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Using a slip-length based level-set approach with adaptive mesh refinement, we have
simulated axisymmetric droplet spreading for a dimensionless slip length down to O(10−4).
The main purpose is to validate - and where necessary improve - the asymptotic analysis
of Cox (1998) for rapid droplet spreading/dewetting, in terms of the detailed interface
shape in various regions close to the moving contact line and the relation between the
apparent angle and the capillary number based on the instantaneous contact line speed,
Ca. Before presenting results for inertial spreading, simulation results are compared in
detail with the theory of Hocking & Rivers (1982) for slow spreading, showing these to
agree very well (and in detail) for such small slip length values, although limitations in
the theoretically predicted interface shape are identified; a simple extension of the theory
to viscous exterior fluids is also proposed and shown to yield similar excellent agreement.
For rapid droplet spreading, it is found that, in principle, the theory of Cox (1998) can
predict accurately the interface shapes in the intermediate viscous sublayer, although the
inviscid sublayer can only be well presented when capillary-type waves are outside the
contact line region. However, O(1) parameters taken to be unity in Cox (1998) must be
specified and terms be corrected to Ca+1 in order to achieve good agreement between
the theory and the simulation, both of which are undertaken here. We also find that the
apparent angle from numerical simulation, obtained by extrapolating the interface shape
from the macro region to the contact line, agrees reasonably well with the modified the-
ory of Cox (1998). A simplified version of the inertial theory is proposed in the limit of
negligible viscosity of the external fluid. Building on these results, we investigate the flow
structure near the contact line, the shear stress and pressure along the wall, and the use
of the analysis for droplet impact and rapid dewetting. Finally, we compare the modified
theory of Cox (1998) with a recent experiment for rapid droplet spreading, the results of
which suggest a spreading-velocity-dependent dynamic contact angle in the experiments.
The paper is closed with a discussion of the outlook regarding the potential of using the
present results in large-scale simulations wherein the contact-line region is not resolved
down to the slip length, especially for inertial spreading.

1. Introduction

We consider here the modelling of axisymmetric rapid droplet spreading, as well as
rapid dewetting. Rapid contact-line motion can be distinguished from slow spreading
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through the value of an Ohnesorge number, defined here as Oh = µ/
√
ρσD, where µ and

ρ are the liquid dynamic viscosity and density, σ is the coefficient of surface tension, and
D is the equivalent drop diameter. At values of Oh that are not very small (typically,
Oh > 0.01 but this also depends on the value of the contact angle), the expected flow
behaviour is gradual spreading, whereas at Oh ≪ 1 in rapid spreading capillary waves
travel between the contact line and the top of the drop (above the drop centre) that may
even lead to the ejection of satellite droplets (e.g., Ding et al. (2012)).
Analysis of flows with a moving contact line have revealed non-integrable singulari-

ties in shear stress and pressure at the contact line when using a no-slip condition (e.g.,
Moffatt (1964), Huh & Scriven (1971), following earlier work by Taylor (1962) who had
identified such singularities in scraper flows). In order to remove these, the velocity field
must be made continuous at the contact line (Dussan V. & Davis (1974)). Various mech-
anisms/models have been proposed that would alleviate these singularities (for a recent
review see Bonn et al. (2009)). These include the widely-used approach of relaxing the
no-slip condition: a slip velocity proportional to the shear rate eliminates the singularity
in the shear stress although it only reduces that in the pressure to an integrable (logarith-
mic) singularity (Huh & Mason (1977)); the remaining weak singularity in pressure can
be suppressed by using a different slip law (e.g., replacing the slip length by the ratio of
another length scale squared divided by the local height of the interface, see Sibley et al.
(2012)), although this is limited to contact angles below 90o. Other mechanisms/models
include assuming the existence of a thin precursor film and accounting for intermolecular
forces (although usually for small contact angles, de Gennes (1986)); a diffuse interface
(Jacqmin (2000)), possibly with intermolecular forces (Pismen & Pomeau (2000)); and
surface tension relaxation (Shikhmurzaev (1993), Sibley et al. (2012)). Predictions of
some of these models have been compared against each other in various studies (Savva
& Kalliadasis (2011), Sibley et al. (2012), Ding & Spelt (2007a)). On the whole, good
agreement is observed, and the small length scales in the various models, although of dif-
ferent origin, are usually of the same order when the predicted spreading rates agree. In
the present study, we shall adopt the classical slip model, supplemented with a compari-
son with results obtained with a diffuse-interface model (in principle, the computational
method developed herein can be extended to include a precursor film with long-range
molecular forces, along the lines set out for droplet coalescence simulations by Jiang
& James (2007)). Different wetting conditions - a fixed static microscale contact angle
versus a velocity dependent dynamic angle - will also be considered.
It then remains to solve the resulting governing equations for the spreading of droplets.

For slow spreading, this has been pioneered by Greenspan (1978), who developed a lu-
brication theory, and by Hocking & Rivers (1982), who developed a matched-asymptotic
expansion. In rapid spreading, the difficulties posed by the coupled fluid flow/interface
shape problem are added to by inertial effects that interfere with the contact-line region.
Inertial effects are expected to play a role at a dimensionless distance d ∼ Re−1 from
the contact line, where Re is the Reynolds number based on the contact-line speed (all
lengths herein are made dimensionless with the equivalent drop diameter D). This dis-
tance is normally much larger than the dimensions of an inner contact-line region (the
dimensionless slip length λ when using a slip model), but approaches based on matched-
asymptotic expansion usually also involve a layer adjacent to such inner region of length
scale O(1/ln(λ−1)) (e.g., Cox (1986)), and inertial effects can easily play a role on that
scale. A classical analysis of contact-line motion with inertial effects along these lines
has been developed by Cox (1998). Although the analysis seems valid quite generally, we
undertake here a detailed validation study of this theory for rapid droplet spreading and
dewetting in the regime 1 ≪ Re ≪ λ−1, not only of an apparent angle versus instanta-
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neous contact-line speed, but also of the interface shape. We also revisit the analysis of
Hocking & Rivers (1982) for slowly spreading drops.
The motivation for this study is three-fold. First, the main result of the analysis is

a relation for an apparent contact angle as a function of the instantaneous contact-line
speed. Formally the apparent angle is defined in asymptotic analysis of slow spreading
as the angle resulting from extrapolating the interface shape on the scale of the droplet
(the outer region in the asymptotic expansion) to the contact line (e.g., Hocking &
Rivers (1982), Cox (1986)). Although this does not correspond to an angle that can
be measured directly anywhere along the interface, also not in slow spreading (as is
demonstrated in Sec. 3), it can be determined if a large part of the interface shape is
known. However, in the pertinent analysis in Cox (1998) for rapid contact-line motion,
the apparent angle is merely defined as the angle in an extended intermediate region at
a distance corresponding to the macroscopic length scale to the contact line. The precise
definition of this angle must be adhered to when comparing with an experiment, and it
seems unclear how to express one definition in terms of the other. A second motivation
for this study is related to the first: matching in the analysis between various regions is
achieved at points that merely follow from a scaling argument. Although this (and the
definition in apparent angle) may seem to hardly matter because the slip length is very
small, we conclude from our results that this is not generally correct for realistic values
of a slip length for millimeter-sized drops, and any uncertainty in the analysis further
adds to experimental margins of error when comparing with experiment. Finally, Cox
(1998) assumed quasi-steady motion of the contact line, which is significantly challenged
in rapid droplet spreading given the presence of capillary waves that interfere with the
contact-line region.
More broadly, the subject of this work is to understand the contact-line motion under

the complex circumstances due to inertial effects. In an earlier computational study, Ding
& Spelt (2007a) found for large slip length values that an apparent contact angle was
no longer a unique function of Ca as a result, which is not predicted theoretically. More
recently, the experiments of Ding et al. (2012) have confirmed the oscillatory motion
reported in Ding & Spelt (2007a), but also shown that the non-uniqueness vanishes.
Although this seems to support the use of e.g. the analysis of Cox (1998), the apparent
angle is found to exceed that predicted by Cox (1986) for any reasonable value of a slip
coefficient, and the results of the model of Cox (1998) are in fact even below those of Cox
(1986), making the comparison worse. It has been argued by Bayer & Megaridis (2006),
amongst others, that the microscale contact angle is actually velocity dependent. Before
resorting to this argument, however, it is necessary to first confirm the analysis of Cox
(1998).
High-resolution numerical simulations (using a continuum description) beyond lubri-

cation theory have been achieved previously for other flows with moving contact lines
(typically using a finite-element technique to resolve the flow in one fluid only, Lowndes
(1980) for creeping flows, and Christodoulou & Scriven (1992) for unsteady coating-type
problems with inertia). In the subsequent literature, two main further approaches can
be identified: simulations of droplet spreading wherein the flow is resolved down to the
inner region, of the order of the slip length or equivalent length scale (e.g., Renardy
et al. (2001)), and those wherein this is not resolved and instead a macroscale angle is
imposed (e.g., Fukai et al. (1995), Bussmann et al. (1999)). For the present purposes,
which includes resolving the flow in both fluids down to the inner region, we focus on
the former category. These methods are of course limited by computational resources
to rather large slip length values (typically only λ = O(0.01) is achieved in prior work,
see, e.g., Ding & Spelt (2007a)), in contrast with the small values of the slip length re-
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quired for the asymptotic analysis to apply. In practice, the dimensionless slip length λ
is inferred to be at most O(10−4) for slow spreading for millimeter-sized droplets (e.g.,
Marsh et al. (1993), Eggers & Stone (2004)). Adaptive mesh refinement (AMR) has been
developed previously for flows with moving contact lines (Afkhami et al. (2009)) but
appears not to have been utilized for the range of length scales required here. We have
therefore integrated PARAMESH, a powerful adaptive mesh refinement software package
for parallel computing (MacNeice et al. (2000)), into a level-set method for modelling
axisymmetric flows with moving contact lines, resulting on a multi-processor-interface-
based (MPI) code. This method is presented in Sec. 2. Although we shall adopt a slip
model formulation, the conclusion of Kafka & Dussan V. (1979) that the meniscus shape
is insensitive to the precise conditions near the contact line will also briefly be exam-
ined with the methodology developed here by comparing with results wherein a diffuse
interface method is used without slip. Also, we do not assume the contact angle to be
small.

In Sec. 3, we revisit the modelling of slow spreading. Although the shape of the interface
in asymptotic analysis has been found to agree well with experiments (Marsh et al. (1993)
for other slow contact-line flows), we first assess to what extent the numerical simulations
agree with the well-established analysis of Hocking & Rivers (1982) regarding the shape
of the drop and the apparent contact angle; also, the analysis of slow spreading is partly
used in that of rapid spreading (i.e., in the inner region). We also revisit the definition
of the apparent angle as discussed above. Hocking & Rivers (1982) used a matched-
asymptotic expansion for slow droplet spreading wherein the solution for an inner region
in the immediate vicinity of the contact line is matched to that in the outer region (the
large-scale flow) by means of an intermediate expansion. The matching conditions then
yield a relation between an apparent contact angle (that is used in the outer region) and
a capillary number Ca ≡ µU/σ based on the instantaneous contact-line speed U , with
the slip length made dimensionless with the drop diameter λ explicitly as a parameter;
to achieve this, the interface shape and velocity field are also determined in parts of the
various regions. A detailed comparison of the interface shape with numerical simulation
of the same problem is further desirable because of simplifying assumptions that have
necessarily been made at some places in the analysis (this is discussed further in Sec. 3.1).
We also include results for different viscosity ratios to supplement the analysis of Hocking
& Rivers (1982) wherein the outer fluid viscosity was ignored. Further aspects of the
contact-line motion (including the structure of the flow field and the wall shear stress
and pressure) are investigated after the results for the drop shape in rapid spreading
have been presented.

A direct equivalent of the work of Hocking & Rivers (1982) is not available for rapid
droplet spreading/dewetting. The analysis of Cox (1986) for general slow contact-line
motion has been extended to this regime by Cox (1998), however. The contact-line region
is divided there into an outer, intermediate and inner region, where the intermediate
region is divided further into a viscous and inviscid inner region (further details are
briefly recalled in Sec. 4). An objective of Sec. 4 is to assess whether the various regions
are indeed recovered (in particular, during the passage of a capillary wave) and if so, to
determine from these the values of the various constants that were taken to be unity in
the analysis of Cox (1998). In Sec. 5, we build upon these results and address various
issues in droplet spreading: the structure of the flow field, the shear stress and pressure
at the wall, and the extension of the analysis of Cox (1998) for dewetting. Finally, we
consider the comparison with experimental data in Sec. 5.6.
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Figure 1. Illustration of the typical block structure in LS simulation of drop spreading with
PARAMESH.

2. Numerical method

We consider here axisymmetric spreading and dewetting of a drop of diameter D on a
flat solid surface with homogeneous surface properties. The viscosity and density of the
fluids are denoted by µ and ρ, and the ratios between the properties outside and inside
the drop rv = µ2/µ1 and rd = ρ2/ρ1 will be used. Gravity is not considered in the present
work (unless stated otherwise). The initial shape of the drop is chosen to be a circular
cap with constant contact angle θini, and a different microscopic contact angle θw is
prescribed so that the drop will spread or dewet towards a shape corresponding to the
microscopic contact angle. Based on the contact line speed, the instantaneous Reynolds
number and capillary number are defined as Re = ρ1UD/µ1 and Ca = µ1U/σ where σ
represents the interfacial tension between the two fluids.
A Navier slip boundary condition, ur = λ∂ur/∂z, is employed along the solid wall

where λ is the slip length. We assume that the problem is axisymmetric, and use a
symmetry boundary condition at r = 0. The component of the velocity gradient normal
to boundaries are set as zero at the two remaining boundaries.
The level-set method used here is to some extent that of Spelt (2005), which is an

extension of the method developed by Sussman et al. (1999) to account for moving con-
tact lines. The differences with this earlier methodology are mainly that a finite volume
method on a marker-and-cell (MAC) mesh is used, with velocity components defined at
cell faces and scalar variables such as pressure and volume fraction at the cell centres.
A fifth-order weighted essentially non-oscillatory (WENO) scheme (Liu et al. (1994))
is employed in the discretization of the advection term for the level-set function using
the local flow velocity as the upwinding direction. More details regarding the numerical
method and performance test can be found in Spelt (2005) and Ding et al. (2007b).
In order to simulate flows for more or less realistic values of a dimensionless slip

length, λ = O(10−4), we have incorporated into our method the free open-source software
package, PARAMESH (MacNeice et al. (2000)), which is an adaptive mesh refinement
(AMR) tool developed for parallel computing. It is categorized into the structured and
block-based adaptive mesh refinement family. The computational domain is covered with
a hierarchy of grid blocks having the identical logical structure (m × n mesh). In the
present study, the refining and coarsening of the grid blocks are based on whether the
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maximum distance of the grid block to the interface is smaller than a critical value. If
true, a block is cut into two in all directions, respectively, producing four (in 3D this
would be eight) children at a higher refinement level. Each of these has an identical
logical structure, but the grid spacing in each direction is half that of its parent. Figure
1 shows an example of the typical block structure generated by PARAMESH for a drop
spreading simulation. It can be seen that only the region which includes the interface and
moving contact line is covered by fine mesh blocks. As it is also required that the jump
in refinement level between two adjacent blocks is not larger than 1, the mesh density
varies relatively smoothly apart from at the interface. All the blocks shown in Fig.1 are in
fact covered with a 20× 20 uniform mesh in the present study. Each block is surrounded
by several layers of guard cells on each side, which protrude into the adjacent blocks.
The connection between adjacent blocks and the implementation of boundary condition
are realized by filling the guard with data from its neighbouring blocks or user-defined
boundary conditions, depending on its physical position. In PARAMESH, all mesh blocks
have the same logic structure at all levels of refinement. Hence, once the flow solver is
developed for one grid block, it can be easily applied to all other blocks independent
of the level of refinement. In addition, the different blocks can be distributed relatively
equally to different CPUs in an MPI parallel environment, which can support large-scale
simulations.

In order to check the accuracy and efficiency of the hybrid code, LS-PARAMESH,
several test simulations have been carried out. One example is for axisymmetric spreading
of a drop with an initial radius of 0.5 and contact angle of π/3; a different microscopic
contact angle is prescribed to be π/6. Other parameters are chosen as Oh = 0.1, λ = 0.01
and rd = rv = 0.1. The computational domain is similar to that of Ding et al. (2007b),
with a size of 1 in both directions; our tests shows doubling the domain size would lead to
nearly identical results. Simulations have been carried out for both the LS method with
a uniform mesh of 1281× 1281 covering the whole computational domain, and with LS-
PARAMESH which employed five levels of mesh with the finest level equal to the uniform
mesh resolution. This has resulted in a maximum difference in the instantaneous contact-
line radius of 0.4%, which confirms that only the interfacial and contact line regions
require such level of refinement. The global error in mass conservation for each phase
is below 0.4% throughout both simulations. It must be noted that with adaptive mesh
refinement, with typical mesh structure showed in Fig.1, the total number of grid points
is only 6.8% of a corresponding uniform mesh. Results of a convergence study along with
details of the discretization used in the subsequent sections are provided in the Appendix.

3. Comparison with Hocking & Rivers (1982) for slow spreading

We first simulate the slow spreading regime and investigate the extent at which the
asymptotic analysis of Hocking & Rivers (1982) is confirmed, in terms of the interface
shape and the apparent contact angle.

3.1. Interface shape

Here we investigate the interface shape in more detail for slow spreading (relatively large
values of Oh), in terms of the angle that the interface makes with the horizontal wall as a
function of arc length to the contact line, θ(s). Numerical results for this angle are shown
in Fig.2. These are compared with analytical predictions of Hocking & Rivers (1982) for
droplet spreading under creeping-flow conditions, which are summarized here first.
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Figure 2. Droplet shape during spreading and definitions of macroscale angles: the angle that
the interface makes with the wall as a function of arc length to the contact line, at the instance
where Ca = 0.016 at rd = rv = 0.1, λ = 0.0001, Oh = 0.1, θini = π/3, θw = π/6. The colored
lines represent the analytical result for the outer region far away from the contact line (3.1)
(blue), the outer region near the intermediate region (3.4) (purple), the intermediate region
(3.5) (green) and the inner region close to the intermediate region, (3.8) (red).

In the outer region, θ(s) follows from (e.g., Hocking & Rivers (1982))

tan θ(r) =
a− r

(a2cosec2 θa − (a− r)2)
1
2

, (3.1)

where a is the (time-dependent) radius of the contact line, and r can be converted into
s through

s =

∫ r

a

dr

cos θ(r)
(3.2)

which is herein integrated numerically using the Maple software package. When compar-
ing theory and simulations, the apparent angle θa in the theory (whose precise definition
is discussed further in Sec. 3.2 below) is not taken from the simulations but instead from
the theoretical prediction,

g(θa, rv = 0) = g(θw, rv = 0) + Ca
(
ln
a

λ
−Q0(θa) +Q1(θw)

)
, (3.3)

where the values of Q0 and Q1 have been tabulated in Hocking & Rivers (1982) (their
table 1). The only input in the theoretical prediction is therefore the value of the capillary
number, Ca, and the current radius of the contact line, a, alongside fluid properties.

Eq.3.1 simply corresponds to a hemispherical cap with the appropriate volume and
apparent contact angle. Hocking & Rivers (1982) have determined the correction to this
in the outer region, in the limit wherein the intermediate region is approached. At this
edge of the outer region

θ ∼ θa +
2Casin θa

θa − sin θacos θa

(
ln
( s
a

)
+Q0(θa) + 1

)
. (3.4)

which corresponds to Equations (3.20) and (5.9) in Hocking & Rivers (1982).
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In the intermediate region, using inner region variables,

g(θ, rv = 0) = g(θw, rv = 0) + Ca
(
ln
s

λ
+Q1(θw) + 1

)
, (3.5)

(corresponding to Equations (5.7),(5.10) upon using their (5.1), the relation ϵ = |1/lnλ|
and x = 1 + ϵlns = ϵln(s/λ) in Hocking & Rivers (1982)) where

g(θ, rv) =

∫ θ

0

f(β, rv)dβ (3.6)

and

f(β, rv) =
rv(β

2 − sin2 β)[(π − β) + sinβcosβ] + [(π − β)2 − sin2 β](β − sinβcosβ)

2sinβ[rv2(β2sin2 β) + 2rv[β(π − β) + sin2 β] + [(π − β)2 − sin2 β]]
.

(3.7)
Note, this expression for f(β, rv) has been taken from Cox (1986); it reduces to the
corresponding expression by Hocking & Rivers (1982), who restricted themselves to the
case rv = 0, the generalised expression for arbitrary rv is stated here for future reference.
In the inner region, when approaching the intermediate region,

θ ∼ θw +
Ca

g′(θw, rv = 0)

(
ln
s

λ
+Q1(θw) + 1

)
(3.8)

(i.e., Equations (4.7) and (5.10) in Hocking & Rivers (1982)).
Overall, reasonably close agreement is observed in Fig.2 between the simulations and

the analytical results, especially in light of the fact that the only input in the theory is
(apart from fluid parameters such as the static angle and the slip length) the instanta-
neous value of Ca and a (again, the apparent angle was not taken from the simulations).
In Fig.2, the theory is presented for the value of Ca observed at the instance for which
the numerical results are shown.
Some further observations can be made though. The inner and intermediate regions

have been matched upon assuming that terms of O(θa − θw)
2 can be ignored, as is clear

from comparing (3.5) with (3.8) (this can be seen from the fact that upon expanding
g(θ) in (3.5) about θw, it only matches (3.8) when discarding terms of O(θa− θw)2). The
mismatch in slope between these two predictions seen in Fig.2 therefore hardly comes as
a surprise.
A convenient definition of apparent angle corresponds to the value of θ(s = 0) obtained

from (3.1) (as, for instance, used by Hocking & Rivers (1982) when comparing with
experimental data; see also Fig.2(a)), although this is not an actual angle that can be
taken from the full curve θ(s) in numerical simulations. Fortunately for the theoretical
analysis though, the asymptotic expression (3.4) is found to match (3.5) very well for a
large range of values of θ, as long as a sufficiently large value is used - which is guaranteed
by defining the apparent angle such that it exceeds all values along the interface. We also
note here that for slow spreading the actual value of θ(s) at the edge of outer and
intermediate region is in fact close to the maximum value of θ(s), which is the definition
used in our previous work (Ding & Spelt (2007a), Ding & Spelt (2008), Ding et al.
(2010)).

3.2. Apparent contact angle

In the work of Hocking & Rivers (1982) an apparent angle is defined interchangeably as
the angle at the edge of the outer region or as the angle that the interface makes with
the wall in the outer region extrapolated to the contact line. As shown in the previous
section, the difference between these values, although assumed small, is in practice not
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negligible, making the matching at the edge of the outer and intermediate regions some-
what peculiar. In any case, extrapolation of the outer-field shape to the contact line, and
the local maximum value of the angle that the interface makes with the wall (which could
be considered to be similar to the actual angle at the outer/intermediate boundary), may
both be a convenient practical definition. In this section, we shall report results for the
apparent angle defined in both ways.

Representative results from a parametric study for the apparent angle versus instan-
taneous capillary number are shown in Fig.3. The solid lines represent the results for the
apparent angle defined as the maximum value of θ(s); dots those obtained by extrapo-
lating the linear regime (seen in Fig.2a, for example) to s = 0. Results are shown for
different values of dimensionless slip length and viscosity and density ratio, rv and rd, for
Oh = 0.1, which would be expected to be sufficiently large for inertial effects to be small.
We have found that the results for rd = rv = 0.05, and for rd = 1, rv = 0.1 coincide
almost exactly with those for rd = rv = 0.1 in Fig.3d, these are therefore not shown
for clarity of presentation. We conclude from this that within the range of parameters
studied here, the density ratio has no effect (as would be expected in a creeping-flow
limit), and that using rv = 0.1 (which is more efficient computationally) is sufficiently
low to be useful as an approximation for the limit rv → 0.

The results in Fig.3 are also compared against the theoretical prediction (3.3) derived
by Hocking & Rivers (1982) for droplet spreading (note, this requires iteration). For λ 6
0.001, the theory agrees very closely with the computational results for the extrapolated
angle, even for capillary number values as large as 0.02, whereas no adjustable parameters
have been used. In prior work (e.g., Ding & Spelt (2007a)), the maximum angle along the
interface was used in comparisons against asymptotic theory; the results in Fig. 3 show
that this will lead to an underprediction in the slow spreading regime. At relatively large
slip length values, which is only relevant for very small drops, the asymptotic theory is
not expected to agree well, as it requires sufficient separation of length scales, and the
agreement with the simulation results when using the maximum angle along the interface
at λ = 0.01 is considered fortunate. Also, the theory predicts a much larger contact-line
speed for a given extrapolated apparent angle (and vice versa). At the intermediate value
λ = 0.001 the simulations and theory already agree well for the apparent angle, but we
have not found the detailed shape to be predicted as well as in Fig 2 for λ = 0.0001.

An implication of this agreement is the following. For general contact line motion, Cox
(1986) derived

g(θa, rv) = g(θw, rv) + Caln

(
1

ϵv

)
. (3.9)

This represents (7.20) in Cox (1986); the various terms on the r.h.s. there - including
Q∗

0, Q
∗
i etc.- have been combined here in the present logarithmic term, i.e., our ϵv is

proportional to ϵ (the ratio of slip length and a macroscale) used by Cox (1986). It
was noticed by Cox (1986) that the precise value of ϵv (i.e., related to his function Q∗

0

etc.) could be dependent on the specific flow considered. Now, (3.3) can be put in the
form (3.9), so we conclude that the proportionality constant in the relation between
ϵv and the ratio of slip length and macroscale length scale should be chosen in accord
with the analysis of Hocking & Rivers (1982) in order to obtain good agreement with the
computations. We have found the theoretical prediction (3.9) to be sensitive to the precise
value of ϵv; for instance, using the argument in the log term based on the lubrication-
theory result of Hocking (1983) yields inferior results here. In many previous studies,
the approximated form (corrected to Ca0) of Cox (1986) has been used with ϵv = λ.
Tests show this approximation overpredicts the apparent angle: typically we find ϵv to
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Figure 3. Parametric study of apparent contact angle as a function of instantaneous Ca. Solid
lines are simulation results, dotted lines are Eq.(3.3), dashed lines represent the lubrication the-
ory of Hocking (1983); the dots in (a) - (c) represent results from the same numerical simulation
but using a different definition of apparent angle, as explained in the text. Parameter values
used are: rd = rv = 0.1, Oh = 0.1, θini = π/3, θw = π/6, λ = (a)0.01; (b)0.001; (c)0.0001. In (d),
the effect of viscosity is shown for λ = 0.001 (the other parameters are indicated in the figure).

be O(10) times the slip length divided by the drop diameter. This should therefore be
accounted for in order-of-magnitude estimates of an effective slip length if these are based
on a relation such as (3.9).
The results are also used in Fig.3 to determine the accuracy of the lubrication ap-

proximation, which is widely used in studies of slow spreading problems. The lubrication
theory of Hocking (1983) is seen in Fig.3 not to deviate far from the simulations and the
theory of Hocking & Rivers (1982) (wherein lubrication theory is not used), especially at
low capillary numbers.
Cox (1986) accounted for a finite viscosity ratio rv of the two fluids in his derivation of
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(3.9). Given the sensitivity of the theoretical results to the precise value of ϵv, a possible
concern may be that ϵv is affected by rv. The study of Hocking & Rivers (1982) does
not provide an answer here, as the surrounding fluid is not resolved. But in Fig. 3(d) we
see that the effect of viscosity ratio of the two fluids on the apparent angle is very well
represented by (3.3) in conjunction with (3.7). Therefore, the viscosity ratio is not found
to much affect the value of ϵv in (3.9), but to substantially change g(θa, rv).
Simulations with the initial angle θini increased significantly, up to 2π/3, have been

carried out with other parameters similar to those in Fig. 3(b). The result in terms of
the apparent angle as a function of instantaneous capillary number (not shown) agrees
very well with the asymptotic result of Hocking & Rivers (1982).

4. Validation and refinement of theory of Cox (1998) for fast
spreading

So far, the results have been for slow spreading. In this section, we consider smaller
values of Oh, corresponding to larger inertial effects (we recall that Re = Ca/Oh2, so
Re is then larger at a fixed Ca). We shall compare results for the interface shape and
apparent contact angle with a modified form of the analysis of Cox (1998) for spreading
in the regime 1 ≪ Re≪ λ−1, Ca≪ 1, which we briefly introduce and review first.

4.1. Cox (1998) revisited

In this regime, Cox (1998) divided the contact-line region into inner and outer regions,
as in the viscous analysis (Cox (1986)), and two intermediate subregions, viscous and
inviscid, that match in a transitional zone. The transition is at a distance from the
contact line d∗ chosen such that a Reynolds number based on the contact-line speed and
d∗ is of O(1). Cox (1998) took this Reynolds number to be exactly unity, i.e., d∗ = 1/Re,
but here, noting the liberty in the choice of length scale in the definition of a Reynolds
number (drop radius, diameter, or otherwise), as well as following initial comparisons
against numerical simulations, we propose instead to adhere to a transition Reynolds
number Re∗ ≡ d∗Re that is of O(1). In the viscous intermediate sublayer, the angle θ
between the interface and the wall as a function of distance d to the contact line is given
by

g(θ)− g(θw) = Caln(d /ϵ) + CaQif(θw), ϵ < d < Re∗/Re. (4.1)

which is essentially the same as the viscous analysis of Cox (1986). At the edge d∗ =
Re∗/Re, the interfacial angle θ∗ follows from

g(θ∗)− g(θw) = Caln(Re∗/(Reϵ)) + CaQif(θw), (4.2)

In the limit of rv → 0, Qif = 1 + Q1 where Q1 can be found in table 1 of Hocking &
Rivers (1982). This term Qi was included at an early stage in the analysis of Cox (1998)
(denoted by him as Q∗

v, and as Q∗
i in Cox (1986)), in his Eq. (8.19), but he eventually

dropped all terms of order Ca+1 for simplicity. Here we have reinstated this term as we
have found this to have an effect on the results that cannot be ignored. The parameter
ϵ in Eq. 4.2 is of O(λ). In fact, as the inner region and viscous intermediate sublayers in
the inertial theory are the same as in slow spreading, it is expected that ϵ = λ, as was
used in the model for slow spreading which is shown in the preceding section to agree
well with the numerics (strictly speaking, a small deviation from this is allowed, as the
matching condition is only to be applied close to the boundary between the inner region
and intermediate viscous sublayer). This is confirmed below also for fast spreading.
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In the inviscid subregion, the interface shape is given by

giv(θ)− giv(θ
∗)− Ca[hiv(θ)− hiv(θ

∗)] = Caln(d Re/Re∗), d∗ < d < 1 (4.3)

where

giv(θ) = 1.53161 (θ − sin θ) (4.4)

hiv(θ) = −2ln(sin( 12θ)) + 2

∫ θ

π

θdθ

1− cos θ
(4.5)

As in the viscous subregion, Cox (1998) did determine the term O(Ca) included in the
above, but later left out all terms of this order for simplicity; we have re-instated these,
also for consistency with the term of the same order in (4.2) above. The theoretical
prediction is compared below against the numerical simulations.
An apparent angle θm follows from matching the inviscid subregion to the outer region.

In the outer region, Cox (1998) defined the apparent angle such that it is attained at a
distance of one unit length from the contact line (cf. his Eq.3.39). Matching then results
in the requirement that (4.3) returns θm as d→ 1, yielding

giv(θm)− giv(θ
∗)− Ca[hiv(θm)− hiv(θ

∗)] = Caln(Re/Re∗). (4.6)

However, the limit d → 1 is not physically useful here, since the macroscopic length
scale used in normalizing variables was not unambiguously defined by Cox (1998). Fur-
thermore, it is not expected to yield an angle that can be observed anywhere on an
interface, and is found here not to be an accurate approximation of the angle that would
be obtained by measuring instead an extrapolation of the interfacial angle from the outer
region to the contact line. Therefore, we insist herein on defining θm as the interfacial
angle extrapolated from the outer region. This apparent angle is attained at some value
of d = dm = O(1), hence the insistence on a meaningful definition of θm comes at the
cost of having to replace (4.6) with

giv(θm)− giv(θ
∗)− Ca[hiv(θm)− hiv(θ

∗)] = Caln(dm Re/Re∗). (4.7)

A comparison between theory and numerics is used below to find dm.

4.2. Interface shape

In Fig.4, results are shown for a reduced value of Oh = 0.01. A capillary-type wave is
known to travel from the contact line towards the top of the droplet and then returns to
the contact line (e.g., Ding & Spelt (2007a), Ding et al. (2012)), but it has hitherto not
been possible to assess how and to what extent this wave intrudes into and bounces back
from the asymptotic structure of the contact-line region. In fact, a direct comparison
with Cox (1998) appears unavailable so far even if capillary waves are far away from the
contact line.
We address this latter issue first, as presented in Fig.4c. The interface profile in the

intermediate viscous sublayer can be obtained from (4.1). The analytical results are in
terms of the distance d to the contact line rather than the arc length, s, but we have
found this to have no visible effect on the results shown. We find that taking ϵ = 1.5λ
(blue curves) leads to excellent agreement between the theory and simulation for all
cases tested, and that ϵ = λ only generates a deviation of less than one degree. We thus
conclude that in Cox (1998), taking the value of ϵ close to λ is a reasonable choice. The
shape of the interface predicted in the intermediate inviscid sublayer (green line) is only
meaningful when the capillary wave is far away from the contact line, however. A proper
value of Re∗, which is always of O(1), is needed for the theory to agree closely with the
simulations. We have generally found Re∗ to range from 0.2 to 1 here.
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Figure 4. Angle that the interface makes with the wall as a function of the arc length to
the contact line. (a) Capillary waves travel towards the top of the drop. From top to bot-
tom, (t, Ca) = (0.006, 0.01), (0.011, 0.0083), (0.021, 0.0068), (0.031, 0.0059), (0.051, 0.0049),
(0.071, 0.0042). (b) Capillary-type waves bounces back and reach the contact-line region. Suc-
cessive labels from 1 to 6 refer to (t, Ca) = (0.071, 0.0042), (0.076, 0.0038), (0.086, 0.0037),
(0.096, 0.0042), (0.106, 0.004), (0.136, 0.0016). (c) Comparison between simulation and Cox
(1998). Blue curves are for intermediate viscous sublayer from (4.1) and (4.2); green lines are
for intermediate inviscid layer from (4.3). Flow parameters are: Oh = 0.01, rd = rv = 0.1,
λ = 0.0001, θini = π/3, θw = π/6.

The time at which the capillary-type wave reflects back and reaches the contact line
is captured in Fig.4b. Inspection of the sequence of snapshots shows two main trends:
the oscillatory motion of the contact line, and of the outer region, which are nearly in
phase. Indeed, a simple model can be constructed to approximate these profiles, by using
(4.1) with the actual (oscillating) contact-line speed, and subtracting a term (such as a
simple power of s with an oscillating coefficient of proportionality) to represent the outer
region, and taking the two amplitudes to oscillate in phase.

Results at an even lower value of Oh = 0.00316 are shown in Fig.5. Evidently, the
capillary-type wave is now more prominent. Especially at very early times, when the
capillary wave leaves the contact line, propagating through the contact-line region, the
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Figure 5. Droplet shape at low Oh (Oh = 0.00316). Shown is the angle that the interface makes
with the wall as function of the arc length to the contact line, θ(s) at early times (a) and at the
stage where a capillary wave has reached the contact-line region (b). In (a), results are shown for
successive times (from top to bottom) at times when Ca = 0.00441, 0.00338, 0.00295, 0.00247,
0.00186. Blue curves are for intermediate viscous sublayer from (4.1) and (4.2); green lines are for
intermediate inviscid layer from (4.3). In (b), successive labels refer to Ca = 0.00186, 0.00195,
0.00215, 0.00124, 0.00184, 0.00218, 0.00136, 0.00029. Other fluid parameters are: rd = rv = 0.1,
λ = 0.0001, θini = π/3, θw = π/6.

θ(s) curve is pulled up in the inviscid sublayer more than is predicted by the theory.
Again though, the theory of Cox (1998) for the intermediate viscous and inertial sublayers
works very well when the capillary wave is not close to the contact line. The behaviour
around the time when the capillary wave has again reached the contact line appears more
complex than at Oh = 0.01 (cf. compare Fig.5b with Fig.4b). Not one but two periods
of oscillation can now be observed (close inspection of time signals has shown a third),
but the outer region and the contact-line speed remain nearly in phase, as they are at
Oh = 0.01 above (we return to this in the next subsection).

4.3. Apparent contact angle

We now investigate the apparent contact angle as a function of the contact-line speed,
which is shown in Fig.6a-b for Oh = 0.01 and in Fig.6c-d for Oh = 0.00316. Results
for two definitions of the apparent angle are shown in each case; the solid lines rep-
resent the apparent angle defined as the maximum value of θ(s), and dots represent
θ(s = 0) obtained by extrapolation. With either definition, loops are observed, showing
non-uniqueness in the apparent angle versus the instantaneous contact-line speed. This
behaviour is consistent with that observed in Ding & Spelt (2007a) (see also Sec. 5.6); we
note that this figure illustrates also the behaviour discussed in the previous subsection, as
it is clear that the apparent angle and contact-line speed oscillate in phase. Here however,
our interest lies in comparing with theory, which was not possible in that earlier work.
In Fig. 6, the results labelled Cox (1986)A correspond to Cox (1986) corrected to Ca0

(ϵv = λ in (3.9)); Cox (1986)B represents Cox (1986) corrected to Ca+1 (ϵv chosen in
accord with the analysis of Hocking & Rivers (1982) which accounts the terms including
Q0

∗, Q1
∗ etc.). It is seen that both overpredict the apparent angle. With Cox (1998)

corrected to Ca0 (Qi = 0), and setting Re∗ = 1 and dm = 1 as done in Cox (1998),
the analysis (the curve labelled Cox(1998)A) also leads to an overprediction. It is argued
here that this is caused by the fact that the parameters such as Re∗ in the theory are
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Figure 6. Apparent contact angle as a function of instantaneous Ca from simulation and theory.
λ = 0.0001, Oh = (a,b) 0.01, (c,d) 0.00316. The symbols represent the simulation results when
using the extrapolated angle; in (b) and (d), the solid lines represent the simulation results when
using the maximum angle along the interface. The dash-dotted lines in (a) and (c) represent the
analytical results, as explained in the text.

of O(1) but not exactly unity, as discussed in the previous subsection on the interface
shape. We find reasonably good agreement when using Cox (1998) corrected to Ca+1

(the data labelled Cox (1998)B in Fig.6), where the value of Re∗ is obtained by taking
an average over values obtained by fitting various instantaneous interface shapes, which
gives a value of about 0.37 here). We also find dm = 0.2 should be used in order to
achieve good agreement for all cases considered herein.
Droplet spreading with even stronger inertial effects have been investigated recently

by Ding et al. (2012), identifying a regime wherein small droplets pinch off due to rapid
spreading motion, both numerically, using a diffuse interface method, and experimentally.
Experimental and numerical results for the apparent angle vs. the dimensionless contact-
line speed were included, with the apparent angle used defined as the maximum angle
following earlier work (Ding & Spelt (2007a)). It was found that the numerical results
were of the same order of magnitude, but could not be represented by the theory of
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Figure 7. Apparent contact angle defined by extrapolation as a function of instantaneous Ca
for (a) λ = 0.0001 with different Oh (zoomed views for low Oh are in Fig. 6) and (b) Oh = 0.01
with different λ.The solid lines in (a) represent Cox (1998)B except for Oh = 0.1 which is
compared with Hocking & Rivers (1982).

Cox (1986) or Cox (1998). However, we have now verified that when obtaining in those
simulations the apparent angle by extrapolation from the outer region to the contact line,
good agreement with Cox (1998) (4.2 and 4.7) can be achieved, with the values of Re∗

and dm chosen in the same way. From Fig.6b and d, we conclude that for fast droplet
spreading, using the maximum interfacial angle to approximate the apparent angle leads
to a significant overestimate.
We summarize the extrapolated apparent angle as a function of contact line speed for

both slow and fast spreading in Fig.7a. It is clear that inertial effects tend to decrease
the apparent angle, as predicted by Cox (1998). This reduction of apparent angle due to
inertial effects also agrees with the experimental finding of Stoev et al. (1999).
Finally, we revisit the problem of identifying the effect of slip length on drop spreading

when inertial effects are important. As summarized in the introduction, the prior work
on simulation of droplet spreading is strongly restricted by the rather large value of the
equivalent slip length. The slip length studied herein ranges from 10−2 to 10−4; Fig.7b
presents the apparent contact angle as a function of instantaneous capillary number.
It is seen that at the same apparent contact angle, the contact line moves faster with
a larger slip length. If the slip length is large, the contact line spreading rate shows
dampened oscillations in the initial transient stage and capillary waves travel along the
interface, and the apparent angle is not a single-valued function of Ca, as alluded to
previously. Upon decreasing the slip length, the contact line moves more slowly so that
this oscillatory behaviour is less significant. It is seen in Fig.7b that the loop in the curve
become smaller upon decreasing the slip length. Although it is expected that the drop
will spread monotonically for a sufficiently small value of the slip length at a fixed value
of Oh, this can be compensated by reducing the value of Oh, as can be seen in Fig.7a.

5. Further discussion of results

In this section we make further use of the simulations presented above by revisiting
the discussion of several issues in droplet spreading.



Journal of Fluid Mechanics 17

5.1. Flow field

The experiments of Dussan V. & Davis (1974) have shown the fluid to be rolling as a
contact line advances, with an ’ejection’ or ’injection’ separation streamline in the other
fluid when using the frame of reference moving with the contact line; Chen et al. (1997)
have confirmed the rolling-type motion down to distances of O(µm) from the contact
line. Analysis of the contact-line region for slow contact-line motion in the absence of slip
results in a wedge-flow pattern with, depending on the viscosity ratio and static contact
angle, the ejection/injection separation streamline predicted to be in the less viscous fluid
unless the contact angle is very large (e.g., Huh & Scriven (1971)). A similar result was
obtained in the intermediate layer in the slow regime with a contact-line model such as
slip (Cox (1986)). Although the slip model results in a flow akin to stagnation-point flow
around the contact line, without a finite arrival time at the contact line of fluid particles
along the interface, whereas pure rolling does result in such a finite arrival time, the
confirmation by experiment of the velocity field in the inner region poses a formidable
challenge. But the experiments of Savelski et al. (1995) and Fuentes & Cerro (2005) show
discrepancies with this hydrodynamic theory regarding the flow field even outside what
would be expected to be the inner region. Also, in the numerical simulation of Sheng &
Zhou (1992), a vortex is observed in the wedge near a contact line when applying free
slip in the immediate vicinity of the contact line and no slip elsewhere.
To investigate whether the present computations are consistent with the asymptotic

analysis of slip models, and to see whether for instance inertial effects could play a role
here, we have analyzed the flow field near the moving contact line during drop spreading
in our simulations. All of our simulations of droplet spreading show a vortical pattern
in the surrounding fluid near the contact line; a typical example is shown in Fig.8a,
which is discussed further below. A zoomed view of the same field, showing the contact-
line region is presented in Fig. 8b. This is seen to correspond to the typical wedge flow
pattern also predicted by analysis (e.g., Huh & Scriven (1971)); we have also verified
that the velocity along the interface uniformly goes to zero when the contact line is
approached in a further high-resolution simulation (the case with finest mesh in Fig. 17),
within the accuracy of the determination of the contact-line speed. The splitting-ejection
streamline is found on the side of the less-viscous fluid. We have determined the angle
that this streamline makes with the wall for various values of the viscosity ratio and the
Ohnesorge number, the results are shown in Fig. 8c. We find that this angle remains
virtually unchanged during the spreading. The results for cases wherein spreading is
sufficiently gradual (Oh = 0.0316 and 0.1) agree with the theoretical prediction of Huh
& Scriven (1971). For rv = 5, both the theory and the present simulation predict a
separation streamline inside the ’drop’.
We also find that inertia affects the angle that the separation streamline and the wall

make: in Fig. 8c, the angle is somewhat smaller if Oh is decreased by a further order
of magnitude. Such reduction in the angle between the wall and the ejection streamline
is found to result in a corresponding change in the extent of the vortical region seen in
Fig.8a: its dimension perpendicular to the interface is found to be reduced when inertial
effects become important.

5.2. Shear stress and pressure along the wall

The total force exerted by the flow on the wall is of practical interest (e.g., in the con-
ditions for the depinning of droplets by shear, Spelt (2006), Ding & Spelt (2008), Ding
et al. (2010)). In Fig. 9 the shear stress and pressure on the substrate are presented as a
function of distance to the contact line in a case of slow spreading.
In the inner region, the shear rate at the wall is Ucl(a− r)−1k1(r) where k1(r) can be
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Figure 8. (a) Streamline pattern around the contact line during spreading (in a frame of refer-
ence moving with the contact line). λ = 0.001, Oh = 0.0316, rd = rv = 0.1,θini = π/3,θw = π/6.
(b), A zoomed view of (a) near the contact line. (c) Angle of separation streamline as a function
of viscosity ratio, including results for different values of Oh as indicated in the figure.

obtained by solving an integral equation numerically (Hocking (1977), Hocking & Rivers
(1982); we note here that k1 diverges as λ → 0). In the intermediate region, the result
is of the same form but with k1(r) set equal to ∂

2gHR/∂θ
2 where gHR is the function g

in Hocking & Rivers (1982). In the outer region, we have obtained the wall stress from
the stream function (which is given in bipolar coordinates (ξ, η)) as ∂2ψ/∂ξ2 at ξ = 0,
which requires a numerical integration that was conducted in the software package Maple,
as it involves further integration of a Legendre polynomial of partial complex order. In
Fig. 9(a), the present simulation results are seen to agree very well with the analysis in
all regions.

The pressure along the wall is not readily obtained from such asymptotic analysis. The
exception is the pressure in the intermediate region. We have obtained this by determining
the vorticity ζ from the stream function through ∇2ψ = ζ, and hence the pressure along
the wall by numerically integrating ∂p/∂r1 = −r−1

1 ∂ζ/∂θ at θ = 0, where r1 ≡ (a− r)/λ
when θ = 0. The present results agree well with this, see Fig. 9(b).

A deviation from the result for the pressure in the intermediate region is of course
observed when the inner region is approached. An explicit result for the pressure in the
inner region is not derived in Hocking & Rivers (1982), although it is clear from the fact
that in Stokes flow, the pressure satisfies Laplace’s equation,∇2p = 0, and p ∼ Uclln(a−r)
(in dimensionless form). It appears not possible to obtain the proportionality constant
directly from the analysis of Hocking & Rivers (1982). An approach to such behaviour is
consistent with the results in Fig. 9(b). This is clarified further in the convergence study
reported in the Appendix. It is demonstrated there that the inner region must be resolved
such that the grid spacing is much smaller than the slip length before this logarithmic
regime is clearly observed, even though the shape of the interface has converged already
when the grid spacing is of the same order as the slip length. We infer from Figs. 16,17
the proportionality constant mentioned above to give for θw = π/6, p ≈ cUclln(a− r)/λ
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Figure 9. Comparison of instantaneous (a) shear rate and (b) pressure along the wall with Hock-
ing & Rivers (1982) for slow spreading, with rc denoting the contact-line radius; rd = rv = 0.1,
λ = 0.0001, Oh = 0.1, Ca = 0.011, θini = π/3, θw = π/6. The three line segments in (a)
represent (from left to right) the inner, intermediate and outer region. In (b) the line represents
a result inferred from Hocking & Rivers (1982) for the intermediate region (a complete result
for the pressure is not given in Hocking & Rivers (1982) in the inner and outer regions).

with c = 0.1± 0.05, or, in dimensional form,

pwall = cµ̂λ̂−1Ûclln((a− r)/D), (5.1)

where the hat decoration indicates dimensional values. A parametric study to determine
the dependency of the prefactor c on the contact angle has not been undertaken here,
but it is noted that from lubrication theory this is expected to be proportional to θ−1

w

(e.g., Devauchelle et al. (2007)).
It is demonstrated in Sec. 4 above that the shape of the interface in the inner region

for rapid spreading is virtually the same as in slow spreading. Inertial effects are not
expected on this small scale, and we have found no evidence to the contrary (in fact,
the convergence study in the Appendix is for modest inertial effects, Oh = 0.0316).
It is conceded that in an extreme superspreading regime, inertial effects could even be
important on the slip length scale (this regime is also studied by Cox (1998)), but this
requires a very small contact angle not simulated herein.

5.3. Sensitivity to contact line model

Ding & Spelt (2007a) have shown that the results obtained with a slip-length-based
level-set method can agree well with those of a diffuse interface method, which relies
on limited diffusion between the fluids concerned to alleviate the stress singularity at a
moving contact line and utilizes a no-slip condition. Reasonable agreement was found
when making a suitable choice for the diffuse interfacial thickness, measured by ζ, for a
given slip length. It was found that when ζ/

√
µM = O(1), where M > 0 is the mobility

which can be considered as a diffusion coefficient of chemical potential, λ = ηζ; for
λ = O(0.01), Ding & Spelt (2007a) found η = 1.8±0.2 to give the best comparison. This
has now been extended to much smaller values of λ and ζ. A direct comparison is shown
in Fig.10, exhibiting good agreement in droplet shape and in the apparent angle as a
function of contact-line speed. These new results indicate that the coefficient η would
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Figure 10. (a)Snapshots of interface shapes during spreading; (b) apparent contact angle as a
function of instantaneous Ca at rd = rv = 0.1, Oh = 0.1, θini = π/3, θw = π/6 and λ = 0.001.
Solid lines are results from LS method and dashed lines are from DI method.

depend on the slip length: at λ = 0.001, the coefficient has reduced to 0.5, and further
down to 0.36 at λ = 0.0002. Care should be taken though with using these results in
flows other than those studied here. Also, in diffuse interface methods, the mobility is
usually related to the interface thickness following a power law M ∼ ζn; herein we have
used n = 2 (as in Ding & Spelt (2007a)), but other values of n ranging from -1 to 1 have
been used previously, and it is expected that a different relation between the equivalent
slip length and the interface thickness would then be found.

5.4. Dewetting

Cox (1998) considered mainly inertial spreading, not rapid dewetting. Nevertheless, the
inner region in rapid spreading is the same as in slow spreading, which in turn also applies
to dewetting; and Cox (1998) argued that the result of his inviscid analysis is similar to
that for slow spreading also. To put this on a firmer basis, we briefly investigate rapid
dewetting here.
Before turning to inertial effects though, we first compare in Fig.11a the results for

more gradual dewetting with Hocking & Rivers (1982), which is also expected to be
applicable for dewetting (note, the capillary number is defined here to be negative in
dewetting). Overall, the conclusions drawn in the above on slow spreading carry over,
the results of theory and simulations agree.
Rapid dewetting is studied in Fig. 11b-d. First, successive snapshots of the drop shape

are shown in Fig 11b. Inertial effects are clearly seen, in that initially not the entire
drop is pushed back and upwards. Detailed investigation of Fig 11b suggests a capillary
wave travels back from the centre of the drop and approaches the contact line, which
causes strong oscillation of the apparent angle (Fig. 11d). In Fig.11d, the apparent angle
obtained from numerical simulation is compared with the theory of Cox (1998) after
the modifications indicated in Sec. 4. The same parameter values (Re∗, dm) as in the
analogous comparisons for spreading are used here (except ϵ = λ is now used). Although
the theory of Cox (1998) can be used to predict the apparent angle, inspection of the
results in Fig. 11c for θ(s) shows that the theory cannot be used for any further level
of detail; especially a large discrepancy occurs in the inviscid intermediate sublayer, and
the favourable comparison for the apparent angle seems rather fortunate.
At Oh = 0.01 when the wetting angle is sufficiently large, for example θw = 2π/3, the

difference between the initial angle and the wetting angle triggers a large contact line
velocity which can lead to a jump up of the droplet from the surface, see Fig. 12a-g, where
the instantaneous interface profiles during such a process presented. The fluid initially
near the contact line is rolled up and a surface wave travels to the drop centre. The wave
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Figure 11. Results for dewetting. (a) Comparison of apparent contact angle vs Ca against
Hocking & Rivers (1982) (solid line) for slow dewetting for Oh = 0.1. (b)-(d) Results for the
inertia-dominated regime, Oh = 0.01: in (b), the drop shape evolution is shown, in (c), the
shape is compared with Cox (1998) as modified herein, with ϵ = λ,Re∗ = 0.37, and (d) shows
the corresponding comparison for the apparent angle, where dm = 0.2 is used. Other parameters
are θini = π/6, θw = π/3, λ = 0.001, rd = rv = 0.1.

moves so fast that there is no time for the interface at r = 0 to go up, and a pocket of
air is trapped. The centre of mass of the drop goes up and before a maximum height is
achieved, the contact line has arrived at the centre line and thus the whole droplet jumps
up. For this complex situation, we find Cox (1998) to be only of limited use for predicting
the apparent angle and the interface shape close to the contact line, as shown in Fig.
12g for the comparison of the apparent angle. A further complication at large dewetting
rates may expected to be an approach to a Landau-Levich-Derjaguin-type limit observed
in rapid withdrawal of a plate from a pool (Landau & Levich (1942)): beyond a critical
value of −Ca, a macroscopic film would then be expected to form. However, in the latter,
the flow is driven by the moving plate with the liquid nearly passively adjusting itself
to it, whereas in dewetting droplets, the moving contact line drives the flow. For rapid
withdrawal of a plate from a pool, a detailed analysis and corresponding prediction of the
critical value of −Ca are available (Eggers (2004)) but these involve the angle between the
plate and the gravitational acceleration. A less advanced, but local prediction proposed
by de Gennes (1986) that can be implemented here as an estimate gives a critical value
−Cac = θ3w/(9

√
3ln(λ−1)) (where we have used λ as the ratio of a micro- and macro-

lengthscales). This is −0.085 for the case studied in Fig. 12, which is above the range of
values attained there. However, for the case in Fig.11, in early stage of the simulation the
capillary number has reached a value of −0.1, which is well beyond the critical capillary
number of 0.01 predicted by the de Gennes formula, but we have not observed any film
being formed.
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Figure 12. (a)-(f) Instantaneous interface profiles during the dewetting of a droplet at
Oh = 0.01 and θw = 2π/3. Other parameters are same to Fig. 11. (g) Apparent angle as a
function of Ca. Dots are from numerical simulation and solid curve is from Cox (1998) with
ϵ = λ, Re∗ = 0.37 and dm=0.2.

5.5. Droplet impact

We have also carried out simulations of droplet impact by giving the droplet an initial
downwards velocity. The purpose is to test whether the inertial theory of Cox (1998) can
still predict a reasonable apparent angle for such situations. The Weber number, defined
as We = ρ1Ui

2D/σ where Ui is the impact velocity, is employed to identify the extent
of impact. Fig. 13a presents the comparison of apparent angles obtained from numerical
simulation (symbols) and Cox (1998) (solid curve) for a case with We = 5, and it is
seen that reasonably good agreement is achieved. The values of parameters used in the
theory are ϵ = 1.5λ,Re∗ = 0.37, dm = 0.2. With moderate impact velocity (i.e. We = 5),
capillary-type waves emit from the contact line, travel upwards along the interface and
reflect back, which is in general similar to rapid droplet spreading. However, at high
impact speed, the impact velocity is much larger than the capillary wave (e.g., Renardy
et al. (2003)) and the contact line region forms a thin layer of liquid, as illustrated in
Fig. 13b for We = 33 (the perhaps familiar phenomenon of crown splashing is only
observed in impact on pre-wetted or very rough surfaces that are both beyond the scope
of this study Yarin (2006)). The apparent angle is then very difficult to be extrapolated
accurately. Finally, at extreme impact velocities such that Re is no longer smaller than
λ−1 and inertial effects become significant in the inner region, the theory outlined in
Sec. 4 does not hold. That regime has been investigated separately by Cox (1998); we
also note that in high-speed impact, the gas is compressed rather than drained into a
layer of a few tens of nanometers thick, during which the drop ’skates’ on an air cushion
before a contact line is formed at multiple sites, beyond the scope of the present study
(Kolinski et al. (2012)).

5.6. Comparison of adjusted analysis with experiments on rapid spreading

Prior comparison of asymptotic analysis with experimental data has been mainly in the
slow spreading regime, and in most cases for contact-line motion in capillaries or over
a moving plate. A quantitative comparison yields an approximate value of an effective
slip length (e.g., Marsh et al. (1993)). In some cases, the additional terms in the theory
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Figure 13. (a)Apparent angle as a function of contact line speed. We = 5, Oh = 0.0022,
θini = π/3, θw = π/6, rd = rv = 0.1 and λ = 0.0001 (b) Illustration of the instantaneous
interface profile at higher impact velocity We = 33.

such as Q1 seem to have been ignored, which would result in an error in the inferred
slip length. A direct comparison with the theory of Hocking & Rivers (1982) for droplet
spreading with experiment was conducted by those authors in their paper, and good
agreement was obtained for what seems a reasonable value of the slip length (10nm).
It may therefore seem surprising that for rapid spreading, although the theory for the
inner region and viscous intermediate sublayer in the analysis of Cox (1998) are in effect
identical to their counterparts for slow spreading, large discrepancies appear to have been
found.

In Fig. 14, we reproduce the experimental data on the apparent contact angle versus
instantaneous contact-line speed (made dimensionless), taken from Ding et al. (2012).
The apparent angle in the experiment is measured for a 0.77mm diameter water droplet
(corresponding to a small Bond number, ρgD2/σ = 0.083, where g is the gravitational
acceleration; we have confirmed numerically that there is no significant effect of gravity
on the results in this case) by extrapolating the interface shape from a macroscopic length
scale, of about O(50µm), to the contact line and finding the intersecting angle with the
wall. This is for a case wherein spreading is so rapid that a capillary wave eventually
leads to pinch-off; the particular type of satellite ejection is referred to as second-stage
pinch-off and is illustrated in Fig. 14(b). Unlike in that prior work, a direct comparison
with the theory of Cox (1998) is now possible, following the detailed validation conducted
herein and subsequent refinement of the theory. In the figure, we first show as a reference
the theoretical result when using the expected values of a slip length of 1nm (see Ding
et al. (2012) for details of the surfaces used) and the static advancing angle of 23◦. The
apparent angle is clearly vastly underpredicted. We have first determined a fitted value
of the slip length that would lead to the theory to agree well with the experiments. It is
indeed possible to obtain a reasonable curve fit (the contact angle used was kept at the
static angle determined experimentally), as shown in Fig. 14, but the resulting value of
the slip length is unphysical, 10−7nm, throughout the entire spreading process. Although
it is tempting to attribute this to a limitation of a slip model, from the recent work of
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Figure 14. (a) Apparent contact angle as a function of instantaneous Ca for experiment of
Ding et al. (2012) (symbols) and theory Cox (1998) as modified in accord with the present com-
putational results (lines). The experimental data are for a 0.77mm water droplet at Oh = 0.006
and static angle 23◦. The dotted and solid lines are the theory for the experimental contact
angle and a slip length of 1nm and 10−16m, respectively. The dashed line is the theory for a slip
length of 1nm and a velocity-dependent contact angle.(b) Illustration of a second stage pinch
off taken from Ding et al. (2012).

Savva & Kalliadasis (2011), other models (such as a precursor film) are expected to result
in a similar discrepancy.
In all the results presented so far here, however, we have kept the actual contact angle

(in the inner region) fixed. Although Hocking & Rivers (1982) found their model to agree
well with their experiments for slow spreading when using a fixed slip length and contact
angle, Sheng & Zhou (1992), comparing the analysis of Cox (1986) with the experiments
of Fermigier & Jenffer (1990), only obtained close agreement when accounting for a
velocity-dependent contact angle, θd; Bayer & Megaridis (2006) argued for the use of
such model in their study of droplet spreading. Models of contact lines moving over
defects that equate an effective drag force exerted by a defect on the contact line to
the total applied force that includes a capillary forcing arising from surrounding defects
(e.g., Ertas & Kardar (1994)) do predict that the dynamic contact angle (on the scale
of roughness elements, not to be confused with the present apparent angle) increases
with the contact-line speed, and the contact line to advance in jumps or avalanches
as it depins from defects. There is experimental evidence of avalanche-type behaviour
(David & Neumann (2010)). As reviewed in Sheng & Zhou (1992), several forms have
been proposed for such a relation between contact angle (in the inner region) and the
contact-line speed. In fact, even for contact line motion over perfectly smooth surface,
molecular dynamics simulations by Qian et al. (2003) and Ren & E (2007) have shown
that the contact angle deviates from the equilibrium static angle and the deviation is
proportional to the contact line speed. It is not attempted here to investigate the detailed
physics in the inner region or argue for a specific proposal of the contact angle and the
contact line speed relation for rapid spreading (especially since all prior theoretical work
in this area is for slow spreading, to our knowledge), but it is important to investigate
whether at least a modest change in the contact angle with contact-line speed can explain
the large gap between the theory of Cox (1998) and the experimental data in Fig. 14,
or if other physics must be accounted for. We have therefore included in this figure the
theoretical prediction based on a contact-angle/speed relation of the form proposed by
Sheng & Zhou (1992), i.e., cos θw = cos θd+B ·Can. The result shown is for fitted values
B = 9.6, n = 0.64, which are both of the same order as the values inferred by Sheng &
Zhou (1992) (they found different prefactors for different viscosity ratios and different
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values of θw). Note, we have kept the static angle at the experimental value although it
appears to be a slight overestimate, the difference with a fit using n < 0.45 could be of
the same order of magnitude as that caused by the uncertainty in the value of θw.
In conclusion, the results of the validation and refinement theory of Cox (1998) are

not inconsistent with experimental data on rapid droplet spreading, if one allows for the
contact angle to increase modestly with contact-line speed. Although introduction of a
velocity-dependent microscale contact angle is unsatisfactory in that this introduces yet
further parameters in the model, the fact that values found previously for slow spreading
of these coefficients can bridge the large gap in Fig. 14 between the theory for a fixed
static angle and experimental data that could otherwise only be achieved by reducing
the slip length by seven orders of magnitude, is compiling.
We have not been able to undertake a comparison with the experimental data of Bayer

& Megaridis (2006), although these are also for rapid droplet spreading. This is mainly
because the accurate value of the static advancing angle, required in Cox (1998), is not
provided in the experiment, which introduces further uncertainty in an inferred value of
λ. Indeed, a comparison was not presented by Bayer & Megaridis (2006). The main visible
trend in their data is that at large contact-line velocity, the apparent angle depends on
the impact velocity of the drop. In Sec. 5.5, such dependency has not been observed, and
our results are still in reasonable agreement with the theory of Cox (1998) even at the
impact speeds used by Bayer & Megaridis (2006). Evidently, further experimental work
in this area would be highly desirable.

6. Conclusions

Asymptotic analyses for slow and rapid spreading of droplets have been tested and, in
places, modified, using a newly developed computational method, a slip-length based level
set method integrated in the efficient adaptive mesh refinement tool package PARAMESH,
for dimensionless slip length values down to 10−4. For slow spreading, the results in Sec. 3
are in very close agreement with the theory of Hocking & Rivers (1982), for situations
where Ca is less than O(0.01) and λ smaller than O(0.001), although it was found that
the theory was fortuitous in matching the outer region to an intermediate region at the
apparent angle, whereas the apparent angle is not reached anywhere on the surface. A
simple extension of the model of Hocking & Rivers (1982) to account for finite viscosity
of the outer fluid has been shown to represent the data well. The flow pattern near the
contact line has been shown to be consistent with that in e.g. Cox (1986), with the sepa-
rating ejection streamline lying in the less-viscous fluid, and a wedge-type pattern in the
more viscous fluid. Furthermore, the wall shear stress and pressure in rapid spreading are
in excellent agreement with the theory. We have supplemented the theory by presenting
an explicit relation for the pressure in the inner region based on the numerics.
For fast spreading, in Sec. 4 we have assessed in detail the use of the theory of Cox

(1998) for the practically useful case of 1 ≪ Re ≪ λ−1, where Re is the Reynolds
number based on the contact-line speed, and λ is the dimensionless slip length. As is,
this theory was not found to lead to an accurate prediction of the simulation results,
and it was established that this is due to ignored higher-order terms (corrected to Ca+1)
and also the values of parameters (ϵ, Re∗) that should be used in the theory. Most of
these have been estimated by comparing the detailed shape from the numerics with the
theory. A further difficulty was an ambiguity in the definition of the apparent contact
angle. We have proposed to insist on the same definition as used in theory for slow
spreading, i.e., the value obtained by extrapolating from the outer region; we have also
shown that using the maximum angle long the interface, although more convenient (and
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used in our earlier work, Ding & Spelt (2007a)), leads to inconsistent results, especially
at early times, when a large-amplitude capillary wave travels from the contact line to the
top of the drop. In the end, the theory, thus modified, agreed well with the simulations,
again for Ca < O(0.01) and λ < O(0.001). Further, the results indicate that the wall
shear stress and pressure in the inner region are close to the corresponding results for
slow spreading, consistent with the notion that in that region, the theories for slow and
rapid spreading coincide. Although the theory of Cox (1998) was not derived for rapid
dewetting, we have demonstrated that it can be used to represent the apparent angle vs
Ca reasonably well at moderate dewetting speeds, although the theory fails to predict
the shape of the drop accurately, but that the use of the theory is further reduced in
extreme cases of dewetting.

We have also found that the modified theory of Cox (1998) can be used to predict to a
reasonable degree of approximation the apparent angle for rapid droplet spreading with
moderate initial impact. It may be noticed that we have three additional coefficients
in our modification of the theory of Cox (1998). These have clear physical meanings
and have been determined separately from different parts of the detailed shape of the
interface, and are not just fitting coefficients. If, in practice, one would want to only know
the apparent angle and combine these coefficients, this is possible, as follows (we consider
here only the case rv = 0). The theoretical apparent angle was obtained from (4.7), with
(4.2) to give θ∗, where giv is defined by (4.4), hiv by (4.5) and g by (3.6). This can be
simplified by using Taylor series for the integrand in (3.6) and for giv, only keeping the
first term. The result can be written as

Ca−1
(
θ3m − θ3w

)
=

6

1.53161
lnRe+ 9ln

(
(λRe)−1

)
+Q2(θw) (6.1)

with a sole parameter defined as

Q2(θw) ≡
6

1.53161
ln (dm/Re

∗) + 9ln(Re∗λ/ϵ) + 9Qif(θw) + 9[hiv(θm)− hiv(θ
∗)]. (6.2)

The simulations indicate dm ≈ 0.2, ϵ = 1.5λ and Re∗ ≈ 0.37 (Qif = 1 + Q1, and Q1 is
documented by Hocking & Rivers (1982)).

The above simplified form also gives us an opportunity to easily assess the significance
of the additional terms, as these are represented by Q2. We have already demonstrated
that for λ = 10−4, ignoring the additional term leads to a significant error (cf. Fig. 6); for
a millimeter-sized droplet, this corresponds to a slip length of 100nm. At the low-end of
the range of expected slip length values (1nm), the above expression gives a discrepancy
of about half that seen in Fig. 6.

The present findings open up the possibility of future work on large-scale computations
involving rapid spreading phenomena wherein such a relation between apparent angle and
contact-line speed is required, and a slow-spreading analysis cannot be used, except for
the wall shear stress and pressure. A concern is, however, that the microscale contact
angle may have to be taken to depend on the contact-line speed (see Sec. 5.6), which
introduces further empirical parameters. The present work also shows the need for further
experimental study of especially the contact-line dynamics in impact of droplets on a dry
surface.
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Figure 15. (a) Instantaneous interface shapes with different mesh resolutions for rd = rv = 0.1,
λ = 0.001, Oh = 0.0316, θini = π/3, θw = π/6 (b) angle that the interface makes with the wall
as a function of arc length to the contact line.
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Appendix: Grid convergence and singularity study

We investigate the extent to which asymptotic behaviour expected from prior analytical
work is confirmed by the present numerical simulation.
The shape of the interface is found to converge if the grid spacing approaches the slip

length, see Fig.15 for results at λ = 0.001 (reasonably good convergence appears to have
been reached at a grid spacing of δz = 1/320 in this case). We analyze the converged
results in detail in Sec. 3 and 4.
The corresponding instantaneous shear rate and pressure along the wall with slip are

presented in Fig.16. The peak value of the shear rate appears to converge, although a
fully-converged value is not yet obtained at δz = 1/2560, albeit that the interface shape
has converged at a much larger grid spacing (Fig.15). By contrast, the peak value of
pressure at the contact line exhibits no evidence of convergence. These results are in fact
consistent with results from lubrication theory (e.g., Devauchelle et al. (2007)), as can be
seen in Fig.17: the pressure around the contact still diverges as ln(|rc − r|) (the results
shown there are for a larger slip length in order to allow inclusion of simulations wherein
the grid spacing is very much smaller than the slip length; corresponding results for the
same case as in Fig.16 are consistent with those shown in Fig.17, but naturally do not
extend to such extreme resolutions). In conclusion, slip regularizes the singularity in wall
stress but an integrable singularity in the pressure remains.
Throughout the paper, results for a dimensionless slip length ranging from 10−2 to

10−4 are presented and discussed. Grid dependence studies for each slip length have
shown that when the mesh size approaches the slip length, δz/λ < 2, results for the
interface shape and contact line spreading rate have converged; using somewhat larger
grid spacing results in a minor difference. In the following, results are presented for grid
spacings of δz = 1/320, 1/640 for a slip length of 10−2, 10−3, respectively. In sections 3.1
and 3.2 for λ = 10−4, δz = 1/5120 has been used. Since the results were found to differ
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Figure 16. Instantaneous (a) shear rate and (b) pressure along the wall with different mesh
resolutions for rd = rv = 0.1, λ = 0.001, Oh = 0.0316, θini = π/3, θw = π/6.
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only by less than 2% from those obtained with δz = 1/2560, this latter value has been
used in the remaining sections for λ = 10−4. The accuracy of the results on these grids is
further tested in the following by detailed comparison against theoretical results, where
available. A typical simulation using 64 processors (Fortran MPI), with δz = 1/2560 used
around 50,000 CPU hours; a run with δz = 1/5120 took almost 140,000 hours.
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Chen, Q., Ramé, E. and Garoff, S. 1997 The velocity field near moving contact lines. J.
Fluid Mech. 337, 49-66.

Christodoulou, K.N. & Scriven, L.E. 1992 Discretization of free surface flows and other
moving boundary problems. J. Comput. Phys. 99, 39-55.

Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous
flow. J. Fluid Mech. 168, 169.

Cox, R. G. 1998 Inertial and viscous effects on dynamic contact angles. J. Fluid Mech. 357,
249-278.

David, R. & Neumann, A.W. 2010 Computation of contact lines on randomly heterogeneous
surfaces. Langmuir 26, 13256-13262.

De Gennes, P. G. 1986 Deposition of Langmuir-Blodgett layers. Colloid Polym. Sci. 264,
463-465.

Devauchelle, o., Josserand, C., & Zaleski, S. 2007 Forced dewetting on porous media. J.
Fluid Mech. 574, 343-364.

Ding, H. & Spelt, P. D. M. 2007a Inertial effects in droplet spreading: a comparison between
diffuse interface and level-set simulations J. Fluid Mech. 576, 287-296.

Ding, H., Spelt, P. D. M. & Shu, C. 2007b Diffuse interface model for incompressible two-
phase flows with large density ratios J. Comput. Phys. 226, 2078-2095.

Ding, H. & Spelt, P. D. M. 2008 Onset of motion of a 3D droplet on a wall in shear flow at
moderate Reynolds numbers. J. Fluid Mech. 599, 341-362.

Ding, H., Gilani, M.N.H. & Spelt, P. D. M. 2010 Sliding, pinchoff and detachment of a
droplet on a wall in shear flow. J. Fluid Mech. 644, 217-244.

Ding, H., Li, E.Q., Zhang, F. H., Sui, Y., Spelt, P. D. M. & Thoroddsen, S. T. 2011
Ejection of small droplets in rapid drop spreading. J. Fluid Mech. 697, 92-114.

Dussan V., E. B. & Davis, S. H. 1974 On the motion of a fluidfluid interface along a solid
surface. J. Fluid Mech. 65, 71-95.

Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.
Eggers, J. & Stone, H. A. 2004 Characteristic lengths at moving contact lines for a perfectly

wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech. 505,
309–321.

Ertas, D. & Kardar, M. 1994 Critical dynamics of contact line depinning. Phys. Rev. E 49,
R2532-R2535.

Fermigier, M. & Jenffer, P. 1990 An experimental investigation of the dynamic contact
angle in liquid-liquid systems. J. Colloid. Interf. Sci. 146, 226-241.

Foister, R. T. 1990 The kinetics of displacement wetting in liquid/liquid/solid systems. J.
Colloid. Interf. Sci. 136, 266-282.

Fuentes, J. & Cerro, R. L. 2005 Flow patterns and interfacial velocities near a moving
contact line. Exp Fluids 38, 505–510.

Fukai, J., Shilba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C.M.
& Zhao, Z. 1995 Wetting effects on the spreading of a liquid droplet colliding with a flat
surface: experiment and modeling. Phys. Fluids 7, 236-247.

Greenspan, H.P. 1977 On the motion of a small viscous droplet th8t wets a surface. J. Fluid
Mech. 84, 125-143.

Hocking, L. M. 1977 A moving fluid interface. Part2. The removal of the force singularity by
a slip flow. J. Fluid Mech. 79, 209–229.



30 Y. Sui & P. D. M. Spelt

Hocking, L. M. & Rivers, A. D. 1982 The spreading of a drop by capillary action. J. Fluid
Mech. 121,425–442.

Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl.
Maths 36, 55–69.

Huh, C. & Mason, S.G. 1977 The steady movement of a liquid meniscus in a capillary tube.
J. Fluid Mech. 81, 401-419.

Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid
contact line. J. Colloid. Interf. Sci. 35, 85–101.

Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57-88.
Jiang, X. & James, A.J. 2007 Numerical simulation of the head-on collision of two equal-sized

drops with van der Waals forces. J. Engng Math. 59, 99-121.
Kafka, F. Y. & Dussan V., E. B. 1980 On the interpretation of dynamic contact angles in

capillaries. J. Fluid Mech. 95, 539-565.
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Ma-

hadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett.
108, 074503.

Landau, L. D. & Levich, B. V. 1942 Dragging of a liquid by a moving plate. Acta Physicochim.
URSS 17, 42-54.

Le Grand, N., Daerr, A. & Limat, L. 2005 Shape and motion of drops sliding down an
inclined plane. J. Fluid Mech. 541, 293-315.

Liu, X. D., Osher, S. & Chan, T. 1994 Weighted essentially non-oscillatory schemes. J.
Comput. Phys. 115, 200–212.

Lowndes, J. 1980 The numerical simulation of the steady movement of a fluid meniscus in a
capillary tube. J. Fluid Mech. 101, 631-646.

MacNeice, P., Olson, K. M., Mobarry, C., deFainchtein, R. & Packer, C. 2000
PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Com-
mun. 126, 330-354.

Marsh, J. A., Garoff, S. & Dussan V., E. B. 1993 Dynamic contact angles and hydrody-
namics near a moving contact line. Phys. Rev. Lett. 70, 2778-2781.

Moffatt, H.K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1-18.
Pismen, L.M. & Pomeau 2000 Disjoining potential and spreading of thin liquid layers in the

diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62, 2480–2492.
Qian, T., Wang, X.- P., & Sheng, P. 2003 Molecular scale contact line hydrodynamics of

immiscible flows. Phys. Rev. E 564, 333-360.
Qian, T., Wang, X.- P., & Sheng, P. 2006 A variational approach to moving contact line

hydrodynamics. J. Fluid Mech. 564, 333-360.
Ren, W. and E, W. 2007 Boundary conditions for the moving contact line problem. Phys.

Fluids 68, 016306.
Renardy, M., Renardy, Y. & Li, J. 2001 Numerical simulation of moving contact line prob-

lems using a volume-of-fluid method. J. Comput. Phys. 171, 243–263.
Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C.,

Drumright-Clarke, M. A., Richard, D., Clanet, C. and Quéré 2003 Pyramidal
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