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FRAGMENTED DEFORMATIONS OF PRIMITIVE MULTIPLE CURVES

JEAN–MARC DRÉZET

Resume. A primitive multiple curve is a Cohen-Macaulay irreducible projective curve Y that
can be locally embedded in a smooth surface, and such that Yred is smooth.

The subject of this paper is the study of deformations of Y in curves with smooth irreducible
components, when the number of components is maximal (it is then the multiplicity n of Y ).

We are particularly interested in deformations in n disjoint smooth irreducible components,
which are called fragmented deformations. We describe them completely. We give also a
characterization of primitive multiple curves having a fragmented deformation.
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1. Introduction

A primitive multiple curve is an algebraic variety Y over C wich is Cohen-Macaulay, such that
the induced reduced variety C = Yred is a smooth projective irreducible curve, and that every
closed point of Y has a neighbourhood that can be embedded in a smooth surface. These curves
have been defined and studied by C. Bănică and O. Forster in [1]. The simplest examples are
infinitesimal neighbourhoods of projective smooth curves embedded in a smooth surface (but
most primitive multiple curves cannot be globally embedded in smooth surfaces, cf. [2], theorem
7.1).

Les Y be a primitive multiple curve with associated reduced curve C, and suppose that Y 6= C.
Let IC be the ideal sheaf of C in Y . The multiplicity of Y is the smallest integer n such that
InC = 0. We have then a filtration

C = C1 ⊂ C2 ⊂ · · · ⊂ Cn = Y

1
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where Ci is the subscheme corresponding to the ideal sheaf I iC and is a primitive multiple curve
of multiplicity i. The sheaf L = IC/I2

C is a line bundle on C, called the line bundle on C
associated to Y .

1.1. History and motivation – The deformations of double (i.e. of multiplicity 2) primitive
multiple curves (also called ribbons) in smooth projective curves have been studied in [14]. In
this paper we are interested in deformations of primitive multiple curves Y of any multiplicity
n ≥ 2 in reduced curves having exactly n components which are smooth (n is the maximal
number of components of deformations of Y ). In this case the number of intersection points of
two components is exactly − deg(L). We give some results in the general case (no assumption
on deg(L)) and treat more precisely the case deg(L) = 0, i.e. deformations of Y in curves
having exactly n disjoint irreducible components.

Let π : C → S be a flat projective morphism of algebraic varieties, P a closed point of S such
that π−1(P ) ' Y , OC(1) a very ample line bundle on C and P a polynomial in one variable
with rational coefficients. Let

τ :MOC(1)(P ) −→ S

be the corresponding relative moduli space of semi-stable sheaves (parametrizing the semi-
stables sheaves on the fibers of π with Hilbert polynomial P with respect to the restriction
of OC(1), cf. [20]). In general τ is not flat (some other examples on non flat relative moduli
spaces are given in [17]). For example, if the family C contains smooth fibers, it is impossible
to deform the stable sheaf OC on Y in sheaves on the smooth fibers. I conjecture that τ is flat
if all the fibers of τ are reduced with exactly n components. The reason is that the generic
structure of torsion free sheaves on Y (cf. [8]) is more complicated that on smooth curves, and
is somehow similar to the generic structure of torsion free sheaves on reducible reduced curves
(cf. [23], [24]).

1.2. Maximal reducible deformations – Let (S, P ) be a germ of smooth curve. Let Y be a
primitive multiple curve of multiplicity n ≥ 2 and k > 0 an integer. Let π : C → S be a flat
morphism, where C is a reduced algebraic variety, such that

– For every closed point s ∈ S such that s 6= P , the fiber Cs has k irreducible components,
which are smooth and transverse, and any three of these components have no common
point.

– The fiber CP is isomorphic to Y .

We show that by making a change of variable, i.e. by considering a suitable germ (S ′, P ′) and
a non constant morphism τ : S ′ → S, and replacing π with π∗C → S ′, we can suppose that
C has exactly k irreducible components, inducing on every fiber Cs, s 6= P the k irreducible
components of Cs. In this case π is called a reducible deformation of Y of length k.

We show that k ≤ n. We say that π (or C) is a maximal reducible deformation of Y if k = n.

Suppose that π is a maximal reducible deformation of Y . We show that if C ′ is the union of
i > 0 irreducible components of C, and π′ : C ′ → S is the restriction of π, then π′−1(P ) ' Ci,
and π′ is a maximal reducible deformation of Ci. Let s ∈ S\{P}. We prove that the irreducible
components of Cs have the same genus as C. Moreover, if D1, D2 are distinct irreducible
components of Cs, then D1 ∩D2 consists of − deg(L) points.
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1.3. Fragmented deformations (definition) – Let Y be a primitive multiple curve of multiplicity
n ≥ 2 and π : C → S a maximal reducible deformation of Y . We call it a fragmented deformation
of Y if deg(L) = 0, i.e. if for every s ∈ S\{P}, Cs is the disjoint union of n smooth curves. In
this case C has n irreducible components C1, . . . , Cn which are smooth surfaces.

The variety C appears as a particular case of a glueing of C1, . . . , Cn along C (cf. 4.1.5). We
prove (proposition 4.1.5) that such a glueing D is a fragmented deformation of a primitive
multiple curve if and only if every closed point in C has a neighbourhood in D that can be
embedded in a smooth variety of dimension 3. The simplest glueing is the trivial or initial
glueing A. An open subset U of A (and C) is given by open subsets U1, . . . , Un of C1, . . . , Cn
respectively, having the same intersection with C, and

OA(U) = {(α1, . . . , αn) ∈ OC1(U ∩ C1)× · · ·OCn(U ∩ Cn);α1|C = · · · = αn|C},
and OC(U) appears as a subalgebra of OA(U), hence we have a canonical morphism A→ C.
We can view elements of OC(U) as n-tuples (α1, . . . , αn), with αi ∈ OCi(U ∩ Ci). In particular
we can write π = (π1, . . . , πn).

1.4. A simple analogy – Consider n copies of C glued at 0. Two extreme examples appear :
the trivial glueing A0 (the set of coordinate lines in Cn), and a set C0 of n lines in C2. We can
easily construct a bijective morphism Ψ : A0 → C0 sending each coordinate line to a line in the
plane

Z

Y

X

z

y

x

ψ

But the two schemes are of course not isomorphic : the maximal ideal of 0 in A0 needs n
generators, but 2 are enough for the maximal ideal of 0 in C0.
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Let πC0 : C0 → C be a morphism sending each component linearly onto C, and
πA0 = πC0 ◦Ψ : A0 → C. The difference of A0 and C0 can be also seen by using the fibers of 0
: we have

π−1
C0 (0) ' spec(C[t]/(tn)) and π−1

A0
(0) ' spec(C[t1, . . . , tn]/(t1, . . . , tn)2) .

Let D a general glueing of n copies of C at 0, such that there exists a morphism π : D → C
inducing the identity on each copy of C. It is easy to see that we have π−1(0) ' spec(C[t]/(tn))
if and only if some neighbourhood of 0 in D can be embedded in a smooth surface.

1.5. Fragmented deformations (main properties) – Let π : C → S be a fragmented deformation
of Y = Cn. Let I ⊂ {1, . . . , n} be a proper subset, Ic its complement, and CI ⊂ C the subscheme
union of the Ci, i ∈ I. We prove (theorem 4.3.7) that the ideal sheaf ICI of CI is isomorphic to
OCIc .
In particular, the ideal sheaf ICi of Ci is generated by a single regular function on C. We show
that we can find such a generator such that for 1 ≤ j ≤ n, j 6= i, its j-th coordinate can be
written as απpj , with p > 0 and α ∈ H0(OS) such that α(P ) 6= 0. We can then suppose that
α = 1, and the generator can be written as

uij = (u1, . . . , um),

with
ui = 0, um = α

(m)
ij πpimm for m 6= i, α

(j)
ij = 1.

The constants a
(m)
ij = α

(m)
ij|C ∈ C have interesting properties (propositions 4.5.2, 4.4.6). Let

pii = 0 for 1 ≤ i ≤ n. The symmetric matrix (pij)1≤i,j≤n is called the spectrum of π (or C).
It follows also from the fact that ICi = (uij) that Y is a simple primitive multiple curve, i.e.
the ideal sheaf of C in Y = Cn is isomorphic to OCn−1 . Conversely, we show in theorem 4.7.1
that if Y is a simple primitive multiple curve, then there exists a fragmented deformation of Y .

We give in 4.4 and 4.5 a way to construct fragmented deformations by induction on n. This is
used later to prove statements on fragmented deformations by induction on n.

1.6. n-stars and structure of fragmented deformations – A n-star of (S, P ) is a glueing S of n
copies of S at P , together with a morphism π : S → S which is an identity on each copy of S.
All the n-stars have the same underlying Zariski topological space S(n).

A n-star is called oblate if some neighbourhood of P can be embedded in a smooth surface.
This is the case if and only π−1(0) ' spec(C[t])/(tn).

Oblate n-stars are analogous to fragmented deformations and simpler. We provide a way to
build oblate n-stars by induction on n.

Let π : C → S be a fragmented deformation of Y = Cn. We associate to it an oblate n-star S
of S : for every open subset U of S(n), OS(U) is the set of (α1, . . . , αn) ∈ OC(U) such that
αi ∈ OS(πi(U ∩ Ci)) for 1 ≤ i ≤ n. We obtain also a canonical morphism

Π : C −→ S.
We prove (theorem 5.6.2) that Π is flat. Hence it is a flat family of smooth curves, with
Π−1(P ) = C. The converse is also true, i.e. starting from an oblate n-star of S and a flat
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family of smooth curves parametrized by it, we obtain a fragmented deformation of a multiple
primitive curve of multiplicity n.

1.7. Fragmented deformations of double curves – Let Y = C2 be a primitive double curve, C

its associated smooth curve, π : C → S a fragmented deformation of Y , of spectrum

(
0 p
p 0

)
,

and C1, C2 the irreducible components of C. For i = 1, 2, q > 0, let Cq
i be the infinitesimal

neighbourhood of order q of C in Ci (defined by the ideal sheaf (πqi )). It is a primitive multiple
curve of multiplicity q.

It follows from 4.3.5 that Cp
1 and Cp

2 are isomorphic, and Cp+1
1 , Cp+1

2 are two extensions of Cp
1 in

primitive multiple curves of multilicity p+ 1. According to [6] these extensions are parametrized
by an affine space with associated vector space H1(C, TC) (where TC is the tangent bundle of
C). Let w ∈ H1(C, TC) be the vector from Cp+1

1 to Cp+1
2 .

Similarly, the primitive double curves with associated smooth curve C such that IC ' OC are
parametrized by P(H1(C, TC)) ∪ {0} (cf. [2], [6]).

We prove in theorem 6.0.5 that the point of P(H1(C, TC)) ∪ {0} corresponding to C2 is Cw.

1.8. Notation: Let X be an algebraic variety and Y ⊂ X a closed subvariety. We will denote
by IY,X (or IY if there is no risk of confusion) the ideal sheaf of Y in X.

2. Preliminaries

2.1. Local embeddings in smooth varieties

2.1.1. Proposition: Let X be an algebraic variety, x a closed point of X and n a positive
integer. Then the two following properties are equivalent:

(i) There exists a neighbourhood U of x and an embedding U ⊂ Z in a smooth variety of
dimension n.

(ii) The OX,x-module mX,x (maximal ideal of x) can be generated by n elements.
(iii) We have dimC(mX,x/m

2
X,x) ≤ n.

Proof. It is obvious that (i) implies (ii), and (ii),(iii) are equivalent according to Nakayama’s
lemma. It remains to prove that (iii) implies (i).

Suppose that (iii) is true. There exists an integer N and an embedding X ⊂ PN . Let IX be
the ideal sheaf of X in PN . Let p be the biggest integer such that there exists f1, · · · , fp ∈ IX,x
whose images in the C-vector space mPN ,x/m

2
PN ,x are linearly independant. Then we have

IX,x ⊂ (f1, · · · , fp) +m2
PN ,x.
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In fact, let f ∈ IX,x. Since p is maximal, the image of f in mPN ,x/m
2
PN ,x is a linear combination

of those of f1, · · · , fn. Hence we can write

f =

p∑
i=1

λifi + g, with λi ∈ C, g ∈ m2
PN ,x ,

and our assertion is proved. It follows that we have a surjective morphism

α : OX,x/m2
X,x −→ OPN ,x/

(
(f1, · · · , fp) +m2

PN ,x
)
.

We have

dimC(OX,x/m2
X,x) ≤ n+ 1, dimC

(
OPN ,x/

(
(f1, · · · , fp) +m2

PN ,x
))

= N − p+ 1 .

Hence N − p+ 1 ≤ n+ 1, i.e. p ≥ N − n. We can take for Z a neighbourhood of x in the
subvariety of PN defined by f1, · · · , fN−n, which is smooth at x. �

2.2. Flat families of coherent sheaves

Let (S, P ) be a smooth germ of curve and t ∈ OS,P a generator of the maximal ideal. Let
π : X → S be a flat morphism. If E is a coherent sheaf on X, E is flat on S at x ∈ π−1(P )
if and only if the multiplication by t : Ex → Ex is injective. In particular the multiplication by
t : Ox → Ox is injective.

2.2.1. Lemma: Let E be a coherent sheaf on X flat on S. Then, for every open subset U of
X, the restriction E(U)→ E(U\π−1(P )) is injective.

Proof. Let s ∈ E(U) whose restriction to U\π−1(P ) vanishes. We must show that s = 0.
By covering U with smaller open subsets we can suppose that U is affine: U = spec(A).

Hence U\π−1(P ) = spec(At). Let M = E(U), it is an A-module. We have E|U = M̃ and
E(U\π−1(P )) = Mt. Hence if the restriction of s to U\π−1(P ) vanishes, there exists an integer
n > 0 such that tns = 0. Since the multiplication by t is injective (because E is flat on S), we
have s = 0. �

Let E be a coherent sheaf onX flat on S. Let F ⊂ E|X\π−1(P ) be a subsheaf. For every open sub-

set U of X we denote by F(U) the subset of F(U\π−1(P )) of elements that can be extended to
sections of E on U . If V ⊂ U is an open subset, the restriction F(U\π−1(P ))→ F(V \π−1(P ))
induces a morphism F(U)→ F(V ) .

2.2.2. Proposition: F is a subsheaf of E, and E/F is flat on S.

Proof. To prove the first assertion, we must show that if U is an open subset of X and (Ui)i∈I
is an open cover of U , then

(i) If s ∈ F(U) is such that for every i we have s|Ui = 0, then s = 0.

(ii) For every i ∈ I let si ∈ F(Ui). Then if for all i, j we have si|Uij = sj|Uij , then there

exists s ∈ F(U) such that for every i ∈ I we have s|Ui = si.
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This follows easily from lemma 2.2.1.

Now we prove that E/F is flat on S. Let x ∈ π−1(P ) and u ∈ (E/F)x such that tu = 0. We
must show that u = 0. Let v ∈ Ex over u. Then we have tv ∈ Fx. Let U be a neighbourhood of
x such that tv comes from w ∈ F(U). This means that w|U\π−1(P ) ∈ F(U\π−1(P )). Since t is
invertible on U\π−1(P ) we can write w = tw′, with w′ ∈ F(U\π−1(P )). We have then w′ = v
on U\π−1(P ). Hence v ∈ Fx and u = 0. �

2.3. Primitive multiple curves

(cf. [1], [5], [8]).

Let C be a smooth connected projective curve. A multiple curve with support C is a Cohen-
Macaulay scheme Y such that Yred = C.

Let n be the smallest integer such that Y = C(n−1), C(k−1) being the k-th infinitesimal neigh-
bourhood of C, i.e. IC(k−1) = IkC . We have a filtration C = C1 ⊂ C2 ⊂ · · · ⊂ Cn = Y where
Ci is the biggest Cohen-Macaulay subscheme contained in Y ∩ C(i−1). We call n the multiplicity
of Y .

We say that Y is primitive if, for every closed point x of C, there exists a smooth surface S,
containing a neighbourhood of x in Y as a locally closed subvariety. In this case, L = IC/IC2

is a line bundle on C and we have ICj = IjX , ICj/ICj+1
= Lj for 1 ≤ j < n. We call L the line

bundle on C associated to Y . Let P ∈ C. Then there exists elements y, t of mS,P (the maximal
ideal of OS,P ) whose images in mS,P/m

2
S,P form a basis, and such that for 1 ≤ i < n we have

ICi,P = (yi) .

The simplest case is when Y is contained in a smooth surface S. Suppose that Y has multiplicity
n. Let P ∈ C and f ∈ OS,P a local equation of C. Then we have ICi,P = (f i) for 1 < j ≤ n,
in particular IY,P = (fn), and L = OC(−C) .

We will note On = OCn and we will see Oi as a coherent sheaf on Cn with schematic support
Ci if 1 ≤ i < n.

If E is a coherent sheaf on Y one defines its generalized rank R(E) and generalized degree Deg(E)
(cf. [8], 3-). Let OY (1) be a very ample line bundle on Y . Then the Hilbert polynomial of E is

PE(m) = R(E) deg(OC(1))m+ Deg(E) +R(E)(1− g)

(where g is the genus of C).

We deduce from proposition 2.1.1:

2.3.1. Proposition: Let Y be a multiple curve with support C. Then Y is a primitive multiple
curve if and only if IC/I2

C is zero, or a line bundle on C.

2.3.2. Parametrization of double curves - In the case of double curves, D. Bayer and D. Eisen-
bud have obtained in [2] the following classification: if Y is of multiplicity 2, we have an exact
sequence of vector bundles on C

0 −→ L −→ ΩY |C −→ ωC −→ 0
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which is split if and only if Y is the trivial curve, i.e. the second infinitesimal neighbourhood of
C, embedded by the zero section in the dual bundle L∗, seen as a surface. If Y is not trivial, it
is completely determined by the line of Ext1

OC (ωC , L) induced by the preceding exact sequence.
The non trivial primitive curves of multiplicity 2 and of associated line bundle L are therefore
parametrized by the projective space P(Ext1

OC (ωC , L)).

2.4. Simple primitive multiple curves

Let C be a smooth projective irreducible curve, n ≥ 2 an integer and Cn a primitive multiple
curve of multiplicity n and associated reduced curve C. Then the ideal sheaf IC of C in Cn is
a line bundle on Cn−1.

We say that Cn is simple si IC ' On−1.

In this case the line bundle on C associated to Cn is OC . The following result is proved in [10]
(théorème 1.2.1):

2.4.1. Theorem: Suppose that Cn is simple. Then there exists a flat family of smooth
projective curves τ : C → C such that τ−1(0) ' C and that Cn is isomorphic to the n-th
infinitesimal neighbourhood of C in C.

3. Reducible reduced deformations of primitive multiples curves

3.1. Connected Components

Let (S, P ) be a germ of smooth curve and t ∈ OS,P a generator of the maximal ideal. Let n > 0
be an integer and Y = Cn a projective primitive multiple curve of multiplicity n.

Let k > 0 be an integer. Let π : C → S be a flat morphism, where C is a reduced algebraic
variety, such that

– For every closed point s ∈ S such that s 6= P , the fiber Cs has k irreducible components,
which are smooth and transverse, and any three of these components have no common
point.

– The fiber CP is isomorphic to Cn.

It is easy to see that the irreducible components of C are reduced surfaces.

Let Z be the open subset of C\CP of points z belonging to only one irreducible component of
Cπ(z). Then the restriction of π : Z → S\{P} is a smooth morphism. For every s ∈ S\{P}, let
C ′s = Cs ∩ Z. It is the open subset of smooth points of Cs.
Let z ∈ Z and s = π(z). There exists a neighbourhood (for the usual topology) U of s, iso-
morphic to C, and a neighbourhood V of z such that V ' C2, π(V ) = U , the restriction of
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π : V → U being the projection C2 → C on the first factor. We deduce easily from that the
following facts:

– let s ∈ S\{P} and C1 an irreducible component of Cs. Let z1, z2 ∈ C1 ∩ Z. Then there
exists neighbourhoods (in Z, for the usual topology) U1, U2 of z1, z2 respectively, such
that if y1 ∈ U1, y2 ∈ U2 are such that π(y1) = π(y2), then y1 and y2 belong to the same
irreducible component of Cπ(y1).

– for every continuous map σ : [0, 1] → S\{P} and every z ∈ Z such that σ(0) = π(z)
there exists a lifting of σ, σ′ : [0, 1] → Z such that σ′(0) = z. Moreover, if
σ′′ : [0, 1]→ Z is another lifting of σ such that σ′′(0) = z, then σ′(1) and σ′′(1) are
in the same irreducible component of Cσ(1). More generally, if we only impose that
σ′′(0) is in the same irreducible component of Cσ(0) as z, then σ′(1) and σ′′(1) are in the
same irreducible component of Cσ(1).

3.1.1. Lemma: Let σ0, σ1 : [0, 1]→ S\{P} be two continuous maps such that
σ0(0) = σ1(0), s = σ0(1) = σ1(1). Suppose that they are homotopic. Let σ′0, σ′1 be liftings
[0, 1]→ Z of σ0, σ1 respectively, such that σ′0(0) = σ′1(0). Then σ′0(1) and σ′1(1) belong to
the same irreducible component of C ′s.

Proof. Let
Ψ : [0, 1]× [0, 1] −→ S\{P}

be an homotopy:

Ψ(0, t) = σ0(t), Ψ(1, t) = σ1(t), Ψ(t, 0) = σ0(0), Ψ(t, 1) = σ0(1)

for 0 ≤ t ≤ 1. For every u ∈ [0, 1] and ε > 0 let Iu,ε = [u− ε, u+ ε] ∩ [0, 1]. By using the local
structure of π|Z for the usual topology it is easy to see that for every u ∈ [0, 1], there exists an
ε > 0 such that the restriction of Ψ

Iu,ε × [0, 1] −→ S\{P}
can be lifted to a morphism

Ψ′ : Iu,ε × [0, 1] −→ Z

such that Ψ′(t, 0) = σ′0(0) for every t ∈ Iu,ε. It follows that if Iu,ε = [au,ε, bu,ε], then Ψ′(au,ε, 1)
and Ψ′(bu,ε, 1) are in the same irreducible component of C ′σ0(1). Now we have just to cover [0, 1]
with a finite number of intervals Iu,ε to obtain the result. �

Let s ∈ S\{P}, D1, . . . , Dk be the irreducible components of C ′s and xi ∈ Di for 1 ≤ i ≤ k. Let
σ be a loop of S\{P} with origin s, defining a generator of π1(S\{P}). Let i be an integer such
that 1 ≤ i ≤ k. The liftings σ′ : [0, 1]→ Z of σ such that σ′(0) = xi end up at a component Dj

which does not depend on xi. Hence we can write

j = αC(i).

3.1.2. Lemma: αC is a permutation of {1, . . . , k}.

Proof. Suppose that i 6= j and αC(i) = αC(j). By inverting the paths we find liftings of paths
from DαC(i) to Di and Dj. This contradicts lemma 3.1.1. �
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Let p > 0 be an integer such that αpC = I{1,··· ,k}. Let t be a generator of the maximal ideal of

OS,P , K the field of rational functions on S and K ′ = K(t1/p). Let S ′ be the germ of curve
corresponding to K ′, θ : S ′ → S canonical the morphism and P ′ the unique point of θ−1(P ).
Let D = θ∗(C). We have therefore a cartesian diagram

D
Θ
��

ρ // S ′

θ
��

C π // S

where ρ is flat, and for every s′ ∈ S ′, Θ induces an isomorphism Ds′ ' Cθ(s′). We have

αD = I{1,...,k} .

Let Z ′ ⊂ D be the complement of the union of ρ−1(P ′) and of the singular points of the curves
Ds′ , s′ 6= P ′ (hence Z ′ = Θ−1(Z)).

3.1.3. Proposition: The open subset Z ′ has exactly k irreducible components Z ′1, . . . , Z
′
k. Let

Z ′1, . . . , Z
′
k be their closures in D. Then for every s′ ∈ S ′\{P ′}, the Z ′i ∩ Ds′, 1 ≤ i ≤ k, are the

irreducible components of Ds′ minus the intersection points with the other components, and the
Z ′i ∩ Ds′ are the irreducible components of Ds′.

3.1.4. Definition: Let k > 0 be an integer. We call reducible deformation of length k of Cn
a flat morphism π : C → S, where C is a reduced algebraic variety, such that

– For every closed point s ∈ S, s 6= P , the fiber Cs has k irreducible components, which
are smooth and transverse, and any three of these components have no common point.

– The fiber CP is isomorphic to Cn.
– We have αC = I{1,...,k}.

3.2. Maximal reducible deformations

Let (S, P ) be a germ of smooth curve and t ∈ OS,P a generator of the maximal ideal. Let
n > 0 be an integer and Y = Cn a projective primitive multiple curve of multiplicity n, with
underlying smooth curve C. We note g the genus of C and L the line bundle on C associated
to Cn.

Let π : C → S be a reducible deformation of length k of Cn. Let Z1, . . . , Zk be the closed
subvarieties of π−1(S\{P}) such that for every s ∈ S\{P}, Z1s, . . . , Zks are the irreducible
components of Cs (cf. prop. 3.1.3).

For 1 ≤ i ≤ k, we denote by Ji the ideal sheaf of Z1 ∪ · · · ∪ Zi in π−1(S\{P}). This sheaf is
flat on S\{P}, and we have

0 = Jk ⊂ Jk−1 ⊂ · · · ⊂ J1 ⊂ Oπ−1(S\{P}) .

The quotients Oπ−1(S\{P})/J1, Ji/Ji+1, 1 ≤ i < k, are also flat on S\{P}. We obtain the
filtration of sheaves on C

0 = Jk ⊂ Jk−1 ⊂ · · · ⊂ J1 ⊂ OC .
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(cf. 2.2). According to proposition 2.2.2 the quotientsOC/J1 and Ji/Ji+1, 1 ≤ i < n, are flat on
S. We have Oπ−1(S\{P})/J1 = OZ1 . We denote by Xi the closed subvariety of C corresponding

to the ideal sheaf Ji.
Similarly we consider the ideal sheaf J ′i of Zi+1 ∪ · · · ∪ Zn on π−1(S\{P}), the associated
ideal sheaf J ′i on C and the corresponding subvariety X′i.

3.2.1. Proposition: We have k ≤ n .

Proof. Let E0 = OC/J1 and Ei = Ji/Ji+1 for 1 ≤ i < n. The sheaves EiP are not concentrated
on a finite number of points. To see this we use a very ample line bundle O(1) on C. The
Hilbert polynomial of EiP is the same as that of Eis, s 6= P , hence it is not constant. So we
have R(Ei) ≥ 1 (cf. 2.3), and since

(1) n = R(OCn) =
k∑
i=0

R(EiP ) ,

we have k ≤ n. �

3.2.2. Definition: We say that π (ou C) is a maximal reducible deformation of Cn if k = n.

3.2.3. Theorem: Suppose that C is a maximal reducible deformation of Cn. Then we have,
for 1 ≤ i < n

Ji,P = ICi,Cn
and Xi is a maximal reducible deformation of Ci.

Proof. Let OC(1) be a very ample line bundle on C.
Let Q be a closed point of C. Let z ∈ On,Q be an equation of C and x ∈ On,Q over a generator
of the maximal ideal of Q in OC,Q. Let z,x ∈ OC,Q be over z, x respectively. The maximal ideal
of OnQ is (x, z). The maximal ideal of OC,Q is generated by z,x, t. It follows from proposition
2.1.1 that there exists a neighbourhood U of Q in C and an embedding j : U → P3. We can
assume that the restriction of j to Z1 ∩ U is induced by the morphism φ : C[X,Z, T ]→ OZ1,Q

of C-algebras which associates x, z, t to X, Z, T respectively.

Since C is reduced, U is an open subset of a reduced hypersurface of P3 having n irreducible com-
ponents, corresponding to Z1, . . . , Zn. It is then clear that Xi, beeing the smallest subscheme
of C containing Z1\C, . . . , Zi\C, is the union in U of the first i hypersurface components.

Since j(Z1) is an hypersurface, the kernel of φ is a principal ideal generated by the equation F
of the image of Z1.

Recall that On = OCn = (OC)P . We have R(On/J1,P ) = 1 according to (1). Hence there
exists a nonempty open subset V of Cn such that

(
On/J1,P

)
|V is a line bundle on V ∩ C. It

follows that the projection On → OC vanishes on J1,P |V . Since OC is torsion free this projection

vanishes everywhere on J1, i.e. J1P ⊂ IC,Cn , with equality on V .

The sheaf E0 = OC/J1 is the structural sheaf of Z1, and the projection Z1 → S is a flat mor-
phism. For every s ∈ S\{P}, (Z1)s is a smooth curve. The fiber (Z1)P consists of C and a finite
number of embedded points. There exists flat families of curves whose general fiber is smooth
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and the special fiber consists of an integral curve and some embedded points (cf. [15], III,
Example 9.8.4). We will show that this cannot happen in our case, i.e. we have J1P = IC,Cn .

Let m = (X,Z, T ) ⊂ C[X,Z, T ], and mZ1 the maximal ideal of OZ1,Q
. The ideal of (Z1)P in

On,Q contains zq and xpz (for suitable minimal integers p ≥ 0, q > 0), with p > 0 if and only
if Q is an embedded point. Hence the ideal of Z1 in OC,Q contains elements of type xpz− tα,
zq − tβ, with α, β ∈ OC,Q.

Let ÔZ1,Q
be the completion of OZ1,Q

with respect to mZ1 and

φ̂ : C((X,Z, T )) −→ ÔZ1,Q

the morphism deduced from φ. We can also see ÔZ1,Q
as the completion with respect to

(X,Z, T ) of OZ1,Q
seen as a C[X,Z, T ]-module. It follows that ker(φ̂) = (F ) (cf. [11], lemma

7.15). Note that φ̂ is surjective (this is why we use completions). Let α,β ∈ C((X, Y, Z)) be

such that φ̂(α) = α, φ̂(β) = β. So we have

XpZ − Tα, Zq − Tβ ∈ ker(φ̂) .

Hence there exists A,B ∈ C((X,Z, T )) such that XpZ − Tα = AF , Zq − Tβ = BF . We can
write in an unique way

A = A0 + TA1, B = B0 + TB1, F = F0 + TF1,

with A0, B0, F0 ∈ C((X,Z)) and A1, B1, F1 ∈ C((X,Z, T )), and we have

A0F0 = XpZ, B0F0 = Zq .

Since F is not invertible, it follows that F0 is of the form F0 = cZ, with c ∈ C((X,Z, T ))

invertible. So we have F = cZ + TF1. It follows that z ∈ (t) in ÔZ1,Q
. This implies that this

is also true in OZ1,Q
: in fact the assertion in ÔZ1,Q

implies that

z ∈
⋂
n≥0

((t) + mn
Z1

)

in OZ1,Q
, and the latter is equal to (t) according to [18], vol. II, chap. VIII, theorem 9. Hence

z ∈ (t) in OZ1,Q
, i.e. p = 0 and Q is not an embedded point. So there are no embedded points.

This implies that J1P = IC,Cn . Similarly, if Ij denotes the ideal sheaf of Zj for 1 ≤ j ≤ n, we
have Ij,P = IC,Cn . Since the restriction of π : Zj → S is flat, the curves Ej,s, s 6= P , have the
same genus as C, and the same Hilbert polynomial with respect to OC(1).

Now we show that X′1 is a maximal reducible deformation of Cn−1. We need only to show
that X′1,P = Cn−1. As we have seen, for 2 ≤ j ≤ n, a local equation of Zj at any point Q ∈ C
induces a generator uj of IC,Cn,Q. Hence u =

∏
2≤j≤n uj is a generator of ICn−1,Cn,Q. But u = 0

on X′1. It follows that X′1,P ⊂ Cn−1. But the Hilbert polynomial of OCn−1 is the same as that
of the structural sheaves of the fibers of the flat morphism X′1 → S over s 6= P , hence the same
as OX′1,P

. Hence X′1,P = Cn−1.

The theorem 3.2.3 is then easily proved by induction on n. �

3.2.4. Corollary : Let s ∈ S\{P} and D1, D2 be two irreducible components of Cs. Then D1

is of genus g and D1 ∩D2 consists of − deg(L) points.
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Proof. According to theorem 3.2.3, there exists a flat family of smooth curves C parametrized
by S such that CP = C and Cs = D1. So the genus of D1 is equal to that of C.

Let us prove the second assertion. Again according to theorem 3.2.3 we can suppose that n = 2.
We have then χ(Cs) = χ(C2) = 2χ(C) + deg(L). Let x1, . . . , xN be the intersection points of
D1 and D2. We have an exact sequence

0 −→ OD2(−x1 − · · · − xN) −→ OCs −→ OD1 −→ 0.

Whence χ(OCs) = χ(D1) + χ(D2)−N = 2χ(OC)−N (according to the first assertion).
Whence N = − deg(L). �

3.2.5. It follows from the previous results that if π : C → S is a maximal reducible deformation
of Cn, then we have

(i) deg(L) ≤ 0 .
(ii) C has exactly n irreducible components C1 . . . , Cn.

(iii) For 1 ≤ i ≤ n, the restriction of π, πi : Ci → S is a flat morphism , and π−1
i (P ) = C.

(iv) For every nonempty subset I ⊂ {1, . . . , n}, let CI be the union of the Ci such that i ∈ I,
and m the number of elements of I. Then the restriction of π, πI : CI → S is a maximal
reducible deformation of Cm.

The following is immediate, and shows that we need only to consider maximal reducible defor-
mations parametrized by a neighbourhood of 0 in C:

3.2.6. Proposition: Let t ∈ OS(P ) be a generator of the maximal ideal, and π : C → S a
maximal reducible deformation of Cn. Let S ′ ⊂ S an open neighbourhood of P where t is defined
and C ′ = π−1(U), V = t(U). Then π′ = t ◦ π : C ′ → V is a maximal reducible deformation of
Cn.

4. Fragmented deformations of primitive multiple curves

The fragmented deformations of primitive multiple curves are particular cases of reducible
deformations.

In this chapter (S, P ) denotes a germ of smooth curve. Let t ∈ OS,P be a generator of the
maximal ideal of P . We can suppose that t is defined on the whole of S, and that the ideal
sheaf of P in S is generated by t.

4.1. Fragmented deformations and glueing

Let n > 0 be an integer and Y = Cn a projective primitive multiple curve of multiplicity n.

4.1.1. Definition: Let k > 0 be an integer. A general fragmented deformation of length k
of Cn is a flat morphism π : C → S such that for every point s 6= P of S, the fiber Cs is a
disjoint union of k projective smooth irreducible curves, and such that CP is isomorphic to Cn.
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We have then k ≤ n. If k = n we say that π (or C) is a general maximal fragmented deformation
of Cn. We suppose in the sequel that it is the case.

The line bundle on C associated to Cn is OC (by proposition 3.2.4).

Let p > 0 be an integer. Let K be the field of rational functions on S and K ′ = K(t1/p). Let
S ′ be the germ of curve corresponding to K ′, θ : S ′ → S the canonical morphism and P ′ the
unique point of θ−1(P ). Let D = θ∗(C). So we have a cartesian diagram

D
Θ
��

ρ // S ′

θ
��

C π // S

where ρ is flat, and for every s′ ∈ S ′, Θ induces an isomorphism Ds′ ' Cθ(s′).

4.1.2. Proposition: For a suitable choice of p, D has exactly n irreducible components
D1, . . . ,Dn, and for every point s 6= P ′ of S ′, D1s, . . . ,Dns are the irreducible components of
Ds, for 1 ≤ i ≤ n the restriction of ρ: Dis → S ′ is flat, and DP ′ = Cn.

(See proposition 3.1.3)

4.1.3. Definition: A fragmented deformation of Cn is a general maximal fragmented defor-
mation of length n of Cn having n irreducible components.

We suppose in the sequel that C is a fragmented deformation of Cn, union of n irreducible
components C1, . . . , Cn.

4.1.4. Proposition: Let I ⊂ {1, . . . , n} a nonempty subset having m elements. Let
CI = ∪i∈ICi. Then the restriction of π, CI → S, is flat, and the fiber CIP is canonically iso-
morphic to Cm.

(See 3.2.5)

In particular there exists a filtration of ideal sheaves

0 ⊂ I1 ⊂ · · · ⊂ In−1 ⊂ OC
such that for 1 ≤ i < n and s ∈ S\{P}, Iis is the ideal sheaf of ∪nj=iCjs, and that IiP is that of
Cn−i.

4.1.5. Definition: For 1 ≤ i ≤ n, let π : Ci → S be a flat family of smooth projective irre-
ducible curves, with a fixed isomorphism π−1

i (P ) ' C. A glueing of C1, · · · , Cn along C is an
algebraic variety D such that

- for 1 ≤ i ≤ n, Ci is isomorphic to a closed subvariety of D, also denoted by Ci, and D
is the union of these subvarieties.

-
∐

1≤i≤n(Ci\C) is an open subset of D.
- There exists a morphism π : D → S inducing πi on Ci, for 1 ≤ i ≤ n.
- The subvarieties C = π−1

i (P ) of Ci coincide in D.
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For example the previous fragmented deformation C of Cn is a glueing of C1, · · · , Cn along C.

All the glueings of C1, · · · , Cn along C have the same underlying Zariski topological space.

Let A the initial glueing of the Ci along C. It is an algebraic variety whose points are the same
as those of C, i.e.

(
n∐
i=1

Ci)/ ∼ ,

where ∼ is the equivalence relation: if x ∈ Ci and y ∈ Cj, x ∼ y if and only if x = y, or if
x ∈ CiP ' C, y ∈ CjP ' C and x = y in C. The structural sheaf is defined by : for every open
subset U of A

OA(U) = {(α1, . . . , αn) ∈ OC1(U ∩ C1)× · · ·OCn(U ∩ Cn);α1|C = · · · = αn|C}.
For every glueing D of C1, · · · , Cn, we have an obvious dominant morphism A→ D. If follows
that the sheaf of rings OD can be seen as a subsheaf of OA.

The fiber D = A0 is not a primitive multiple curve (if n > 2): if IC,D denotes the ideal sheaf
of C in D we have I2

C,D = 0, and IC,D ' OC ⊗ Cn−1 .

4.1.6. Proposition: Let D be a glueing of C1, · · · , Cn. Then π−1(P ) is a primitive multiple
curve if and only if for every closed point x of C, there exists a neighbourhood of x in D that
can be embedded in a smooth variety of dimension 3.

Proof. Suppose that π−1(P ) is a primitive multiple curve. Then IC/(I2
C + (π)) is a principal

module at x : suppose that the image of u ∈ mD,x is a generator. The module mD,x/IC is also
principal (since it is the maximal ideal of x in C) : suppose that the image of v ∈ mD,x is a
generator. Then the images of u, v, π generate mD,x/m

2
D,x, so according to proposition 2.1.1,

we can locally embed D in a smooth variety of dimension 3.

Conversely, suppose that a neighbourhood of x ∈ C in D is embedded in a smooth variety Z of
dimension 3. The proof of the fact that π−1(P ) is Cohen-Macaulay is similar to that of theorem
3.2.3. We can suppose that π is defined on Z. We have π|C1 = π1 6∈ m2

C1,x, so π 6∈ m2
Z,x. It

follows that the surface of Z defined by π is smooth at x, and that we can locally embed π−1(P )
in a smooth surface. Hence π−1(P ) is a primitive multiple curve. �

4.2. Fragmented deformations of length 2

Let π : C → S be a fragmented deformation of C2. So C has two irreducible components C1, C2.
Let A be the glueing of C1 and C2 along C. For every open subset U of C, U is also an open
subset of A and OC(U) is a sub-algebra of OA(U). For i = 1, 2, let πi : Ci → S be the restriction
of π. We will also denote t ◦ π by π, and t ◦ πi by πi. So we have π = (π1, π2) ∈ OC(C).
Let IC be the ideal sheaf of C in C. Since C2 = π−1(P ) we have I2

C ⊂ 〈(π1, π2)〉 .

Let m > 0 be an integer, x ∈ C, α1 ∈ OC1,x, α2 ∈ OC2,x. We denote by [α1]m (resp. [α2]m) the
image of α1 (resp. α2) in OC1,x/(πm1 ) (resp. OC2,x/(πm2 )).

4.2.1. Proposition: 1 – There exists an unique integer p > 0 such that IC/〈(π1, π2)〉 is
generated by the image of (πp1, 0).
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2 – The image of (0, πp2) generates IC/〈(π1, π2)〉.
3 – For every x ∈ C, α ∈ OC1,x and β ∈ OC2,x, we have (πp1α, 0) ∈ OC,x and (0, πp2β) ∈ OC,x.

Proof. Let x ∈ C and u = (π1α, π2β) whose image is a generator of IC/〈(π1, π2)〉 at x
(IC/〈(π1, π2)〉 is a locally free sheaf of rank 1 of OC-modules). Let β0 ∈ OC1,x be such that
(β0, β) ∈ OC,x. Then the image of

u− (π1, π2)(β0, β) = (π1(α− β0), 0)

is also a generator of IC/〈(π1, π2)〉 at x. We can write it (πp1λ, 0), where λ is not a multiple of
π1.

Now we show that p is the smallest integer q such that (IC/〈(π1, π2)〉)x contains the image of
an element of the form (πq1µ, 0), with µ not divisible by π1. We can write

(πq1µ, 0) = (u1, u2)(πp1λ, 0) + (v1, v2)(π1, π2)

with (u1, u2), (v1, v2) ∈ OC,x. So we have v2 = 0, hence (v1, v2) ∈ IC,x. So we can write (v1, v2)
as the sum of a multiple of (πp1λ, 0) and a multiple of (π1, π2). Finally we obtain (πq1µ, 0) as

(πq1µ, 0) = (u12, u22)(πp1λ, 0) + (v11, 0)(π1, π2)2.

In the same way we see that (πq1µ, 0) can be written as

(πq1µ, 0) = (u1p, u2p)(π
p
1λ, 0) + (v1p, 0)(π1, π2)p,

which implies immediately that q ≥ p.

It follows that p does not depend on x and that IC/〈(π1, π2)〉 is a subsheaf of
〈(πp1, 0)〉/〈(πp+1

1 , 0)〉 ' OC . Since IC/〈(π1, π2)〉 is of degree 0 by (by corollary 3.2.4) it follows
that IC/〈(π1, π2)〉 ' 〈(πp1, 0)〉/〈(πp+1

1 , 0)〉, from which we deduce assertion 1- of proposition
4.2.1. The second assertion comes from the fact that (0, πp2) = πp − (πp1, 0).

To prove the third, we use the fact that there exists α′ ∈ OC2,x such that (α, α′) ∈ OC,x (because
C1 ⊂ C). Hence (πp1, 0)(α, α′) = (πp1α, 0) ∈ OC,x. Similarly, we obtain that (0, πp2β) ∈ OC,x. �

According to the proof the proposition 4.2.1, for every x ∈ C, p is the smallest integer q such
that there exists an element of OC,x of the form (πq1α, 0) (resp. (0, πq2α)), with α ∈ OC1,x (resp.
α ∈ OC2,x) not vanishing on C.

Let x ∈ C and α1 ∈ OC1,x. Since C1 ⊂ C there exists α2 ∈ OC2,x such that (α1, α2) ∈ OC,x.
Let α′2 ∈ OC2,x such that (α1, α

′
2) ∈ OC,x. We have then (0, α2 − α′2) ∈ OC,x. So there exists

α ∈ OC2,x such that α2 − α′2 = πp2α. It follows that the image of α2 in OC2,x/(π
p
2) is uniquely

determined. Hence we have:

4.2.2. Proposition: There exists a canonical isomorphism

Φ : C(p)
1 −→ C

(p)
2

between the infinitesimal neighbourhoods of order p of C1 and C2 (i.e. OC(p)
i

= OCi/(π
p
i )), such

that for every x ∈ C, α1 ∈ OC1,x and α2 ∈ OC2,x, we have (α1, α2) ∈ OC,x if and only if
Φx([α1]p) = [α2]p. For every α ∈ OC1,x we have Φx(α)|C = α|C, and Φx(π1) = π2.
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The simplest case is p = 1. In this case Φ : C → C is the identity and C = A (the initial
glueing).

4.2.3. Converse - Recall that A denotes the initial glueing of C1, C2 (cf. 4.1.5). Let

Φ : C(p−1)
1 → C(p−1)

2 be an isomorphism inducing the identity on C and such that Φ(π1) = π2.
We define a subsheaf of algebras UΦ of OA: UΦ = OA on A\C, and for every point x of C

UΦ,x = {(α1, α2) ∈ OC1,x ×OC2,x ; Φx([α1]p) = [α2]p} .
It is easy to see that UΦ is the structural sheaf of an algebraic variety AΦ, that the inclu-
sion UΦ ⊂ OA defines a dominant morphism A → AΦ inducing an isomorphism between the
underlying topological spaces (for the Zariski topology), and that the composed morphisms
Ci ⊂ A→ AΦ, i = 1, 2, are immersions. Moreover, the morphism π : A→ S factorizes through
AΦ :

A //

π

>>AΦ
πΦ // S

and πΦ : AΦ → S is flat.

For 2 ≤ i ≤ p, let Φ(i) : C(i)
1 → C

(i)
2 be the isomorphism induced by Φ.

4.2.4. Proposition: π−1
Φ (P ) is a primitive double curve.

Proof. Let x be a closed point of C. We first show that I2
C,x ⊂ (π). Let u = (π1α, π2β) ∈ IC,x.

Let β′ ∈ OC2,x be such that Φx([α]p) = [β′]p. We have then v = (α, β′) ∈ OC,x. We have
u− πv = (0, π2(β − β′)) ∈ OC,x. Therefore [π2(β − β′)]p = Φx(0) = 0. Hence
π2(β − β′) ∈ (πp2). We can then write

u = πv + (0, πp2γ).

Let u′ ∈ IC,x, that can be written as u′ = πv′ + (0, πp2γ
′). We have then

uu′ = π.
(
πvv′ + (0, π2γ

′)v + (0, π2γ)v′ + (0, π2p−1
2 γγ′)

)
∈ (π).

It remains to show that IC,x/(π) ' OC,x. We have

IC,x = {(π1α, π2β) ∈ OC1,x ×OC2,x; Φx([π1α]p) = [π2β]p}
= {(π1α, π2β) ∈ OC1,x ×OC2,x; Φ(p−1)

x ([α]p−1) = [β]p−1},
(π)x = {(π1α, π2β) ∈ OC1,x ×OC2,x; Φx([α]p) = [β]p}.

So if (π1α, π2β) ∈ IC,x, we have w = Φx([α]p)− [β]p ∈ (πp−1
2 )x/(π

p
2)x ' OC,x. Hence we have

a morphism of OC,x-modules

λ : IC,x // OC,x

(π1α, π2β) � // w

whose kernel is (π)x. We have now only to show that λ is surjective, which follows from the
fact that λ(πp1, 0) = 1. �



18 JEAN–MARC DRÉZET

4.3. Spectrum of a fragmented deformation and ideals of sub-deformations

Let π : C → S be a fragmented deformation of Cn, C1, . . . , Cn the irreducible components of C.
For 1 ≤ i ≤ n, let πi = π|Ci . As in 4.2, we denote also t ◦ πi by πi. Let I = {i, j} be a subset of
{1, . . . , n}, with i 6= j. Then π : CI → S is a fragmented deformation of C2. According to 4.2
there exists a unique integer p > 0 such that IC,CI/(π) is generated by the image of (πpi , 0) (and
also by the image of (0, πpj )). Recall that p is the smallest integer q such that IC,CI contains a
non zero element of the form (πqi λ, 0) (or (0, πqjµ)), with λ|C 6= 0 (resp. µ|C 6= 0). Let

pij = pji = p,

and pii = 0 for 1 ≤ i ≤ n. The symmetric matrix (pij)1≤i,j≤n is called the spectrum of C.

4.3.1. Generators of (IpC + (π))/(Ip+1
C + (π)) - Let i, j ∈ {1, . . . , n} be such that i 6= j. Let

x ∈ C. Since C{i,j} ⊂ C there exists an element uij = (um)1≤m≤n of OC,x such that ui = 0 and
uj = π

pij
j . According to proposition 4.1.4, the image of uij generates IC/(I2

C + (π)) at x.

According to proposition 4.2.1 and the fact that the image of uij generates
IC,Cij ,x/(I2

C,Cij ,x + (π)), for every integer m such that m 6= i, j and that 1 ≤ m ≤ n, um is of the

form um = α
(m)
ij πpimm , with α

(m)
ij ∈ OCm,x invertible. Let α

(i)
ij = 0 and α

(j)
ij = 1.

4.3.2. Proposition: 1 – α
(m)
ij|C is a non zero constant, uniquely determined and independent

of x.

2 – Let a
(m)
ij = α

(m)
ij|C ∈ C. Then we have, for all integers i, j, k,m, q such that

1 ≤ i, j, k,m, q ≤ n, i 6= j, i 6= k

a
(m)
ik a

(q)
ij = a

(q)
ik a

(m)
ij .

In particular we have a
(m)
ij = a

(m)
ik a

(k)
ij and a

(m)
ij a

(j)
im = 1.

Proof. Let u′ij having the same properties as uij. Then v = u′ij − uij ∈ I2
C,x + (π). So the

image of v in OCim,x belongs to I2
C,Cim,x + (π). It follows that the m-th component of v is a

multiple of πpim+1
m . Hence α

(m)
ij|C is uniquely determined. It follows that when x varies the α

(m)
ij|C

can be glued together and define a global section of OC , which must be a constant. This proves
1-.

Now we prove 2-. There exists u ∈ OC,x such that the k-th component of u is α
(k)
ij , and u is

invertible. Then the image of (vm) =
uij
u

generates IC/(I2
C + (π)), and vk = 1. Hence according

to 1-, we have vm|C = a
(m)
ik , i.e.

a
(m)
ij

a
(k)
ij

= a
(m)
ik .

We have the same equality with m instead of q, whence 2- is easily deduced. �

Let p an integer such that 1 ≤ p < n, and (i1, j1), . . . , (ip, jp) p pairs of distinct integers of

{1, . . . , n}. Then the image of
∏p

m=1 uimjm is a generator of (IpC + (π))/(Ip+1
C + (π)).
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Let I ⊂ {1, · · · , n} be a nonempty subset, distinct from {1, · · · , n}. Let i ∈ {1, · · · , n}\I.
Let

uI,i =
∏
j∈I

uji .

Recall that CI = ∪j∈ICj ⊂ C.

4.3.3. Proposition: The ideal sheaf of CI is generated by uI,i at x.

Proof. According to proposition 4.1.6 there exists an embedding of a neighbourhood of x in a
smooth variety of dimension 3. In this variety each Ci is a smooth surface defined by a single
equation. The ideal of the union of the Ci, i ∈ I is the product of these equations. �

4.3.4. Proposition: Let i, j, k be distinct integers such that 1 ≤ i, j, k ≤ n. Then if pij < pjk,
we have pik = pij.

Proof. We can come down to the case n = 3 by considering C{i,j,k}. We can suppose that
p23 ≤ p12 ≤ p13, and we must show that p23 = p12. We have

u21 = (πp12

1 , 0, α
(3)
21 π

p23

3 ), u31 = (πp13

1 , α
(2)
31 π

p23

2 , 0).

So
u31 − πp13−p12u21 =

(
0, α

(2)
31 π

p23

2 ,−α(3)
21 π

p23+p13−p12

3

)
∈ OC,x.

Taking the image of this element in OC12x, we see that p23 ≥ p12, hence p23 = p12. �

4.3.5. Proposition: 1 – Let i, j be distinct integers such that 1 ≤ i, j ≤ n. Then we have
IC,x = (uij) + (π).

2 – Let v = (vm)1≤m≤n ∈ IC,x such that vi is a multiple of πpi , with p > 0. Then we have
v ∈ (uij) + (πp).

Proof. Let N = 1 + max1≤k≤n(qi). For every integer j such that 1 ≤ j ≤ n we have
(0, . . . , 0, π

qj
j , 0, . . . , 0) ∈ OC(C), Hence INC ⊂ (π). We will show by induction on k that

IC,x ⊂ (uij) + (π) + IkC,x. Taking k = N we obtain 1-.

For k = 1 it is obvious. Suppose that it is true for k − 1 ≥ 1. It is enough to prove
that Ik−1

C,x ⊂ (uij) + (π) + IkC,x. Let w1, . . . , wk−1 ∈ IC,x. Since the image of uij generates

IC,x/(I2
C,x + (π)), we can write wp as

wp = λpuij + πµp + νp,

with λp, µp ∈ OC,x and νp ∈ I2
C,x. So we have

w1 · · ·wk−1 = λuij + πµ+ ν,

with λ, µ ∈ OC,x and νp ∈ I2k−2
C,x . Since 2k − 2 ≥ k, we have w1 · · ·wk−1 ∈ (uij) + (π) + IkC,x.

This proves 1-.

We prove 2- by induction on p. The case p = 1 follows 1-. Suppose that it is true for p− 1 ≥ 1.
So we can write v as

v = λuij + πp−1µ,
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with λ, µ ∈ OC,x. We can write vi as vi = απp. So we have απpi = πp−1
i µi, whence µi = απi.

Hence µ ∈ ICx. According to 1- we can write µ as µ = θuij + πτ , with θ, τ ∈ OC,x. So

v = (λ+ πp−1θ)uij + πpτ,

which proves the result for p. �

4.3.6. The ideal sheaves ICI – Recall that I ⊂ {1, · · · , n} is a nonempty subset, distinct from
{1, · · · , n}. For every subset J of {1, · · · , n}, let J c = {1, · · · , n}\J and OJ = OCJ . It follows
from proposition 4.3.3 that ICI is a line bundle on CIc .

From now on, we suppose that S ⊂ C and P = 0 (cf. proposition 3.2.6).

4.3.7. Theorem: We have ICI ' OIc.

Proof. By induction on n. If n = 2 the result follows from proposition 4.2.1 and the fact that
S ⊂ C. Suppose that it is true for n− 1 ≥ 2. We will prove that it is true for n by induction
on the number of elements q of Ic. Suppose first that q = 1 and let i be the unique element
of Ic. Then according to proposition 4.3.3, ICI is generated by (0, . . . , 0, πqii , 0, . . . , 0), so the
result is true in this case. Suppose that it is true if 1 ≤ q < k < n, and that q = k. Let
K = {1, · · · , n− 1}. We can assume that I ⊂ K.

According to proposition 4.3.3, we have, for every x ∈ C, ICI ,x ' OIcx. We have ICK ⊂ ICI ,
and ICK ' O{n}. We have

ICI/ICK = ICI ,CK
(the ideal sheaf of CI in CK). From the first induction hypothesis we have

ICI ,CK ' O(I∪{n})c .

So we have an exact sequence of sheaves

0 −→ O{n} −→ ICI −→ OIc\{n} −→ 0.

Now we will compute Ext1
OC(OIc\{n},O{n}). According to [8], 2.3, we have an exact sequence

0 −→ Ext1
OIc (OIc\{n},O{n}) −→ Ext1

OC(OIc\{n},O{n}) −→ Hom(Tor1
OC(OIc\{n},OIc),O{n}).

Since Tor1
OC(OIc\{n},OIc) is concentrated on CIc\{n}, we have

Hom(Tor1
OC(OIc\{n},OIc),O{n}) = {0}.

So we have
Ext1

OC(OIc\{n},O{n}) = Ext1
OIc (OIc\{n},O{n}).

Let J denote the ideal sheaf of C{n} in CIc . The ideal sheaf of CIc\{n} is generated by

w = (0, . . . , 0, πmn ), with m =
∑

i∈Ic\{n}

pin. So we have an exact sequence of sheaves on CIc

0 // J // OIc
α // OIc // OIc\{n} // 0 ,
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where α is the multiplication by w. By the induction hypothesis there exists a surjective
morphism OIc → J , so we get a locally free resolution of OIc\{n}

OIc // OIc
α // OIc // OIc\{n} // 0 ,

that can be used to compute Ext1OIc (OIc\{n},O{n}). It follows easily that

Ext1OIc (OIc\{n},O{n}) ' O{n}/(π
m
n ) .

We have Hom(OIc\{n},O{n}) = 0, hence

Ext1
OIc (OIc\{n},O{n}) ' H0(Ext1OIc (OIc\{n},O{n}))

' H0(O{n}/(πmn ))

' H0(OS/(πmn ))

' C[πn]/(πmn ).

We will now describle the sheaves E such that there exists an exact sequence

(2) 0 −→ O{n} −→ E −→ OIc\{n} −→ 0.

Let ν ∈ C[πn]/(πmn ) be associated to this exact seqence, and ν ∈ H0(OS) over ν. Let

τ : O{n} // O{n} ⊕OIc

u � // (νu,wu)

Then according to the preceding resolution of OIc\{n} and the construction of extensions (cf.
[7], 4.2), we have E ' coker(τ). It is easy to see that if ν = −1 then E ' OIc . If ν is invertible,
then we have also E ' OIc , because the corresponding extension can be obtained from the one
corresponding to ν = −1 by multiplying the left morphism of the exact sequence by ν.

A similar construction can be done for extensions of OIc,x-modules (for every x ∈ C)

0 −→ O{n},x −→ V −→ OIc\{n},x −→ 0.

These extensions are classified by O{n},x/(πmn ), and OIc,x corresponds to −1.

Conversely we consider extensions

0 // O{n},x
λ // OIc,x

µ // OIc\{n},x // 0 .

Using the facts that Hom(O{n},x,OIc,x) is generated by the multiplication by w and
Hom(OIc,x,OIc\{n},x) by the restriction morphism, it is easy to see that λ, µ are unique up to

multiplication by an invertible element ofOIc,x. Hence the elements of Ext1
OIc,x(OIc\{n},x,O{n},x)

corresponding to the preceding extensions are exactly the invertible elements of O{n},x/(πmn ).

It follows that the extensions (2) where E is locally free correspond to invertible elements of
C[πn]/(πmn ), and we have seen that in this case we have E ' OIc . Hence we have ICI ' OIc
and theorem 4.3.7 is proved. �

4.3.8. Corollary : The ideal sheaf of CI is globally generated by an element uI such that for
every integer i such that 1 ≤ i ≤ n and i 6∈ I, the i-th coordinate of uI belongs to H0(OS).
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4.4. Properties of the fragmented deformations

We use the notations of 4.3.

Let i be an integer such that 1 ≤ i ≤ n and Ji = {1, . . . , n}\{i}. We denote by B the image
of OC in

∏
1≤j≤nOCj/(π

qj
j ); it is a sheaf of C-algebras on C. Let Bi be the image of OCJi in∏

1≤j≤n,j 6=iOCj/(π
qj
j ); it is also a sheaf of C-algebras on C. For every point x of C and every

α = (αm)1≤m≤n in
∏

1≤j≤nOCj ,x, we denote by bi(α) its image in
∏

1≤j≤n,j 6=iOCj ,x (obtained

by forgetting the i-th coordinate of α).

If p, k are positive integers, with k ≤ n, x ∈ C and α ∈ OCk,x, let [α]p denote the image of α in
OCk,x/π

p
k.

4.4.1. Proposition: There exists a morphism of sheaves of algebras on C

Φi : Bi −→ OCi/(π
qi
i )

such that for every point x of C and all (αm)1≤m≤n,m 6=i ∈ OCJi ,x, αi ∈ OCi,x, we have

α = (αm)1≤m≤n ∈ OC,x if and only if Φi,x(bi(α)) = [αi]qi.

Proof. Let (αm)1≤m≤n,m 6=i ∈ OCJix. Since CJi ⊂ C, there exists αi ∈ OCi,x such that

(αm)1≤m≤n ∈ OC,x. If α′i ∈ OCix has the same property, we have
(0, . . . , 0, αi − α′i, 0, . . . , 0) ∈ IJix. So according to proposition 4.3.3, we have [αi]qi = [α′i]qi .
Hence we have well defined a morphism of algebras θx : OCJi ,x → OCJi/(π

qi
i ) sending

(αm)1≤m≤n,m 6=i to [αi]qi . If j ∈ Ji, we have according to proposition 4.3.3,
θx(0, . . . , 0, π

qj
j , 0, . . . , 0) = 0. Hence θx induces a morphism of algebras Bi,x → OCi,x/(π

qi
i ). �

The morphism Φi has the following properties: for every point x of C

(i) For every α = (αm)1≤m≤n,m 6=i ∈ Bi,x, we have Φi,x(α)|C = αm|C for 1 ≤ m ≤ n, m 6= i.
(ii) We have Φi,x((πm)1≤m≤n,m 6=i) = πi.

(iii) Let j, k ∈ {1, · · · , n} be such that i, j, k are distinct. Let v be the image of ujk in Bi.
Then there exists λ ∈ O∗Ci,x such that Φi,x(v) = λπ

pij
i .

(iv) Let j be an integer such that 1 ≤ j ≤ n and j 6= i. Let v be the image of uij in Bi,x.
Then we have ker(Φi,x) = (v).

4.4.2. Converse - Let C ′ be a glueing of C1, . . . , Ci−1, Ci+1, . . . , Cn along C, which is a fragmented
deformation of a primitive multiple curve of multiplicity n− 1. Let (pjk)1≤j,k≤n,j,k 6=i be the
spectrum of C ′. Let pij, 1 ≤ j ≤ n, j 6= i be positive integers, and pii = 0. For 1 ≤ j ≤ n, let

qj =
∑

1≤k≤n

pkj.

Let Bi be the image of OC′ in
∏

1≤j≤n,j 6=iOCj/(π
qj
j ) and

Φi : Bi −→ OCi/(π
qi
i )

a morphism of sheaves of algebras on C satisfying properties (i), (ii), (iii) above. Let A be the
subsheaf of algebras of A defined by : A = A on Atop\C, and for every point x of C, and every
α = (αm)1≤m≤n ∈

∏n
m=1OCm,x , α ∈ Ax if and only if bi(α) ∈ Bi,x and Φi,x(bi(α)) = [αi]qi .
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It is easy to see that A is the structural sheaf of a glueing of C1, . . . , Cn along C, which
is a fragmented deformation of a primitive multiple curve of multiplicity n, and that
C ′ = A{1,...,i−1,i+1,...,n}.

We give now some applications of the preceding construction.

4.4.3. Corollary : Let N an integer such that N ≥ max1≤i≤n(qi). Let x ∈ C,
β ∈ OC1,x × · · ·OCn,x and u ∈ OC,x such that u|C 6= 0. Suppose that [βu]N ∈ OC,x/(πN). Then
we have [β]N ∈ OC,x/(πN).

Proof. By induction on n. It is obvious if n = 1. Suppose that the lemma is true for n− 1.
Let I = {1, . . . , n− 1}. So we have [β|C1×···Cn−1 ]N ∈ OCI ,x/(π1, . . . , πn−1)N by the induction
hypothesis. Let γ (resp. v) be the image of β (resp. u) in Bn. To show that [β]N ∈ OC,x/(πN)
it is enough to verify that

Φn(γ) = [βn]qn .

We have Φn(γv) = [βnun]qn because [βu]N ∈ OC,x/(πN), and Φn(v) = [un]qn because u ∈ OC,x.
So we have

Φn(γ)[un]qn = Φn(γ)Φn(v) = Φn(γv) = [βnun]qn = [βn]qn [un]qn .

Since u|C 6= 0, [un]qn is not a zero divisor in OCn,x/(πqnn ), so we have Φn(γ) = [βn]qn . �

4.4.4. Corollary : Let q = max1≤i≤n(qi) and p the number of integers i such that 1 ≤ i ≤ n
and qi = q. Then we have p ≥ 2.

Proof. Suppose that qi = q. Then we have πqi−1
i 6= 0 in OCi/(π

qi
i ). Since

πi = Φi((πm)1≤m≤n,m 6=i), we have (πqi−1
m )1≤m≤n,m 6=i 6= 0 in Bi. So we cannot have qm < qi for

all the m 6= i. �

Let i be an integer such that 1 ≤ i ≤ n,

H =
∏

1≤j≤n

(π
qj−1
j )/(π

qj
j ) ' OnC (resp. Hi =

∏
1≤j≤n,j 6=i

(π
qj−1
j )/(π

qj
j ) ' On−1

C ).

It is an ideal sheaf of
∏

1≤j≤nOCj/(π
qj
j ) (resp.

∏
1≤j≤n,j 6=iOCj/(π

qj
j ) ). Let J = H ∩ B (resp.

Ji = Hi ∩ Bi), which is an ideal sheaf of B (resp. Bi).

4.4.5. Proposition: There exists a unique λ(C) = (λ1, . . . , λn) ∈ Pn(C) such that for every
u = (uj)1≤j≤n ∈ H, we have u ∈ J if and only if λ1u1 + · · ·λnun = 0. The λi are all non zero.

Proof. We have (πm)1≤m≤n,m 6=i.Ji = 0. Hence πiΦi(Ji) = 0 and

Φi(Ji) ⊂ (πqi−1
i )/(πqij ). The restriction of Φi, Ji → (πqi−1

i )/(πqij ) is a morphism
(n− 1)OC → OC of vector bundles on C. The existence of (λ1, . . . , λn) follows from that.

If λi = 0, we have (0, . . . , 0, πqi−1
i , 0, . . . , 0) ∈ OC(C). This is impossible because according to

proposition 4.3.3, (0, . . . , 0, πqii , 0, . . . , 0) generates the ideal sheaf of CJi in C. �
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For all distinct integers i, j such that 1 ≤ i, j ≤ n, let Iij = {1, . . . , n}\{i, j}. Then according
to proposition 4.3.3, uIiji generates the ideal sheaf of CIij . We have uIiji = (bk)1≤k≤n, with

bk = 0 if k 6= i, j, bi = π
qi−pij
i and

bj =
( ∏

1≤m≤n,m 6=i,j

α
(j)
mi

)
.π
qj−pij
j .

So we have πpij−1uIiji ∈ Ji, which gives the equation

(3)
λi
λj

= −
∏

1≤m≤n,m 6=i,j

a
(j)
mi.

4.4.6. Proposition: For all distinct integers i, j, k such that 1 ≤ i, j, k ≤ n, we have

a
(j)
ki = −a

(j)
ik a

(k)
ji .

Proof. We need only to treat the case n = 3, and the preceding formula by writing that
λ1

λ3
= λ1

λ2
.λ2

λ3
, using (3). �

4.4.7. Proposition: Let (α1π
m1
1 , . . . , αnπ

mn
n ) ∈ OC,x, with α1, . . . , αn invertible. Let

M = m1 + · · ·+mn. then ( 1

α1

πM−m1
1 , . . . ,

1

αn
πM−mnn

)
∈ OC,x .

Proof. By induction on n. It is obvious for n = 1. Suppose that it is true for n− 1 ≥ 1. Let
I = {1, . . . , n− 1}. Then (α1π

m1
1 , . . . , αn−1π

mn−1

n−1 ) ∈ OCI,x . Hence, by the induction hypothesis,
we have ( 1

α1

πM−m1−mn
1 , . . . ,

1

αn−1

π
M−mn−1−mn
n−1

)
∈ OCI,x .

So there exists γ ∈ OCn,x such that

u =
( 1

α1

πM−m1−mn
1 , . . . ,

1

αn−1

π
M−mn−1−mn
n−1 , γ

)
∈ OC,x .

Multiplying by (α1π
m1
1 , . . . , αnπ

mn
n ) we see that (πM−mn1 , . . . , πM−mnn−1 , γαnπ

mn
n ) ∈ OC,x. Sub-

stracting πM−mn , we find that (0, . . . , 0, γαnπ
mn
n − πM−mnn ) ∈ OC,x. There exists α ∈ OC,x such

that the n-th coordinate of α is αn, and α is invertible. It follows that
v = (0, . . . , 0, γπmnn − 1

αn
πM−mnn ) ∈ OC,x. Now we have

πmnu− v =
( 1

α1

πM−m1
1 , . . . ,

1

αn
πM−mnn

)
∈ OC,x .

�

4.4.8. Corollary : Let V ⊂ U be open subsets of C, and suppose that U ∩ C 6= ∅. Let
α ∈ OC(V ) and β ∈ OA(U) such that β|V = α. Then β ∈ OC(U).

(Recall that A is the initial glueing of C1, . . . , Cn (cf. 4.1.5)).

Proof. This can be proved easily by induction on n, using proposition 4.4.1. �
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4.5. Construction of fragmented deformations

Consider a fragmented deformation

π = π[n−1] = (π1, . . . , πn−1) : C[n−1] −→ S

of Cn−1, with n− 1 irreducible components C1, . . . , Cn−1. Let (p
[n−1]
ij )1≤i,j<n be its spectrum.

For 1 ≤ i < n, let q
[n−1]
i =

∑
1≤j<n

p
[n−1]
ij . We denote by I [n−1]

C the ideal sheaf of C in C[n−1]. Let

λ(C[n−1]) = (λ1, . . . , λn−1).

Let p1n, . . . , pn−1,n be positive integers, qi = q
[n−1]
i + pin for 1 ≤ i < n, and

qn = p1n + · · ·+ pn−1,n. Let u ∈ I [n−1]
C,x whose image generates I [n−1]

C,x /((I [n−1]
C,x )2 + (π)), of the

form
u = (β1π

p1n

1 , . . . , βn−1π
pn−1,n

n−1 ),

with βi ∈ OCi,x invertible for 1 ≤ i < n.

Let B[n−1] be the image of OC[n−1] in OC1/(π
q1
1 )× · · · × OCn−1/(π

qn−1

n−1 ) . We will also denote by

u the image of u in B[n−1]. Let Q = B[n−1]/(u) , ρ : B[n−1] → Q the projection and πn = ρ(π).

4.5.1. Proposition: We have πqnn = 0 .

Proof. According to proposition 4.4.7 we have

v =
( 1

β1

πqn−p1n

1 , . . . ,
1

βn−1

πqn−pn−1,n
n

)
∈ OC[n−1]x .

Hence πqn = vu ∈ (u) in OC[n−1]x, and πqnn = 0 . �

4.5.2. Proposition: 1 – We have πqn−1
n = 0 if and only if

λ1

β1|C
+ · · ·+ λn−1

βn−1|C
= 0 .

We suppose now that λ1

β1|C
+ · · ·+ λn−1

βn−1|C
6= 0. Then

2 – For every ε ∈ B[n−1]
x such that ε|C 6= 0, we have πqn−1ε 6∈ (u).

3 – For every η ∈ B[n−1]
x /(u), and every integer k such that 1 ≤ k < qn, we have πknη = 0 if

and only if η is a multiple of πqn−kn .

4 – B[n−1]
x /(u) is a flat C[πn]/(πqnn )-module.

Proof. We have πqn−1
n = 0 if and only if (πqn−1

1 , . . . , πqn−1
n−1 ) ∈ (u) in B[n−1]

x . We have, in
OC1x × · · · × OCn−1,x ,

(πqn−1
1 , . . . , πqn−1

n−1 ) = (β1π
p1n

1 , . . . , βn−1,nπ
pn−1,n

n−1 ).(
1

β1

π
q
[n−1]
1 −1

1 , . . . ,
1

βp
π
q
[n−1]
n−1 −1

1 ),

and πqn−1
n = 0 if and only if there exists η ∈ OC[n−1],x, ai ∈ OCi,x, 1 ≤ i < n, such that

(πqn−1
1 , . . . , πqn−1

n−1 ) = ηu + (a1π
q1
1 , . . . , an−1π

qn−1

n−1 ).
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This equality is equivalent to

(
1

β1

π
q
[n−1]
1 −1

1 , . . . ,
1

βn−1

π
q
[n−1]
n−1 −1

1 )− η = (
a1

β1

π
q
[n−1]
1

1 , . . . ,
an−1

βn−1

π
q
[n−1]
n−1

n−1 ).

Since for 1 ≤ i < n, we have (0, . . . , 0, π
q
[n−1]
i
i , 0, . . . 0) ∈ OC[n−1],x, we have πqn−1

n = 0 if and only
if

(
1

β1

π
q
[n−1]
1 −1

1 , . . . ,
1

βn−1

π
q
[n−1]
n−1 −1

1 ) ∈ OC[n−1],x.

So the result of 1- follows from the définition of λ(C[n−1]) (cf. prop. 4.4.5), 2- is an easy
consequence.

Now we prove 3-, by induction on k. Suppose that it is true for k = 1, and that πknη = 0, with
2 ≤ k < qn. We have πk−1

n .πnη = 0, so according to the induction hypothesis, πnη is a multiple
of πqn−k+1

n : πnη = πqn−k+1
n λ. So πn(η − πqn−kn λ) = 0. Since -3 is true for k = 1, we can write

η − πqn−kn λ = πqn−1
n ε, i.e. η = πqn−kn (λ+ πk−1

n ε), and 3- is true for k.

Il remains to prove 3- for k = 1. Suppose that πnη = 0 (with η 6= 0). We can write η as

η = πmn θ, where θ is not a multiple of πn, and 0 ≤ m < qn. Let θ ∈ B[n−1]
x be over θ. Since

IC = (u) + (π) according to proposition 4.3.5, the condition “θ is not a multiple of πn” is
equivalent to θ 6∈ IC,x. We have πm+1θ ∈ (u), so according to 2-, we have m+ 1 ≥ qn, which
proves 3- for k = 1. The last assertion is an easy consequence of 3-. �

4.5.3. Example : Let N be an integer, s ∈ OC[n−1],x invertible, and k, l integers such that
1 ≤ k, l < n, k 6= l. Suppose that for every integer i such that 1 ≤ i < n and i 6= k we have

N > p
[n−1]
ik and N ≥ q

[n−1]
i − q[n−1]

k + p
[n−1]
ik . We take u = ukl − sπN . We have then βi = α

(i)
kl

if i 6= k, and βk = −s. The condition λ1

β1|C
+ · · ·+ λn−1

βn−1|C
6= 0 is fulfilled if and only if∑

1≤i<n,i 6=k

λi

a
(i)
kl

− λk
s
6= 0.

4.5.4. Construction of fragmented deformations – Suppose that λ1

β1|C
+ · · ·+ λn−1

βn−1|C
6= 0. From

proposition 4.5.2, 4-, it is easy to prove that

– There exists a flat morphism of algebraic varieties τ : Y → spec(C[πn]/(πqnn )) with
a canonical isomorphism of sheaves of C[πn]/(πqnn )-algebras OY ' Q, such that
τ−1(∗) = C (where ∗ is the closed point of spec(C[πn]/(πqnn ))).

– There exists a familiy of smooth curves Cn and a flat morphism πn : Cn → S extending
τ (recall that S is a germ). Hence Y is the inverse immage of the subscheme of Cn
corresponding to the ideal sheaf (πqnn ). The existence of Cn can be proved using Hilbert
schemes of curves in projective spaces. Of course Cn need not be unique.

We obtain a glueing C of C1, . . . , Cn by defining the sheaves of algebras OC (on the Zariski
topological space corresponding to the initial glueing A) as in 4.4.2, using for Φn the quo-
tient morphism B[n−1] → Q. It is easy to see that π−1(P ) is a primitive multiple curve Cn of
multiplicity n extending Cn−1, hence C is a fragmented deformation of Cn.



FRAGMENTED DEFORMATIONS 27

4.5.5. Remark: 1 – The multiple curve Cn depends on the choice of the family Cn extending
the family Y parametrized by spec(C[πn]/(πqnn )).

2 – The multiple curve Cn−1 is completely defined by B[n−1], because (πq11 )× · · · (πqn−1

n−1 ) ⊂ (π).

But it is not enough to know B[n−1] and u to define Cn. In fact we need OCi/(π
qi+1
i ), 1 ≤ i ≤ n.

4.6. Basic elements

We use the notations of 4.3 and 4.4.

Let m = (m1, . . . ,mn) be a n-tuple of positive integers, and

Πm = (πm1
1 )× · · · × (πmnn ).

4.6.1. Definition: Let x ∈ C. An element u of OC,x is called basic at order m if there exists
polynomials P1, . . . , Pn ∈ C[X] such that

u ≡ (P1(π1), . . . , Pn(πn)) (mod. Πm) .

If u = (P1(π1), . . . , Pn(πn)), we say that u is basic.

Let q = (q1, . . . , qn). Then according to corollary 4.4.8, if u is basic at order q, then for every
y ∈ C, we have (P1(π1), . . . , Pn(πn)) ∈ OC,y. So (P1(π1), . . . , Pn(πn)) is defined on a neighbour-
hood of C.

4.6.2. Lemma: Let u, v, w ∈ OC,x such that w = uv and w 6= 0. Suppose that u and w are
basic at every order. Then v is basic at every order.

Proof. Let N be a positive integer such that N � 0 and N = (N, . . . , N). Suppose that
w ≡ (Q1(π1), . . . , Qn(πn)) (mod. (πN)), where Q1, . . . , Qn ∈ C[X]. Let m = (m1, . . . ,mn)
be a n-tuple of positive integers, and v = (vi)1≤i≤n. Suppose that

u ≡ (P1(π1), . . . , Pn(πn)) (mod. ΠN)

Then we have
Qi(πi) ≡ Pi(πi).vi (mod. (πNi ))

for 1 ≤ i ≤ n. We can write Pi(X) as Pi(X) = XniRi(X), where Ri(X) ∈ C[X] is such that
Ri(0) 6= 0. Then Qi(X) is also divisible by Xni : Qi(X) = XniSi(X), and we have in OAx :

Si(πi) ≡ Ri(πi).vi (mod. (πN
′

i ))

for some integer N ′ � 0. We can write Ri(X) = ai.(1−X.Ti(X)), with ai ∈ C∗, Ti ∈ C(X).
We have then

vi ≡
Si(πi)

ai

mi−1∑
p=1

(
πiTi(πi)

)p
(mod. Πm).

�

For 1 ≤ i ≤ n, let u(i) = ((u(i)j)1≤j≤n be a generator of the ideal sheaf ICi of Ci in C, such that
for 1 ≤ j ≤ n, u(i)j ∈ C[πj] (cf. corollary 4.3.8).
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4.6.3. Proposition: Let v ∈ OC,x. then v is basic at every order if and only if for every
n-tuple m of positive integers, there exists an integer q > 0 and P1, . . . , Pq ∈ C[X] such that

v ≡
∑

1≤j≤q

Pj(π).uj(i) (mod. Πm).

Proof. We use the notations of the proof of lemma 4.6.2. Suppose that v = (vj)1≤j≤n is basic
at every order. Let N be a positive integer and N = (N, . . . , N). We will prove by induction
on q ≥ 0 that we can write v as

(4) v ≡
∑

0≤j≤q

Pj(π).uj(i) + γqu
q+1
(i) (mod. ΠN)

with P0, . . . , Pq ∈ C[X], and γq ∈ OC,x. This proves proposition 4.6.3 if q and N are big enough.

For q = 0, we have vi ≡ P (πi)(mod πNi ), for some P ∈ C[X], and we can take P0 = P . Suppose

that the result is true for q and that we have (4). Since v −
∑

1≤j≤q

Pj(π).uj(i) is basic at any

order, using the same method as in the proof of lemma 4.6.2, we see that γq is basic at order
N′, where N′ = (N ′, . . . , N ′), for some integer N ′ � 0. As in the case q = 0 we have

γq ≡ Pq+1(π) + u(i).γq+1 (mod ΠN′),

with Pq+1 ∈ C[X]. Hence

v ≡
∑

0≤j≤q+1

Pj(π).uj(i) + γq+1u
q+2
(i) (mod. ΠN)

�

4.6.4. Proposition: Let α = (α1, . . . , αn) ∈ OC,x be such that there exists
P1, . . . , Pn−1 ∈ C[X] such that, for 1 ≤ i ≤ n− 1, we have αi ≡ Pi(πi) (mod. (πqii )). Then
there exists Pn ∈ C[X] such that αn ≡ Pn(πn) (mod. (πqn)), i.e. α is a basic element of order
q.

Proof. By induction on n. The case n = 2 is an easy consequence of proposition 4.2.2. Suppose
that n ≥ 3 and that the result is true for n− 1.

By substracting multiples of (0, . . . , 0, πqii , 0, . . . , 0) we may assume that for
1 ≤ i ≤ n− 1, αi ∈ C[πi]. By substracting a regular function on a neighbourhood of C in C, and
a multiple of (πq11 , 0, . . . , 0) we may also assume that α1 = 0. The ideal sheaf of C1 is generated
by u(1). We can then write α = βu(1), with β = (βi)1≤i≤n ∈ OC,x. We have

(α2, . . . , αn−1) = (β2, . . . , βn−1).(u(1)2, . . . , u(1)n−1) ,

hence by lemma 4.6.2, (β2, . . . , βn−1) is a basic element at any order. By the induction hypoth-
esis, there exists Q ∈ C[X] such that βn ≡ Q(πn) (mod. (πqn−p1n

n )). Since u(1)n is a multiple
of πp1n

n (from the definition of p1n), it follows that αn ≡ u(i)nQ(πn) (mod. (πqn)). �
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4.7. Simple primitive curves and fragmented deformations

Let Cn be a primitive multiple curve of multiplicity n and associated smooth curve C. Let
IC be the ideal sheaf of C in Cn. It is obvious from proposition 4.3.5, 1-, that if there exists
a fragmented deformation of Cn, then we have IC,Cn ' OCn−1 , i.e. Cn is simple (cf. 2.4).
Conversely we have

4.7.1. Theorem: Let Cn be a simple primitive multiple curve of multiplicity n. Then there
exists a fragmented deformation of Cn.

Proof. According to theorem 2.4.1, there exists a flat family of smooth projective curves
τ : C → C such that τ−1(0) ' C and that Cn is isomorphic to the n-th infinitesimal neighbour-
hood of C in C. Let ρn : C→ C be the map defined by ρn(z) = zn, and θ = ρn ◦ τ : C → C.
It is a flat morphism, θ−1(0) = Cn, and for every z 6= 0 in the image of τ , θ−1(z) is a disjoint
union of n smooth irreducible curves. We can then apply the process of proposition 3.1.3 to
obtain the desired fragmented deformation: it is C ×C C

C ×C C π //

��

C
ρn
��

C θ // C
�

4.7.2. Remark: let (pij) be the spectrum of the fragmented deformation constructed in the
proof of theorem 4.7.1. Then it is easy to see that pij = 1 for 1 ≤ i, j ≤ n, i 6= j. If x ∈ C, then
(C ×C C)x = OC,x ⊗OC,x OC,x, and if t = IC ∈ OC,x, we have for 1 ≤ k ≤ n

(π1, . . . , πk−1, 0, πk+1, . . . , πn) =
1

n− 1
(1⊗ t− e

2kiπ
n (t⊗ 1)) .

5. Stars of a curve

5.1. Definitions

Let S be a smooth irreducible curve, and P ∈ S (we can also take for (S, P ) a germ of smooth
curve). Let n be a positive integer.

5.1.1. Definition: A n-star (or more simply, a star) of (S, P ) is an algebraic variety S such
that

(i) S is the union of n irreducible components S1, . . . , Sn, with fixed isomorphisms Si ' S,
1 ≤ i ≤ n.

(ii) For 1 ≤ i < j ≤ n, Si ∩ Sj has only one closed point, namely P .
(iii) There exists a morphism π : S → S, which is the identity on each component Si.
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All the n-stars of (S, P ) have the same underlying Zariski topological space S(n) and set of

closed points. The latter is (
⋃

1≤i≤n Ŝi)/ ∼, where Ŝi is the set of closed points of Si, and the

equivalence relation ∼ is defined by: for x ∈ Ŝi and y ∈ Ŝj, x ∼ y if and only if i = j and x = y,

or x = P ∈ Ŝi and y = P ∈ Ŝj. An open subset of S is defined by open subsets U1 of S1,. . .,
Un of Sn, such that for 1 ≤ i < j ≤ n, we have P ∈ Ui if and only if P ∈ Uj.

The initial star S0 of (S, P ) is defined as follows: for every open subset U of S(n),
OS0(U) is the set of (α1, . . . , αn) ∈ OS1(U ∩ S1)× · · ·OSn(U ∩ Sn) such that if P ∈ U then
α1(P ) = · · · = αn(P ) .

For every n-star S of (S, P ), there is a unique dominant morphism S0 → S inducing the
identity on each component. So OS,P is a subring of OS0,P .

Note that (iii) is equivalent to

(iii)’ For every α ∈ OS,P , we have (α, . . . , α) ∈ OS,P .

5.1.2. Definition: An oblate n-star (or more simply, an oblate star) of (S, P ) is a n-star S
such that some neighbourhood of P in S can be embedded in a smooth surface.

5.1.3. Proposition: A n-star S is oblate if and only if π−1(P ) ' spec(C[X]/(Xn)).

(cf. prop. 4.1.6).

Let I ⊂ {1, . . . , n} be a nonempty subset. Let S(I) =
⋃
i∈I Si ⊂ S. If S is oblate then S(I)

is oblate too.

5.2. Properties of oblate stars

Let S be an oblate n-star of S. Recall that t denotes a generator of the maximal ideal of P in
S. We will denote this generator on Si ⊂ S by ti. We will also denote by π the element t ◦ π
of the maximal ideal of P in S. Let IP be the ideal sheaf of P in S.

We begin with 2-stars:

5.2.1. Proposition: Suppose that n = 2. Then

1 – There exists a unique integer p > 0 such that IP,P/(π) is generated by the image of (tp1, 0).

2 – The image of (0, tp2) is also a generator of IP,P/(π).

3 – (0, tp2) (resp. (tp1, 0)) is a generator of the ideal sheaf of S1 (resp. S2) at P .

4 – OS(2),P consists of pairs (α, β) ∈ OS,P ×OS,P such that α− β ∈ (tp).

Now suppose that n ≥ 2. Let I = {i, j} ⊂ {1, . . . , n}, with i 6= j. Then Si ∪ Sj ⊂ S is a 2-star
of S. Hence by proposition 5.2.1 there exists a unique integer pij > 0 such that IP,P/(π) (on



FRAGMENTED DEFORMATIONS 31

Si ∪ Sj) is generated by the image of (t
pij
i , 0) (and also by the image of (0, t

pij
j )). Let pii = 0.

Then the symmetric matrix (pij)1≤i,j≤n is called the spectrum of S.

There exists an element vij = (νm)1≤m≤n such that νi = 0 and νj = t
pij
j . For every integer

m such that 1 ≤ m ≤ n, m 6= i, j, there exists an invertible element β
(m)
ij ∈ OS,P such that

νm = β
(m)
ij tpimm . Let β

(i)
ij = 0, β

(j)
ij = 1.

5.2.2. Proposition: Let b
(m)
ij = β

(m)
ij (P ) ∈ C. Then we have, for all integers i, j, k,m, q such

that 1 ≤ i, j, k,m, q ≤ n, i 6= j, i 6= k

b
(m)
ik b

(q)
ij = b

(q)
ik b

(m)
ij .

In particular we have b
(m)
ij = b

(m)
ik b

(k)
ij and b

(m)
ij b

(j)
im = 1.

For all distinct integers i, j, k such that 1 ≤ i, j, k ≤ n, we have

b
(j)
ki = −b

(j)
ik b

(k)
ji .

(cf. prop. 4.3.2 and 4.4.6).

Let p an integer such that 1 ≤ p < n, and (i1, j1), . . . , (ip, jp) p pairs of distinct integers of

{1, . . . , n}. Then the image of
∏p

m=1 vimjm is a generator of (IpP,P + (π))/(Ip+1
P,P + (π)).

Let I ⊂ {1, · · · , n} be a nonempty subset, distinct from {1, · · · , n}. Let i ∈ {1, · · · , n}\I.
Let

vI,i =
∏
j∈I

vji .

5.2.3. Proposition: The ideal sheaf of S(I) in S is generated by vI,i at P .

(cf. prop. 4.3.3).

Note that if I = {1, · · · , n}\{i} then vI,i|Sj = 0 if j 6= i, and vI,i|Si = tqii , with qi =
∑

1≤j≤n

pij.

Let i be an integer such that 1 ≤ i ≤ n and Ji = {1, . . . , n}\{i}. Let Ki be the image of OS in∏
1≤j≤n,j 6=iOSj/(t

qj
j ). We can view Ki as a C-algebra. For every α = (αm) ∈ OS,P , let ki(α) be

the image of α in Ki.

5.2.4. Proposition: There exists a morphism of C-algebras

Ψi : Ki −→ OSi,P /(t
qi
i )

such that for every (αm)1≤m≤n,m 6=i ∈ OS(Ji),P , αi ∈ OSj,P , we have α = (αm)1≤m≤n ∈ OS,P if
and only if Ψi(ki(α)) = [αi]qi.

(cf. prop. 4.4.1).

The morphism Ψi has the following properties:
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(i) For every (αm)1≤m≤n,m 6=i ∈ OS(Ji),P , we have Ψi(α)(P ) = αm(P ) for 1 ≤ m ≤ n,m 6= i.
(ii) We have Ψi((tm)1≤m≤n,m 6=i) = ti.

(iii) Let j, k ∈ {1, · · · , n} be such that i, j, k are distinct. Let w be the image of vjk in Bi.
Then there exists λ ∈ O∗Si,P such that Ψi(w) = λt

pij
i .

(iv) Let j be an integer such that 1 ≤ j ≤ n and j 6= i. Let w be the image of vij in Kix.
Then we have ker(Ψi) = (w).

5.2.5. Converse – Let S [n−1] be a (n− 1)-star of S, with components S1, . . . , Sn−1, of spectrum
(pjk)1≤j,k≤n−1. Let pnj = pjn, 1 ≤ j < n be positive integers, and pnn = 0. For 1 ≤ j ≤ n, let

qj =
∑

1≤k≤n

pkj.

Let Sn be another copy of S. Let Kn be the image of OS[n−1] in
∏

1≤j≤n−1OSj/(t
qj
j ) and

Ψn : Kn −→ OSn/(tqnn )

a morphism of C-algebras satisfying properties (i), (ii), (iii) above. Let K be the subsheaf
of algebras of OS0 defined by: K = OS0 on S0\{P}, and for every α = (αm)1≤m≤n ∈ OS0,P ,
α ∈ KP if and only if Ψn(α′) = [αn]qn (where α′ is the image of (αm)1≤m≤n−1 in Kn).

It is easy to see that K is the structural sheaf of an oblate n–star of S.

Let H =
∏

1≤j≤n(t
qj−1
j )/(t

qj
j ) ' Cn and K be the image of OS in

∏
1≤j≤nOSj/(t

qj
j ). We can

view K as a C-algebra. Let J = H ∩K.

5.2.6. Proposition: There exists a unique λ(S) = (λ1, . . . , λn) ∈ Pn(C) such that for every
u = (uj)1≤j≤n ∈ H, we have u ∈ J if and only if λ1u1 + · · ·λnun = 0. The λi are all non zero.

(cf. prop. 4.4.5).

For all distinct integers i, j such that 1 ≤ i, j ≤ n, we have

λi
λj

= −
∏

1≤m≤n,m 6=i,j

b
(j)
mi.

5.3. Construction of oblate stars of a curve

Consider an oblate (n− 1)-star of S, S [n−1], with n− 1 irreducible components S1, . . . , Sn−1,

copies of S. Let (p
[n−1]
ij )1≤i,j<n be its spectrum. For 1 ≤ i < n, let q

[n−1]
i =

∑
1≤j<n

p
[n−1]
ij . We

denote by I [n−1]
P the ideal of P in OS[n−1],P . Let λ(S [n−1]) = (λ1, . . . , λn−1).

Let p1n, . . . , pn−1,n be positive integers, qi = q
[n−1]
i + pin for 1 ≤ i < n, and

qn = pi1 + · · ·+ pn−1,n. Let u ∈ I [n−1]
P,P whose image generates I [n−1]

P /((I [n−1]
P )2 + (π)), of the

form
u = (β1t

p1n

1 , . . . , βn−1t
pn−1,n

n−1 ),
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with βi ∈ OSi,P invertible for 1 ≤ i < n.

Let K[n−1] be the image of OS[n−1] in OS1/(t
q1
1 )× · · · × OSn−1/(t

qn−1

n−1 ) . We will also denote by

u the image of u in K[n−1]. Let Q = K[n−1]/(u) , ρ : K[n−1] → Q the projection and tn = ρ(π).

5.3.1. Proposition: 1 – We have tqnn = 0 .

2 – We have tqn−1
n = 0 if and only if

λ1

β1(P )
+ · · ·+ λn−1

βn−1(P )
= 0 .

We suppose now that λ1

β1(P )
+ · · ·+ λn−1

βn−1(P )
6= 0. Then

3 – For every ε ∈ K[n−1] such that ε(P ) 6= 0, we have tqn−1ε 6∈ (u).

4 – For every η ∈ K[n−1]/(u), and every integer k such that 1 ≤ k < qn, we have tknη = 0 if
and only if η is a multiple of tqn−kn .

5 – K[n−1]/(u) is a flat C[tn]/(tqnn )-module.

5.3.2. Construction of stars of a curve – Suppose that λ1

β1(P )
+ · · ·+ λn−1

βn−1(P )
6= 0. From propo-

sition 5.3.1, 5-, it is easy to prove, using 5.2.5, that there is a unique oblate n-star S such that
S [n−1] is the union

⋃
1≤i≤n−1 Si in S and Ψn is the quotient map Kn = K[n−1] → Q.

5.4. Morphisms of stars

Recall that if S is an oblate n-star of S, then we have a canonical inclusion of sheaves of
algebras (on the underlying topological space S(n) of S) OS ⊂ OS0 .

Let S, S ′ be oblate n-stars of S, with irreducible components S1, . . . , Sn, and f : S → S ′ a
morphism inducing the identity on all the components. Such a morphism exists if and only if
S ′ ⊂ S, and in this case f is unique and is induced by the previous inclusion. Let (pij) (resp.
(p′ij)) be the spectrum of S (resp. S ′).

5.4.1. Proposition: We have pij ≤ p′ij for 1 ≤ i, j ≤ n. If f is not the identity morphism
then there exists i, j such that pij < p′ij.

Proof. Let I = {i, j}. Then f induces a morphism S(I) → S ′(I). So we have OS′(I),P ⊂ OS(I),P .

From proposition 5.2.1, 4-, it follows that pij ≤ p′ij.

Suppose now that p′ij = pij for 1 ≤ i, j ≤ n. We must prove that S = S ′, i.e. that
OS′(I),P = OS(I),P . This is done by induction on n. For n = 2 it is obvious. Suppose that

it is true for n− 1. Let I = {1, . . . , n− 1}. Then f induces a morphism fn−1 : S(I) → S ′(I).
It follows from the induction hypothesis that S(I) = S ′(I). Since the integers qi are the same
for S and S ′, the algebras Kn for S and S ′ (cf. proposition 5.2.4) are also the same. Now
let α ∈ OS,P , and let β ∈ Kn be the image of α. Let α′ ∈ OS′,P be such that its image in Kn
is also β. Then α− α′ belongs to the ideal generated by the (0, . . . , 0, tqii , 0 . . . , 0), 1 ≤ i ≤ n,
which is included in OS′,P . Hence α ∈ OS′,P . �
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5.4.2. Lemma: Suppose that f is not the identity morphism. Then there exists an ideal
I ⊂ OS′,P and u ∈ I, v ∈ OS,P such that

u⊗ v 6= 0 in I ⊗OS′,P OS,P

and uv = 0.

Proof. Let q1 =
n∑
i=1

p1i, q
′
1 =

n∑
i=1

p′1i. According to proposition 5.4.1 we can assume

that q1 < q′1. Let u be a generator of the ideal of S1 inOS′,P and I = (u). Let v = (tq11 , 0, . . . , 0).
We have uv = 0. We have to prove that u⊗ v 6= 0. We need only to find an OS′,P -module M
and a OS′,P -bilinear map

φ : I ⊗OS′,P OS,P −→M

such that φ(u⊗ v) 6= 0. We take M = OS1,P/(t
q′1
1 ), which is a quotient of OS′ . It is easy to

verify that

φ : ((λi)1≤i≤nu, (wi)1≤i≤n) � // λ1w1 (mod t
q′1
1 )

is well defined, bilinear, and that φ(u⊗ v) 6= 0. �

5.4.3. Corollary: Suppose that f is not the identity morphism. Let Y be an algebraic variety
and g : Y → S a morphism such that g∗ : OS,P → OY,P is injective. Then f ◦ g : Y → S ′

is not flat.

Proof. We use the notations of the proof of lemma 5.4.2. We have a commutative diagram

OS,P
g∗ //

λS
��

OY,P
λY
��

I ⊗OS′,P OS,P
II⊗g∗ //

µS

��

I ⊗OS′,P OY,P
µY

��
OS,P

g∗ // OY,P
where λS(α) = u⊗ α, µS(u⊗ α) = uα, and λY , µY are defined similarly. It follows that
µY (u⊗ g∗v) = 0. We will show that u⊗ g∗v 6= 0, and this will imply that f ◦ g is not flat. Let

w = (t
q′1
1 , 0, . . . , 0). Then we have I ' OS′,P/(w), and from the exact sequence ofOS′,P -modules

0→ (w)→ OS′,P → I → 0 we deduce that ker(λY ) = (w).OY,P . Suppose that u⊗ g∗v = 0.

Then g∗v is a multiple of w: g∗v = w.a, for some a ∈ OY,P . But we have w = g∗πq
′
1−q1v. Hence

g∗v.(1− g∗πq′1−q1) = 0. Since 1− g∗πq′1−q1 is invertible, we have g∗v = 0, which is false since g∗

is injective. Hence u⊗ g∗v 6= 0. �
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5.5. Structure of ideals

Let S be an oblate n-star of S.

5.5.1. Proposition: Let I ⊂ OS,P be a proper ideal. Then

1 - There exists a positive integer k such that k ≤ n and a filtration by ideals

{0} = Ik+1 ⊂ Ik ⊂ · · · ⊂ I1 = I
such that, for 1 ≤ i ≤ k there exists a positive integer j such that j ≤ n and an isomorphism
Ii/Ii+1 ' OSj ,P of OS,P -modules.

2 - If Ii/Ii+1 ' OSj ,P , then Ii+1 ⊂ ISj and Ii 6⊂ ISj .

Proof. We prove 1- by induction on n. The case n = 1 is trivial. Suppose that n > 1 and that
the result is true for n− 1. Let J1 be the ideal sheaf of S1 ⊂ S, and S ′ = S2 ∪ · · · ∪ Sn−1 ⊂ S.
We can view J1 as an ideal of OS′,P . We can suppose that I 6⊂ OS′,P , i.e that some element of
I has a nonzero first coordinate. Let m be the smallest positive integer such that I contains
an element u of the form

u = (tm, α2, . . . , αn) .

Then every element v of I can be written as

v = λu+ v′ ,

with λ ∈ OS,P and v′ ∈ J1 ∩ I, and the first coordinate of λ is uniquely determined. It
follows that I/(J1 ∩ I) ' OS1,P . We can apply the recurrence hypothesis to the ideal J1 ∩ I
of OS′,P and get a filtration of it, from which we deduce the filtration of I. This proves 1- for
n.

Now we prove 2-. Let α ∈ OS,P\ISj . Let u ∈ Ii be over a generator of Ii/Ii+1. Then the
image of αu in Ii/Ii+1 is not zero, i.e. αu 6∈ Ii+1. Hence α 6∈ Ii+1, and Ii+1 ⊂ ISj . Let
vi = (0, . . . , 0, tqii , 0, . . . , 0) ∈ OS,P . Then the image of viu in Ii/Ii+1 is not zero, hence u 6∈ ISj
and Ii 6⊂ ISj . �

5.6. Star associated to a fragmented deformation

We keep the notations of chapter 4. Let n ≥ 2 be an integer, π : C → S a fragmented deforma-
tion of Cn, and C1, . . . , Cn the irreducible components of C.
Recall that S(n) is the underlying (Zariski) topological space of any n-star of S. Let Ctop be
the underlying topological space of C. We have an obvious continuous map π : Ctop → S(n).
Let An be the sheaf of algebras on S(n) defined by: for every open subset U of S(n), An(U) is
the algebra of (α1, . . . , αn) ∈ OC(π−1(U)) such that αi ∈ OSi(U ∩ Si) for 1 ≤ i ≤ n.

According to corollary 4.4.8, for every x ∈ C, An,P is the algebra of (α1, . . . , αn) ∈ OC,x such
that αi ∈ OS,P for 1 ≤ i ≤ n.

5.6.1. Proposition: The sheaf An is the structural sheaf of an oblate n-star of S.
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Proof. By induction on n. The case n = 1 is obvious. Suppose that n > 1 and that the result
is true for n− 1. Let C ′ = C1 ∪ · · · Cn−1 ⊂ C, and An−1 the corresponding oblate (n− 1)-star
of S. Let

Φn : Bn −→ OCn/(πqnn )

be the morphism of proposition 4.4.1. According to proposition 4.6.4, Φn induces a morphism

Ψn : Kn −→ OSn,P/(tqnn ) .

By the definitions of An and Φn, if u = (α1, . . . , αn) ∈ OS1,P × · · · × OS1,P , then u ∈ An,P if
and only if Ψn(u′) = v, where u′ (resp. v) is the image of u in Kn (resp. OSn,P/(tqnn )). The
result follows then from 5.2.5. �

We denote by S(C) (or more simply S) the oblate n-star corresponding to An, so OS(C) = An.
From the definition of An we get a canonical morphism

Π : C −→ S
such that Π|Ci = πi : Ci → Si for 1 ≤ i ≤ n.

5.6.2. Theorem: The morphism Π is flat.

Proof. We need only to prove that Π is flat at any point x of C. Let I ⊂ OS,P be a proper
ideal. We have to show that the canonical morphism of OS,P -modules

τ = τI : OC,x ⊗OS,P I −→ OC,x
is injective. According to proposition 5.5.1 there is a filtration by ideals

{0} = Ik+1 ⊂ Ik ⊂ · · · ⊂ I1 = I
such that, for 1 ≤ i ≤ k there exists a positive integer j such that j ≤ n and an isomorphism
Ii/Ii+1 ' OSj ,P of OS,P -modules. We will prove the injectivity of τ by induction on k.

Recall that for 1 ≤ j ≤ n, ISj ,P = ISj ,S,P is a principal ideal, generated by an element uj which
is also a generator of ICj ,x = ICj ,C,x (cf. corollary 4.3.8 and proposition 5.2.3), and that the
only zero coordinate of uj is the j-th.

Suppose that k = 1, so I is isomorphic to OSj ,P for some j. Let u be a generator
of I and w ∈ OC,x ⊗OS,P I, that can be written as w = v ⊗ u, v ∈ OC,x. Suppose that

τ(v ⊗ u) = vu = 0. Since I is annihilated by ISj ,P , we have I ⊂
(
(0, . . . , 0, t

qj
j , 0, . . . , 0)

)
. Since

vu = 0, the j-th component of v is zero, i.e. v ∈ ICj ,x. Hence v is a multiple of uj : v = αuj.
We have then

w = αuj ⊗ u
= α⊗ uju (because uj ∈ OS,P )

= 0 (because uju = 0) .

Hence τ is injective.

Suppose that the result is true for k − 1 ≥ 1 and that the filtration of I is of length k. Ac-
cording to proposition 5.5.1, 1-, we have I/I2 ' OSj ,P for some j. Let u ∈ I be such that its
image in I/I2 is a generator, and w ∈ OC,x ⊗OS,P I such that τ(w) = 0. We can write w as
w = α⊗ v + β ⊗ u, with α, β ∈ OC,x and v ∈ I2. Since αv + βu = 0, we have βu ∈ OC,xI2,
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and OC,xI2 ⊂ ICj by proposition 5.5.1, 2-, i.e. the j-th coordinate of βu is zero. By proposi-
tion 5.5.1, 2-, the j-th coordinate of u does not vanish, hence the j-th coordinate of β is zero,
i.e. β ∈ ICj . Hence β is a multiple of uj : β = γuj. We have then

β ⊗ u = γuj ⊗ u = γ ⊗ uju,
and uju ∈ I2 (because its image in I/I2 vanishes). It follows that w is the image of an element
w′ of OC,x ⊗OS,P I2. We have τI2(w′) = 0, hence by the induction hypothesis w′ = 0. It follows
that we have also w = 0. �

5.6.3. Remark: If S ′ is an oblate n-star of S, and if Π′ : C → S ′ is a flat morphism compatible
with the projections to S, then we have S ′ = S(C) and Π′ = Π. This is an easy consequence of
corollary 5.4.3.

5.6.4. Converse - Let π : S → S be an oblate n-star of S. Let Π : C → S be a flat morphism
such that for every closed point s ∈ S, Π−1(s) is a smooth irreducible projective curve. Let
C = Π−1(P ) and τ = π ◦Π : C → S. Then Cn = τ−1(P ) is a primitive multiple curve of
multiplicity n ans associated smooth curve C, and C is a frangmented deformation of Cn. This
is an easy consequence of proposition 4.1.6.

6. Classification of fragmented deformations of length 2

Let π : C → C be a fragmented deformation of length 2. The corresponding double curve C2

is π−1(0). Suppose that the spectrum of C is

(
0 p
p 0

)
. This means that the infinitesimal

neighbourhoods of order p of C in C1 and C2 are isomorphic, i.e. we have an isomorphic of
sheaves of algebras on C

Φ : OC1/(π
p
1) −→ OC2/(π

p
2) ,

and for every point x of C, we have

OC,x = {(α1, α2) ∈ OC1,x ×OC2,x ; α2 (mod πp2) = Φ(α1 (mod πp1))} .
Let Ck

i denote the infinitesimal neighbourhood of order k of C in Ci, i = 1, 2, k > 0. It is a
primitive multiple curve of multiplicity k and associated smooth curve C, and we have Cp

1 = Cp
2 .

Hence Cp+1
1 and Cp+1

2 appear as extensions of Cp
1 in primitive multiple curves of multiplicity

p+ 1. According to [6] and [10] these extensions are classified by H1(C, TC) (TC beeing the
tangent sheaf on C). More precisely, we say that two such extensions D, D′ are isomorphic
if there exists an isomorphism D ' D′ leaving Cp

1 invariant. Then if H is the set of isomor-
phism classes of such extensions, a bijection λ : H1(C, TC)→ H is defined in [6], such that
λ(0) = Cp+1

1 .

On the other hand, it follows from [2], [6] that the primitive double curves with associated
smooth curve C and associated line bundle OC are classified by P(H1(C, TC)) ∪ {0} .

6.0.5. Theorem: The point of P(H1(C, TC)) ∪ {0} corresponding to C2 is C.λ−1(Cp+1
2 ).
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Proof. According to [6], there exists an open covering (Ui)i∈I of C such that for k = 1, 2, the
open subset of Cp+1

k corresponding to Ui is isomorphic to Ui × spec(C[t]/(tp+1)). Here t is

π1 on C1 and π2 on C2. We obtain then cocycles (θ
(k)
ij )i,j∈I , where θ

(k)
ij is an automorphism of

Uij × spec(C[t]/(tp+1)). We can also suppose that ωC|Ui is trivial, for every i ∈ I. Let dxij = dx

be a generator of ωC(Uij). Since the ideal sheaf of C in Cp+1
k is the trivial sheaf on Cp

k , we

can write, using the notations of [6], θ
(k)
ij = φ

µ
(k)
ij ,1

, with µ
(k)
ij ∈ OC(Uij)[t]/(t

p) , i.e. for every

α ∈ OC(Ui), we have, at the level of regular functions

θ
(k)
ij (α) =

p∑
m=0

1

m!
(µ

(k)
ij t)

md
mα

dxm
,

and θ
(k)
ij (t) = t . Since Cp

1 = Cp
2 we can suppose that µ

(1)
ij ≡ µ

(2)
ij (mod tp−1) . Hence

τij = µ
(2)
ij − µ

(1)
ij ∈ (tp−1)/(tp) ' OC(Ui). The family (τij) is (in some sense) a cocycle repre-

senting λ−1(Cp+1
2 ) (cf. [6], [10]).

We have (πp+1
1 ) + (πp+1

2 ) ⊂ (π) in OC. Hence C2 = π−1(0) is contained in the subscheme Z of
C corresponding to the ideal sheaf (πp+1

1 ) + (πp+1
2 ). We have

OZ(Uij) = {(α1, α2) ∈ OC1(Uij)/(t
p+1)×OC2(Uij)/(t

p+1) ; Φ(α1 mod tp) = α2 mod tp}
= {(α1, α2) ∈ OC(Uij)[t]/(t

p+1)×OC(Uij)[t]/(t
p+1) ; α1 ≡ α2 mod tp}.

To obtain OC2(Uij), we have just to quotient by π = (t, t), and we obtain

OC2(Uij) = OZ(Uij)/(t, t) ' OC(Uij)[z]/(z2) ,

the last isomorphism beeing

(a0 + a1t+ · · ·+ ap−1t
p−1 + αtp, a0 + a1t+ · · ·+ ap−1t

p−1 + βtp) 7→ α0 + (β − α)z.

Now we can explicit the automorphism of OC(Uij)[z]/(z2) induced by θij (these isomorphisms
will define the cocycle corresponding to C2). It is easy to see that this isomorphism is φτij ,1,
which proves theorem 6.0.5. �
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