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FRAGMENTED DEFORMATIONS OF PRIMITIVE MULTIPLE CURVES

JEAN-MARC DREZET

RESUME. A primitive multiple curve is a Cohen-Macaulay irreducible projective curve Y that
can be locally embedded in a smooth surface, and such that Y..4 is smooth.
The subject of this paper is the study of deformations of Y in curves with smooth irreducible
components, when the number of components is maximal (it is then the multiplicity n of V).
We are particularly interested in deformations in n disjoint smooth irreducible components,
which are called fragmented deformations. We describe them completely. We give also a
characterization of primitive multiple curves having a fragmented deformation.
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A primitive multiple curve is an algebraic variety Y over C wich is Cohen-Macaulay, such that
the induced reduced variety C' = Y, .4 is a smooth projective irreducible curve, and that every
closed point of Y has a neighbourhood that can be embedded in a smooth surface. These curves
have been defined and studied by C. Banica and O. Forster in [I]. The simplest examples are
infinitesimal neighbourhoods of projective smooth curves embedded in a smooth surface (but
most primitive multiple curves cannot be globally embedded in smooth surfaces, cf. [2], theorem

7.1).

Les Y be a primitive multiple curve with associated reduced curve C, and suppose that Y # C'.
Let Z¢ be the ideal sheaf of C'in Y. The multiplicity of Y is the smallest integer n such that
¢ = 0. We have then a filtration

c=C,cCyc---CcC,=Y
1
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where C; is the subscheme corresponding to the ideal sheaf Z, and is a primitive multiple curve
of multiplicity i. The sheaf L =Zy/Z2 is a line bundle on C, called the line bundle on C
associated to Y .

1.1. History and motivation — The deformations of double (i.e. of multiplicity 2) primitive
multiple curves (also called ribbons) in smooth projective curves have been studied in [14]. In
this paper we are interested in deformations of primitive multiple curves Y of any multiplicity
n > 2 in reduced curves having exactly n components which are smooth (n is the maximal
number of components of deformations of Y'). In this case the number of intersection points of
two components is exactly — deg(L). We give some results in the general case (no assumption
on deg(L)) and treat more precisely the case deg(L) =0, i.e. deformations of Y in curves
having exactly n disjoint irreducible components.

Let m: C — S be a flat projective morphism of algebraic varieties, P a closed point of S such
that 7=1(P) =Y, Oc(1) a very ample line bundle on C and P a polynomial in one variable
with rational coefficients. Let
T: MOc(l)(P) — S

be the corresponding relative moduli space of semi-stable sheaves (parametrizing the semi-
stables sheaves on the fibers of 7= with Hilbert polynomial P with respect to the restriction
of Oc(1), cf. [20]). In general 7 is not flat (some other examples on non flat relative moduli
spaces are given in [I7]). For example, if the family C contains smooth fibers, it is impossible
to deform the stable sheaf O¢ on Y in sheaves on the smooth fibers. I conjecture that 7 is flat
if all the fibers of 7 are reduced with exactly n components. The reason is that the generic
structure of torsion free sheaves on Y (cf. [§]) is more complicated that on smooth curves, and
is somehow similar to the generic structure of torsion free sheaves on reducible reduced curves

(cf. [23], [24]).

1.2. Mazimal reducible deformations — Let (S, P) be a germ of smooth curve. Let Y be a
primitive multiple curve of multiplicity n > 2 and k£ > 0 an integer. Let 7:C — S be a flat
morphism, where C is a reduced algebraic variety, such that

— For every closed point s € S such that s # P, the fiber C, has k irreducible components,
which are smooth and transverse, and any three of these components have no common
point.

— The fiber Cp is isomorphic to Y.

We show that by making a change of variable, i.e. by considering a suitable germ (S, P') and
a non constant morphism 7 :S" — S, and replacing © with 7*C — S’, we can suppose that
C has exactly k irreducible components, inducing on every fiber C,, s # P the k irreducible
components of Cs. In this case 7 is called a reducible deformation of Y of length k.

We show that & < n. We say that = (or C) is a mazimal reducible deformation of Y if k = n.

Suppose that 7 is a maximal reducible deformation of Y. We show that if C’ is the union of
i > 0 irreducible components of C, and 7’ : C' — S is the restriction of 7, then 7#'~!(P) ~ C;
and 7’ is a maximal reducible deformation of C;. Let s € S\{P}. We prove that the irreducible
components of Cy have the same genus as C. Moreover, if Dq, Dy are distinct irreducible
components of Cy, then Dy N Dy consists of —deg(L) points.
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1.3. Fragmented deformations (definition) — Let Y be a primitive multiple curve of multiplicity
n > 2and 7 : C — S a maximal reducible deformation of Y. We call it a fragmented deformation
of Y if deg(L) = 0, i.e. if for every s € S\{P}, Cs is the disjoint union of n smooth curves. In
this case C has n irreducible components Cy, ..., C, which are smooth surfaces.

The variety C appears as a particular case of a glueing of Cy,...,C, along C (cf. . We
prove (proposition that such a glueing D is a fragmented deformation of a primitive
multiple curve if and only if every closed point in C' has a neighbourhood in D that can be
embedded in a smooth variety of dimension 3. The simplest glueing is the trivial or initial
glueing A. An open subset U of A (and C) is given by open subsets Uy,...,U, of Ci,...,C,
respectively, having the same intersection with C, and

OA(U) = {(Ozl, L. ,Ozn) € Ocl(U N Cl) X e Ocn(U ﬂCn);a1|c == an|c},
and O¢(U) appears as a subalgebra of O 4(U), hence we have a canonical morphism A — C.

We can view elements of O¢(U) as n-tuples (a, ..., a,), with a; € O, (U NC;). In particular
we can write m = (my,...,mT,).

1.4. A simple analogy — Consider n copies of C glued at 0. Two extreme examples appear :
the trivial glueing Ay (the set of coordinate lines in C"), and a set Cy of n lines in C?. We can
easily construct a bijective morphism W : Ay — Cy sending each coordinate line to a line in the
plane

But the two schemes are of course not isomorphic : the maximal ideal of 0 in Ay needs n
generators, but 2 are enough for the maximal ideal of 0 in C.
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Let m¢, : Co — C be a morphism sending each component linearly onto C, and
T, = T, © ¥ : Ay — C. The difference of Ay and Cy can be also seen by using the fibers of 0
. we have

ﬂgol(O) ~ spec(C[t]/(t")) and 7T;d](0) ~ spec(Clty, ..., tn]/(t, ..., t)?) .
Let D a general glueing of n copies of C at 0, such that there exists a morphism 7 : D — C

inducing the identity on each copy of C. It is easy to see that we have 7~1(0) ~ spec(C[t]/(t"))
if and only if some neighbourhood of 0 in D can be embedded in a smooth surface.

1.5. Fragmented deformations (main properties) — Let m : C — S be a fragmented deformation
of Y = C,. Let I C {1,...,n} be aproper subset, [¢ its complement, and C; C C the subscheme
union of the C;,i € I. We prove (theorem [4.3.7) that the ideal sheaf Z¢, of C; is isomorphic to
Oc,.-

In particular, the ideal sheaf Z;, of C; is generated by a single regular function on C. We show
that we can find such a generator such that for 1 < j <mn, j # i, its j-th coordinate can be
written as az?, with p >0 and o € H°(Og) such that a(P) # 0. We can then suppose that
a = 1, and the generator can be written as

w; = (..., Up),

with
(m)

ij

W _

u; =0, up = o 7 form#i, qy =

1] ij
pi; = 0 for 1 <+ <n. The symmetric matrix (p;;)1<i j<n is called the spectrum of = (or C).

The constants a € C have interesting properties (propositions [4.5.2) |4.4.6). Let

It follows also from the fact that Z¢, = (u;;) that Y is a simple primitive multiple curve, i.e.
the ideal sheaf of C'in Y = C,, is isomorphic to O¢,_,. Conversely, we show in theorem
that if Y is a simple primitive multiple curve, then there exists a fragmented deformation of Y.

We give in [4.4] and [£.5] a way to construct fragmented deformations by induction on n. This is
used later to prove statements on fragmented deformations by induction on n.

1.6. n-stars and structure of fragmented deformations — A n-star of (S, P) is a glueing & of n
copies of S at P, together with a morphism 7 : & — S which is an identity on each copy of S.
All the n-stars have the same underlying Zariski topological space S(n).

A n-star is called oblate if some neighbourhood of P can be embedded in a smooth surface.
This is the case if and only 771(0) ~ spec(C[t])/(t").

Oblate n-stars are analogous to fragmented deformations and simpler. We provide a way to
build oblate n-stars by induction on n.

Let 7 : C — S be a fragmented deformation of Y = (),. We associate to it an oblate n-star S
of S : for every open subset U of S(n), Os(U) is the set of (aq,...,a,) € Oc(U) such that
a; € Og(m(UNC;)) for 1 <i < n. We obtain also a canonical morphism

I1:C — S.

We prove (theorem [5.6.2)) that IT is flat. Hence it is a flat family of smooth curves, with
I '(P) = C. The converse is also true, i.e. starting from an oblate n-star of S and a flat
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family of smooth curves parametrized by it, we obtain a fragmented deformation of a multiple
primitive curve of multiplicity n.

1.7. Fragmented deformations of double curves — Let Y = Cs be a primitive double curve, C'

its associated smooth curve, 7 : C — S a fragmented deformation of Y, of spectrum <g ]5),

and C;, Cy the irreducible components of C. For i = 1,2, ¢ > 0, let C? be the infinitesimal
neighbourhood of order ¢ of C'in C; (defined by the ideal sheaf (7})). It is a primitive multiple
curve of multiplicity q.

It follows from Mthat C? and C? are isomorphic, and C*™", C¥* are two extensions of C? in
primitive multiple curves of multilicity p + 1. According to [6] these extensions are parametrized
by an affine space with associated vector space H'(C,T¢) (where T is the tangent bundle of
C). Let w € H'(C,T¢) be the vector from CP* to CET

Similarly, the primitive double curves with associated smooth curve C' such that Zo >~ O¢ are
parametrized by P(H'(C,T¢)) U {0} (cf. [2], [6]).

We prove in theorem that the point of P(H*(C,T¢)) U {0} corresponding to Cy is Cw.

1.8. Notation: Let X be an algebraic variety and Y C X a closed subvariety. We will denote
by Zy x (or Zy if there is no risk of confusion) the ideal sheaf of ¥V in X.

2. PRELIMINARIES
2.1. LOCAL EMBEDDINGS IN SMOOTH VARIETIES

2.1.1. Proposition: Let X be an algebraic variety, x a closed point of X and n a positive
integer. Then the two following properties are equivalent:

(i) There exists a neighbourhood U of x and an embedding U C Z in a smooth variety of
dimension n.
(ii) The Ox-module mx , (mazimal ideal of x) can be generated by n elements.
(iti) We have dimc(mxq/m%,) <n.

Proof. 1t is obvious that (i) implies (ii), and (ii),(iii) are equivalent according to Nakayama’s
lemma. It remains to prove that (iii) implies (i).

Suppose that (iii) is true. There exists an integer N and an embedding X C Py. Let Zx be
the ideal sheaf of X in Py. Let p be the biggest integer such that there exists fi, -, f, € Ix
whose images in the C-vector space mp, ./ mfpmw are linearly independant. Then we have

IX,:(: C (.flv"' 7fp)+m]%’N7I'
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In fact, let f € Zx,. Since p is maximal, the image of f in mp, ,/mz  , isalinear combination
of those of fi,---, f,. Hence we can write

p
f= ZAZfZ +g, with X\ €C, g€ mI%N@ ,
=1

and our assertion is proved. It follows that we have a surjective morphism

(67 (’)va/mgm — O]P’N,:v/((fla e ’fp) + m%’N@) :
We have

dimc(Oxo/m%,) < n+1, dime (Opyo/((f1,- -, fp) +mi,,)) =N—p+1.

Hence N—p+1<n+1,ie. p> N —n. We can take for Z a neighbourhood of x in the
subvariety of Py defined by fi,--- , fn_n, which is smooth at x. O

2.2. FLAT FAMILIES OF COHERENT SHEAVES

Let (S, P) be a smooth germ of curve and t € Ogp a generator of the maximal ideal. Let
7:X — S be a flat morphism. If £ is a coherent sheaf on X, £ is flat on S at z € 7~ (P)
if and only if the multiplication by t : £, — &, is injective. In particular the multiplication by
t: 0, — O, is injective.

2.2.1. Lemma: Let & be a coherent sheaf on X flat on S. Then, for every open subset U of
X, the restriction E(U) — E(U\r"Y(P)) 1is injective.

Proof. Let s € E(U) whose restriction to U\r !(P) vanishes. We must show that s = 0.
By covering U with smaller open subsets we can suppose that U is affine: U = spec(A).
Hence U\m !(P) =spec(4;). Let M =&(U), it is an A-module. We have &y = M and
E(U\rm1(P)) = M;. Hence if the restriction of s to U\7~!(P) vanishes, there exists an integer
n > 0 such that t"s = 0. Since the multiplication by t is injective (because £ is flat on S), we
have s = 0. O

Let £ be a coherent sheaf on X flat on S. Let F C & x\»-1(p) be asubsheaf. For every open sub-

set U of X we denote by F(U) the subset of F(U\7'(P)) of elements that can be extended to
sections of € on U. If V. C U is an open subset, the restriction F(U\r~'(P)) — F(V\7~'(P))
induces a morphism F(U) — F(V) .

2.2.2. Proposition: F is a subsheaf of £, and £/ F is flat on S.

Proof. To prove the first assertion, we must show that if U is an open subset of X and (U;);es
is an open cover of U, then

(i) If s € F(U) is such that for every i we have s, = 0, then s = 0.
(ii) For every i € I let s; € F(U;). Then if for all 4, j we have s;p,, = sju,, , then there
exists s € F(U) such that for every i € I we have sy, = s;.
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This follows easily from lemma [2.2.1]

Now we prove that £/F is flat on S. Let € 7~(P) and u € (£/F), such that tu = 0. We
must show that u = 0. Let v € &, over u. Then we have tv € F,. Let U be a neighbourhood of
z such that tv comes from w € F(U). This means that wyn,-1(py € F(U\7(P)). Since t is
invertible on U\n~*(P) we can write w = tw’, with w’ € F(U\n"}(P)). We have then v’ = v
on U\7n~Y(P). Hence v € F, and u = 0. O

2.3. PRIMITIVE MULTIPLE CURVES

(cf. [, 51, B)).
Let C' be a smooth connected projective curve. A multiple curve with support C' is a Cohen-
Macaulay scheme Y such that Y,.; = C.

Let n be the smallest integer such that Y = C=1 C*=1 being the k-th infinitesimal neigh-
bourhood of C, i.e. Zpw-1) = ZF . We have a filtration C =C; C Cy C--- C C, =Y where

C; is the biggest Cohen-Macaulay subscheme contained in Y N C¢—Y. We call n the multiplicity
of Y.

We say that Y is primitive if, for every closed point z of C, there exists a smooth surface S,
containing a neighbourhood of z in Y as a locally closed subvariety. In this case, L = Z¢/Z¢,
is a line bundle on C' and we have Z¢, = Ig'(, Ze, /ch o= L7 for 1 < j < n. We call L the line
bundle on C associated to Y. Let P € C. Then there exists elements y, t of mg p (the maximal
ideal of Og p) whose images in mgp/ m%} p form a basis, and such that for 1 <7 < n we have

Io,p = (¥') -
The simplest case is when Y is contained in a smooth surface S. Suppose that Y has multiplicity

n. Let P € C and f € Ogp a local equation of C. Then we have Z¢, p = (f%) for 1 < j <n,
in particular Iy p = (f"), and L = Oc(-C) .

We will note O,, = O¢, and we will see O; as a coherent sheaf on C,, with schematic support

If £ is a coherent sheaf on Y one defines its generalized rank R(E) and generalized degree Deg(E)
(cf. [8], 3-). Let Oy (1) be a very ample line bundle on Y. Then the Hilbert polynomial of £ is

Pe(m) = R(E)deg(Oc(1))m + Deg(€) + R(E)(1 - g)
(where g is the genus of C).
We deduce from proposition [2.1.1}

2.3.1. Proposition: LetY be a multiple curve with support C. Then'Y is a primitive multiple
curve if and only if /T2 is zero, or a line bundle on C.

2.3.2. Parametrization of double curves - In the case of double curves, D. Bayer and D. Eisen-
bud have obtained in [2] the following classification: if Y is of multiplicity 2, we have an exact
sequence of vector bundles on C'

0—L—Qyc —wc—0
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which is split if and only if YV is the trivial curve, i.e. the second infinitesimal neighbourhood of
C, embedded by the zero section in the dual bundle L*, seen as a surface. If Y is not trivial, it
is completely determined by the line of Exty, .(wc, L) induced by the preceding exact sequence.
The non trivial primitive curves of multiplicity 2 and of associated line bundle L are therefore
parametrized by the projective space P(Ext}gc (we, L)).

2.4. SIMPLE PRIMITIVE MULTIPLE CURVES

Let C' be a smooth projective irreducible curve, n > 2 an integer and C), a primitive multiple
curve of multiplicity n and associated reduced curve C'. Then the ideal sheaf Zo of C' in C,, is
a line bundle on C),_;.

We say that C,, is simple si I ~ O, _1.

In this case the line bundle on C' associated to C,, is O¢. The following result is proved in [10]
(théoreme 1.2.1):

2.4.1. Theorem: Suppose that C,, is simple. Then there exists a flat family of smooth
projective curves 7:C — C  such that 771(0) ~ C and that C,, is isomorphic to the n-th
infinitesimal neighbourhood of C' in C.

3. REDUCIBLE REDUCED DEFORMATIONS OF PRIMITIVE MULTIPLES CURVES

3.1. CoNNECTED COMPONENTS

Let (S, P) be a germ of smooth curve and ¢ € Og p a generator of the maximal ideal. Let n > 0
be an integer and Y = (), a projective primitive multiple curve of multiplicity n.

Let k > 0 be an integer. Let 7 :C — S be a flat morphism, where C is a reduced algebraic
variety, such that

— For every closed point s € S such that s # P, the fiber C, has k irreducible components,
which are smooth and transverse, and any three of these components have no common
point.

— The fiber Cp is isomorphic to C),.

It is easy to see that the irreducible components of C are reduced surfaces.

Let Z be the open subset of C\Cp of points z belonging to only one irreducible component of
Cr(z)- Then the restriction of 7 : Z — S\{P} is a smooth morphism. For every s € S\{P}, let
C. =CsN Z. It is the open subset of smooth points of Cs.

Let z € Z and s = m(z). There exists a neighbourhood (for the usual topology) U of s, iso-
morphic to C, and a neighbourhood V' of z such that V ~ C? «(V) = U, the restriction of
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7 :V — U being the projection C* — C on the first factor. We deduce easily from that the
following facts:

— let s € S\{P} and C; an irreducible component of Cy. Let 21,2, € C; N Z. Then there
exists neighbourhoods (in Z, for the usual topology) Uy, U, of 21, z» respectively, such
that if y; € Uy, yo € Uy are such that 7(y;) = m(y2), then y; and y2 belong to the same
irreducible component of Cr(,,).

— for every continuous map o : [0,1] — S\{P} and every z € Z such that ¢(0) = 7(z)
there exists a lifting of o, ¢’ : [0,1] — Z such that ¢'(0) = 2. Moreover, if
o” :10,1] = Z is another lifting of o such that ¢”(0) = z, then ¢’(1) and o”(1) are
in the same irreducible component of Cy(1). More generally, if we only impose that
0”(0) is in the same irreducible component of Cy(g) as z, then ¢'(1) and ¢”(1) are in the
same irreducible component of Cy(1).

3.1.1. Lemma: Let 09,01 :[0,1] = S\{P} be two continuous maps such that

00(0) = 01(0), s =0¢(1) = 01(1). Suppose that they are homotopic. Let o, oy be liftings
0,1 = Z of oy, o1 respectively, such that oy(0) = d1(0). Then o((1) and o((1) belong to
the same irreducible component of C..

Proof. Let
U:[0,1] x [0,1] — S\{P}
be an homotopy:
U(0,t) = 0o(t), W(1,t)=01(t), W(t,0)=00(0), P(t1)=00(1)

for 0 <t < 1. For every u € [0,1] and € > 0 let I, = [u — €,u + €] N [0, 1]. By using the local
structure of 75 for the usual topology it is easy to see that for every u € [0, 1], there exists an
€ > 0 such that the restriction of ¥

I,ex[0,1] — S\{P}
can be lifted to a morphism

UL x [0,1] — Z
such that W'(¢,0) = 0(0) for every t € I, .. It follows that if I, . = [ay.e, bu.], then W' (a,., 1)
and W'(by., 1) are in the same irreducible component of C; ;). Now we have just to cover [0, 1]
with a finite number of intervals I, to obtain the result. O

Let s € S\{P}, Dy,..., Dy be the irreducible components of C. and z; € D; for 1 <i < k. Let
o be a loop of S\{P} with origin s, defining a generator of m1(S\{P}). Let i be an integer such
that 1 <1 < k. The liftings o’ : [0,1] = Z of o such that ¢/(0) = z; end up at a component D;
which does not depend on z;. Hence we can write

J = ac().
3.1.2. Lemma: «o¢ is a permutation of {1,... k}.

Proof. Suppose that i # j and ac(i) = ac(j). By inverting the paths we find liftings of paths
from Dq, () to D; and D;. This contradicts lemma (3.1.1} O
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Let p > 0 be an integer such that ag = 1. 3. Let ¢ be a generator of the maximal ideal of
Os.p, K the field of rational functions on S and K’ = K(t'/?). Let S’ be the germ of curve
corresponding to K’, # : S’ — S canonical the morphism and P’ the unique point of 671(P).
Let D = 6*(C). We have therefore a cartesian diagram

D L. g
lo |
cC—"-8

where p is flat, and for every s € S’, © induces an isomorphism Dy ~ Cy(s). We have

Let Z' C D be the complement of the union of p~*(P’) and of the singular points of the curves
Dy, s’ # P’ (hence Z' = ©71(2)).

3.1.3. Proposition: The open subset Z' has exactly k irreducible components Z1, ..., Z,. Let
... ,Z be their closures in D. Then for every s € S'\{P'}, the Z! N Dy, 1 <1i < k, are the
irreducible components of Dy minus the intersection points with the other components, and the
Z(ﬂ Dy are the irreducible components of Dy .

3.1.4. Definition: Let k > 0 be an integer. We call reducible deformation of length k of C),
a flat morphism m:C — S, where C 1s a reduced algebraic variety, such that

— For every closed point s € S, s # P, the fiber Cs has k irreducible components, which
are smooth and transverse, and any three of these components have no common point.

— The fiber Cp is isomorphic to C,.

— We have ac = I, 1.

3.2. MAXIMAL REDUCIBLE DEFORMATIONS

Let (S,P) be a germ of smooth curve and t € Ogp a generator of the maximal ideal. Let
n > 0 be an integer and Y = C,, a projective primitive multiple curve of multiplicity n, with
underlying smooth curve C'. We note g the genus of C' and L the line bundle on C associated
to C),.

Let m:C — S be a reducible deformation of length k£ of C,,. Let Zi,...,Z; be the closed
subvarieties of 7~!(S\{P}) such that for every s € S\{P}, Zi,,...,Zys are the irreducible
components of Cs (cf. prop. |3.1.3)).
For 1 <i < k, we denote by J; the ideal sheaf of Z; U---U Z; in 7~ 1(S\{P}). This sheaf is
flat on S\{P}, and we have

0=Tr CTk1C -+ C I COrr(s\(P}) -

The quotients Or-1(s\(py)/J1, Ji/ Tiv1, 1 <@ <k, are also flat on S\{P}. We obtain the
filtration of sheaves on C o o
0= CIha1C--CHhCOc.
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(cf. . According to proposition the quotients Oc/J; and J;/Jiy1, 1 < i < n, are flat on
S. We have Or-1(s\(p})/J1 = Oz,. We denote by X; the closed subvariety of C corresponding

to the ideal sheaf 7;.

Similarly we consider the ideal sheaf J; of Zijy,U---UZ, on 7 '(S\{P}), the associated
ideal sheaf J/ on C and the corresponding subvariety X..

3.2.1. Proposition: We have kK <n .

Proof. Let & = 06/71 and & = z/$+1 for 1 <i < n. The sheaves &;p are not concentrated
on a finite number of points. To see this we use a very ample line bundle O(1) on C. The
Hilbert polynomial of &p is the same as that of &, s # P, hence it is not constant. So we
have R(&;) > 1 (cf. 2.3), and since

k
(1) n = R(Oc,) =) R(Ep),

i=0
we have £k < n. O

3.2.2. Definition: We say that 7 (ou C) is a maximal reducible deformation of C,, if k = n.

3.2.3. Theorem: Suppose that C is a maximal reducible deformation of C,. Then we have,
forl1<i<n o

Jisp = ZLeyca
and X; is a maximal reducible deformation of C;.

Proof. Let O¢(1) be a very ample line bundle on C.

Let @ be a closed point of C. Let z € O,, ¢ be an equation of C' and z € O,, ¢ over a generator
of the maximal ideal of Q) in O¢ . Let z,x € O¢ g be over z, x respectively. The maximal ideal
of O, is (x, z). The maximal ideal of O¢ g is generated by z,x,t. It follows from proposition
that there exists a neighbourhood U of () in C and an embedding j: U — P3. We can
assume that the restriction of j to Z; N U is induced by the morphism ¢ : C[X, Z, T] — Oz 0
of C-algebras which associates x, z, t to X, Z, T respectively.

Since C is reduced, U is an open subset of a reduced hypersurface of P3 having n irreducible com-

ponents, corresponding to Zi,. .., Z,. It is then clear that X;, beeing the smallest subscheme
of C containing Z1\C, ..., Z;\C, is the union in U of the first ¢ hypersurface components.

Since j(Z,) is an hypersurface, the kernel of ¢ is a principal ideal generated by the equation F
of the image of Z;.

Recall that O, = O¢, = (O¢)p. We have R(O,/J1,p) =1 according to (1). Hence there
exists a nonempty open subset V' of (), such that (On /j_hp)w is a line bundle on VN C'. It
follows that the projection O,, — O¢ vanishes on J1,p)y,. Since O is torsion free this projection
vanishes everywhere on Ji, i.e. Jip C Lo, , with equality on V.

The sheaf & = O¢/J; is the structural sheaf of Z;, and the projection Z; — S is a flat mor-

phism. For every s € S\{P}, (Z1), is a smooth curve. The fiber (Z;)p consists of C and a finite
number of embedded points. There exists flat families of curves whose general fiber is smooth
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and the special fiber consists of an integral curve and some embedded points (cf. [I5], III,

Example 9.8.4). We will show that this cannot happen in our case, i.e. we have J1p = Z¢ .

Let m = (X, Z,T) C C[X, Z,T], and myz, the maximal ideal of Oz . The ideal of (Z1)p in
O, contains z¢ and aPz (for suitable minimal integers p > 0,¢ > 0), with p > 0 if and only

if  is an embedded point. Hence the ideal of Z; in O¢ g contains elements of type xPz — ta,
z? — 18, with o, 8 € O¢ g.

Let 0/7; be the completion of O 5 with respect to mz, and
¢:C((X,Z,T)) — Oz

the morphism deduced from ¢. We can also see O/Zfl\Q as the completion with respect to

(X, Z,T) of O o seen as a C[X, Z, T]-module. It follows that ker(¢) = (F) (cf. [11], lemma

7.15). Note that o is surjective (this is why we use completions). Let o, 8 € C((X,Y, Z)) be
such that ¢(a) = a, ¢(3) = . So we have

XPZ —Ta, Z'—TB € ker(9) .
Hence there exists A, B € C((X, Z,T)) such that X?Z —Ta = AF, 79— T3 = BF. We can
write in an unique way

A=Ay +TA, B=By+TBH:, F=F+TF,
with Ag, By, Fo € C((X, Z)) and Ay, By, F1 € C((X, Z,T)), and we have
AoFy = XPZ, Boly =29
Since F' is not invertible, it follows that Fp is of the form Fy = c¢Z, with ¢ € C((X, Z,T))
invertible. So we have F' = c¢Z 4+ TFy. It follows that z € (¢) in O/Zfz This implies that this
is also true in Oz 5 : in fact the assertion in O/zT\Q implies that
z € [()((t) +my)
n>0

in O , and the latter is equal to (t) according to [I8], vol. II, chap. VIII, theorem 9. Hence
z € (t) in Oy o, i.e. p=10and @ is not an embedded point. So there are no embedded points.
This implies that Ji1p = Z¢ ¢, . Similarly, if I; denotes the ideal sheaf of Z; for 1 < j < n, we

have I; p = Z¢c,. Since the restriction of 7: Z; — S is flat, the curves &;,, s # P, have the
same genus as C, and the same Hilbert polynomial with respect to O¢(1).

Now we show that X/ is a maximal reducible deformation of C,_;. We need only to show
that X p = C,,—1. As we have seen, for 2 < j <n, a local equation of Z; at any point Q € C
induces a generator u; of Zcc, - Hence u = [[,;, u; is a generator of Z, , ¢, - But u=0
on Xj. It follows that X’ » C C},—;. But the Hilbert polynomial of Oc¢,_, is the same as that
of the structural sheaves of the fibers of the flat morphism X} — S over s # P, hence the same
as Oxﬁ,p‘ Hence X’LP =C,_.

The theorem is then easily proved by induction on n. ([l

3.2.4. Corollary : Let s € S\{P} and D, Dy be two irreducible components of Cs. Then D,
is of genus g and Dy N Dy consists of —deg(L) points.
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Proof. According to theorem there exists a flat family of smooth curves C parametrized
by S such that Cp = C' and C; = D;. So the genus of D, is equal to that of C.

Let us prove the second assertion. Again according to theorem we can suppose that n = 2.
We have then x(Cs) = x(C2) = 2x(C) + deg(L). Let xy,...,zx be the intersection points of
Dy and Dy. We have an exact sequence

0—>OD2(—.Z‘1—”'—.TN) —)Ocs —)ODl — 0.
Whence  x(O¢,) = x(D1) + x(D2) — N = 2x(O¢) — N (according to the first assertion).
Whence N = —deg(L). O

3.2.5. It follows from the previous results that if 7 : C — S is a maximal reducible deformation
of C),, then we have

(i) deg(L) <0.

(ii) C has exactly n irreducible components C; ..., C,.

(iii) For 1 <i < n, the restriction of 7, 7; : C; — S is a flat morphism , and 7; '(P) = C.

(iv) For every nonempty subset I C {1,...,n}, let C; be the union of the C; such that i € I,
and m the number of elements of I. Then the restriction of 7, 7; : C; — S is a maximal

reducible deformation of C,,.

The following is immediate, and shows that we need only to consider maximal reducible defor-
mations parametrized by a neighbourhood of 0 in C:

3.2.6. Proposition: Let t € Og(P) be a generator of the maximal ideal, and w:C — S a
mazimal reducible deformation of C,,. Let S" C S an open neighbourhood of P where t is defined
and C' =7 YU), V=tU). Then 7’ =ton:C" — V is a maximal reducible deformation of
C.

4. FRAGMENTED DEFORMATIONS OF PRIMITIVE MULTIPLE CURVES

The fragmented deformations of primitive multiple curves are particular cases of reducible
deformations.

In this chapter (S, P) denotes a germ of smooth curve. Let t € Ogp be a generator of the
maximal ideal of P. We can suppose that t is defined on the whole of S, and that the ideal
sheaf of P in S is generated by t.

4.1. FRAGMENTED DEFORMATIONS AND GLUEING

Let n > 0 be an integer and Y = C), a projective primitive multiple curve of multiplicity n.

4.1.1. Definition: Let k > 0 be an integer. A general fragmented deformation of length &
of Cy is a flat morphism w:C — S such that for every point s # P of S, the fiber C, is a
disjoint union of k projective smooth irreducible curves, and such that Cp is isomorphic to C,.
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We have then k < n. If K = n we say that = (or C) is a general maximal fragmented deformation
of C),. We suppose in the sequel that it is the case.

The line bundle on C associated to C,, is O¢ (by proposition [3.2.4]).

Let p > 0 be an integer. Let K be the field of rational functions on S and K’ = K (t'/7). Let
S’ be the germ of curve corresponding to K’, # : S” — S the canonical morphism and P’ the
unique point of #71(P). Let D = 0*(C). So we have a cartesian diagram

D L. g
lo |
C—"-8

where p is flat, and for every s € S’, © induces an isomorphism Dy ~ Cyy.

4.1.2. Proposition:  For a suitable choice of p, D has exactly n irreducible components
Dy, ..., D,, and for every point s # P" of S’, Dis,...,Dus are the irreducible components of
D, for 1 < i < n the restriction of p: D;s — S’ is flat, and Dp = C,,.

(See proposition (3.1.3)

4.1.3. Definition: A fragmented deformation of C,, is a general maximal fragmented defor-
mation of length n of C,, having n irreducible components.

We suppose in the sequel that C is a fragmented deformation of C),, union of n irreducible
components Cy, ...,C,.

4.1.4. Proposition: Let I C{1,...,n} a nonempty subset having m elements. Let
Cr = UierC;. Then the restriction of w, C; — S, is flat, and the fiber Crp is canonically iso-
morphic to C,,.

(Sec BZ)

In particular there exists a filtration of ideal sheaves
0Oczhc---CZ,1CO¢

such that for 1 <1i <n and s € S\{P}, Zs is the ideal sheaf of U7_,Cjs, and that Z;p is that of
Chi.

4.1.5. Definition: For1<i<mn, let m:C; — S be a flat family of smooth projective irre-
ducible curves, with a fized isomorphism w; '(P) ~ C. A glueing of Cy,--- ,C, along C is an
algebraic variety D such that

- for 1 <1 < n, C; 1s isomorphic to a closed subvariety of D, also denoted by C;, and D
18 the union of these subvarieties.

- [Li<i<,(C\C) is an open subset of D.

There exists a morphism m:D — S inducing m; on C;, for 1 <1 < n.

The subvarieties C = m; *(P) of C; coincide in D.
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For example the previous fragmented deformation C of C), is a glueing of Cy,--- ,C, along C.
All the glueings of Cy,--- ,C, along C' have the same underlying Zariski topological space.

Let A the initial glueing of the C; along C'. It is an algebraic variety whose points are the same

as those of C, i.e.
(JIcy/~
i=1

where ~ is the equivalence relation: if x € C; and y € C;, x ~y if and only if z =y, or if
r€Cp~C,yelCjp~C and z =y in C. The structural sheaf is defined by : for every open
subset U of A

OAlU) = {(a1,...,00) €O, (UNCy) X ---Oc,(UNCy) 0010 =+ = apnc}-

For every glueing D of Cy,--- ,C,, we have an obvious dominant morphism A — D. If follows
that the sheaf of rings Op can be seen as a subsheaf of O 4.

The fiber D = Ay is not a primitive multiple curve (if n > 2): if Zo p denotes the ideal sheaf
of C'in D we have IéD =0,and Zep ~ O¢c ® Ccrt.

4.1.6. Proposition: Let D be a glueing of Cy,- -+ ,Cn. Then 7= Y(P) is a primitive multiple
curve if and only if for every closed point x of C, there exists a neighbourhood of x in D that
can be embedded in a smooth variety of dimension 3.

Proof. Suppose that 7—!(P) is a primitive multiple curve. Then Z¢/(Z% + (7)) is a principal
module at  : suppose that the image of u € mp, is a generator. The module mp . /Z¢ is also
principal (since it is the maximal ideal of = in C') : suppose that the image of v € mp, is a
generator. Then the images of u,v, 7 generate mp /m%vz, so according to proposition ,
we can locally embed D in a smooth variety of dimension 3.

Conversely, suppose that a neighbourhood of x € C in D is embedded in a smooth variety Z of
dimension 3. The proof of the fact that 7—!(P) is Cohen-Macaulay is similar to that of theorem
3.2.3. We can suppose that 7 is defined on Z. We have me, =m € mg, ,, so m € my,. It
follows that the surface of Z defined by 7 is smooth at z, and that we can locally embed 7~ 1(P)
in a smooth surface. Hence 7—!(P) is a primitive multiple curve. 0

4.2. FRAGMENTED DEFORMATIONS OF LENGTH 2

Let m: C — S be a fragmented deformation of Cs. So C has two irreducible components Cy, Cs.
Let A be the glueing of C; and Cy along C'. For every open subset U of C, U is also an open
subset of A and O¢(U) is a sub-algebra of O4(U). For i = 1,2, let m; : C; — S be the restriction
of m. We will also denote ¢t o 7 by 7, and ¢ o m; by m;. So we have m = (7, m2) € Oc(C).

Let Z¢ be the ideal sheaf of C'in C. Since Cy = 771 (P) we have ZZ C {(m1,m)) .

Let m > 0 be an integer, x € C, oy € O¢, 4, a2 € Oc, . We denote by [o],, (resp. [as)m,) the
image of a; (resp. ag) in Og, ./ (7]") (resp. Oc, ./ (75)).

4.2.1. Proposition: 1 — There exists an unique integer p >0 such that Zc/{(m1, 7)) is
generated by the image of (77,0).



16 JEAN-MARC DREZET

2 — The image of (0,75) generates Zc/{(m1,m2)).
3 — Foreveryx € C, a € O, and B € Og, ., we have (mia,0) € O, and (0,755) € Oc..

Proof. Let € C' and u = (ma,mf3) whose image is a generator of Zg/((m,m)) at x
(Ze/((m1,m2)) is a locally free sheaf of rank 1 of Oc-modules). Let 5y € Oc, . be such that
(Bo, B) € Oc.. Then the image of

u— (m1,m2)(Bo, B) = (m(e = fo), 0)
is also a generator of Z¢o/((m,m)) at x. We can write it (7] A, 0), where X is not a multiple of
1.

Now we show that p is the smallest integer ¢ such that (Z¢/{(71,m2))), contains the image of
an element of the form (7{u,0), with u not divisible by ;. We can write

(m1p,0) = (ur, u2) (YA, 0) + (v1, v2) (71, 72)
with (u1,u2), (v1,v2) € Oc .. So we have vy = 0, hence (vy,v2) € Ze,. So we can write (v, v2)
as the sum of a multiple of (77\,0) and a multiple of (71, 72). Finally we obtain (7{u,0) as
(m11,0) = (w12, ug2) (77N, 0) + (U11,0)(7177T2)2.
In the same way we see that (7u,0) can be written as
(7T(11M? 0) = <u1p> u2p)<ﬂ-}17/\7 0) + (Ulpv O) (71—17 77.2)1)’
which implies immediately that ¢ > p.
It follows that p does not depend on x and that Zg/{(m, m2)) is a subsheaf of
(7, 0)) /{(x",0)) ~ O¢. Since Z¢/{(m1, 7)) is of degree 0 by (by corollary [3.2.4) it follows

that Ze/((m1, 7)) ~ (7, 0))/((x?*1,0)), from which we deduce assertion 1- of proposition
4.2.1] The second assertion comes from the fact that (0,75) = #? — (7},0).

To prove the third, we use the fact that there exists o’ € Oc, ,, such that (o, ') € O¢ , (because
C, C C). Hence (77,0)(a, ') = (m)a,0) € Oc,. Similarly, we obtain that (0,755) € Oc,. O

According to the proof the proposition for every = € C, p is the smallest integer ¢ such
that there exists an element of O¢ . of the form (7ja,0) (resp. (0,7ia)), with @ € O, . (resp.
a € O, ;) not vanishing on C.

Let x € C and a3 € O¢, ;. Since C; C C there exists as € Oc,, such that (o, as) € Oc .
Let o € Og,, such that (a1,ab) € Oc,. We have then (0,00 —af) € O¢,. So there exists
a € Oc, . such that as — afy = mha. It follows that the image of ay in Og, . /(75) is uniquely
determined. Hence we have:

4.2.2. Proposition: There exists a canonical isomorphism
R
between the infinitesimal neighbourhoods of order p of Cy and Cy (i.e. Oy = Oc,/(77)), such

that for every x € C, ay € O¢,» and as € Oc, ., we have (ai,as) € Oc, if and only if
Q. (loa]p) = [aalp. For every o € Oc, » we have P (a)c = ajc, and Py(m) = m.
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The simplest case is p=1. In this case ® : C'— C' is the identity and C = A (the initial
glueing).

4.2.3. Converse - Recall that A denotes the initial glueing of C;i,Co (cf. [4.1.5). Let
®: PV ¢V be an isomorphism inducing the identity on C' and such that ® () = 7.
We define a subsheaf of algebras Us of O4: Uy = O 4 on A\C, and for every point = of C

Uso = {(a1,02) € Oc, o X Ocya 5 Pullan]y) = [a2]p) -
It is easy to see that Us is the structural sheaf of an algebraic variety Ag, that the inclu-
sion Uy C O 4 defines a dominant morphism A — Ag inducing an isomorphism between the
underlying topological spaces (for the Zariski topology), and that the composed morphisms
C;Cc A— Ag,i=1,2, are immersions. Moreover, the morphism 7 : A — S factorizes through
Ag :
A—— Ay —2- S

and 7 : Ap — S is flat.
For 2 <i<p,let O : C}i) — Céi) be the isomorphism induced by .

4.2.4. Proposition: 73" (P) is a primitive double curve.

Proof. Let x be a closed point of C'. We first show that ZZ , C (7). Let u = (mo, mf) € Lo
Let 8 € Oc, ., be such that ®,([a],) = [#],- We have then v = («,') € Oc,. We have
u—mv=(0,m(8 —p')) € Ocy. Therefore [m(s— )], = .(0) = 0. Hence

o8 — ') € (7h). We can then write

u = v+ (0,757).
Let v’ € Zc ., that can be written as u = 7’ 4 (0, 757’). We have then
wi! = w.(mov’ + (0, my v + (0,m27)0 + (0,757 ') € ().
It remains to show that Z¢,/(7) >~ O¢,. We have
Zox = {(ma,mpB) € Oc, o X Oc, i Pu([maly) = [mf],}
= {(ma,mp) € Oc,o X Oc, ;@ V([0]y1) = [Blp-1},
(m)e = {(ma,mf) € Oc,x X Oc, w5 Pul[a]p) = [B]p}-

So if (mia, mf) € Toa, we have w = ®,([a],) — [B, € (78 1)a/(7h)2 ~ Oc... Hence we have
a morphism of O¢ ,-modules
A IC,:C - OC’,J:

(T, mf) ——w

whose kernel is (7),. We have now only to show that A is surjective, which follows from the
fact that A(#?,0) = 1. O
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4.3. SPECTRUM OF A FRAGMENTED DEFORMATION AND IDEALS OF SUB-DEFORMATIONS

Let m:C — S be a fragmented deformation of C,,, Cy,...,C, the irreducible components of C.
For 1 <i < n,let m = me,. Asin , we denote also t om; by m;. Let I = {i, 7} be a subset of
{1,...,n}, with ¢ # j. Then 7 :C; — S is a fragmented deformation of Cy. According to
there exists a unique integer p > 0 such that Z¢ e, /() is generated by the image of (77, 0) (and
also by the image of (0,77)). Recall that p is the smallest integer ¢ such that Z¢¢, contains a
non zero element of the form (7, 0) (or (0,7}u)), with A\jc # 0 (resp. yc # 0). Let

bij = Pji = P,
and p; = 0 for 1 < ¢ <n. The symmetric matrix (p;;)1<i j<n is called the spectrum of C.

4.3.1. Generators of (T% + (n))/(Z&™ + (7)) - Let 4,5 € {1,...,n} be such that i # j. Let
x € C. Since Cy; j3 C C there exists an element u;; = (Um)1<m<n Of Oc¢, such that u; = 0 and
uj = m;"”. According to proposition m, the image of u;; generates Z¢/(Z% + (7)) at x.

According to proposition and the fact that the image of u;; generates
Zocyal (ZEc, . + (7)), for every integer m such that m # 4, j and that 1 < m <n, u,, is of the

_ (m) (m (i (4 _
form wu,, = ;s ‘ i o =1

i ) ¢ Oc,,» invertible. Let « ) =0 and a

mhim with

4.3.2. Proposition: 1 — ag% 1s a non zero constant, uniquely determined and independent

of .

2 — Let al™ = a(mg € C. Then we have, for all integers , 7, k,m,q such that

ij ijl
1 §i7j7k7m’q§n) Z#]? Z%k‘
Apag) = el
In particular we have agn) = aEZL)aZ(-?) and aﬁ}n)agfg =1.

Proof. Let uj; having the same properties as u;;. Then v =uj; —u; € Z¢ , + (7). So the
image of v in Ok, . belongs to ZZ. .+ (m). It follows that the m-th component of v is a
multiple of wPim*1. Hence agﬁgj is uniquely determined. It follows that when x varies the agﬁgj
can be glued together and define a global section of O¢, which must be a constant. This proves

1-.
Now we prove 2-. There exists u € O¢, such that the k-th component of u is ag?), and u is

invertible. Then the image of (v,,) = =2 generates Zc /(Zg + (7)), and v, = 1. Hence according
to 1-, we have v,,c = aE,T), ie.
(m)
Aj g m)
(k) — %k
We have the same equality with m instead of ¢, whence 2- is easily deduced. ([l

Let p an integer such that 1 <p <n, and (i1,71),..., (%, Jp) p pairs of distinct integers of
{1,...,n}. Then the image of [’ _, w,j,. isa generator of (Z% -+ (m))/(Z& + (7).
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Let I C{l,---,n} be a nonempty subset, distinct from {1,--- ,n}. Let i€ {1,--- n}\I.

Let
1,1[77; = Huji .

jel
Recall that C; = U;e;C; C C.

4.3.3. Proposition: The ideal sheaf of C; is generated by ur; at x.

Proof. According to proposition there exists an embedding of a neighbourhood of x in a
smooth variety of dimension 3. In this variety each C; is a smooth surface defined by a single
equation. The ideal of the union of the C;, ¢ € I is the product of these equations. 0

4.3.4. Proposition: Let,j, k be distinct integers such that 1 <, 5,k < mn. Then if p;; < pj,
we have pi = pij.

Proof. We can come down to the case n =3 by considering Cy;;r. We can suppose that
P23 < P12 < P13, and we must show that po3 = p12. We have

U2 = (71-{)127 0, O‘gzi)ﬂg%)? U3 = (71_]10137 052(321)7‘-5237 O)
So
U3y — PP, = (O, 04:(),21)7T§23, —Ckg)W§23+p13_p12> € Oca.
Taking the image of this element in Og,,,, we see that pa3 > pi1a, hence pag = pio. OJ

4.3.5. Proposition: 1 — Let i, j be distinct integers such that 1 <i,5 < n. Then we have
Low = (uy) + (7).
2 — Let v = (Um)1<m<n € Lo such that v; is a multiple of ©¥, with p > 0. Then we have
v € (uij) + (ﬂ'p).
Proof. Let N =1+ maxj<g<,(q;). For every integer j such that 1 < j < n we have
(0,...,0,7r]q-j,0, ...,0) € Oc(C), Hence ZIY c (w). We will show by induction on k that
Ico C (i) + (7) + I¢,,. Taking k = N we obtain 1-.
For k=1 it is obvious. Suppose that it is true for k —1>1. It is enough to prove
that Ié;l C (uy) + (m) + Ié’z. Let wq,...,wx_1 € Z¢,. Since the image of u,; generates
Tew/(Z2,, + (7)), we can write w, as
w, = AUy + Ty + Uy,

with Ap, p1, € Oc» and v, € I, .. So we have

Wy W1 = Auij +7T,U+I/,

with A, 1 € O¢, and v, € I2F, %, Since 2k —2 > k, we have wy - wp_1 € (uy;) + (7) + ¢ ,.
This proves 1-.
We prove 2- by induction on p. The case p = 1 follows 1-. Suppose that it is true for p — 1 > 1.

So we can write v as
1
v o= Auy + 77 p,
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with A\, pp € O¢,. We can write v; as v; = an”. So we have arn! = Wf_lui, whence pu; = am;.
Hence p € Zey. According to 1- we can write pp as p = 0u;; + w7, with 6,7 € O¢ . So

v = A+ 70y + Pr,
which proves the result for p. 0J

4.3.6. The ideal sheaves Ic, — Recall that I C {1,---,n} is a nonempty subset, distinct from
{1,---,n}. For every subset J of {1,--- ,n},let J*={1,--- ,n}\J and O; = O¢,. It follows
from proposition that Z¢, is a line bundle on Cye.

From now on, we suppose that S C C and P =0 (cf. proposition 3.2.6).

4.3.7. Theorem: We have Z¢, ~ Oje.

Proof. By induction on n. If n = 2 the result follows from proposition [4.2.1] and the fact that
S C C. Suppose that it is true for n — 1 > 2. We will prove that it is true for n by induction
on the number of elements ¢ of I°. Suppose first that ¢ = 1 and let ¢ be the unique element
of I¢. Then according to proposition m, Zc, is generated by (0,...,0,7,0,...,0), so the
result is true in this case. Suppose that it is true if 1 <¢ <k <n, and that ¢ =Fk. Let
K={1,--- ,n—1}. We can assume that [ C K.

According to proposition , we have, for every x € C, Z¢, ; >~ Oje,. We have Ze, C g,
and Zc¢, ~ Og,y. We have
ICI /ICK = ICLCK
(the ideal sheaf of Cr in Ck). From the first induction hypothesis we have
Zepen = Ouumye:
So we have an exact sequence of sheaves

0— O{n} — ICI — O[c\{n} — 0.

Now we will compute Ext}QC(OIc\{n}, Ogn}). According to [§], 2.3, we have an exact sequence
0—> EXt}QIC (O[c\{n}, O{n}) — EXtéC(OIc\{n}, O{n}) — Hom(Tor}Qc((’)Ic\{n}, OIC), O{n}).
Since Toréc((’)lc\{n}, Oje) is concentrated on Cre\(n}, we have
Hom(Tor}gC(O]c\{n},O[c),O{n}) = {0}.
So we have
Exto, (Oreviys Otmy) = Exto, (Oreyiny, Opy).
Let J denote the ideal sheaf of Cyf,y in Cre. The ideal sheaf of Cpe\fny is generated by
w=(0,...,0,7), with m = Z Pin. S0 we have an exact sequence of sheaves on Cre
el \{n}

0 J Or ——= O Ore\fny —= 0,
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where « is the multiplication by w. By the induction hypothesis there exists a surjective
morphism O — J, so we get a locally free resolution of Oje\ ()

OIC OIC & O]c OIC\{n} —— 0 5

that can be used to compute Exty  (Ore\(ny, Opny)- It follows easily that
Exty,(Or\iny, Otny) = Opmy/(m]) -
We have Hom(Ope\(n}, Ofny) = 0, hence
EXt}QIC (OIC\{n}; O{n}) ~ H° (gxt%QIc ((’)Ic\{n}, O{n}))
~ H(Opy/(m))
~ H(Os/(m)))
=~ Clma]/ (7).
We will now describle the sheaves £ such that there exists an exact sequence
(2) 00— O{n} — & — OIC\{n} — 0.
Let v € Clm,]/(7™) be associated to this exact seqence, and v € H°(Og) over v. Let
T: O{n} —— O{n} P Ore
u————= (Du, wu)

Then according to the preceding resolution of Oje\f,) and the construction of extensions (cf.
[7], 4.2), we have & ~ coker(7). It is easy to see that if v = —1 then & ~ Oz.. If v is invertible,
then we have also & ~ Ozc, because the corresponding extension can be obtained from the one
corresponding to v = —1 by multiplying the left morphism of the exact sequence by v.

A similar construction can be done for extensions of Ore ,-modules (for every = € C)
0— O{n}w —V — OIC\{n},x — 0.
These extensions are classified by Oy} ./(7)"), and Oje , corresponds to —1.

Conversely we consider extensions

A

0—— O{n},az Olc,az . OIC\{n},x —0.

Using the facts that Hom(Oyp} 4z, Ore ) is generated by the multiplication by w and
Hom(Ope g, Ofe\(n},») by the restriction morphism, it is easy to see that A, 4 are unique up to
multiplication by an invertible element of Oy ,. Hence the elements of Extélc B} (Ore\fn},2 Ony.z)
corresponding to the preceding extensions are exactly the invertible elements of Oy, ./(7)").
It follows that the extensions where £ is locally free correspond to invertible elements of

Clm,]/(m7), and we have seen that in this case we have & ~ Or.. Hence we have Z¢, ~ O
and theorem is proved. 0

4.3.8. Corollary : The ideal sheaf of Cy is globally generated by an element uy such that for
every integer i such that 1 <i <n and i & I, the i-th coordinate of u; belongs to H°(Og).
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4.4. PROPERTIES OF THE FRAGMENTED DEFORMATIONS

We use the notations of 4.3

Let ¢ be an integer such that 1 <i <mn and J; = {1,...,n}\{i}. We denote by B the image
of Oc in [[,<jc, Oc,/(m"); it is a sheaf of C-algebras on C. Let B; be the image of Oc, In
[Ticjcnjzi Oc;/ (m3'); it is also a sheaf of C-algebras on C'. For every point z of C' and every
a = () 1<m<n I ngjgn Oc, », we denote by b;(«a) its image in HlQSn’#i Oc, . (obtained
by forgetting the i-th coordinate of «).

If p, k are positive integers, with &k < n, z € C and a € Og, ., let [@], denote the image of v in
Ock,ﬂﬁ/ﬂ-z

4.4.1. Proposition: There exists a morphism of sheaves of algebras on C

®;: B; — O¢, /(")
such that for every point x of C' and all (um)1<m<nmzi € Och,x, a; € Oc, », we have
a = (m)1<m<n € Ocz if and only if ®; ,(b;i(a)) = [culg, -

Proof. Let (aum)1<m<nmzi € Ocjix. Since Cj, C C, there exists oy € O, , such that
(am)i1<men € Ocy. If f € Oc,x has the same property, we have

0,...,0,0 — ,0,...,0) € Z;.,.. So according to proposition , we have [ay), = [,
Hence we have well defined a morphism of algebras 6, :Oc, . — Oc, /() sending
(Qm)1<m<nmei to [ai]g. If 7 € J;, we have according to proposition ,

0.(0,...,0,7,0,...,0) = 0. Hence 6, induces a morphism of algebras B; , — Oc, ./ (). O

The morphism ®; has the following properties: for every point z of C

(i) For every o = (aun)i<m<nmzi € Big, we have @, ,(a)ic = ape for 1 <m <n, m #i.
(11) We have (pi,x((ﬂm)lgmgn,m;éi) = ;.
(iii) Let j,k € {1,---,n} be such that i, j, k are distinct. Let v be the image of u;; in B;.
Then there exists A € O, such that ®;,(v) = ;"
(iv) Let j be an integer such that 1 < j < n and j # i. Let v be the image of u;; in B, ,.
Then we have ker(®;,) = (v).

4.4.2. Converse - Let C' be a glueing of Cy, ...,C;_1,Ciy1, .. .,C, along C', which is a fragmented
deformation of a primitive multiple curve of multiplicity n — 1. Let (pjk)1<jk<n,jki be the
spectrum of C'. Let p;;, 1 <j <mn,j # i be positive integers, and p; = 0. For 1 < j <n, let

q4; = Z Dk -

1<k<n
Let B; be the image of Ocr in [/, 4 Oc, /(") and

a morphism of sheaves of algebras on C' satisfying properties (i), (ii), (iii) above. Let A be the
subsheaf of algebras of A defined by : A = A on A,,,\C, and for every point = of C', and every
o = (am)lgmgn € HTan:l OCm,z? a < Ax if and only if bZ(OJ) c Bi,x and q)l@(bZ(Oé)) = [Oéi]qi-
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It is easy to see that A is the structural sheaf of a glueing of C4,...,C, along C, which
is a fragmented deformation of a primitive multiple curve of multiplicity n, and that

We give now some applications of the preceding construction.

4.4.3. Corollary : Let N an integer such that N > maxi<;<n(q;). Let x € C,
BEOc % O andu € Oc, such that we # 0. Suppose that [fuly € Oc/ (7). Then
we have [B]n € Oc./(7V).

Proof. By induction on n. It is obvious if n = 1. Suppose that the lemma is true for n — 1.
Let I={1,...,n—1}. So we have [Bic,x..c, ,Jnv € Oc;/(m1, ..., m_1)" by the induction
hypothesis. Let 7 (resp. v) be the image of 3 (resp. u) in B,. To show that [3]y € Oc../(7")
it is enough to verify that

©n(7) = [Bulg,-
We have ®,,(yv) = [Bnunl,, because [Bu]y € Oc./(7V), and ®,(v) = [uy),, because u € Oc.,.
So we have

(Dn('Y)[un]qn = 0,(7)Pn(v) = Pu(yv) = [ﬂnun]qn = [ﬂn]qn[un]qn

Since ujc # 0, [un]q, is not a zero divisor in Oc, ,/(7d"), so we have @, (7) = [Bnlq,- O

4.4.4. Corollary : Let q = maxi<;<,(q;) and p the number of integers i such that1 <i<n
and q; = q. Then we have p > 2.

Proof. Suppose that ¢; = q. Then we have 7% 20 in Oc,/(7%). Since
7 = D (M) 1<m<nmzi)s we have (7% 1) <pcnme # 0 in B;. So we cannot have ¢, < ¢; for

all the m # 1. O
Let 7 be an integer such that 1 <i <n,
=TI P E) =00 Gesp Hi= ] (/) =0 ).
1<j<n 1<j<n j#i

It is an ideal sheaf of [], ., Oc,/(7}") (vesp. [li<jcp i Oc;/(7}') ). Let T =H N B (resp.
Ji = H; N B;), which is an ideal sheaf of B (resp. B;).

4.4.5. Proposition: There ezists a unique A(C) = (A1,...,\n) € P,(C) such that for every
u = (u))i1<j<n € H, we have u € J if and only if A\jug + -~ N\yu, = 0. The \; are all non zero.

Proof. We have (7,)1<m<nmzi-Ji = 0. Hence m;®;(J;) =0 and
Q,(T;) C (ng_l)/(ﬂgi). The restriction of ®;, J; — (Wfi_l)/(ﬂ?i) is a morphism

(n—1)O¢ — O¢ of vector bundles on C. The existence of (A, ..., \,) follows from that.

If \; =0, we have (0,...,0,7%7",0,...,0) € O¢(C). This is impossible because according to
proposition m, (0,...,0,7f,0,...,0) generates the ideal sheaf of C,, in C. O
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For all distinct integers ¢, j such that 1 <i,57 <mn,let [;; ={1,...,n}\{4,j}. Then according
to proposition 4.3.3, uy,;; generates the ideal sheaf of C;;. We have wup,; = (bi)i<r<n, With

b,=0 ifk#1,5,b; = ﬂ.;li_pij and
= (9) aj—Pij
1<m<n,m#i,j
So we have wP~'uy, ; € J;, which gives the equation

A -
3) vl
J

1<m<n,m#i,j

4.4.6. Proposition: For all distinct integers 1, 3, k such that 1 < 1,5,k < n, we have
K—

Proof. We need only to treat the case n =3, and the preceding formula by writing that

A M A ;
N = e using . ([l
4.4.7. Proposition: Let  (oqmi™, ... anm) € Ocn, with aq,...,«ap invertible. Let
M=my+---+m,. then
1 1
(—Wiw_ml, =Y € Ocy
(03] (67

Proof. By induction on n. It is obvious for n = 1. Suppose that it is true for n —1 > 1. Let
I'={1,...,n—1}. Then (aym",...,cp_1m, ;") € O, . Hence, by the induction hypothesis,

we have ] {
M-—mi—mp M—mp—_1—m
(—m M s ") € O, -

n—1
aq Qp—1

So there exists v € O, , such that

Multiplying by (aq7}™, ..., a,7m™) we see that (m ", ..., 7M™ ya,7m) € O¢,. Sub-

stracting 7"~ we find that (0,...,0,ya,7™ — 7M=mn) € O¢ . There exists o € O¢, such
that the n-th coordinate of « is «,, and « is invertible. It follows that

v=1(0,...,0,y7m" — a—lnﬁﬁ/[’m") € Oc,. Now we have

1 . 1 .
o =) e O, .
aq (079

O

4.4.8. Corollary : Let V C U be open subsets of C, and suppose that U NC # (). Let
a € Oc(V) and B € O4q(U) such that By = . Then B € Oc(U).

(Recall that A is the initial glueing of Cy,...,C, (cf. |4.1.5)).

Proof. This can be proved easily by induction on n, using proposition [£.4.1] O
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4.5. CONSTRUCTION OF FRAGMENTED DEFORMATIONS

Consider a fragmented deformation

s ) (1, ey 1) ch-1_ g
of C,_1, with n — 1 irreducible components Cy,...,C,_1. Let (p[?_”)lgi,j@ be its spectrum.
For 1 <i<mn,let qz[”_l} = Z pE?_l]. We denote by I[g_l] the ideal sheaf of C' in C"~ 1. Let
1<j<n
ACPY = (A, . Al).
[n—1]

Let pin,...,Ppn—1n be positive integers, ¢; = g, + pin for 1 <i < n, and
Gn = Pin + -+ Dn_1n. Let ue Igf;l] whose image generates Igf;”/((Ig;l]f + (7)), of the
form

u = (A B,

with 8; € O, ,, invertible for 1 <7 < n.
Let B~ be the image of Qg1 in Oc, /(1) x -+ x Oc,_,/(7"7) . We will also denote by

n

u the image of u in B"71. Let Q = B"~U/(u), p: B — Q the projection and m, = p(7).
4.5.1. Proposition: We have 7" =0 .
Proof. According to proposition [4.4.7] we have

v L ey ¢ O,

v = (wa g
.

Hence 7% =wvu € (u) in Oppn-11,, and 7d» =0 . O

4.5.2. Proposition: 1 — We have 78! =0 if and only if

)\1 >\n71
Biic Bn-1jc
A )\n—l
We suppose now that m +- 4+ = #0. Then

2 — For every € € BY'™" such that €c # 0, we have 7 e & (u).

3 — For every n € Bg[cnfl]/(u), and every integer k such that 1 < k < q,, we have wkn =0 if
and only if n is a multiple of 7=k,

4 — B/ () is a flat Clr,)/(x%)-module.

- : : -1 1 . —1 .
Proof. We have 79~1 =0 if and only if (7®7',... 77" € (u) in B, We have, in
Oclz X X Ocnfl,z’
[n—1] 1 (n—1]_4
n—1 qn—1 _ Pin Pn—1,n 1 q -1 91
(ﬂ—ln PRI ’7T7’LT:1 ) — (/8171-1 g e e ey n_17n7rn71 ).(—7'('11 g e ooy /8_7-‘-1 ),
1 P

and 7é»~! = 0 if and only if there exists n € Octn-11 4, a; € O¢, 2, 1 <1 < n, such that

(Wf"_l, . ,71'2”__11) = nu+ (a7l . a,mT).
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This equality is equivalent to

1 -1y 1 (n—1]_q a; U a [n—1]

q; 9n_1 1 _q; n—1 4,4
(=m; yeey 0T y—n = (=m' ..., 0—m T ).

61 671—1 ﬂl Bn—l "
[nfl] .
Since for 1 <4 < n, we have (0,...,0,7" ,0,...0) € Oc¢n-1 4, we have 7d»~1 = 0 if and only
it 1 -1 1 el
n—1 n—
q -1 An—1 -1
(—my* ey, T ) € Octn-11 .
ﬁl Bn—l

So the result of 1- follows from the définition of A(C"~Y) (cf. prop. {.4.5), 2- is an easy

consequence.

Now we prove 3-, by induction on k. Suppose that it is true for k = 1, and that 7%n = 0, with
2 < k < g,. We have m*~1.1,n = 0, so according to the induction hypothesis, 7,7 is a multiple
of wdn=k+1 =gk tIN So m,(n — wd~*X) = 0. Since -3 is true for k = 1, we can write
n—minTF\ =g Lle e n =7\ + 7F"te), and 3- is true for k.

II remains to prove 3- for £ = 1. Suppose that m,n =0 (with n# 0). We can write 1 as

n = 70, where 6 is not a multiple of 7,, and 0 < m < q,. Let 6 € B be over 6. Since
Zc = (u) + () according to proposition [4.3.5] the condition “f is not a multiple of 7,” is
equivalent to 6 & Z¢,. We have 7™+10 € (u), so according to 2-, we have m + 1 > ¢,, which
proves 3- for k = 1. The last assertion is an easy consequence of 3-. 0]

4.5.3. Example : Let N be an integer, s € Ocn-1, invertible, and k,[ integers such that

1 <k,l<n, k# 1. Suppose that for every integer ¢ such that 1 <7 <n and i # k we have
N > pgz—l} and N > q[n_l] — q,[ﬁn_” —I—pEZ,_l]. We take u = uy; — s7¥. We have then j3; = oz,(;l)

)

if i # k, and B = —s. The condition ﬁ% oo 2=l £ s fulfilled if and only if

:87171\0

N
> W—?’“%o.

1<i<n,izk Akl

4.5.4. Construction of fragmented deformations — Suppose that 2 4 ... 4 B’\”—*l # 0. From

Bic n—1|C

proposition [4.5.2} 4-, it is easy to prove that

— There exists a flat morphism of algebraic varieties 7 :Y — spec(Clm,]/(7d)) with
a canonical isomorphism of sheaves of C[m,]/(wi")-algebras Oy ~ Q, such that
771(x) = C (where * is the closed point of spec(C[r,]/(7%))).

— There exists a familiy of smooth curves C,, and a flat morphism =, : C, — S extending
7 (recall that S is a germ). Hence Y is the inverse immage of the subscheme of C,
corresponding to the ideal sheaf (w2"). The existence of C,, can be proved using Hilbert
schemes of curves in projective spaces. Of course C, need not be unique.

We obtain a glueing C of Cy,...,C, by defining the sheaves of algebras O (on the Zariski
topological space corresponding to the initial glueing A) as in , using for ®,, the quo-
tient morphism B~ — Q. It is easy to see that 7~ !(P) is a primitive multiple curve C,, of
multiplicity n extending C),_1, hence C is a fragmented deformation of C,.
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4.5.5. Remark: 1 — The multiple curve C,, depends on the choice of the family C,, extending
the family YV parametrized by spec(C[m,]/ (7).

2 — The multiple curve C,,_; is completely defined by B"~U because (7) x ---(z%"7") C (7).

n—1

But it is not enough to know B~ and u to define C,,. In fact we need Op, /(%) 1 <i < n.

4.6. BASIC ELEMENTS

We use the notations of 4.3 and 4.4l
Let m = (my, ..., m,) be a n-tuple of positive integers, and
I = (ay"™) x -+ x (m™).

4.6.1. Definition: Let x € C. An element u of Oc, is called basic at order m if there exists
polynomials Py, ..., P, € C[X] such that

u = (Pi(m),...,P(m)) (mod. II™) .
)

n)), we say that u is basic.

Ifu= (P (m),...,Py(m

Let q = (q1,.--,qn). Then according to corollary [4.4.8] if u is basic at order q, then for every
y € C, we have (Py(m), ..., Py(m,)) € Ocy. So (Pi(m),. .., P,(m,)) is defined on a neighbour-
hood of C.

4.6.2. Lemma: Let u,v,w € O¢, such that w =wv and w # 0. Suppose that u and w are
basic at every order. Then v s basic at every order.

Proof. Let N be a positive integer such that N > 0 and N = (N,..., N). Suppose that
w= (Ql(ﬂl)v-'w@n(ﬂ-n)) (HlOd (WN))v where Qla"-aQn € C[X] Let m = (mla-“?mn)
be a n-tuple of positive integers, and v = (v;)1<;j<n. Suppose that

u = (Pl(ﬂ-l)w'wpn(ﬂ-n)) (mOd HN)

Then we have

Qz(ﬂ-z) = PZ(TQ)’UZ (H’lOd (7TZN>>
for 1 <i<mn. We can write P;(X) as Pj(X) = X" R;(X), where R;(X) € C[X] is such that
R;(0) #0. Then Q;(X) is also divisible by X™: @Q;(X) = X™S;(X), and we have in O 4, :

Si(mi) = Ri(m).v; (mod. (WN/))

for some integer N’ > 0. We can write R;(X) = a;.(1 — X.T;(X)), with a; € C*, T; € C(X).
We have then
Si(m;) R~
v, = —2 Z (miT(m;))" (mod. IT™).

a]v
) —1

O

For 1 <i <n, let u() ((u@i);)1<j<n be a generator of the ideal sheaf Z¢, of C; in C, such that
for 1 < j <n, ug; € Clm] (cf. corollary [4.3.8).
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4.6.3. Proposition: Let v € O¢,. then v is basic at every order if and only if for every
n-tuple m of positive integers, there exists an integer ¢ > 0 and Py, ..., P, € C[X]| such that

v = Z Pj(ﬂ).u{i) (mod. IT™).

1<j<q

Proof. We use the notations of the proof of lemma Suppose that v = (v;)1<j<, is basic
at every order. Let N be a positive integer and N = (NV,..., N). We will prove by induction
on q > 0 that we can write v as

(4) v = Z P’j(w).u{i) + vqu‘(];)rl (mod. TIN)
0<j<q
with P, ..., P, € C[X], and v, € O¢ . This proves proposition if g and N are big enough.

For ¢ = 0, we have v; = P(m;)(mod 7), for some P € C[X], and we can take Py = P. Suppose

that the result is true for ¢ and that we have . Since v — Z Pj(ﬂ).u@.) is basic at any
1<j<q

order, using the same method as in the proof of lemma [4.6.2] we see that 7, is basic at order

N, where N = (N’ ..., N’), for some integer N’ > 0. As in the case ¢ = 0 we have

Yo = Porr(m) +u0).741 (mod HN,)a
with Py, € C[X]. Hence
v = Z Pj(ﬂ).u{i) + fquu‘(’;)FQ (mod. TIV)

0<j<q+1

4.6.4. Proposition: Let a = (ai,...,a,) € Oc, be such that there exists

Pi,...,P,_1 € C[X] such that, for 1 <i<n—1, we have «; = Pi(m;) (mod. (7{)). Then
there exists P, € C[X]| such that o, = P,(m,) (mod. (7)), i.e. « is a basic element of order
q.

Proof. By induction on n. The case n = 2 is an easy consequence of proposition [£.2.2] Suppose
that n > 3 and that the result is true for n — 1.

By substracting multiples of (0,...,0,7%,0,...,0) we may assume that for
1 <i<n-—1,q € C[r]. By substracting a regular function on a neighbourhood of C'in C, and
a multiple of (7{",0,...,0) we may also assume that o; = 0. The ideal sheaf of C; is generated
by u(1). We can then write o = fu), with 5 = (8;)1<i<n € O¢ . We have

(042, s 7an—1) = (627 B aﬁn—l)-(u(l)% s 7u(l)n—l) )

hence by lemma |4.6.2 (Bs, ..., 5,_1) is a basic element at any order. By the induction hypoth-
esis, there exists @ € C[X] such that S, = Q(n,) (mod. (7&~P)). Since u), is a multiple
of 2= (from the definition of pi,), it follows that a, = u;),Q(m,) (mod. (79)). O
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4.7. SIMPLE PRIMITIVE CURVES AND FRAGMENTED DEFORMATIONS

Let C), be a primitive multiple curve of multiplicity n and associated smooth curve C'. Let
Zc be the ideal sheaf of C'in C,,. It is obvious from proposition [£.3.5 1-, that if there exists
a fragmented deformation of (), then we have Z¢ ¢, ~ O¢, ,, i.e. C, is simple (cf. .
Conversely we have

4.7.1. Theorem: Let C, be a simple primitive multiple curve of multiplicity n. Then there
exists a fragmented deformation of C,,.

Proof. According to theorem [2.4.1] there exists a flat family of smooth projective curves
7:C — C such that 771(0) ~ C and that C,, is isomorphic to the n-th infinitesimal neighbour-
hood of C' in C. Let p, : C — C be the map defined by p,(z) = 2", and 6 =p,o7:C — C.
It is a flat morphism, 671(0) = C,,, and for every z # 0 in the image of 7, §7!(z) is a disjoint
union of n smooth irreducible curves. We can then apply the process of proposition to
obtain the desired fragmented deformation: it is C x¢ C

CxeC—">C
c—?* .c

O

4.7.2. Remark: let (p;;) be the spectrum of the fragmented deformation constructed in the
proof of theorem 4.7.1} Then it is easy to see that p;; = 1for 1 <i,5 <n,t# j. [f 2 € C, then
(C Xc C)z = OC,:E ®Oc,z O(C@, and if t = I(C c O(C,m, we have for 1 < k <n

1 i
(m,“mmhamﬂ,”m@::n_1@®t—£%@®1».

5. STARS OF A CURVE

5.1. DEFINITIONS

Let S be a smooth irreducible curve, and P € S (we can also take for (S, P) a germ of smooth
curve). Let n be a positive integer.

5.1.1. Definition: A n-star (or more simply, a star) of (S, P) is an algebraic variety S such
that

(i) 8 is the union of n irreducible components Sy, ..., S,, with fized isomorphisms S; ~ S,
1< <n.
(i) For1 <i<j<mn,S;NS; has only one closed point, namely P.
(iii) There exists a morphism w:8 — S, which is the identity on each component S;.
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All the n-stars of (S, P) have the same underlying Zariski topological space S(n) and set of
closed points. The latter is (|J;<;<, §2)/ ~, where S; is the set of closed points of S;, and the
equivalence relation ~ is defined by: for x € 5’1 and y € §j, x ~yifand only if 7 = j and = = y,
orz=Pe€S; and y=P¢€ S/’\] An open subset of § is defined by open subsets U; of 5i,. ..,
U, of S,, such that for 1 <i < j <n, we have P € U; if and only if P € Uj.

The initial star Sy of (S,P) is defined as follows: for every open subset U of S(n),
Os,(U) is the set of (ay,...,a,) € O, (UNS)) x ---Os, (UNS,) such that if P € U then
aj(P) == a,(P) .

For every n-star & of (S, P), there is a unique dominant morphism &y — & inducing the
identity on each component. So Og p is a subring of Og, p.

Note that (iii) is equivalent to
(iii)” For every a € Og p, we have (a,...,a) € Og p.

5.1.2. Definition: An oblate n-star (or more simply, an oblate star) of (S, P) is a n-star S8
such that some neighbourhood of P in & can be embedded in a smooth surface.

5.1.3. Proposition: A n-star 8 is oblate if and only if 7 '(P) =~ spec(C[X]/(X™)).
(ct. prop. [LT8)

Let I C{l,...,n} be anonempty subset. Let S =J,.,;S; C S. If S is oblate then S
is oblate too.

5.2. PROPERTIES OF OBLATE STARS

Let & be an oblate n-star of S. Recall that ¢t denotes a generator of the maximal ideal of P in
S. We will denote this generator on S; C & by ¢;. We will also denote by 7 the element ¢ o 7w
of the maximal ideal of P in &. Let Zp be the ideal sheaf of P in S.

We begin with 2-stars:

5.2.1. Proposition: Suppose that n = 2. Then

1 — There exists a unique integer p > 0 such that Zpp/(m) is generated by the image of (t7,0).
2 — The image of (0,15) is also a generator of Zpp/().

3 — (0,85) (resp. (11,0)) is a generator of the ideal sheaf of Sy (resp. Ss) at P.

4 — Ogw p consists of pairs (o, ) € Ogp x Ogp such that o — € (t7).

Now suppose that n > 2. Let [ ={i,j} C {1,...,n}, with ¢ # j. Then S; U S; C S is a 2-star
of S. Hence by proposition there exists a unique integer p;; > 0 such that Zpp/(m) (on
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S; U S;) is generated by the image of (£;,0) (and also by the image of (0,27)). Let p; = 0.
Then the symmetric matrix (p;;)1<i j<n is called the spectrum of S.

There exists an element v;; = (Vi,)1<m<n such that v; =0 and v; = t?”. For every integer
m such that 1 <m <mn, m # 1,7, there exists an invertible element ﬁfjm ) e Og,p such that
v = B0 Let B =0, 87 = 1.

5.2.2. Proposition: Let bg-n) = ﬁl-(m)(P) € C. Then we have, for all integers i, j, k,m,q such
that 1 <, j,k,m,q<n,i#j,i#k
(m)y,(2) (@)1, (m)
b bi? - buz bij .
In particular we have bgn) = bg?)bgf) and bg;n)b%) =1
For all distinct integers i, j, k such that 1 < 1,7,k < n, we have

b = b

(cf. prop. 4.3.2 and 4.4.6).

Let p an integer such that 1 <p <n, and (i1,71),..., (%, Jp) p pairs of distinct integers of
{1,...,n}. Then the image of ], _,vi,;, isa generator of (Zpp+ (W))/(Zf;;} + (m)).

Let I C{l,---,n} be a nonempty subset, distinct from {1,--- ,n}. Let i€ {1,--- n}\I.

Let
V[77; = HVji .

jer
5.2.3. Proposition: The ideal sheaf of ST in S is generated by v at P.

(cf. prop. 4.3.3).

Note that if I = {1,---,n}\{i} then vr;s, =0 if j # i, and v;s = t]’, with ¢; = Z Dij-

1<j<n

Let ¢ be an integer such that 1 <i <n and J; = {1,...,n}\{i}. Let K; be the image of Og in
[Ticjcnini Og,/(t§). We can view K; as a C-algebra. For every o = () € Os p, let k;() be
the image of a in K;.

5.2.4. Proposition: There exists a morphism of C-algebras
v Ky — OSi,P/(t(i]i)

such that for every (Qu)i1<m<nmzi € Ogup ps @i € Os, , we have o = (am)1<m<n € Os.p if
and only if W;(ki()) = [ailg,.

(cf. prop. 4.4.1).

The morphism W; has the following properties:
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(i) For every (am)i<m<nmzi € Ogy) p, We have W,(a)(P) = an,(P) for 1 <m < n,m #i.
(11) We have \Iji((tm>1§m§n,m¢i) = tz
(iii) Let j,k € {l,---,n} be such that i, j, k are distinct. Let w be the image of v, in B;.
Then there exists A € O, , such that W;(w) = A9
(iv) Let j be an integer such that 1 < j <n and j # i. Let w be the image of v;; in K;x.
Then we have ker(V;) = (w).

5.2.5. Converse — Let S be a (n — 1)-star of S, with components S, ..., S, 1, of spectrum
(Pjk)1<jk<n—1- Let pn; = pjn, 1 < j < n be positive integers, and p,, = 0. For 1 < j <mn, let

G =D Dy
1<k<n

Let S,, be another copy of S. Let IC,, be the image of Ogpn—1) in ngjgn—l (95‘7./(2533') and
v, /Cn — Osn/(t%")

a morphism of C-algebras satisfying properties (i), (ii), (iii) above. Let I be the subsheaf
of algebras of Og, defined by: K = Og, on So\{P}, and for every a = (m)1<m<n € Os,.ps
a € Kp if and only if ¥, (o) = [an],, (where o' is the image of (a,)1<m<n—1 in ).

It is easy to see that IC is the structural sheaf of an oblate n—star of S.
Let H = ngjgn(t;l.j_l)/(t?j) ~ C" and K be the image of Os in [],,., Os,/(t7). We can
view IC as a C-algebra. Let J =HNK.

5.2.6. Proposition: There exists a unique A(S) = (A1,...,\,) € Pn(C) such that for every
u = (u))1<j<n € H, we have u € J if and only if A\jug + - N\yu, = 0. The \; are all non zero.

(cf. prop. 4.4.5).
For all distinct integers ¢, j such that 1 <4,5 < n, we have

A T »Y.
s mi

J 1<m<n,m#i,j

5.3. CONSTRUCTION OF OBLATE STARS OF A CURVE

Consider an oblate (n — 1)-star of 5, S"U with n — 1 irreducible components Si, ..., S,_1,
copies of S. Let (pg’;_l])lgmm be its spectrum. For 1 <i < n, let qz["_l] = Z pg?_l]. We
1<j<n

denote by Z ") the ideal of P in Ogpn 1 p. Let M(S") = (Ar,..., \usa).

Let pin, ..., Pn_1., be positive integers, ¢; = qz[”_l] + pin for 1 <i < mn, and

Gn =DPi1 + -+ Ppn_1pn. Let ue II[S;” whose image generates Il[fffl]/((II[ffl])2 + (m)), of the
form
u = (611‘,']1)1”, e 7Bn_1tfln_711,n)’
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with 3; € Og, , invertible for 1 <i <n.

Let K"~ be the image of Ogn—1 in Og,/(t") x -+ x Og,_,/(#"7") . We will also denote by
u the image of uin K", Let @ = KI""1/(u), p: K'Y — Q the projection and ¢, = p(7).

5.3.1. Proposition: 1 — We have ti» =0 .
2 — We have t»~' =0 if and only if
)‘1 )\n—l

ﬁl(P) 4+ —ﬁn_l(P) =

We suppose now that Bl)zlP) + - B:ff(ll’) #0. Then

3 — For every e € K" such that e(P) # 0, we have t% ‘e & (u).

4 — For every n € K"U/(u), and every integer k such that 1 < k < q,, we have tfn =0 if
and only if n is a multiple of tin=k.

5 — KIn=U/(u) is a flat C[t,)/(t%)-module.

0.

5.3.2. Construction of stars of a curve — Suppose that 51’\(113) +-+ 5:1‘(1]3) # (0. From propo-
sition [5.3.1] 5-, it is easy to prove, using |5.2.5| that there is a unique oblate n-star & such that

S"1'is the union U1gign71 S; in 8 and ¥, is the quotient map K, = K1 — Q.

5.4. MORPHISMS OF STARS

Recall that if & is an oblate n-star of S, then we have a canonical inclusion of sheaves of
algebras (on the underlying topological space S(n) of 8) Os C Osg,.

Let S, 8’ be oblate n-stars of S, with irreducible components S;,...,S,, and f: S — & a
morphism inducing the identity on all the components. Such a morphism exists if and only if
S’ C 8, and in this case f is unique and is induced by the previous inclusion. Let (p;;) (resp.
(pi;)) be the spectrum of & (resp. &).

5.4.1. Proposition: We have p;; <pj; for 1 <i,j <n. If f is not the identity morphism
then there exists i, j such that p;; < p;j.

Proof. Let I = {i,j}. Then f induces a morphism S 5 8D 96 we have OS/(I),P C (98(1)713.
From proposition [5.2.1], 4-, it follows that p;; < pf;.

Suppose now that p;; =p; for 1 <4,j<n. We must prove that &= S’, ie. that
OS/(I)’P = OS([),P. This is done by induction on n. For n = 2 it is obvious. Suppose that
it is true for n — 1. Let I = {1,...,n —1}. Then f induces a morphism f,_; : S — s,
It follows from the induction hypothesis that S% = 8D Since the integers ¢; are the same
for & and &', the algebras K, for & and 8’ (cf. proposition are also the same. Now
let o€ Ogp, and let B € K,, be the image of a. Let o/ € Og/ p be such that its image in K,
is also 5. Then a — o/ belongs to the ideal generated by the (0,...,0,¢% 0...,0), 1 <i < n,

y Vg o9 e

which is included in Og p. Hence o € Og p. O
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5.4.2. Lemma: Suppose that f is not the identity morphism. Then there exists an ideal
ICOgp anducl,ve Osp such that

u®v#0 mn I®05,7P Os.p

and uv = 0.

Proof. Let ¢ = me qQ = th According to proposition |5.4.1| we can assume

i=1
that ¢; < q. Let u be a generator of the ideal of S} in Og/ p and Z = (u). Let v = (¢{",0,...,0).

We have uv = 0. We have to prove that u® v # 0. We need only to find an Og p-module M
and a Og p-bilinear map

¢ : I®Os’,P 03713 — M

such that ¢(u®v) # 0. We take M = Ogl,p/(tilll), which is a quotient of Og. It is easy to
verify that

¢ ((Mi)1<i<ntt, (Wi)1<i<n) —= A1w; (mod t({l)
is well defined, bilinear, and that ¢(u ® v) # 0. O

5.4.3. Corollary: Suppose that f is not the identity morphism. Let' Y be an algebraic variety
and g:Y — S a morphism such that ¢*: Osp — Oyp is injective. Then fog:Y — 5
s not flat.

Proof. We use the notations of the proof of lemma [5.4.2] We have a commutative diagram

*

g
Os.p Oy.p
Iz®g*

1 ®og p Os,p 1 ®og , Ov,p

l/’l’s LNY
g*
Os.p Oy,p

where Ag(a) =u® a, ps(u® o) =wua, and Ay, puy are defined similarly. It follows that
py (u ® g*v) = 0. We will show that u ® g*v # 0, and this will imply that f o g is not flat. Let
w= (t(fi ,0,...,0). Then we have 7T ~ Og p/(w), and from the exact sequence of Og/ p-modules
0= (w) = Os p = Z — 0 we deduce that ker(\y) = (w).Oyp. Suppose that u® g*v = 0.
Then g*v is a multiple of w: g*v = w.a, for some a € Oy p. But we have w = g* %9y, Hence
g v.(1 — g*r%~9) = 0. Since 1 — g*7%~% is invertible, we have g*v = 0, which is false since g*
is injective. Hence u ® g*v # 0. U
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5.5. STRUCTURE OF IDEALS

Let & be an oblate n-star of S.

5.5.1. Proposition: Let Z C Og p be a proper ideal. Then
1 - There exists a positive integer k such that k < n and a filtration by ideals
{O}IIk+1 clp,Cc---Ccli=1

such that, for 1 < i <k there exists a positive integer j such that 7 < n and an isomorphism
Ti/Zis1 ~ Og, p of Os p-modules.

2 - If Ii/Iz’—H ~ 05j7p, then Ii—i—l C Isj and Z; gZ Isj.

Proof. We prove 1- by induction on n. The case n =1 is trivial. Suppose that n > 1 and that
the result is true for n — 1. Let J; be the ideal sheaf of $; C S, and &’ = S, U---US,_1 C S.
We can view J; as an ideal of Og p. We can suppose that Z ¢ Og p, i.e that some element of
7 has a nongzero first coordinate. Let m be the smallest positive integer such that Z contains
an element v of the form
u = (t" ag,...,qp) .
Then every element v of Z can be written as
v o= Au+v,

with A€ Osp and v € J3NZ, and the first coordinate of A is uniquely determined. It
follows that Z/(J1 NZ) ~ Og, p. We can apply the recurrence hypothesis to the ideal J; N Z
of Og p and get a filtration of it, from which we deduce the filtration of Z. This proves 1- for
n.

Now we prove 2-. Let o € Osp\Ts,. Let u € Z; be over a generator of Z;/Z;;,. Then the
image of au in Z;/Z;,; is not zero, i.e. au & Z;y1. Hence a &€ Z;44, and Z;y C Ts;. Let
v; = (0,...,0,t7,0,...,0) € Os p. Then the image of v;u in Z;/Z;,; is not zero, hence u & Zg,
and Z; ¢ ZTg,. O

5.6. STAR ASSOCIATED TO A FRAGMENTED DEFORMATION

We keep the notations of chapter [d Let n > 2 be an integer, 7 : C — S a fragmented deforma-
tion of C),, and Cy,...,C, the irreducible components of C.

Recall that S(n) is the underlying (Zariski) topological space of any n-star of S. Let C'? be
the underlying topological space of C. We have an obvious continuous map  : C*? — S(n).
Let A, be the sheaf of algebras on S(n) defined by: for every open subset U of S(n), A,(U) is
the algebra of (ay,...,a,) € Oc(w™1(U)) such that a; € Os,(UNS;) for 1 <i<n.

According to corollary [4.4.8| for every = € C, A, p is the algebra of (ay,...,a,) € Oc¢, such
that o; € Ogp for 1 <¢ < n.

5.6.1. Proposition: The sheaf A,, is the structural sheaf of an oblate n-star of S.
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Proof. By induction on n. The case n = 1 is obvious. Suppose that n > 1 and that the result
is true for n — 1. Let C'"=C,U---C,_1 CC, and A,,_; the corresponding oblate (n — 1)-star
of S. Let
o, : B, — O, /(ml)
be the morphism of proposition [£.4.1} According to proposition [£.6.4], ®,, induces a morphism
\Ijn : ICn — OSn,P/(t?‘L") :

By the definitions of A,, and ®,,, if w = (ay,...,a,) € Og, p X --- x Og, p, then u € A, p if
and only if W, (u') = v, where v’ (resp. v) is the image of u in KC,, (resp. Og, p/(ti")). The
result follows then from (.25 O

We denote by S(C) (or more simply S) the oblate n-star corresponding to A, so Osc) = An.
From the definition of A,, we get a canonical morphism

IH:¢c—3=S8
such that Il =m; :C; — S; for 1 <7< n.

5.6.2. Theorem: The morphism Il is flat.

Proof. We need only to prove that II is flat at any point « of C. Let Z C Os p be a proper
ideal. We have to show that the canonical morphism of Os p-modules

T=711:0c4 ®osp L — Oc.»
is injective. According to proposition there is a filtration by ideals

{O}ZIk+1 chy,Cc---Ccli =1
such that, for 1 < i < k there exists a positive integer j such that j < n and an isomorphism
T;/Zis1 ~ Og, p of Os p-modules. We will prove the injectivity of 7 by induction on k.

Recall that for 1 < j < n, Zg, p = Zg, s p is a principal ideal, generated by an element u; which
is also a generator of Z¢, , = T¢,c. (cf. corollary and proposition , and that the
only zero coordinate of u; is the j-th.

Suppose that k=1, so T is isomorphic to Og, p for some j. Let u be a generator
of 7 and w € Oc, ®os,, Z, that can be written as w=v®u, v € Oc,. Suppose that
7(v ® u) = vu = 0. Since Z is annihilated by Zg, p, we have Z C ((O, ..., 0, t?j, 0,... ,O)). Since
vy = 0, the j-th component of v is zero, i.e. v € Z¢, .. Hence v is a multiple of u; : v = au;.

We have then
wo= au; Qu
= a®uju (because u; € Osp)
0 (because u;u=0).
Hence 7 is injective.

Suppose that the result is true for £ — 1 > 1 and that the filtration of Z is of length k. Ac-
cording to proposition [5.5.1} 1-, we have /I, ~ Og, p for some j. Let u € Z be such that its
image in Z/7 is a generator, and w € O¢,, ®os, Z such that 7(w) = 0. We can write w as
w=a®v+F®u, with o, 8 € O¢c, and v € Z;. Since av + fu =0, we have [u € Oc¢,Ts,
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and Oc,Zy C Z¢; by proposition 5.5.1 2-, i.e. the j-th coordinate of Su is zero. By proposi-
tion [5.5.1} 2-, the j-th coordinate of u does not vanish, hence the j-th coordinate of 3 is zero,
i.e. 8 €Zc;. Hence ( is a multiple of u; : 8 = yu;. We have then

BRuU="yu; ®u="yRuu,
and u;u € I, (because its image in Z/7, vanishes). It follows that w is the image of an element

w' of Oc; ®os p Ir. We have 77,(w') = 0, hence by the induction hypothesis w’ = 0. It follows
that we have also w = 0. O

5.6.3. Remark: If &’ is an oblate n-star of S, and if II' : C — &’ is a flat morphism compatible
with the projections to S, then we have &' = §(C) and II' = II. This is an easy consequence of

corollary

5.6.4. Converse - Let m: S — S be an oblate n-star of S. Let II : C — S be a flat morphism
such that for every closed point s € S, II"'(s) is a smooth irreducible projective curve. Let
C=M""YP)and 7=n0Il:C—S. Then C, =7"Y(P) is a primitive multiple curve of
multiplicity n ans associated smooth curve C', and C is a frangmented deformation of C,,. This
is an easy consequence of proposition [4.1.6|

6. CLASSIFICATION OF FRAGMENTED DEFORMATIONS OF LENGTH 2

Let 7: C — C be a fragmented deformation of length 2. The corresponding double curve Cs
p
Ik
neighbourhoods of order p of C' in C; and C, are isomorphic, i.e. we have an isomorphic of
sheaves of algebras on C

is 771(0). Suppose that the spectrum of C is This means that the infinitesimal

®: O, /(7)) — Oc,/(73) ,

and for every point = of C', we have
Oc. = {(a1,02) € Oc,x X Ocy 2 ;5 g (mod 7h) = &(ay (mod 7))} .

Let CF denote the infinitesimal neighbourhood of order k of C in C;, i =1,2, k> 0. It is a
primitive multiple curve of multiplicity & and associated smooth curve C, and we have C = C%.
Hence C?*' and C¥™' appear as extensions of C? in primitive multiple curves of multiplicity
p+ 1. According to [6] and [I0] these extensions are classified by H'(C,T¢) (T beeing the
tangent sheaf on C'). More precisely, we say that two such extensions D, D" are isomorphic
if there exists an isomorphism D ~ D’ leaving C{ invariant. Then if H is the set of isomor-
phism classes of such extensions, a bijection \: H'(C,Tz) — H is defined in [6], such that
A(0) = CPH.

On the other hand, it follows from [2], [6] that the primitive double curves with associated
smooth curve C' and associated line bundle O¢ are classified by P(H'(C,T¢)) U {0} .

6.0.5. Theorem: The point of P(H'(C,T¢)) U{0} corresponding to Cy is C.A\"1(CPT).
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Proof. According to [6], there exists an open covering (U;);e; of C such that for k = 1,2, the
open subset of C2*' corresponding to U; is isomorphic to U x spec(C[t]/(t7*")). Here t is
m on C; and mp on Cy. We obtain then cocycles (Hgf))i,jel, where Hgf) is an automorphism of
Uij x spec(C[t]/(t**)). We can also suppose that weyy, is trivial, for every i € I. Let dx;; = dx
be a generator of we(U;;). Since the ideal sheaf of C in C’,f“ is the trivial sheaf on C}, we
can write, using the notations of [6], 6@ =9, 1 with ugf) € Oc(Uy)[t]/(t?) , i.e. for every

a € Oc(U;), we have, at the level of regular functlons

) () "o
o0(0) = Dl dw

m=0
and Hg-f)(t) =t . Since CY = C§ we can suppose that NS) = /LZ(?) (mod t*71) . Hence
= uﬁ? — MS) € (tr71)/(t?) ~ Oc(U;). The family (7;;) is (in some sense) a cocycle repre-
senting A1 (CY™) (cf. [6], [10]).

We have (7?t!) + (72*!) € (7) in Op. Hence Cy, = 77(0) is contained in the subscheme Z of
C corresponding to the ideal sheaf (7?*') + (75%"). We have

0z(Uij) = {(a1,2) € Oc, (Uyj)/(t"1) x Oc, (Uij) /(") 5 @(ay mod ) = ag mod 7}
= {(o1,02) € Oc(Uy)[t]/ (") x Oc(Uy)[t]/ (") 1 a1 = ap mod 7},
To obtain O¢,(U;;), we have just to quotient by 7™ = (¢,t), and we obtain
Ocy(Uy) = Ox(U)/(t,) = OclUy)[1/(=%)
the last isomorphism beeing
(ag+arit+ - +a, " "+ at? ag +art + -+ a, P+ BP) = ap+ (B —a)z.

Now we can explicit the automorphism of O¢(U;;)[z]/(2?) induced by 6;; (these isomorphisms
will define the cocycle corresponding to Cy). It is easy to see that this isomorphism is ¢, 1,
which proves theorem |6.0.5
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