be
possible but would certainly demand great attention. Proposition 4.3 will be used
to prove Theorem 4.12.

4.2. Equidimensional cycles. We recall that the base field is Q and that all
varieties considered below are Q varieties.

Definition 4.5 (Equidimensionality). Let Y be an irreducible smooth variety

• Let Zp
eq(Y, n) denote the free abelian group generated by irreducible closed

subvarieties Z ⊂ Y × �n such that for any faces F of �n, the intersection
Z ∩ Y × F is empty or the restriction of p1 : Y ×�n −→ Y to

Z ∩ (Y × F ) −→ Y
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is equidimensional of relative dimension dim(F )− p.
• We say that elements of Zp

eq(Y, n) are equidimensional over Y with respect
any faces or simply equidimensional.

• Following the definition of N k
Y (p), let N eq, k

Y (p) denote

N eq, k
Y (p) = Alt

(
Zp

eq(Y, 2p− k)⊗Q
)
.

Definition 4.6. Let C be an element of N •
Y decomposed in terms of cycles as

C =
∑

i∈I

qiZi, qi ∈ Q

where I is a finite set and where the Zi are irreducible closed subvarieties of Y ×�ni

intersecting all the faces of �ni properly (that is in codimension pi).

• The support of C is define has

Supp(C) =
⋃

i

Zi.

• For C in N eq, k
Y (p), we will say that C has empty fiber at a point y in Y if

for any i in I the fiber of Zi −→ Y at y is empty.

Proposition 4.7. Let Y be an irreducible smooth variety.

(1) The differential ∂Y on N •
Y induces a differential :

N eq, k
Y (p)

∂Y−→ N eq, k
Y (p)

which makes N eq, •
Y (p) into a sub-complex of N •

Y (p).
(2) N eq, •

Y = ⊕p>0N
eq, •
Y (p) is a subalgebra (sub-cdga) of N •

Y .
(3) Assume that Z or Z ′ has an empty fiber at a point y in Y . Then the fiber

at y of Z · Z ′ is empty.

Proof. As the generators of Zp
eq(Y, 2p − k) are equidimensional over Y when in-

tersected with any faces, they stay equidimensional over Y with respect to any
faces when intersected with a codimension 1 face because a face intersected with a
codimension 1 face is another face or the intersection is empty. This gives the first
point.

Let Z (resp. Z ′) a generator of Zp
eq(Y, 2p − k) (resp. Zq

eq(Y, 2q − l)) for p, q,

k and l integers. By definition, for any face F ⊂ �2p−k (resp. F ′ ⊂ �2q−l), the
projection

p1 : Z ∩ (X × F ) −→ Y (resp. p1 : Z ′ ∩ (X × F ′) −→ Y )

is equidimensional of relative dimension dim(F )−p (resp. dim(F ′)−q) or the above
intersections are empty.

Let F and F ′ be two faces has above and assume that none of the above inter-
sections is empty. Then,

Z × Z ′ ∩ (Y × Y × F × F ′) ⊂ Y × Y ×�
2(p+q)−k−l

is equidimensional over Y × Y of relative dimension dim(F ) + dim(F ′)− p− q. In
particular for any point x in the image of the diagonal ∆ : Y −→ Y × Y , one has

dim (Z × Z ′ ∩ (Y × Y × F × F ′)x) =

dim (Z × Z ′ ∩ ({x} × F × F ′)) =

dim({x}) + dim(F ) + dim(F ′)− p− q
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and Z × Z ′ ∩ (im(∆) × F × F ′) is equidimensional over Y of relative dimension
dim(F ) + dim(F ′) − p − q by any of the two projections Y × Y −→ Y . If either
Z ∩ (Y × F ) or Z ′ ∩ (Y × F ′) is empty then the intersection

Z × Z ′ ∩ (Y × Y × F × F ′)

is empty and so is Z × Z ′ ∩ (im(∆)× F × F ′).
From this, we deduce that

(∆× id )−1(Z × Z ′) ≃ Z × Z ′ ∩
(
im(∆)×�

2(p+q)−k−l
)

is equidimensional over Y with respect to any faces. Hence,

Z · Z ′ = Alt((∆× id )−1(Z × Z ′)) ∈ N •
Y

and the product in N •
Y induces a cdga structure on N eq, •

Y which makes it into a
sub-cdga.

Moreover, from the above computation, one see that if the fiber of Z is empty
at a point y, then, denoting with a subscript y the various fibers at y, one has

(∆× id )−1(Z × Z ′)y = Z × Z ′ ∩ ({(y, y)} ×�2(p+q)−k−l) = Zy × Z ′
y = ∅.

The same holds if Z ′ is empty at y which gives the last point of the proposition. �

In order to compare situation in N •
X and in N •

A1 , we will use the following
proposition.

Proposition 4.8. Let Y0 be an open dense subset of Y an irreducible smooth variety
and let j : Y0 −→ Y the inclusion. Then the restriction of cycles from Y to Y0

induces a morphism of cdga

j∗ : N eq, •
Y −→ N eq, •

Y0
.

Moreover, Let C be in N •
Y0

and be decomposed in terms of cycles as

C =
∑

i∈I

qiZi, qi ∈ Q

where I is a finite set. Assume that for any i, the Zariski closure Zi of Zi in Y ×�ni

intersected with any face F of �ni is equidimensional over Y of relative dimension
dim(F )− pi. Define C′ as

C′ =
∑

i∈I

qiZi,

then,
C′ ∈ N eq, •

Y and C = j∗(C′) ∈ N eq, •
Y0

.

Proof. It is enough to prove the proposition for generators of N eq, •
Y and N eq, •

Y0
.

Let Z (resp. Z ′) be an irreducible, closed subvariety of codimension p (resp. p′)

Y × �2p−k (resp. of Y × �2p′−k′

) such that for any face F (resp. F ′) of �2p−k

(resp. of �2p′−k′

) the intersection

Z ∩ (Y × F ) (resp. Z ′ × (Y × F ′))

is equidimensional over Y of relative dimension dim(F )− p (resp. dim(F ′)− p′).
Let Z0 and Z ′

0 be the intersections Z ∩ Y0 and Z ′ ∩ Y0. As, for any faces F of
�2p−k

Z0 ∩ (Y0 × F ) = (Z ∩ (Y × F )) ∩ Y0 ×�2p−k

(
resp. Z ′

0 ∩ (Y0 × F ) = (Z ′ ∩ (Y × F )) ∩ Y0 ×�2p′−k′

)
,

Z0 and Z ′
0 are equidimensional with respect to any face over Y0 with relative di-

mension dim(F ) − p (resp. dim(F )′p). This also shows that j∗ commutes with the
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differential on N eq, •
Y and on N eq, •

Y0
. In order to show that j∗ commute with the

product structure, it suffices to remark that

Z0 × Z ′
0 = (Z × Z ′) ∩ Y0 × Y ′

0 ×�2(p+p′)−k−k′

⊂ Y × Y ×�2(p+p′)−k−k′

.

Let C and C′ be as in the proposition. The fact that C′ is in N eq, •
Y follows

directly from the definition. To prove that

C = j∗(C′) ∈ N eq, •
Y0

,

we can assume that I contains only one element 1 and that q1 = 1. Then it follows
from the fact that Z1 = Z1 ∩ Y0 ⊂ Y .

�

Proposition 4.9 (multiplication and equimensionality). Let m : A1 × A1 −→ A1

be the multiplication map sending (x, y) to xy and let τ : �1 = P1 \ {1} −→ A1 be
the isomorphism sending the affine coordinates u to 1

1−u
. The map τ sends ∞ to

0, 0 to 1 and extends as a map from P1 to P1 sending 1 to ∞.
Maps m and τ are in particular flat and equidimensional of relative dimension

1 and 0 respectively.
Consider the following commutative diagram for a positive integer n

A1 ×�1 ×�n A1 ×�n

A1 ×�1 A1

A1

(m◦(id
A1

×τ))×id
�n

p
A1×�1 p

A1

m◦(id
A1

×τ)

p
A1

In the following statement, p, k and n will denote positive integers subject to the
relation n = 2p− k

• the composition m̃ = (m ◦ (id A1 τ)) × id�n induces a group morphism

Zp
eq(A

1, n)
m̃∗

−→ Zp
eq(A

1 ×�1, n)

which extends into a morphism of complexes for any p

N eq, •
A1 (p)

m̃∗

−→ N eq, •
A1×�1(p).

• Moreover, one has a natural morphism

hp

A1,n
: Zp

eq(A
1 ×�1, n) −→ Zp

eq(A
1, n+ 1)

given by regrouping the �’s factors.
• The composition µ∗ = hp

A1,n
◦ m̃∗ gives a morphism

µ∗ : N eq, k

A1 (p) −→ N eq, k−1
A1 (p)

sending equidimensional cycles with empty fiber at 0 to equidimensional
cycles with empty fiber at 0.

• Let θ : A1 −→ A1 be the involution sending the natural affine coordinate t
to 1− t. Twisting the multiplication m̃ by θ via

A1 ×�1 ×�n A1 ×�n

A1 ×�1 ×�n A1 ×�nm̃

θ×id
�n+1 θ×id

�n
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gives a morphism

ν∗ : N eq, k

A1 (p) −→ N eq, k−1
A1 (p)

sending equidimensional cycles with empty fiber at 1 to equidimensional
cycles with empty fiber at 1.

Proof. It is enough to work with generators of Zp
eq(A

1, n). Let Z be an irreducible

subvariety of A1 ×�n such that for any faces F of �n, the first projection

pA1 : Z ∩ (A1 × F ) −→ A1

is equidimensional of relative dimension dim(F ) − p or empty. Let F be a face of
�n. First, We want to show that under the projection A1 ×�1×�n −→ A1 ×�1,

m̃−1(Z) ∩ (A1 ×�
1 × F ) −→ A1 ×�

1

is equidimensional of relative dimension dim(F )−p or empty. This follows from the
fact that Z∩(A1×F ) is equidimensional over A1 and m is flat and equidimensional
of relative dimension 1 (hence are m× τ and m̃). The map m̃ is identity on the �n

factor, thus for Z ⊂ A1 ×�n as above and a codimension 1 face F of �n, m̃−1(Z)
satisfies

m̃−1(Z) ∩ (A1 ×�
1 × F ) = m̃−1(Z ∩ (A1 × F ))

which makes m̃∗ into a morphism of complex.
Moreover, assuming that the fiber of Z at 0 is empty, as m̃ restricted to

{0} ×�1 ×�n

factors trough the inclusion {0} ×�n −→ A1 ×�n, the intersection

m̃−1(Z) ∩ ({0} ×�1 ×�n

is empty. Hence the fiber of m̃−1(Z) over {0} × �1 (resp. over {0}) by pA1×�1

(resp. pA1 ◦ pA1×�1) is empty.
Now, let Z be an irreducible subvariety of A1 ×�1 ×�n such that for any face

F of �n

Z ∩ (A1 ×�1 × F ) −→ A1 ×�1

is equidimensional of relative dimension dim(F )− p. Let F ′ be a face of

�n+1 = �1 ×�n.

The face F ′ is either of the form �1 × F or of the form {ε} × F with F a face of
�n and ε ∈ {0,∞}. If F ′ is of the first type, as

Z ∩ (A1 ×�1 × F ) −→ A1 ×�1

is equidimensional and as A1 ×�1 −→ A1 is equidimensional of relative dimension
1, the projection

Z ∩ (A1 ×�
1 × F ) −→ A1

is equidimensional of relative dimension

dim(F )− p+ 1 = dim(F ′)− p.

If F ′ is of the second type, by symmetry of the role of 0 and ∞, we can assume
that ε = 0. Then, the intersection

Z ∩ (A1 × {0} × F )

is nothing but the fiber of Z ∩ (A1 × �1 × F ) over A1 × {0}. Hence, it has pure
dimension dim(F )− p+ 1.

Moreover, denoting with a subscript the fiber, the composition

Z ∩ (A1 × {0} × F ) =
(
Z ∩ (A1 ×�1 × F )

)
A1×{0}

−→ A1 × {0} −→ A1
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is equidimensional of relative dimension

dim(F )− p = dim(F ′)− p.

This shows that hp

A1,n
gives a well define morphism and that it preserves the fiber

at a point x in A1; in particular if Z has an empty fiber at 0, so does hp

A1,n
(Z).

Finally, the last part of the proposition is deduced from the fact that θ exchanges
the role of 0 and 1. �

Remark 4.10. We have remarked that m̃ sends cycles with empty fiber at 0 to cycles
with empty fiber at any point in {0} × �1. Similarly m̃ sends cycles with empty
fiber at 0 to cycles that also have an empty fiber at any point in A1 × {∞}.

From the proof of Levine’s Proposition 4.2 in [Lev94], we deduce that µ∗ gives
a homotopy between p∗0 ◦ i

∗
0 and id where i0 is the zero section {0} → A1 and p0

the projection onto the point {0}.

Proposition 4.11. Notations are the ones from Proposition 4.9 above. Let i0
(resp. i1) be the inclusion of 0 (resp. 1) in A1.

i0 : {0} −→ A1 i1 : {1} −→ A1

and let p0 and p1 be the corresponding projections pε : A
1 −→ {ε} for ε = 0, 1.

Then, µ∗ provides a homotopy between

p∗0 ◦ i
∗
0 and id : N eq, •

A1 −→ N eq, •
A1

and similarly ν∗ provides a homotopy between

p∗1 ◦ i
∗
1 and id : N eq, •

A1 −→ N eq, •
A1 .

In other words, one has

∂A1 ◦ µ∗ + µ∗ ◦ ∂A1 = id −p∗0 ◦ i
∗
0 and ∂A1 ◦ ν∗ + ν∗ ◦ ∂A1 = id −p∗1 ◦ i

∗
1

The proposition follows from commuting the different compositions involved and
the relation between the differential on N eq, •

A1×�1 and the one on N eq, •
A1 via the map

hp

A1,n
.

Proof. We denote by i0,� and i∞,� the zero section and the infinity section A1 −→
A1×�1. The action of θ only exchanges the role of 0 and 1 in A1, hence it is enough
to prove the statement for µ∗. As previously, in order to obtain the proposition for

N eq, k

A1 (p), it is enough to work on the generators of Zp
eq(A

1, n) with n = 2p− k.

By the previous proposition 4.9, m̃∗ commutes with the differential on Zp
eq(A

1, •)

and on Zp
eq(A

1 × �1, •). As the morphism µ∗ is defined by µ∗ = hp

A1,n
◦ m̃∗, the

proof relies on computing ∂A1 ◦ hp

A1,n
. Let Z be a generator of Zp

eq(A
1 ×�1, n). In

particular,

Z ⊂ A1 ×�1 ×�n

and hp

A1,n
(Z) is also given by Z but viewed in

A1 ×�
n+1.

The differentials denoted by ∂n+1
A1 on Zp

eq(A
1, n+1) and ∂n

A1×�1 on Zp
eq(A

1×�1, n)

are both given by intersections with the codimension 1 faces but the first �1 factor
in �n+1 gives two more faces and introduces a change of sign. Namely, using an
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extra subscript to indicate in which cycle groups the intersections take place, one
has

∂n+1
A1 (hp

A1,n
(Z)) =

n+1∑

i=1

(−1)i−1
(
∂0
i,A1(Z)− ∂∞

i,A1(Z)
)

=∂0
1,A1(Z)− ∂∞

1,A1(Z)−
n+1∑

i=2

(−1)i−2
(
∂0
i,A1(Z)− ∂∞

i,A1(Z)
)

=i∗0,�(Z)− i∗∞,�(Z)−
n∑

i=1

(−1)i−1
(
∂0
i+1,A1(Z)− ∂∞

i+1,A1(Z)
)

=i∗0,�(Z)− i∗∞,�(Z)

−
n∑

i=1

(−1)i−1
(
hp
A1,n−1 ◦ ∂

0
i,A1×�1(Z)− hp

A1,n−1 ◦ ∂
∞
i,A1×�1(Z)

)

=i∗0,�(Z)− i∗∞,�(Z)− hp

A1,n−1 ◦ ∂
n
A1×�1(Z).

Thus, one can compute ∂A1 ◦ µ∗ + µ∗ ◦ ∂A1 on Zp
eq(A

1, n) as

∂A1 ◦ µ∗ + µ∗ ◦ ∂A1 =∂A1 ◦ hA1,n ◦ m̃
∗ + hA1,n−1 ◦ m̃

∗ ◦ ∂A1

=i∗0,� ◦ m̃
∗ − i∗∞,� ◦ m̃

∗ − hA1,n−1 ◦ ∂A1 ◦ m̃∗

+ hA1,n−1 ◦ ∂A1 ◦ m̃∗

=i∗0,� ◦ m̃
∗ − i∗∞,� ◦ m̃

∗.

The morphism i∗∞,� ◦ m̃
∗ is induced by

A1 A1 ×�1 A1 × A1 A1

x (x,∞) (x, 0) 0

i
∞,� τ m

which factors through

A1 A1 ×�1 A1 × A1 A1

A1 A1

i
∞,� τ m

p0

i0

id
A1

Thus,

i∗∞,� ◦ m̃
∗ = (i0 ◦ p0)

∗ = p∗0 ◦ i
∗
0.

Similarly i∗0,� ◦ m̃
∗ is induced by

A1 A1 ×�1 A1 × A1 A1

x (x, 0) (x, 1) x

i
∞,� τ m

which factors through id A1 : A1 −→ A1 and one has

i∗0,� ◦ m̃
∗ = id

which concludes the proof of the proposition. �
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4.3. Cycles over X = P1 \ {0, 1,∞} corresponding to multiple polyloga-

rithms. Set L0 = L0 and L1 = L1 where L0 and L1 are the cycles in N 1
X(1)

defined in Section 2.5 induced by the graph or t 7→ t and t 7→ 1− t from X −→ P1.
Consider the two following differential systems

(ED-L) ∂(LW ) =
∑

U<V

aWU,V LULV +
∑

U,V

bWU,V LUL
1
V

and

(ED-L1) ∂(L1W ) =
∑

0<U<V

a′
W
U,V L

1
UL

1
V +

∑

U,V

b′
W
U,V LUL

1
V +

∑

V

a′0,V L0LV

where coefficients aWU,V , bWU,V , a′
W
U,V and b′

W
U,V are the ones defined at Definition 4.1.

These differential equations are exactly the differential system considered in sec-
tion 4.1.

Theorem 4.12. Let j be the inclusion X →֒ A1. For any Lyndon word of length
p greater or equal to 2, there exists two cycles LW and L1W in N 1

X(p) such that :

• LW , L1W are elements in N eq, 1
X (p).

• There exists cycles LW , L1W in N eq, 1
A1 (p) such that

LW = j∗(LW ) and L1W = j∗(L1W ).

• The restriction of LW (resp. L1) to the fiber t = 0 (resp. t = 1) is empty.
• The cycle LW (resp. L1W ) satisfies the equation (ED-L) (resp (ED-L1)) in

N •
X and the same holds for its extension LW (resp. L1W ) to N eq, •

A1 .

The rest of the section is essentially devoted into proving the above theorem.
Let AL and AL1 denote the R.H.S of (ED-L) and (ED-L1) respectively. The proof
works by induction and will be developed as follows

• Reviewing the cycles L01 and L101 presented in subsection 2.5 in order to
show that they gives the desired cycles for W = 01.
• Proving that AL and AL1 have differential 0 in N •

X . This has essentially
been proved in Proposition 4.3.
• Extending AL and AL1 to A1 and proving in Lemma 4.14 that the differ-

ential stay 0 in N •
A1 .

• Finally constructing LW and L1W by pull-back by the multiplication and
pull-back by the twisted multiplication at Lemma 4.15.
• Proving that the pull-back by the (twisted) multiplication preserves the

equidimensionality property and has empty fiber at t = 0 (resp. t = 1) was
done at Proposition 4.9.
• Showing that LW and L1W satisfy the expected differential equations fol-

lows from the homotopy property of the (twisted) multiplication given in
Proposition 4.11.

Proof. We initiate the induction with the only Lyndon word of length 2: W = 01.

Example 4.13. In Section 2.5, we have already considered the product

b = L0L1 = [t; t, 1− t]. ⊂ X ×�2.

In other word, b is, up to projection on the alternating elements, nothing but the
graph of the function X −→ (P1)2 sending t to (t, 1 − t). Its closure b in A1 × �2

is induced by the graph of t 7→ (t, 1− t) viewed as a function from A1 to (P1)2:

b = [t; t, 1− t] ⊂ A1 ×�
2.

From this expression, one sees that ∂A1(b) = 0.



66 ISMAEL SOUDÈRES

Proposition 4.7 already insure that b is equidimensional over X as it is the case
for both L0 and L1. Then, in order to show that b is equidimensional over A1, it
is enough to look the fiber over 0 and 1. In both case, the fiber is empty and b is
equidimensional over A1. Now, set

L01 = µ∗(b) and L01 = ν∗(b)

where µ∗ and ν∗ are defined as in Proposition 4.9. The same proposition shows that

L01 and L101 are equidimensional over A1 and more precisely elements of N eq, 1
A1 (2).

The fibers at 0 and 1 of b being empty and as ∂A1(b) = 0, one conclude from
Proposition 4.11 that

∂A1(L01) = ∂A1(L101) = b.

Finally, we define

L01 = j∗(L01) and L101 = j∗(L101)

where j is the inclusion X −→ A1 and conclude using Proposition 4.8.
One can explicitly compute the two pull-backs and obtain a parametric repre-

sentation

L01 = [t; 1−
t

x
, x, 1− x], L101 = [t;

x− t

x− 1
, x, 1− x].

In order to compute the pull-back, one should remark that if u = 1− t/x then

t

1− u
= x.

Computing the pull-back by µ∗, is then just rescaling the new �1 factor which
arrives in first position. The case of ν∗ is similar but using the fact that for u = x−t

x−1
one has

t− u

1− u
= x.

Let W be a Lyndon word of length p greater or equal to 3. For now on, we
assume that Theorem 4.12 holds for any word of length strictly less p. We set

AL =
∑

U<V

aWU,V LULV +
∑

U,V

bWU,V LUL
1
V ,

and

AL1 =
∑

U<V

a′
W
U,V L

1
UL

1
V +

∑

U,V

b′
W
U,V LUL

1
V ,

Remark 4.2 shows that AL and AL1 only involved Lyndon words U and V such
that the sum of the length of U and the length of V equal the one of W ; in particular
the various coefficients are 0 as soon as U or V has length greater or equal to W .

In order to apply the general strategy detailed in Section 2.6.1, we need first to
show ∂(AL) = ∂(AL1) = 0.

The induction hypothesis gives the existence of LU and L1V for any U and V
of smaller length, and by definition ∂(L0) = ∂(Lc1) = 0. So the combinatorial
Proposition 4.3 shows that

∂(AL) = ∂(AL1) = 0.

Lemma 4.14 (extension to A1). Let AL (resp. AL1) denotes the algebraic cycles
in Z(A1×�2p−2) obtained by taking the Zariski closure in A1×�2p−2 of each term
in the formal sum defining AL (resp. AL1). Then

• AL and AL1 are equidimensional over A1 with respect to any faces of �2p−2;
that is AL and AL1 are in N eq, 2

A1 (p).
• AL has empty fiber at 0 and AL1 has empty fiber at 1.
• ∂A1(AL) = ∂A1(AL1) = 0
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Proof. Cases of AL and AL1 are very similar, thus we will only discuss the case of
AL.

Let LU and LV for U and V Lyndon words different from 0 and 1 of respective
length q and q′ smaller than p the length of W . Note that in AL only appears U
and V such that q + q′ = p.

Induction hypothesis tells us that LU (resp. L1U ) and LV (resp. L1V ) extend
to equidimensional cycles over A1 with respect to any faces by taking the Zariski
closure in A1 ×�• of each term of their defining sums; that is

LU , L1U ∈ N
eq, 1
A1 (q) and LV , L1V ∈ N

eq, 1
A1 (q′).

Thus, Proposition 4.8 insures that

LU · LV = LU · LV and LU · L1V = LU · L1V ∈ N
eq, 2
A1 (p).

and that the above products have empty fiber at 0 because it is the case for LU .
In order to show that AL extend in an equidimensional cycle over A1, it is now

enough to study the products L0 · LU and L1 · L1V as thanks to Lemma 3.49 those
are the only types of product involving L0 and L1 which are not equidimensional
over A1.

The Zariski closure L0 of L0 in A1 × �1 is not equidimensional with respect to
all the face as in particular

L0 ∩ (A1 × {0}) −→ A1

is not dominant. However, L0 is well defined in N 1
A1(1) even if it is not equidimen-

sional over A1 and 0 is the only problematic point. In the other hand LU is by the
induction hypothesis empty at 0. This remark allows us to shows that L0 · LU is
equidimensional over A1 and have empty fiber at 0.

Now, let L0
\0

and LU
\0

denote respectively the Zariski closure of L0 and LU in

A1 \ {0}. Let Z be an irreducible component of Supp(LU ) and let Z (resp. Z
\0

)
denotes the Zariski closure of Z in

A1 ×�
2p−1 (resp. in A1 \ {0} ×�

2p−1).

Z (resp. Z
\0

) is then an irreducible component of Supp(LU ) (resp. Supp(LU
\0
))

and all irreducible components of Supp(LU ) (resp. Supp(LU
\0
)) are of this type.

Let Γ denote the graph of id : P1 −→ P1. Then one has

L0 = Alt(Γ|X×X), L0
\0

= Alt(Γ|A1\{0}×A1\{0}) and L0 = Alt(Γ|A1×A1).

We will write simply ΓX , ΓA1\{0} and ΓA1 for the restriction of Γ to respectively

X ×X , A1 \ {0} × A1 \ {0} and A1 × A1.
It is enough to show that ΓA1 · Z is equidimensional over A1 (here · denotes the

product in N •
A1).

By the induction hypothesis, Z is equidimensional with respect to any faces over

A1; in particular Z (resp. Z
\0

) is equidimensional with respect to any faces over X
(resp. A1 \ {0}). Thus, for any face F of �1 and any face F ′ of �2(p−1)−1 one has

ΓX ∩ (X × F ) is equidimensional over X
(
resp. ΓA1\{0} ∩

(
(A1 \ {0})× F

)
is equidimensional over A1 \ {0}

)

and
Z ∩ (X × F ′) is equidimensional over X(

resp. Z
\0
∩
(
(A1 \ {0})× F ′

)
is equidimensional over A1 \ {0}

)
.

Hence, the intersections

(ΓX × Z) ∩ (X ×X × F × F ′) ⊂ X ×X ×�
2p−2
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and(
ΓA1\{0} × Z

\0
)
∩
(
A1 \ {0} × A1 \ {0} × F × F ′

)
⊂ A1 \ {0} × A1 \ {0} ×�

2p−2

are respectively equidimensional over X×X and over A1 \{0}×A1\{0}, or empty.
In particular, in the case where the intersection is non-empty,
(
ΓA1\{0} × Z

\0
)
∩
(
A1 \ {0} × A1 \ {0} × F × F ′

)
−→ A1 \ {0} × A1 \ {0}

is equidimensional of relative dimension dim(F ) + dim(F ′)− p− 2.
Let x be a point of im(∆). Then, either x is a point of im(∆A1\{0}) and as a

point in A1 \ {0} × A1 \ {0}, the equidimensionality shows that if the intersection
below is not empty one has

dim
((
ΓA1 × Z

)
∩ (x× F × F ′))

)
=

dim
((

ΓA1\{0} × Z
\0
)
∩ (x× F × F ′))

)
= dim(x) + dim(F ) + dim(F ′)− p− 2.

Or x is the point (0, 0) and, writing Γ0 (resp. Z0 ) the fiber at 0 under the first
projection of A1 ×�1 (resp. A1 ×�2(p−1)−1), one has

(
ΓA1 × Z

)
∩ ({(0, 0)} × F × F ′) = Γ0 × Z0 ∩ ({(0, 0)} × F × F ′) = ∅

because by induction hypothesis Z0 = ∅.
From the above discussion, we obtain that the intersection of

(∆× id )−1
(
Γ× Z

)
≃ Γ× Z ∩

(
im(∆) ×�2p−2

)

with any faces is equidimensional over A1 and that

L0 · Z = Alt
(
(∆× id )−1(Γ× Z)

)

is equidimensional over A1 with respect to any faces of �2p−2. Moreover L0 ·Z has
an empty fiber at 0.

Thus, L0 · LU is equidimensional with respect to any faces and has empty fiber

at 0. A similar argument (using 1 instead of 0 and using the fact that L1V is empty

at 1) shows that L1 · L1V is equidimensional over A1 and has empty fiber at 1.
Now, we need to show that

∂A1(AL) = 0.

By induction, terms of the form LU (resp. L1V ) satisfy the differential system
(ED-L) (resp. (ED-L1)) provide the length of U (resp. V ) is greater than 2. Hence,
In order to show that ∂A1(AL) = 0, it is enough to show that

∂A1(L0 · LU ) = −L0 · ∂A1(LU ) and ∂A1(L1 · L1V ) = −L1 · ∂A1(L1V ).

All terms involved in ∂A1(AL) will then satisfy exactly the same differential equa-
tions as the ones involved in ∂(AL) = 0. Thus, in order to show that ∂A1(AL) = 0,
it will be enough to apply the same computations used to prove that ∂(AL) = 0
(Proposition 4.3).

As previously said, even if L0 is not equidimensional over A1 it is a well defined
element of N 1

A1(1) and one has

∂A1(L0) = [0; 0] ⊂ A1 ×�
0

which is of codimension 1. The differential graded algebra structure on N •
A1 shows

that
∂A1(L0 · LU ) = [0; 0] · LU − L0 · ∂A1(LU ).

The product [0; 0]·LU is obtained from the product [0; 0]·Z where Z is an irreducible
component of Supp(LU ). The previous computations show that

[0; 0] · Z = ∆−1(Γ0 × Z0) = ∅
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The above equality insures that as a cycle [0; 0] · LU = 0 and that

∂A1(L0 · LU ) = −L0 · ∂A1(LU );

similarly,

∂A1(L1 · L1V ) = −L1 · ∂A1(L1V ).

Thus, we have obtained that

∂A1(AL) = 0.

A similar discussion shows that

∂A1(AL1) = 0.

�

The equality
∂A1(AL) = 0

(
resp. ∂A1(AL1) = 0

)

shows that AL (resp. AL1) gives a class in H2(N •
A1). As Corollary 5 insures that

this cohomology group is 0, AL (resp. AL1) is the boundary of some cycle c (resp.
c′) in N 1

A1 . Lemma 4.15 below gives this c (resp. c′) explicitly and, after restriction
to X , concludes the proof of Theorem 4.12.

�

Lemma 4.15. Define LW and L1W in N eq, 1
A1 (p) by

LW = µ∗(AL) and L1W = ν∗(AL1)

where µ∗ and ν are the morphisms defined in Proposition 4.9.
Let j : X −→ A1 be the natural inclusion of P1 \ {0, 1,∞} into A1 and define

LW and L1W by

LW = j∗(LW ) and L1W = j∗(L1W ).

Then LW and L1W satisfy conditions of Theorem 4.12.

Proof. As in Proposition 4.11, let i0 (resp. i1) be the inclusion of 0 (resp. 1) in A1:

i0 : {0} −→ A1 i1 : {1} −→ A1,

and let p0 and p1 be the corresponding projection pε : A
1 −→ {ε} for ε = 0, 1.

Proposition 4.9 insures that LW (resp. L1W ) is equidimensional over A1 with
respect to any faces and has an empty fiber at t = 0 (resp. t = 1); in particular
i∗0(AL) = i∗1(AL1) = 0. Moreover, Proposition 4.11 allows to compute ∂A1(LW ) as

∂A1(LW ) =∂A1 ◦ µ∗(AL)

= id (AL)− p∗0 ◦ i
∗
0(AL)− µ∗ ◦ ∂A1(AL)

=AL

because ∂A1(AL) = 0 and i∗0(AL) = 0.
Using again Proposition 4.11, a similar computation gives

∂A1(L1W ) = AL1

because ∂A1(AL1) = 0 and i∗1(AL1) = 0.
Now, as

LW = j∗(LW ) and L1W = j∗(L1W ),

LW and L1W are equidimensional with respect to any faces over X by Proposition

4.8 and their closure in A1 ×�2p−1 are exactly LW and L1W . As j∗ is a morphism

of cdga, LW and L1W satisfy the expected differential equations as do LW and L1W ;
that is

∂(LW ) = AL and ∂(L1W ) = AL1 .
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This conclude the proof of the Lemma and of Theorem 4.12 �

5. Concluding remarks

5.1. Some Examples up to weight 5. We describe in this section some inter-
esting examples of cycles LW and L1W for W up to length 5.

We have already seen in the previous section, at Example 4.13, the weight 2
examples L01 and L101. We recall below their parametric representations

L01 = [t; 1−
t

x
, x, 1− x], L101 = [t;

x− t

x− 1
, x, 1− x].

They satisfy

∂(L01) = ∂(L101) = L0L1.

In Lemma 2.40, we have defined cycles Licyk for any integers k > 2 with Licy2 =
L01 = L01. Fix k an integer greater or equal to 2 and let W be the Lyndon word

W = 0 · · · 0︸ ︷︷ ︸
k−1 times

1.

A simple induction and the construction of the cycle Licyk show that

Licyk = LW .

We have previously considered a weight 3 example L011 in order to make more
apparent where the different problems were. In particular, it satisfies

∂(L011) = (L01 − L01(1))L1.

However, the closure of L011 over A1 is not equidimensional as the fiber at 1 is
not an admissible cycle. In the next example, we use Theorem 4.12 for the word
011 and give an explicit parametrized description of L011.

Example 5.1 (Weight 3 example). The cycle L011 in N eq, 1
A1 (3) is defined by

L011 = µ∗(−L1L101).

The product L1L101 is given in terms of parametrized cycle by

L1L101 = [t; 1− t,
x− t

x− 1
, x, 1− x].

Following the comment in Example 4.13, one computes easily the pull-back by µ∗

and obtains after restriction to X (and renumbering x as x1)

L011 = −[t; 1−
t

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1].

The cycle L1011 satisfies the same differential equation as L011 but is given by the
pull-back ν∗. Thus, a description of L1011 as parametrized cycle is

L1011 = −[t;
x2 − t

x2 − 1
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1].

Computing the differentials of L011 and L1011 using the above expressions gives back

∂(L011) = ∂(L1011) = −L1L
1
01.

In weight 4, arises the first linear combination in the differential equation. In
weight 5 arises the first case where the differential equation for LW and L1W are
not the same. There are actually two such examples in weight 5.



CYCLE COMPLEX OVER P1 MINUS 3 POINTS 71

Example 5.2. The cycle L0011 satisfies

∂(L0011) = L0L011 − L1L
1
001 − L01L

1
01.

As L1001 is the restriction of ν∗(L0L01), one gets

L1001 = [t;
x2 − t

x2 − 1
, x2, 1−

x2

x1
, x1, 1− x1]

and

(59) L0011 = −[t; 1−
t

x3
, x3, 1−

x3

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

− [t; 1−
t

x3
, 1− x3,

x2 − x3

x2 − 1
, x2, 1−

x2

x1
, x1, 1− x1]

− [t; 1−
t

x3
, 1−

x3

x2
, x2, 1− x2,

x1 − x3

x1 − 1
, x1, 1− x1].

Consider the Lyndon word 00101. Its corresponding tree T00101∗ is

t

0

0 1

0 1

−

t

1

0

0

0 1

and computing dcy(T00101∗) gives

dcy(T00101∗) = T001∗T01∗ − T0001∗T1∗ − T1∗T0001∗(1).

Finally, L00101 and L100101 satisfy respectively

(60) ∂(L00101) = L001 · L01 + L1L
1
0001

and

(61) ∂(L100101) = −L
1
001 · L

1
01 + L001 · L

1
01 − L0 · L

1
001 + L1 · L

1
0001.

5.2. A combinatorial representation for the cycles : trees with colored

edges. In this subsection, we give a combinatorial approach to describe cycles LW
and L1W as parametrized cycles using trivalent trees with two types of edge.

Definition 5.3. Let T || be the Q vector space generated by rooted trivalent trees
such that

• the edges can be of two types: or ;

• the root vertex is decorated by t
• other external vertices are decorated by 0 or 1.

We say that such a tree is a rooted colored tree or simply a colored tree.

We define two bilinear maps T || ⊗ T || −→ T || as follows on the colored trees:

• Let T1 T2 be the colored tree given by joining the two root of T1 and T2

and adding a new root and a new edge of type :

T1 T2 =

T1 T2

where the dotted edges denote either type of edges.
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• Let T1 T2 be the colored tree given by joining the two root of T1 and T2

and adding a new root and a new edge of type :

T1 T2 =

T1 T2

where the dotted edges denote either type of edges.

Definition 5.4. Let T0 and T1 be the colored tree defined by

T0 =
t

0

and T1 =
t

1

.

For any Lyndon word W of length greater or equal to 2, let TW (resp. T1
W ) be

the linear combination of colored trees given by

TW =
∑

U<V

aWU,V TU TV +
∑

U,V

bWU,V TU T
1
V ,

and respectively by

T
1
W =

∑

0<U<V

a′
W
U,V T

1
U T

1
V +

∑

U,V

b′
W
U,V TU T

1
V +

∑

V

a′0,V T0 TV .

To a colored tree T with p external leaves and a root, one associates a function

fT : X × (P1)
p−1
−→ X × (P1)2p−1 as follows :

• Endow T with its natural order as trivalent tree.
• This induces a numbering of the edges of T : (e1, e2, . . . , e2p−1).
• The edges being oriented away from the root, the numbering of the edges

induces a numbering of the vertices, (v1, v2, . . . , v2p) such that the root is
v1.
• Associate variables x1, . . . , xp−1 to each internal vertices such that the num-

bering of the variable is opposite to the order induced by the numbering
of the vertices (first internal vertices has variable xp−1, second internal
vertices has variable xp−2 and so on).

• For each edge ei =

a

b
oriented from a to b, define a function

fi(a, b) =






1−
a

b
if ei is of type ,

b− a

b− 1
if ei is of type .

• Finally fT : X × (P1)p−1 −→ X × (P1)2p−1 is defined by

fT (t, x1, . . . xp−1) = (t, f1, . . . , f2p−1).

Let Γ(T ) be the intersection of the the image of fT with X × �2p−1. One can
formally extend the definition of Γ from T || into the direct sum ⊕p>1Zp(X×�2p−1).

Proposition 5.5. The map Γ satisfies :

• For any Lyndon word of length p, Γ(TW ) is in Zp
eq(X, 2p− 1)⊗Q

• Alt(Γ(T0)) = L0 and Alt(Γ(T1)) = L1
• For any Lyndon word of length p > 2,

Alt(Γ(TW )) = LW and Alt(Γ(T1
W )) = L1W .
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Proof. The fact that Γ(T0) (resp. Γ(T1)) is the graph of t 7→ t (resp. t 7→ 1 − t)
follows from the definition. Thus one already has Γ(T0) (resp. Γ(T1)) in Z1

eq(X, 1)
and

Alt(Γ(T0)) = L0 and Alt(Γ(T1)) = L1.

Then, the proposition is deduced by induction because, as already remarked
in Example 4.13, in order to compute the pull-back by µ∗ one sets the former
parameter t to a new variable xn and parametrizes the new �1 factor arriving in
first position by 1− t

xn
(t is again the parameter over X). The case of ν∗ is similar

but parametrizing the new �1 factor by xn−t
xn−1 . �

Remark 5.6. Considering that L0 is empty at 1 and the symmetry of the situation
between 0 and 1, one could write L10 instead of L0 and similarly T1

0 instead of
T0. This cosmetic change of notations will in particular make Definition 4.1 more
uniform with respect to the cases where either U or V is equal to 0 or 1.

However, it will add some modifications in the proof of Proposition 4.3 relating
relations among a’s, a′’s, b’s and b′’s coefficients with relations between α’s and β’s
coefficients.

5.3. An integral associated to L011. We present here a sketch of how to asso-
ciate an integral to the cycle L011. The author will directly follow the algorithm
describe in [GGL09][Section 9] and put in detailed practice in [GGL07]. There
will be no general review of the direct Hodge realization from Bloch-Kriz motives
[BK94][Section 8 and 9]. Gangl, Goncharov and Levine construction seems to con-
sist in setting particular choices of representatives in the intermediate jacobians for
their algebraic cycles.

The author will not extend this description and will not generalized here the
computations below. Relating Bloch and Kriz approach to the explicit algorithms
described by Gangl, Goncharov and Levine and the application to our particular
family of cycles LW will be the topics of a future paper as it requires, in particular,
a family LBW of element in H0(B(N •

X)) not at our disposal yet.
Let’s recall the expression of L011 as parametrized cycle:

L011 = −[t; 1−
t

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1].

One wants to bound L011 by an algebraic-topological cycle in a larger bar con-
struction (not described here) introducing topological variables si in real simplices

∆n
s = {0 6 s1 6 · · · 6 sn 6 1}.

Let ds : ∆n
s → ∆n−1

s denotes the simplicial differential

ds =

n∑

k=0

(−1)ki∗k

where ik : ∆n−1
s → ∆n

s is given by the face sk = sk+1 in ∆n
s with the usual

conventions for k = 0, n.
Let’s define

Cs,1
011 = [t; 1−

s3t

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

for s3 going from 0 to 1. Then, ds(Cs,1
011) = L011 as s3 = 0 implies that the first

cubical coordinate is 1.
Now the algebraic boundary ∂ of Cs,1

011 is given by the intersection with the
codimension 1 faces of �5

∂(Cs,1
011) = [t; 1− s3t,

x1 − s3t

x1 − 1
, x1, 1− x1].
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We can again bound this cycle by introducing a new simplicial variable 0 6 s2 6 s3
and the cycle

Cs,2
011 = [t; 1− s3t,

x1 − s2t

x1 − s2/s3
, x1, 1− x1].

The intersections with the faces of the simplex {0 6 s2 6 s3 6 1} given by s2 = 0
and s3 = 1 lead to empty cycles (as at least one cubical coordinates equals 1).

Thus, the simplicial boundary of Cs,2
011 satisfies

ds(Cs,2
011) = −∂(C

s,1
011) = −[t; 1− s3t,

x1 − s3t

x1 − 1
, x1, 1− x1].

Its algebraic boundary is given by

∂(Cs,2
011) = −[t; 1− s3t, s2t, 1− s2t] + [t; 1− s3t,

s2
s3

, 1−
s2
s3

].

Finally, we introduce a last simplicial variable 0 6 s1 6 s2 and a purely topological
cycle

Cs,3
011 = −[t; 1− s3t, s2t, 1− s1t] + [t; 1− s3t,

s2
s3

, 1−
s1
s3

]

whose simplicial differential is (up to negligible terms) given by the face s1 = s2:

ds(Cs,3
011) = −∂(C

2,s
011) = [t; 1− s3t, s2t, 1− s2t]− [t; 1− s3t,

s2
s3

, 1−
s2
s3

]

and whose algebraic boundary is 0.
Finally one has

(ds + ∂)(Cs,1
011 + Cs,3

011 + Cs,3
011) = L011

up to negligible terms.
Now, we fix the situation at the fiber t0 and following Gangl, Goncharov and

Levin, we associate to the algebraic cycle L011|t=t0 the integral I011(t0) of the
standard volume form

1

(2iπ)3
dz1
z1

dz2
z2

dz3
z3

over the simplex given by Cs,3
011. That is :

I011(t0) = −
1

(2iπ)3

∫

06s16s26s361

t0 ds3
1− t0s3

∧
ds2
s2
∧

t0 ds1
1− t0s1

+
1

(2iπ)3

∫

06s361

t0 ds3
1− t0s3

∫

06s16s261

ds2
s2
∧

ds1
1− s1

.

Taking care of the change of sign due to the numbering, the first term in the
above sum is (for t0 6= 0 and up to the factor (2iπ)−3) equal to

LiC1,2(t0) =

∫

06s16s26s361

ds1

t−1
0 − s1

∧
ds2
s2
∧

ds3

t−1
0 − s3

while the second term equals (up to the same multiplicative factor)

−LiC1 (t0)Li
C
2 (1).

Globally the integral is well defined for t0 = 0 and, which is the interesting part,
also for t0 = 1 as the divergencies as t0 goes to 1 cancel each other in the above
sums. A simple computation and the shuffle relation for LiC1 (t0)Li

C
2 (t0) shows that

the integral associated to the fiber of L011 at t0 = 1 is

(2iπ)3I011(1) = −2Li
C
2,1(1) = −2ζ(2, 1).
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