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MODULI SPACES OF DECOMPOSABLE MORPHISMS OF SHEAVES
AND QUOTIENTS BY NON-REDUCTIVE GROUPS

JEAN–MARC DRÉZET AND GÜNTHER TRAUTMANN

Abstract. We extend the methods of geometric invariant theory to actions of non–

reductive groups in the case of homomorphisms between decomposable sheaves whose

automorphism groups are non–reductive. Given a linearization of the natural action

of the group Aut(E) × Aut(F ) on Hom(E,F), a homomorphism is called stable if its

orbit with respect to the unipotent radical is contained in the stable locus with respect

to the natural reductive subgroup of the automorphism group. We encounter effective

numerical conditions for a linearization such that the corresponding open set of semi-

stable homomorphisms admits a good and projective quotient in the sense of geometric

invariant theory, and that this quotient is in addition a geometric quotient on the set of

stable homomorphisms.
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2 J.M.DRÉZET AND G.TRAUTMANN

1. Introduction

Let X be a projective algebraic variety over the field of complex numbers. Given two

coherent sheaves E ,F , on X the algebraic group G = Aut(E)×Aut(F) acts naturally on

the affine space W = Hom(E ,F) by (g, h).w = h ◦ w ◦ g−1. If two morphisms are in the

same G–orbit then they have isomorphic cokernels and kernels. Therefore it is natural to

ask for good quotients of such actions in the sense of geometric invariant theory.

1.1. Morphisms of type (r, s).

In general E and F will be decomposable such that G is not reductive. More specifically

let E and F be direct sums

E = ⊕
1≤i≤r

Mi ⊗ Ei and F = ⊕
1≤l≤s

Nl ⊗Fl,

where Mi and Nl are finite dimensional vector spaces and Ei, Fl are simple sheaves, i.e.

their only endomorphisms are the homotheties, and such that Hom(Ei, Ej) = 0 for i > j

and Hom(Fl,Fm) = 0 for l > m. In this case we call homomorphisms E → F of type

(r, s). Then the groups Aut(E) and Aut(F) can be viewed as groups of matrices of the

following type. The group Aut(E), say, is the group of matrices
g1 0 · · · 0

u21 g2
...

...
. . . . . . 0

ur1 · · · ur,r−1 gr


where gi ∈ GL(Mi) and uji ∈ Hom(Mi,Mj ⊗ Hom(Ei, Ej)).
In the literature on moduli of vector bundles and coherent sheaves many quotients of

spaces PHom(E ,F) of type (1, 1) by the reductive group Aut(E) × Aut(F) have been

investigated, see for example [6], [14], [15], [20], [26]. The moduli spaces described in this

way are the simplest ones, and this allows to test in these cases some conjectures that are

expected to be true on more general moduli spaces of sheaves (cf. [7], [36]). We think

that the moduli spaces of morphisms of type (r, s) will be as useful to treat other less

simple moduli problems of sheaves. In fact, if one wants to use the spaces Hom(E ,F)

as parameter spaces for moduli spaces of sheaves, which are as close as possible to the

moduli spaces, the higher types (r, s) are unavoidable.

The homomorphisms in a Beilinson complex of a bundle on projective n–space, for exam-

ple, have in general arbitrary type (r, s) depending on the dimensions of the cohomology

spaces of the bundle. In several papers, see [25], [30] for example, semi–stable sheaves or

ideal sheaves of subschemes of projective spaces, are represented as quotients of injective

morphisms of type (r, s), and one should expect that the moduli spaces of such sheaves

are isomorphic to a good quotient of an open subset of the corresponding space of homo-

morphisms. In some cases of type (2, 1) this has been verified for semi–stable sheaves on

P2 in [8].
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In case of type (r, s) there are good and projective quotients if one restricts the action to

the reductive subgroup

Gred =
∏

GL(Mi)×
∏

GL(Nl).

This has been shown recently by A. King in [21]. The quotient problem for Hom(E ,F)

of type (r, s) with respect to the full group Aut(E)× Aut(F) is however the generic one

and indispensable.

Unfortunately the by now standard geometric invariant theory (GIT) doesn’t provide a

direct answer for these quotient problems in case Aut(E)×Aut(F) is not reductive. There

are several papers dealing with the action of an arbitrary algebraic group like [16], [17], [3],

[4] and older ones, but their results are insufficient for the above problem. The conditions

of [16] are close to what we need, but they don’t allow a concrete description of the set

of semi–stable points in our case and they don’t guarantee good or projective quotients,

see remark 4.1.2.

1.2. The main idea

Our procedure is very close to standard GIT and we finally reduce the problem of the

quotient to the one of a reductive group action. We introduce polarizations Λ ∈ Qr+s of

tuples of rational numbers for the action of G on the affine space in analogy to the ones

of A. King in [21], which are refinements of the polarizations by ample line bundles on

the projective space PW , and then introduce open sets W s(G,Λ) ⊂ W ss(G,Λ) of stable

and semi–stable points depending on Λ and study the quotient problem for these open

subsets. There are chambers in Qr+s such that the polarizations in one chamber define

the same open set, in accordance with the chamber structure in Neron–Severi spaces of

polarizations in the reductive case, see f.e. [5] I. Dolgachev - Y. Hu and [35] M. Thaddeus.

However, in contrast to the reductive case, good quotients W ss(G,Λ)//G don’t exist for

all polarizations, see 4.2. As a main achievement we are providing numerical conditions on

the polarizations, depending on the dimensions of the spaces Mi and Nl, under which such

quotients exist. The main step for that is to embed the group actions G×W → W into

an action G×W→W of a reductive group G and to compare the open sets W ss(G,Λ)

and Wss(G, Λ̃), where Λ̃ is a polarization for the G–action associated to Λ.

1.3. Construction of quotients by non reductive groups.

To be more precise, a polarization Λ is a tuple (λ1, . . . , λr, µ1, . . . , µs) of positive rational

numbers, called weights of the factors Mi ⊗ Ei and Nl ⊗ Fl respectively, which satisfy∑
λimi =

∑
µlnl = 1, where mi, nl denote the dimensions of the spaces of the same

name. We use then the numerical criterion of A. King, [21], as definition for semi–

stability with respect to the reductive group Gred. An element w ∈ W is (Gred,Λ)–stable

if for any proper choice of subspaces M ′
i ⊂ Mi, N ′l ⊂ Nl such that w maps ⊕(M ′

i ⊗ Ei)
into ⊕(N ′l ⊗ Fl), we have

∑
λim

′
i <

∑
µln

′
l, or semi–stable if equality is allowed. Let

W s(Gred,Λ) ⊂ W ss(Gred,Λ) denote the set of stable and semi–stable points so defined.
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If H ⊂ G is the unipotent radical of G, which is generated by the homomorphisms

Ei → Ej and Fl → Fm for i < j and l < m, we say that w is (G,Λ)–(semi–)stable

if h.w is (Gred,Λ)–(semi–)stable for any h ∈ H, see 4.1. We thus have open subsets

W ss(G,Λ) ⊂ W ss(Gred,Λ) and W s(G,Λ) ⊂ W ss(Gred,Λ).

The main result of our paper is that there are sufficient numerical and effective bounds

for the polarizations Λ such that W ss(G,Λ) admits a good and even projective quotient

W ss(G,Λ)//G and that in addition W s(G,Λ) admits a geometric quotient, which is

smooth and quasi–projective, see proposition 6.1.1 and the results 7.2.2, 7.5.3, and section

8.

The definitions of good and geometric quotients are recalled in 6.1. By using correspon-

dences between spaces of morphisms, called mutations, it is possible to deduce from our

results other polarizations such that there exists a good projective quotient (see [10], [12]).

All this is achieved by embedding the action G×W → W into an action G×W →W

of a reductive group and then imposing conditions for the equality W ss(G,Λ) = W ∩
Wss(G, Λ̃), where Λ̃ is the associated polarization. The quotient is then the quotient of

the saturated subvariety GW ss(G,Λ) ⊂ Wss(G, Λ̃). The quotient will be projective if

G.W r G.W doesn’t meet Wss(G, Λ̃). Also for this, numerical conditions can be found

in section 8.

The idea of embedding the non–reductive action G×W → W into the action G×W→W

is simply to replace the Ei by E1 using the evaluation maps Hom(E1, Ei) ⊗ E1 → Ei. It is

explained in 5.1 and 5.1.1 that this is the outcome when we start to replace the sheaves Ei
step by step and similarly for the sheaves Fl. Since we have to deal everywhere with the

dimensions of the vector spaces Hom(Ei, Ej) and Hom(Fl,Fm) which form the components

of the unipotent group H, we have translated the whole setup into an abstract multilinear

setting and related actions by technical reasons. This gives more general results although

we have only applications in the theory of sheaves. The reader should always keep in

mind the motivation in 5.1.

The results obtained in the simplest case (morphisms of type (2,1) or (1,2)) are stated in

1.5. They are characteristic for the general case in which only the conditions are more

complicated.

1.4. Remark on finite generatedness

One would expect that the quotients of W could be obtained by first forming the quotient

W/H with respect to the unipotent radical H and then in a second step a quotient of W/H

by G/H ∼= Gred. However, the actions of unipotent groups behave generally very badly,

[19], and we are not able to prove that the algebra C[W/H] is finitely generated. This

would be an essential step in a direct construction of the quotient. Of course, the main

difficulty also in this paper arises from the presence of the group H. The counterexample
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of M.Nagata, [28], also shows that the finite generatedness depends on the dimensions of

the problem. So from a philosophical point of view we are determining bounds for the

dimensions involved under which we can expect local affine G-invariant coordinate rings

which are finitely generated, and thus to obtain good quasi–projective quotients, even

so the bounds might not be the best. The simple examples 4.2, 4.3 show that a good

quotient W ss(G,Λ)//G might not exist if the conditions are not fulfilled.

1.5. Morphisms of type (2,1)

In this case the homomorphisms of sheaves are of the type

m1E1 ⊕m2E2 −→ n1F1,

where we use the notation mE for Cm⊗E . For this type a polarization is given by a pair

(λ1, λ2) of positive rational numbers such that λ1m1 +λ2m2 = 1. It is determined by the

rational number t = m2λ2 which lies in [0, 1]. Writing W ss(t) for W ss and W s(t) for W s

for the moment, our results depend on constants c(k) defined as follows : Let

τ : Hom(E1,F1)∗ ⊗ Hom(E1, E2) −→ Hom(E2,F1)∗

be the linear map induced by the composition map Hom(E2,F1) ⊗ Hom(E1, E2) →
Hom(E1,F1) , and

τk = τ ⊗ ICk : Hom(E1,F1)∗ ⊗ (Hom(E1, E2)⊗ Ck) −→ Hom(E2,F1)∗ ⊗ Ck.

Let K be the set of proper linear subspaces K ⊂ Hom(E1, E2) ⊗ Ck such that for every

proper linear subspace F ⊂ Ck, K is not contained in Hom(E1, E2)⊗ F . Let

c(k) = sup
K∈K

(
codim(τk(Hom(E1,F1)∗ ⊗K)

codim(K)
).

1.5.1. Theorem: There exists a good projective quotient W ss(t)//G and a geometric

quotient W s(t)/G if

t >
m2 dim(Hom(E1, E2))

dim(Hom(E1, E2)) +m1

and t > dim(Hom(E1, E2)).c(m2)
m2

n1

.

In the case of morphismsm1O(−2)⊕m2O(−1) −→ n1O on projective spaces the constants

have been computed in [12] and we obtain the more explicit result :

1.5.2. Theorem: Let n ≥ 2 be an integer. There exists a good projective quotient

W ss(t)//G and a geometric quotient W s(t)/G in the case of morphisms
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m1O(−2)⊕m2O(−1) −→ n1O on the projective space Pn if

t >
(n+ 1)m2

(n+ 1)m2 +m1

,

t >
(n+ 1)m2

2(m2 − 1)

2n1(m2(n+ 1)− 1)
if 2 ≤ m2 ≤ n+ 1,

t >
(n+ 1)2m2

2(n+ 2)n1

if m2 > n+ 1.

1.6. Construction of fine moduli spaces of torsion free sheaves

In section 10 we construct smooth projective fine moduli spaces of torsion free coherent

sheaves on Pn using morphisms

(∗) O(−2)⊗ C2 −→ O(−1)⊕ (O ⊗ Ck),

(for (n+ 1)(n+ 2)/2 < k < (n+ 1)2 ). More precisely we prove that for all polarizations,

semi-stable morphisms are injective outside a closed subvariety of codimension ≥ 2, hence

their cokernels are torsion free sheaves. A generic morphism is injective and its cokernel

is locally free. In this case we can construct

q =
(n+ 1)(n+ 2)

2
−
[
n+ k + 1

2

]
distinct smooth projective moduli spaces M1, · · · ,Mq of such morphisms, of dimension

2(n− 1) + k((n+ 1)2 − k). Moreover, all the Mi are birational to each other. For 1 ≤
i ≤ q, we construct a coherent sheaf Ei on Mi×Pn, flat over Mi, such that for every closed

point z ∈ Mi, Eiz is isomorphic to the cokernel of the morphism (∗) corresponding to z.

We prove that Mi is a fine moduli space of torsion free sheaves with universal sheaf Ei.
In particular, this means that for every closed point z ∈Mi, the Kodäıra-Spencer map

TzMi −→ Ext1(Eiz, Eiz)

is bijective, and for any two distinct closed points z1, z2 ∈ Mi, the sheaves Eiz1 , Eiz2 are

not isomorphic.

1.7. Open problems

Even in the simplest case of morphisms of type (2,1) we do not know what all the polariza-

tions are for which a good quotient W ss//G exists. More generally it would be interesting

to find all the saturated open subsets U of W such that a good quotient (quasiprojective

or not) U//G exists, or all the open subsets U such that a geometric quotient U/G exists.

The corresponding problem for reductive groups has been studied in [27], 1.12, 1.13, and

in [1], [2].
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1.8. Organization of the paper

In section 2 we describe our problem in terms of multilinear algebra.

In section 3 we recall results of A. King, [21]. The reductive group actions considered in

this paper, the action of Gred on W and that of G on W, are particular cases of [21]. We

also discuss the relation of Λ–(semi–)stability in W with that in the projective space PW .

But we cannot work solely on the projective niveau, because the embedding W ⊂W is

not linear.

After defining G–(semi–)stability for the non–reductive group in section 4 we describe the

embedding in section 5 and introduce the associated polarizations.

Section 6 contains the step of constructing the quotient W ss(G,Λ)//G using the GIT–

quotient Wss(G, Λ̃)//G of A. King.

Sections 7 and 8 are the hard parts of the paper. Here the conditions of the weights

which define good polarizations are derived. It seems that the constants appearing in

these estimates had not been considered before.

In section 9 we are investigating a few examples in order to test the strength of the

bounds. Here we restrict ourselves to small type (2, 1), (2, 2), (3, 1) in order to avoid long

computations of the constants which give the bounds for the polarizations. What we

discover in varying the polarizations are flips between the moduli spaces, as one has to

expect from the general results on the variation of linearizations of group actions, cf. [32],

[5], [35]. In example 9.2 we have a very simple effect of a flip, but in example 9.5 the

chambers of the polarizations look already very complicated.

In section 10 we define new fine moduli spaces of torsion free sheaves using our moduli

spaces of morphisms.

Acknowledgement. The work on this paper was supported by DFG. The first author

wishes to thank the University of Kaiserslautern, where the work was started, for its

hospitality.

2. The moduli problem for decomposable homomorphisms

Let E = ⊕ Ei ⊗Mi and F = ⊕ Fl ⊗ Nl be semi–simple sheaves as in the introduction.

In order to describe the action of G = Aut(E) × Aut(F) on W = Hom(E ,F) in greater

detail we use the abbreviations

Hli = Hom(Ei,Fl)
Aji = Hom(Ei, Ej)
Bml = Hom(Fl,Fm) ,
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such that we are given the natural pairings

Hlj ⊗ Aji → Hli for i ≤ j

Akj ⊗ Aji → Aki for i ≤ j ≤ k

Bml ⊗ Hli → Hmi for l ≤ m

Bnm ⊗ Bml → Bnl for l ≤ m ≤ n.

The group G consists now of pairs (g, h) of matrices

g =


g1 0 · · · 0

u21 g2
...

...
. . . . . . 0

ur1 · · · ur,r−1 gr

 and h =


h1 0 · · · 0

v21 h2
...

...
. . . . . . 0

vs1 · · · vs,s−1 hs


with diagonal elements gi ∈ GL(Mi), hl ∈ GL(Nl) and uji ∈ Hom(Mi,Mj ⊗ Aji),
vml ∈ Hom(Nl, Nm ⊗Bml).

Similarly a homomorphism w ∈ Hom(E ,F) is represented by a matrix w = (ϕli) of ho-

momorphisms ϕli ∈ Hom(Mi, Nl⊗Hli) = Hom(H∗li⊗Mi, Nl). Using the natural pairings,

the left action (g, h).w = hwg−1 of G on W is described by the matrix product
h1 0 · · · 0

v21 h2
...

...
. . . . . . 0

vs1 · · · vs,s−1 hs

 ◦


ϕ11 · · · ϕ1r

...
...

ϕs1 · · · ϕsr

 ◦


g1 0 · · · 0

u21 g2
...

...
. . . . . . 0

ur1 · · · ur,r−1 gr


−1

,

where the compositions vml ◦ ϕli and ϕlj ◦ uji are compositions as sheaf homomorphisms

but can also be interpreted as compositions induced by the pairings of the vector spaces

above. Thus the group G, the space W and the action are already determined by the

vector spaces Aji, Bml, Hli and the pairings between them. Therefore, in the following we

define G,W and the actions G×W → W by abstractly given vector spaces and pairings.

The resulting statements can then be applied to systems of sheaves by specifying the

spaces as spaces of homomorphisms as above.

2.1. The abstract setting

Let r, s be positive integers and let for 1 ≤ i ≤ j ≤ r, 1 ≤ l ≤ m ≤ s finite dimensional

vector spaces Aji, Bml, Hli be given, where we assume that Aii = C and Bll = C. Moreover

we suppose that we are given linear maps, called compositions,

Hlj ⊗ Aji → Hli for 1 ≤ i ≤ j ≤ r, 1 ≤ l ≤ s

Akj ⊗ Aji → Aki for 1 ≤ i ≤ j ≤ k ≤ r

Bml ⊗Hli → Hmi for 1 ≤ i ≤ r, 1 ≤ l ≤ m ≤ s

Bnm ⊗Bml → Bnl for 1 ≤ l ≤ m ≤ n ≤ s.
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We assume that all these maps and the induced maps

H∗li ⊗ Aji → H∗lj and H∗mi ⊗Bml → H∗li

are surjective. This is the case when all the spaces are spaces of sheaf homomorphisms

as above for which the sheaves Ei and Fl are line bundles on a projective space or each of

them is a bundle Ωp(p).

We may and do assume that these pairings are the identities if i = j, l = m etc. . Finally,

we suppose that these maps verify the natural associative properties of compositions. This

means that the induced diagrams

Akj ⊗ Aji ⊗ Aih //

��

Aki ⊗ Aih

��
Akj ⊗ Ajh // Akh

Bon ⊗Bnm ⊗Bml
//

��

Bom ⊗Bnl

��
Bon ⊗Bnl

// Bol

Hlk ⊗ Akj ⊗ Aji //

��

Hlj ⊗ Aji

��
Hlk ⊗ Aki // Hli

Bnm ⊗Bml ⊗Hli
//

��

Bnl ⊗Hli

��
Bnm ⊗Hmi

// Hni

Bml ⊗Hlj ⊗ Aji //

��

Hmj ⊗ Aji

��
Bml ⊗Hli

// Hmi

are commutative for all possible combinations of indices.

In our setup we also let finite dimensional vector spaces Mi for 1 ≤ i ≤ r and Nl for

1 ≤ l ≤ s be given and we consider finally the vector space

W = ⊕
i,l

Hom(Mi, Nl ⊗Hli) = ⊕
i,l

Hom(H∗li ⊗Mi, Nl)

where summation is over 1 ≤ i ≤ r and 1 ≤ l ≤ s. This is the space of homomorphisms in

the abstract setting. The group G and its action on W are now also given in the abstract

setting as follows.
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2.2. The group G

We define G as a product GL×GR of two groups where the left group GL replaces Aut(E)

and the right group GR replaces Aut(F) in our motivation. Let GL be the set of matrices
g1 0 · · · 0

u21 g2
...

...
. . . . . . 0

ur1 · · · ur,r−1 gr


with gi ∈ GL(Mi) and uji ∈ Hom(Mi,Mj ⊗ Aji) = Hom(A∗ji ⊗Mi,Mj). The group law

in GL is now defined as matrix multiplication where we define the compositions ukj ∗ uji
naturally according to the given pairings as the composition

Mi
uji−→Mj ⊗ Aji

ukj⊗id−−−−→Mk ⊗ Akj ⊗ Aji
id⊗comp−−−−−→Mk ⊗ Aki.

Explicitly, if g has the entries gi, uji and g′ has the entries g′i, u
′
ji then the product

g′′ = g′g

in GL is defined as the matrix with the entries g′′i = g′i ◦ gi in the diagonal and

u′′ki = u′ki ◦ gi +
∑
i<j<k

u′kj ∗ uji + (g′k ⊗ id) ◦ uki

for 1 ≤ i < k ≤ r. The verification that this defines a group structure on GL is now

straightforward.

As a set GL is the product of all the GL(Mi) and all Hom(Mi,Mj ⊗ Aji) for i < j and

thus has the structure of an affine variety. Since multiplication is composed by a system

of bilinear maps it is a morphism of affine varieties. Hence GL is naturally endowed with

the structure of an algebraic group. The group GR is now defined in the same way by

replacing the spaces Mi and Aji by Nl and Bml. Finally G = GL × GR is defined as an

algebraic group.

2.3. The action of G and W

We will define a left action of GR and a right action of GL on W such that the action of G

on W can be defined by (g, h).w = h.w.g−1. Both actions are defined as matrix products

as described above in the case of sheaf homomorphisms using the abstract compositions

as in the definition of the group law.

If w has the entries ϕli ∈ Hom(H∗li ⊗Mi, Nl) and g ∈ GL has the entries gi and uij then

w.g is defined as the matrix product
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ϕ′11 · · · ϕ′1r

...
...

ϕ′s1 · · · ϕsr

 =


ϕ11 · · · ϕ1r

...
...

ϕs1 · · · ϕsr




g1 0 · · · 0

u21 g2
...

...
. . . . . . 0

ur1 · · · ur,r−1 gr


with

ϕ′li = ϕli ◦ gi +
∑
i<j

ϕlj ∗ uji (if i = r the last sum is 0),

where ϕlj ∗ uji is the composition

Mi →Mj ⊗ Aji → Nl ⊗Hlj ⊗ Aji → Nl ⊗Hli

or dually the composition

H∗li ⊗Mi → H∗lj ⊗ A∗ji ⊗Mi → H∗lj ⊗Mj → Nl.

The left action of GR is defined in the same way. In the next two sections we give

an analysis of stability and semi-stability for the action of G and its natural reductive

subgroup Gred. In the reductive case this is due to A. King.

2.4. Canonical subgroups of G

We let HL ⊂ GL and HR ⊂ GR be the maximal normal unipotent subgroups of GL and

GR defined by the condition that all gi = idMi
and all hl = idNl . Then H = HL×HR is a

maximal normal unipotent subgroup of G. Similarly we consider the reductive subgroups

GL,red and GR,red of GL and GR defined by the conditions uji = 0 and vml = 0 for all

indices. Then Gred = GL,red×GR,red is a reductive subgroup of G and it is easy to see that

G/H ∼= Gred. The restricted action of Gred is much simpler and reduces to the natural

actions of GL(Mi) on Mi and GL(Nl) on Nl
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3. Actions of reductive groups

3.1. Results of A. King

Let Q be a finite set, Γ ⊂ Q × Q a subset such that the union of the images of the two

projections of Γ is Q. For each α ∈ Q, let mα be a positive integer, Mα a vector space

of dimension mα and for each (α, β) ∈ Γ, let Vαβ be a finite dimensional nonzero vector

space. Let

W0 = ⊕
(α,β)∈Γ

Hom(Mα ⊗ Vαβ,Mβ).

On W0 we have the following action of the reductive group

G0 =
∏
α∈Q

GL(Mα)

arising naturally in this situation. If (fβα) ∈ W0 and (gα) ∈ G0, then

(gα).(fβα) = (gβ ◦ fβα ◦ (gα ⊗ id)−1).

Let (eα)α∈Q be a sequence of integers such that∑
α∈Q

eαmα = 0.

To this sequence is associated the character χ of G0 defined by

χ(g) =
∏
α∈Q

det(gα)−eα .

This character is trivial on the canonical subgroup of G0 isomorphic to C∗ (for every

λ ∈ C∗, the element (gα) of G0 corresponding to λ is such that gα = λ.id for each α).

This subgroup acts trivially on W0. A point x ∈ W0 is called χ-semi-stable if there exists

an integer n ≥ 1 and a polynomial f ∈ C[W0] which is χn-invariant and such that f(x) 6= 0

(f is called χn-invariant if for every w ∈ W0 and g ∈ G0 we have f(gw) = χn(g)f(w)).

The point x is called χ-stable if moreover

dim(G0x) = dim(G0/C∗) and if the action of G0 on {w ∈ W0, f(w) 6= 0} is closed.

A. King proves in [21] the following results :

(1) A point x = (fβα) ∈ W0 is χ-semi-stable (resp. χ-stable) if and only if for each

family (M ′
α), α ∈ Q, of subspaces M ′

α ⊂Mα which is neither the trivial family (0)

nor the given family (Mα) and which satisfies

fβα(M ′
α ⊗ Vαβ) ⊂M ′

β

for each (α, β) ∈ Γ, we have∑
α∈Q

eα dim(M ′
α) ≤ 0 (resp. < 0 ).
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(2) Let W ss
0 (resp. W s

0 ) be the open subset of W0 consisting of semi-stable (resp

stable) points. Then there exists a good quotient

π : W ss
0 −→M

by G0/C∗ which is a projective variety.

(3) The restriction of this quotient

W s
0 −→M s = π(W s

0 )

is a geometric quotient and M s is smooth.

3.2. Polarizations

The (semi-)stable points of W0 remain the same if we replace (eα) by (ceα), c being

a positive integer. So the notion of (semi-)stability is fully described by the reduced

parameters ( eα
t

), where

t =
∑

α∈Q,eα>0

eαmα.

So we can define the polarization of the action of G0 on W0 by any sequence (cα)α∈Q of

nonzero rational numbers such that∑
α∈Q

cαmα = 0 ,
∑

α∈Q,cα>0

cαmα = 1.

By multiplying this sequence by the smallest common denominator of the cα we obtain

a sequence (eα) of integers and the corresponding character of G0. Therefore the loci of

stable and semi–stable points of W0 with respect to G0 and a polarization Λ0 = (cα) are

well defined and denoted by

W s
0 (G0,Λ0) and W ss

0 (G0,Λ0).

3.3. Conditions imposed by the non-emptiness of the quotient

If W s
0 is not empty, the eα must satisfy some conditions. We will derive this only in

the three situations which occur in this paper. Polarizations satisfying these necessary

conditions will be called proper. The first is that of the action of Gred in 2.4 and the

second is that of G and W in section 5, and the third is the case in between occurring in

7.4.2.

3.3.1. First case

Let r, s be positive integers. We take

Q = {α1 . . . , αr, β1, . . . , βs}, Γ = {α1 . . . , αr} × {β1, . . . , βs}.
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This is the case of morphisms of type (r, s). For 1 ≤ i ≤ r, let M ′
αi

= Mαi if eαi > 0,

and {0} otherwise, and for 1 ≤ l ≤ s, let M ′
βl

= Mβl . Then if one eαi is not positive, we

have ∑
α∈Q

eα dim(M ′
α) ≥ 0

and (M ′
α) 6= (Mα), so in this case no point of W0 is stable. So we obtain , if W s

0 is

non-empty, the conditions

eαi > 0 , for any i, and eβl < 0 , for any l.

A proper polarization is in this case a sequence (λ1, . . . , λr,−µ1, . . . ,−µs) of rational

numbers such that the λi and the µl are positive and satisfy∑
1≤i≤r

λimαi =
∑

1≤l≤s

µlmβl = 1.

3.3.2. Second case

This case appears when we use a bigger reductive group to define the quotient (this is the

case of W later on). Let r, s be positive integers. Here we take

Q = {α1 . . . , αr, β1, . . . , βs}, Γ = {(αi, αi−1), 2 ≤ i ≤ r, (α1, βs), (βl, βl−1), 2 ≤ l ≤ s}.

Then the necessary conditions for W s
0 to be non-empty are:∑

i≤j≤r

eαjmαj > 0 for any i, and
∑

1≤l≤m

eβlmβl < 0 for any m.

To derive the first set of conditions we consider for any i the family (M ′
γ) for which

M ′
αj

= 0 if i ≤ j ≤ r and M ′
γ = Mγ for all other γ ∈ Q. Then fαβ(M ′

α ⊗ Vαβ) ⊂ M ′
β for

any f ∈ W0 and any (α, β) ∈ Γ. If f is stable we obtain

−
∑
i≤j≤r

eαjmαj =
∑
γ∈Q

eγ dim(M ′
γ) < 0

Moreover, if the family (M ′
γ) is defined by M ′

αj
= 0 for 1 ≤ j ≤ r,M ′

βl
= 0 if m < l ≤ s

and M ′
γ = Mγ else, we obtain directly∑

1≤l≤m

eβlmβl =
∑
γ∈Q

eγ dim(M ′
γ) < 0.

A proper polarization in this case is then a sequence (ρ1, . . . , ρr,−σ1, . . . ,−σs) of rational

numbers satisfying ∑
1≤i≤r

ρimαi =
∑

1≤l≤s

σlmβl = 1.

and ∑
i≤j≤r

ρjmαj > 0 for any i and
∑

1≤l≤m

σlmβl > 0 for any m.

We could also drop the normalization condition.
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3.3.3. Third case

This case is a combination of the first and second case. It appears in the proof of the

equivalence of semi–stability in 7.3. Here Q is the same as in the previous cases and

Γ = {(αi, αi−1) , 2 ≤ i ≤ r , (α1, βl) , 1 ≤ l ≤ s}.

Now the necessary conditions for W s
0 to be non–empty are:∑

i≤j≤r

eαjmαj > 0 for any i, and eβl < 0 for any l.

The first condition follows as in the second case when we consider the family (M ′
γ) with

M ′
αj

= 0 for i ≤ j ≤ r and M ′
γ = Mγ for all other γ ∈ Q. The second condition follows

when all M ′
γ are zero except M ′

βl
= Mβl for one l. Again a proper polarization in this case

is a sequence (ρ1, . . . , ρr,−µ1, . . . ,−µl) with∑
1≤i≤r

ρimαi =
∑

1≤l≤s

µlmβl = 1

and ∑
i≤j≤r

ρjmαj > 0 for any i and µl > 0 for any l.

3.4. The action of G0 on P(W0)

We suppose that we are in one of the first two preceding cases and that there exist stable

points in W0. Let P be a nonzero homogeneous polynomial, χn-invariant for some positive

integer n. The χn–invariance implies that P has degree n.t where in case 1 (action of Gred

on W )

t =
∑

1≤i≤r

eαimαi ,

and in case 2 (action of G on W)

t =
∑

1≤i≤r

ieαimαi −
∑

1≤l≤s

(s− l)eβlmβl .

To see this let λ ∈ C∗ and let g be given by gαi = λ−1id and gβl = id in the first case and

by gαi = λ−iid and gβl = λl−sid in the second case. Then gx = λx and χn(g) = λnt in

both cases, such that P (λx) = λntP (x).

Now we will see that there exists a G0-line bundle L on P(W0) such that the set W ss
0

of semi-stable points is exactly the set of points over P(W0)ss(G0,L), which is the set of

semi-stable points in the sense of Geometric Invariant Theory corresponding to

L = OP(W0)(t),
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cf. [27], [29], [31]. Here the action of G0 on L is the natural action multiplied by χ. More

precisely, the action of G0 on W0 induces an action of this group on StW0 and on StW ∗
0

by:

(g.F )(w) = F (g−1w)

for all g ∈ G0, w ∈ W0 and F ∈ StW ∗
0 , viewed as an homogeneous polynomial of degree

t on W0. The line bundle space L of L is acted on by G0 in the same way : if ξ ∈ L<w>
then g.ξ ∈ L<gw> is the form on < gw >∗⊗t= L<gw> given by (g.ξ)(y) = ξ(g−1y). We

modify now the action of G0 on L (resp. StW ∗
0 ) by multiplying with χ(g) :

g ∗ ξ = χ(g)g.ξ for ξ ∈ L<w>, or g ∗ F = χ(g)g.F for F ∈ H0(P(W0),L) = StW ∗
0 .

Now P ∈ H0(P(W0),L⊗n) is an invariant section if and only if P is a homogeneous

polynomial of degree tn which satisfies

P (gw) = χn(g)P (w).

From the definition of semi-stable points in W0 and P(W0) with respect to the modified

G0-structure on L = OP(W0)(t), we get immediately

3.4.1. Lemma: Assume that W s
0 (G0,Λ0) 6= ∅ and let t be defined as above in the two

cases of W0. Then the set W ss
0 (G0,Λ0) is the cone of the set P(W0)ss(G0,OP(W0)(t)) as

defined in G.I.T.

There are two definitions of stable points in P(W0), the classical one, given in [27], [29],

and a more recent one, given in [31]. If we take D. Mumford’s definition, the cone of the

set of stable points in P(W0) does not coincide with W s
0 because every point of P(W0)

has a stabilizer of positive dimension. In fact there is a subgroup of G0/C∗ of positive

dimension which acts trivially on P(W0). In the first case for example such a group is given

by gαi = λid and gβl = µid with λ, µ ∈ C∗. If we want to keep the coincidence between

the sets of stable points for one and the same group, we would have to consider the action

of a smaller reductive group in order to eliminate additional stabilizers. We will do this in

3.5 only in the first case. If we take the definition of V.L. Popov and E.G. Vinberg, then

we obtain that the set W s
0 (G0,Λ0) is exactly the cone of the set P(W0)s(G0,OP(W0)(t))

3.5. The group G′

Let G and W be as in section 2 and let Λ = (λ1, . . . , λr,−µ1, . . . ,−µs) be a proper

polarization as in 3.3.1 for the action of Gred on W . It is then convenient to use the

subgroup G′red of Gred consisting of elements ((gi), (hl)) satisfying∏
1≤i≤r

det(gi)
ai1 =

∏
1≤l≤s

det(hl)
bsl = 1, where aji = dim(Aji) and bml = dim(Bml).
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We consider the action of G′red on L induced by the modified χ-action of Gred. Now the

set W s(Gred,Λ) of χ-stable points of W is exactly the cone over the locus P(W )s(G′red,L)

of stable points of P(W ) in the sense of Geometric Invariant Theory.

4. Semi–stability in the non–reductive case

Let G and W be as in section 2. A character χ on Gred as in King’s setup can be extended

to a character of G. Also the modified action of Gred on L can be extended to an action

of G. Let G′ be the subgroup of G defined by the same equations as for G′red. It contains

H and G′red, and we have G′/H ' G′red.

In the case of the action of Gred on W a proper polarization is given by a sequence

λ1, . . . , λr, µ1, . . . , µs of positive rational numbers such that∑
1≤i≤r

λimi =
∑

1≤l≤s

µlnl = 1.

More precisely, the polarization is exactly the sequence (λ1, . . . , λr,−µ1, . . . ,−µs). The

parameter λi (resp. µl) will be called the weight of the vector space Mi (resp. Nl). We

see that the dimension of the set of possible proper polarizations is r+s−2. Let t denote

the smallest common denominator of the numbers λi and µl and χ the character of Gred

defined by the sequence of integers (−tλ1, . . . ,−tλr, tµ1, . . . , tµs). Let

L = OP(W )(t) with t =
∑

1≤i≤r

mitλi.

As we have seen, if we consider the modified action of Gred on L, then the χ-semi-

stable points of W are exactly those over the semi-stable points of P(W ) in the sense of

Geometric Invariant Theory with respect to the action of Gred/C∗ on L. The χtn-invariant

polynomials are the Gred-invariant sections of Ln.

We are now going to define a notion of (semi–)stability for the points of W with respect

to the given action of the non–reductive group G. Let H ⊂ G be the above unipotent

group, see also 2.4.

4.1. Definition: A point w ∈ W is called G–semi–stable (resp. G–stable) with respect

to the (proper) polarization Λ = (λ1, . . . , λr,−µ1, . . . ,−µs) if every point of Hw is Gred–

semi–stable (resp. Gred–stable) with respect to this polarization.

We denote these sets by W ss(G,Λ) resp. W s(G,Λ).

For many of the quotient problems for the spaces of homomorphisms between ⊕miEi and

⊕njFj and their cokernel sheaves this is a fruitful notion. In 4.2 we investigate an example
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with an explicit description of the open sets W s(G,Λ) ⊂ W s(Gred,Λ). This example also

shows that the existence of a good quotient depends on the choice of the polarization.

4.1.1. Situation for type (2,1):

In the case of morphisms of type (2, 1) we have µ1 = 1/n1 and the polarization is com-

pletely described by the single parameter t = m2λ2. We must have 0 < t < 1.

A polarization such that there exists integers m′1, m′2, n′1, with 0 < n′1 < n1, 0 ≤ m′i ≤ mi,

such that m′1n1 −m1n
′
1, m′2n1 −m2n

′
1 are not both 0, and that

λ1m
′
1 + λ2m

′
2 =

n′1
n1

is called singular. There are only finitely many singular polarizations, corresponding to

the values 0 < t1 < t2 < · · · < tp < 1 of t. Let t0 = 0, tp+1 = 1. If Λ, Λ′ are

polarizations corresponding to parameters t, t′ such that for some i ∈ {0, · · · , p} we have

ti < t, t′ < ti+1, then

W ss(G,Λ) = W ss(G,Λ′) and W s(G,Λ) = W s(G,Λ′).

Hence there are exactly 2p + 1 notions of G-(semi-)stability in this case. Moreover,

if m1, m2 and n1 are relatively prime, and Λ is a non singular polarization, we have

W ss(G,Λ) = W s(G,Λ).

In the general case of morphisms of type (r, s), it is not difficult to see that there are only

finitely many notions of G-(semi-)stability.

4.1.2. Remark: In [16] semi-stability is defined as follows : A point w ∈ W is semi-stable

if there exists a positive integer k and a G′-invariant section s of Lk such that s(w) 6= 0

(there is also a condition on the action of H). It is clear that a semi-stable point in the

sense of Fauntleroy is also G-semi-stable with respect to (λ1, . . . , λr,−µ1, . . . ,−µs). It is

proved in [16] that there exists a categorical quotient of the open subset of semi-stable

points in the sense of [16], but it is not clear that all G-semi-stable points are semi-stable.

Moreover, in the general situation of [16] there is no way to impose conditions which

would imply that the categorical quotient is a good quotient or even projective. Using

definition 4.1 we are able to derive a criterion for the existence of a good and projective

quotient of W under the action of G.

4.2. Existence and non–existence of good quotients, an example

We show here that we cannot expect that a good quotient W ss(Λ, G)//G will exist for

any polarization Λ.

We consider morphisms 2O(−2) → O(−1) ⊕ O on P2. There are 3 notions of

G-(semi-)stability in this case, two corresponding to non singular polarizations. For one



QUOTIENTS BY NON-REDUCTIVE GROUPS 19

of the non singular polarizations the quotient W s(Λ, G)/G exists and for the other we

prove the inexistence of a good quotient W s(Λ, G)//G.

Let V be a complex vector space of dimension 3, and P2 = PV . Let

W = Hom(2O(−2),O(−1)⊕O) on P2. A polarization for the action of G on W is a

triple (1/2,−µ1,−µ2) of positive rational numbers such that µ1 + µ2 = 1. As in 4.1.1 a

polarization depends only on µ1. There is only one singular polarization, corresponding to

µ1 = 1/2. Hence if we consider only non singular polarizations there are only two notions

of G-(semi-)stability, the first one corresponding to polarizations such that µ1 > 1/2 and

the second to polarizations such that µ1 < 1/2. In both cases semi–stable points are

already stable. We are going to show that in the first case W s(G,Λ) has a geometric

quotient which is projective and smooth and that in the second case W s(G,Λ) doesn’t

even admit a good quotient.

The elements x ∈ W and g ∈ G are written as matrices

x =

(
z1 z2

q1 q2

)
and g =

(
σ,

(
α 0

z β

))
where z1, z2 ∈ V ∗, q1, q2 ∈ S2V ∗, σ ∈ GL(2), α, β ∈ C∗ and z ∈ V ∗.

4.2.1. The case µ1 > 1/2

In this case W s(G,Λ) has a geometric quotient which is the universal cubic Z ⊂ PV ×
PS3V ∗ of the Hilbert scheme of plane cubic curves in P2 = PV . The quotient map is

given by x 7→ (〈z1 ∧ z2〉, 〈z1q2 − z2q1〉)

Remark: If µ1 > 3/4, then µ1 > 3µ2 and the conditions of 1.5.1 (in the dual case (1, 2))for

a good and projective quotient to exist in this case are satisfied.

The proof is done in several steps.

(1) claim 1: Let x ∈ W be as above. Then

(i) x ∈ W s(Gred,Λ) if and only if z1 ∧ z2 6= 0 in Λ2V ∗ and q1, q2 are not both zero.

(ii) x ∈ W s(G,Λ) if and only if z1 ∧ z2 6= 0 and det(x) = z1q2 − z2q1 6= 0 in S3V ∗.

Proof of claim 1. (i) follows easily from the criterion (1) in 3.1. As for (ii) let x ∈
W s(Gred,Λ) with det(x) 6= 0. Then det(h.x) = det(x) 6= 0 for any h = ( 1 0

z 1 ) which

implies that also h.x ∈ W s(Gred,Λ). Let conversely x ∈ W s(G,Λ). Then det(x) 6= 0

because otherwise there is a linear form z ∈ V ∗ with q1 = zz1 and q2 = zz2 and with

h = ( 1 0
−z 1 ) the element h.x is the matrix ( z1 z20 0 ) which is not in W s(Gred,Λ).

(2) By the result of A. King in 3.1, (3), there is a geometric quotient W s(Gred,Λ)/Gred

which is smooth and projective.
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claim 2: W s(Gred,Λ)/Gred
∼= P(Q∗ ⊗ S2V ∗). Here Q∗ = Ω1(1) is the dual of the tau-

tological quotient bundle over PV . (The dimension of this quotient variety is 13 while

dimW = 18 and dimGred/C∗ = 5).

To verify claim 2 we consider the map

x =

(
z1 z2

q1 q2

)
α7→ (〈z1 ∧ z2〉, 〈z1 ⊗ q2 − z2 ⊗ q1〉)

from W s(Gred,Λ) to PV ×P(V ∗⊗S2V ∗) ⊂ P(V ∗⊗S2V ∗⊗OPV ) where we identify PΛ2V ∗

with PV via 〈z1∧z2〉 ↔ 〈a〉, z1(a) = z2(a) = 0. Then each α(x) ∈ P(Q∗〈a〉⊗S2V ∗) because

Q∗〈a〉 ⊂ V ∗ is the subspace of forms vanishing in 〈a〉. It follows immediately that α is a

morphism

W s(Gred,Λ)→ P(Q∗ ⊗ S2V ∗)

which is surjective and Gred–equivariant. It induces a morphism of the geometric quotient

to P(Q∗ ⊗ S2V ∗) which is even bijective. Since both, the quotient and the target are

smooth, this is an isomorphism.

(3) Since Q∗ ⊂ V ∗⊗OPV we have an induced homomorphism Q∗⊗S2V ∗ → S3V ∗⊗OPV .

It is the middle part of the canonical exact sequence

0→ Λ2Q∗ ⊗ V ∗ → Q∗ ⊗ S2V ∗ → S3V ∗ ⊗OPV
ev−→ OPV (3)→ 0

of vector bundles on PV . Let Z be the kernel of ev. From the left part of the sequence

we obtain the affine bundle

P(Q∗ ⊗ S2V ∗) r P(Λ2Q∗ ⊗ V ∗) β−→ P(Z) ⊂ PV × PS3V ∗.

Here P(Z) = Z is nothing but the universal cubic and the fibres of β are isomorphic to

V ∗.

claim 3: W s(G,Λ) ⊂ W s(Gred,Λ) is the inverse image of P(Q∗⊗ S2V ∗)rP(Λ2Q∗⊗ V ∗)
under α and α|W s(G,Λ) is a geometric quotient with respect to Gred.

Proof of claim 3. z1 ⊗ q2 − z2 ⊗ q1 belongs to Λ2Q∗〈a〉 ⊗ V ∗ if and only if z1q2 − z2q1 = 0,

see (ii) of claim 1.

(4) Let now π = β ◦α be the morphism W s(G,Λ)→ Z, given by x 7→ (〈a〉, 〈z1q2− z2q1〉),
where z1(a) = z2(a) = 0. It is obviously G–equivariant and its fibres coincide with the

G–orbits. Since α is a geometric quotient and β is an affine bundle, then π is also a

geometric quotient.

Remark: The variety Z is isomorphic to the moduli space M = MP2(3m + 1) of stable

coherent sheaves on P2 with Hilbert polynomial χF(m) = 3m+ 1. This had been verified

by J. Le Potier in [24]. The space W s(G,Λ) is a natural parametrization of M because
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any F ∈M can be presented in an extension sequence 0→ OC → F → Cp → 0 where C

is the cubic curve supporting F and p ∈ C, and then F has a resolution

0→ 2O(−2)
x−→ O(−1)⊕O → F → 0.

This resolution is the Beilinson resolution as can easily be verified. Moreover, x is (G,Λ)–

stable if and only if F is stable. (If p is a smooth point of C, then F is the line bundle

OC(p) and if p is a singular point of C, then F is the unique Cohen–Macaulay module on

C with the given polynomial). There is an obvious universal family F on W s(G,Λ)×HPV
which defines a G–equivariant morphism W s(G,Λ)→ M and then a bijective morphism

Z →M , which by smoothness, is an isomorphism. One knows that M carries a universal

family E . This family can be obtained as the non–trivial extension

0→ OZ×HZ → E → O∆ → 0,

where H = PS3V ∗ and Z×H Z ⊂ Z×PV, or can be obtained as the descent of the family

F . More details can be found in [18].

4.2.2. The case µ1 < 1/2

We suppose now that the polarization Λ is such that µ1 < 1/2. In this case an element x

of W is G-stable if and only if z1, z2 are not both zero, and if for every z ∈ V ∗, q1 − zz1

and q2 − zz2 are linearly independent.

4.2.3. Proposition: For this polarization there does not exist a good quotient

W s(G,Λ)//G.

Proof. Let z1 be a non-zero element of V ∗, let q ∈ S2V ∗\z1V
∗, and let x ∈ W be the

matrix (
z1 0

q z2
1

)
.

Then x is stable.

Claim : The orbit Gx is closed and if y ∈ W s(G,Λ) is such that Gy meets Gx, then

y ∈ Gx.

Before proving the claim, we will show that it implies proposition 4.2.3. The stabilizer of

a generic point in W s(G,Λ) is isomorphic to C∗ : it consists of pairs of homotheties (λ, λ).

It follows that if M = W s(G,Λ)//G exists, then all the fibers of the quotient morphism

π : W s(G,Λ)→M are of dimension at least dim(G)− 1. Now suppose that the claim is

true. Then this implies that π−1(π(x)) = Gx. But the stabilizer Gx of x has dimension

2 : it consists of pairs

(

(
α 0

β α

)
,

(
α 0

βz1 α

)
)

with α ∈ C∗, β ∈ C, and hence has dimension 2. It follows that

dim(π−1(π(x))) < dim(G)− 1, a contradiction.
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Proof of the claim. Let y ∈ W s(G,Λ) such that x ∈ Gy. Let

y =

(
z z2

q1 q2

)
.

Then z1 is contained in the vector space spanned by z and z2. Hence by replacing y with

an element of Gy we can assume that z = z1 and that z2 = 0 if z2 is a multiple of z1.

According to lemma 4.2.4 there exists a smooth irreducible curve C, x0 ∈ C, and a

morphism

θ : C\{x0} −→ G

such that

θ : C\{x0} // W

t � // θ(t)y

can be extended to θ : C → W , with θ(x0) = x. We can write, for t ∈ C\{x0},

θ(t) =

(
a(t)z1 + b(t)z2 c(t)z1 + d(t)z2

q1(t) q2(t)

)
with

(1) q1(t) = λ(t)
(
a(t)q1 + b(t)q2 + u(t)z1

)
,

(2) q2(t) = λ(t)
(
c(t)q1 + d(t)q2 + u(t)z2

)
,

where λ, a, b, c, d are morphisms C\{x0} → C and u : C\{x0} → V ∗. The morphisms

λ, a, b, c, d can be extended to morphisms C → P1 = C ∪ {0,∞}, denoted by λ, a, b,

c, d respectively, and u extends to u : C → P(V ∗ ⊕ C). Now we use the fact that θ is

defined at x0. The first consequence is that a(x0) = 1, c(x0) = 0, and if z2 6= 0 then b

and d also vanish at x0. The second is that the morphisms q1, q2 : C\{x0} → S2V ∗ can

be extended to q1, q2 : C → S2V ∗, and we have q1(x0) = q, q2(x0) = z2
1 .

We will now consider three cases : λ(x0) = 0, λ(x0) =∞, λ(x0) ∈ C∗.

Suppose that λ(x0) = 0. If z2 6= 0, then (1) implies that q1(x0) = q is a multiple of z1,

but this is not true. If z2 = 0 then (2) implies that q2 is a multiple of z2
1 and (1) implies

then that q is also a multiple of z1, which is not true. Hence we cannot have λ(x0) = 0.

Suppose that λ(x0) =∞. If z2 6= 0, then (1) implies that

µ : C\{x0} // S2V ∗

t � // a(t)q1 + b(t)q2 + u(t)z1

and

η : C\{x0} // S2V ∗

t � // c(t)q1 + d(t)q2 + u(t)z1
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extend to morphisms C → S2V ∗ which vanish at x0. It follows from the fact that µ(x0) = 0

that u = u(x0) ∈ V ∗, and that q1 = −uz1. Since q1 6= 0 (by G-stability of y), we have

u 6= 0. But since c(x0) = d(x0) = 0, this contradicts the fact that η(x0) = 0.

If z2 = 0 then we deduce from the fact that µ(x0) = 0 that q1 ∈ <q2, V
∗z1>, which

contradicts the G-stability of y.

It follows that we have δ = λ(x0) ∈ C∗. If z2 6= 0, using the fact that a(x0) = 1 and

b(x0) = c(x0) = d(x0) = 0 we see that u = u(x0) ∈ V ∗ and that z2
1 = δuz2, which con-

tradicts the fact that z1 ∧ z2 6= 0.

Hence we have z2 = 0. It follows from (2) that d(x0) ∈ C∗ and that z2
1 = δd(x0)q2. By

(1) we see that

ε : C\{x0} // S2V ∗

t � // b(t)q2 + u(t)z1

extends to C and that

ε(x0) =
1

δ
q − q1.

We have, if t 6= x0

ε(t) = z1(
b(t)

δd(x0)
z1 + u(t)).

It follows that ε(x0) is a multiple of z1 : ε(x0) = z1v. We have then

q1 =
1

δ
q − z1v

and

y =

(
z1 0

q1 q2

)
=

(
z1 0

1
δ
q − z1v

1
δd(x0)

z2
1

)
∈ Gx

as claimed.

It remains to show that Gx is closed. This can be proved easily by computing the

stabilizers of all the points in W s(G,Λ). We see then that Gx has the maximal possible

dimension, hence Gx is closed. �

We now give a proof of the lemma used in the preceeding proposition :

4.2.4. Lemma : Let W be a finite dimensional vector space, G a linear algebraic group

acting algebraically on W , y ∈ W and x ∈ Gy\Gy. Then there exists a smooth curve C,

x0 ∈ C and a morphism

θ : C\{x0} −→ G
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such that the morphism

θ : C\{x0} // W

t � // θ(t)y

extends to θ : C → W and that θ(x0) = x.

Proof. Let n = dim(W ), d = dim(Gy). The generic (n − d + 1)-dimensional affine

subspace F ⊂ W through x meets Gy on a curve, and meets Gy\Gy in a finite number

of points. Hence we can find a curve X ⊂ Gy that meets Gy\Gy only at x. Taking the

normalization of X and substracting a finite number of points or unnecessary components

if needed, we obtain a morphism α : Z → Gy (where Z is a smooth curve) and a point

z0 ∈ Z such that α(z0) = x and α(Z\{z0}) ⊂ Gy. Consider now the restriction of α

Z\{z0} −→ Gy ' G/Gy.

There exists a smooth curve Z ′ and an etale surjective morphism φ : Z ′ → Z\{z0} such

that the principal Gy-bundle φ∗α∗G on Z ′ is locally trivial. By considering completions

Z ′, Z of Z ′, Z and an extension of φ to a morphism Z ′ → Z we obtain a smooth curve

Y , y0 ∈ Y and a morphism β : Y → Z such that β(y0) = z0 and that the principal Gy-

bundle Γ = β∗α∗G is defined on Y \{y0} and locally trivial. Let U ⊂ Y be a nonempty

open subset such that we have a Gy-isomorphism

γ : Γ|U ' U ×Gy

Then we can take C = U ∪ {y0}, x0 = y0, and for t ∈ C\{x0} = U , we have

θ(t) = ψ(γ−1(t, e)),

where ψ is the canonical morphism Γ→ G. �

4.3. More general counterexamples of inexistence of geometric quotients

Let W be the space of homomorphisms

O(−2)⊕O(−1)→ C2n ⊗O(1)

over Pn and let the homomorphism φ0 ∈ W be given by the matrix

z2
0z1 z2

1
...

...

z2
0zn z2

n

z0z
2
1 0

...
...

z0z
2
n 0
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where the zν are homogeneous coordinates. The stabilizer of φ0 contains C∗ and the pairs(
1 0

az0 1

)
,

(
In −aIn
0 In

)
in Aut(O(−2)⊕O(−1))×GL(C2n) and thus has dimension ≥ 2. If Λ = (λ1, λ2,−µ1) is

a polarization with 0 < λ1, 0 < λ2 <
1
2
, then it is easy to see that φ0 is Λ–stable in the

sense of 4.1. For example (m′1,m
′
2, n

′) = (0, 1, n) is the dimension vector of a φ0–invariant

choice of subspaces with λ1m
′
1 + λ2m

′
2 − µ1n

′ = λ2 − 1/2 < 0. There are however stable

homomorphisms φ ∈ W with stabilizer C∗. Therefore W s(G,Λ)/G can never admit the

structure of a geometric quotient. We will see in 7.2.2 that a sufficient condition for that

in the case of this W is λ2 > (n+ 1)λ1 or λ2 >
n+1
n+2

because λ1 + λ2 = 1.

5. Embedding into a reductive group action

We will construct an algebraic reductive group G, a finite dimensional vector space W

on which G acts algebraically, and an injective morphism

ζ : W −→W

compatible with a morphism of groups

θ : G −→ G.

The traces of G-orbits on ζ(W ) will be exactly the G-orbits. The space W is of the

same type as those studied in 3.1. We will associate naturally to any polarization of the

action of G on W a character χ of G/C∗, i.e. a polarization of the action of G on W.

We will prove that in certain cases a point w of W is G−(semi-)stable with respect to

the given polarization if and only if ζ(w) is χ-(semi-)stable with respect to the associated

polarization. The existence of a good and projective quotient of the open set of G-semi-

stable points will follow from this.

5.1. Motivation in terms of sheaves

The idea for the embedding of W into a space W with a reductive group action is to

replace the sheaves Ei in E = ⊕(Ei ⊗Mi) by E1 ⊗ Hom(E1, Ei) and dually the sheaves Fl
in F = ⊕(Fl ⊗ Nl) by Fs ⊗ Hom(Fl,Fs)∗ and then to consider the induced composed

homomorphisms γ(Φ) for Φ ∈ Hom(E ,F) = W

E1 ⊗ Hom(E1, E)→ E → F → Fs ⊗ Hom(F ,Fs)∗
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in the bigger space W̃ of all homomorphisms between E1 ⊗ Hom(E1, E) and Fs ⊗
Hom(F ,Fs)∗. This space is naturally acted on by the reductive group

G̃ = GL(Hom(E1, E))×GL(Hom(F ,Fs)∗).

However it is not suitable enough for our purpose by two reasons. It does not allow enough

polarizations as in section 3 for direct sums in order to have consistency of (semi-)stability

and, secondly the group actionsG×W → W and G̃×W̃ → W̃ don’t have consistent orbits.

Both insufficiencies are however eliminated when we consider the following enlargement

of W̃ . We set

Pi = Hom(Ei, E) and Ql = Hom(F ,Fl)∗,

and introduce the auxiliary spaces

WL = ⊕
1<i≤r

Hom(Pi⊗Hom(Ei−1, Ei), Pi−1), WR = ⊕
1≤l<s

Hom(Ql+1⊗Hom(Fl,Fl+1), Ql),

and define

W = WL ⊕ Hom(E1 ⊗ P1,Fs ⊗Qs)⊕WR.

There are distinguished elements

(ξ2, · · · , ξr) ∈WL, (η1, · · · , ηs−1) ∈WR

whose components are the natural composition maps. The embedding of W into W will

be defined as the affine map

W
ζ−→W, Φ 7→ ((ξ2, · · · , ξr), γ(Φ), (η1, · · · , ηs−1)),

where γ(Φ) is the above composition for a given Φ ∈ W. The components of WL and

WR will guarantee a compatible action of a reductive group and at the same time the

possibility of choosing enough polarizations for this action.

5.1.1. Remark: One might hope to be able to do induction on r and/or s by simply

replacing Mr−1 ⊗ Er−1 ⊕Mr ⊗ Er by (Mr−1 ⊕Mr ⊗ Hom(Er−1, Er)) ⊗ Er−1 and keeping

the other Ei for i < r − 1. But then we drop the information about the homomorphisms

Ei → Er. Therefore we are lead to replace all Ei, i ≥ 2, by E1 at a time, i.e. by

P1 ⊗ E1 = (M1 ⊕M2 ⊗ A21 ⊕ · · · ⊕Mr ⊗ Ar1)⊗ E1,

where Aji = Hom(Ei, Ej). Moreover, in order to keep the information of the homomor-

phisms Ei → Ej for 2 ≤ i ≤ j we consider also the spaces

Pi = Mi ⊕Mi+1 ⊗ Ai+1,j ⊕ . . .⊕Mr ⊗ Ari
together with the maps Pi ⊗ Ai,i−1 → Pi−1 in the following. The reader may convince

himself that only because of this the actions of the original group is compatible with the

action of the bigger reductive group. It is a beautiful outcome that then we are able to

compare the semi–stability with respect to related polarizations in section 7.
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5.2. The abstract definition of W

The above motivating definition of the space W can immediately be turned into the

following final definition using the spaces Hli, Aji and Bml and the pairings between them.

For any possible i and l we introduce the spaces

Pi = ⊕
i≤j≤r

Mj ⊗ Aji and Ql = ⊕
1≤m≤l

Nm ⊗B∗lm,

and we denote by pi and ql their dimensions. For 1 < i and l < s we let

Pi ⊗ Ai,i−1
ξi−→ Pi−1 and Ql+1 ⊗Bl+1,l

ηl−→ Ql

be the canonical morphisms, defined as follows. On the component Mj ⊗ Aji of Pi, the

map ξi is the map

(Mj ⊗ Aji)⊗ Ai,i−1 −→Mj ⊗ Aj,i−1

induced by the composition map of the spaces A. The map ηl is defined in the same way.

As in 5.1 we set

WL = ⊕
1<i≤r

Hom(Pi ⊗ Ai,i−1, Pi−1), WR = ⊕
1≤l<s

Hom(Ql+1 ⊗Bl+1,l, Ql),

and

W = WL ⊕ Hom(P1, Qs ⊗Hs1)⊕WR.

In order to define the embedding ζ we define the operator γ as follows. Given w = (φli) ∈
W with φli ∈ Hom(Mi, Nl ⊗Hli), we let

γ(w) ∈ Hom(P1, Qs ⊗Hs1) = Hom(P1 ⊗H∗s1, Qs)

be the linear map defined by the matrix (γli(w)), for which each γli(w) is the composed

linear map

Mi ⊗ Ai1 −→ Nl ⊗Hli ⊗ Ai1 −→ Nl ⊗Hl1 −→ Nl ⊗B∗sl ⊗Hs1,

where the first map is induced by φli, the second by the composition Hli⊗Ai1 → Hl1 and

the third by the dual composition Hl1 → B∗sl ⊗Hs1.

The map ζ can now be defined by

W
ζ−→W, w 7→ ((ξ2, · · · , ξr), γ(w), (η1, · · · , ηs−1)).

5.2.1. Lemma: The linear map γ is injective and hence the morphism ζ is a closed

embedding of affine schemes.
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Proof. From the surjectivity assumptions in 2.1 we find that dually the composition

Hli −→ Hl1 ⊗ A∗i1 −→ B∗sl ⊗Hs1 ⊗ A∗i1

is injective. Now it follows from the definition of γli(w) that φli can be recovered from

γli(w), by shifting Ai1 to its dual. �

5.3. The new group G

We consider now the natural action on W as described in 3.1 in the general situation,

where the group is

G = GL ×GR, with GL =
∏

1≤i≤r

GL(Pi), GR =
∏

1≤l≤s

GL(Ql).

To be precise, this action is described in components by

gi−1 ◦ xi−1,i ◦ (gi ⊗ id)−1, hs ◦ ψ ◦ (g1 ⊗ id)−1 and hl ◦ yl,l+1 ◦ (hl+1 ⊗ id)−1,

with

xi−1,i ∈ Hom(Pi⊗Ai,i−1, Pi−1), ψ ∈ Hom(P1⊗H∗s1, Qs), yl,l+1 ∈ Hom(Ql+1⊗Bl+1,l, Ql)

and with

gi ∈ GL(Pi), hl ∈ GL(Ql).

The first and third expression describe the natural actions of GL on WL and of GR on

WR.

There are also natural embeddings of GL, GR, G into GL, GR, G respectively. For that

it is enough to describe the embedding of GL in GL. Given an element g ∈ GL,

g =


g1 0 . . . 0

u21 g2
...

...
. . . . . . 0

ur1 . . . ur,r−1 gr


with gi ∈ GL(Mi) and uji ∈ Hom(Mi,Mj ⊗Aji) we define θL,i(g) ∈ GL(Pi) as the matrix

θL,i(g) =


g̃i 0 . . . 0

ũi+1,i g̃i+1
...

...
. . . . . . 0

ũr,i . . . ũr,r−1 g̃r
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with respect to the decomposition of Pi with the following components: g̃j = gj ⊗ id on

Mj ⊗ Aji and for i ≤ j ≤ k the map ũkj is the composition

Mj ⊗ Aji −→Mk ⊗ Akj ⊗ Aji −→Mk ⊗ Aki,

where the second arrow is induced by the given pairing. In case j = i we have g̃i = gi and

ũki = uki. Now we define the map

GL
θL→ GL by g 7→ (θL,1g, · · · , θL,rg).

It is then easy to verify that θL is an injective group homomorphism and defines a closed

embedding of algebraic groups. With this embedding we consider GL as a closed subgroup

of GL. In the same way we obtain a closed embedding θR of GR ⊂ GR. Finally we obtain

the closed embedding θ = (θL, θR) of G ⊂ G.

5.3.1. Lemma: The subgroup GL ⊂ GL (respectively GR ⊂ GR) is the stabilizer of the

distinguished element (ξ2, . . . , ξr) ∈WL (respectively (η1, . . . , ηs−1) ∈WR)

Proof. It is enough to prove the statement only for GL because of duality. The fact that

GL stabilizes (ξ2, . . . , ξr) is an easy consequence of the properties of the composition maps.

The converse can be proved by induction on r. It is trivial for r = 1. Suppose that r ≥ 2

and that the statement is true for r− 1. Let (γ1, . . . , γr) be an element of the stabilizer of

(ξ2, . . . , ξr). When we replace the space W by W ′, corresponding to the spaces M2, . . . ,Mr

and the same spaces Nl and similarly WL by W′
L, then (γ2, . . . , γr) is an element of the

stabilizer of (ξ3, . . . , ξr), so by the induction hypothesis it belongs to G′L and there exists

an element

g′ =


g2 0 · · · 0

u32 g3
...

...
. . . . . . 0

ur2 · · · ur,r−1 gr


such that (γ2, . . . , γr) = θ′L(g′). Let now γ1 ∈ GL(P1) have the components

Mi ⊗ Ai1
yji−→Mj ⊗ Aj1 for all 1 ≤ i, j ≤ r.

The identity γ1 ◦ ξ2 = ξ2 ◦ γ2 then shows that yji = 0 for j < i, yii = gi for 2 ≤ i and

yji = uji for 2 ≤ j < i. Now let g1 = y11, uj1 = yj1, for 2 ≤ j ≤ r, which are linear

mappings M1 −→Mj ⊗ Aj1. Then

g =


g1 0 · · · 0

u21 g2
...

...
. . . . . . 0

ur1 · · · ur,r−1 gr


is an element of GL and we have (γ1, . . . , γr) = θL(g). �
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Remark: since the action of GL on WL is linear, it is clear that we have an isomorphism

GL/GL ' GL(ξ2, . . . , ξr), and similarly GR/GR ' GR(η1, . . . , ηs−1).

We will use this fact in section 8.

Using the associativity of the composition maps it is again easy to verify that the actions

of G on W and G on W are compatible, i.e. that the diagram

G×W −−−→ W

θ×ζ
y yζ

G×W −−−→ W

is commutative, in which the horizontal maps are the actions. In addition we have the

5.3.2. Corollary: Let w,w′ ∈ W . Then w and w′ are in the same G-orbit in W if and

only if ζ(w) and ζ(w′) are in the same G-orbit in W.

Proof. It follows from the compatibility of the actions that if g.w = w′ in W then also

θ(g).ζ(w) = ζ(w′) in W by the last diagram. Conversely, if g ∈ G and g.ζ(w) = ζ(w′)

then g stabilizes (ξ2, · · · , ξr, η1, · · · , ηs−1) by the definition of ζ in 5.2. By Lemma 5.3.1

g ∈ G. �

5.4. The associated polarization

In 3.3.1 and 3.3.2 we had introduced polarizations for the different types of actions of

Gred on W and of G on W. In the following we will describe polarizations on W and W

which are compatible with the morphism ζ : W −→W. Their weight vectors are related

by the following matrix equations and determine each other. The entries of the matrices

are just the dimensions of the spaces Aji and Bml.

In the sequel we will use the following notation: the dimension of a vector space will be

the small version of its name. So mi = dim(Mi), nl = dim(Nl), pi = dim(Pi), qm =

dim(Qm) aji = dim(Aji), bml = dim(Bml) etc.

A proper polarization of the action of G on W is a tuple Λ = (λ1, . . . , λr,−µ1, . . . ,−µs),
where λi and µl are positive rational numbers such that∑

1≤i≤r

λimi =
∑

1≤l≤s

µlnl = 1.

We define the new sequence of rational numbers α1, . . . , αr, β1, . . . , βs by the conditions
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λ1
...
...

λr

 =


1 0 · · · 0

a21 1
. . .

...
...

. . . . . . 0

ar1 · · · ar,r−1 1




α1
...
...

αr

 ,


µ1
...
...

µs

 =


1 b2,1 · · · bs1

0 1
. . .

...
...

. . . . . . bs,s−1

0 · · · 0 1




β1
...
...

βs

 .

Then we have

1 =
∑

1≤i≤r

λimi =
∑

1≤i≤r

αipi and 1 =
∑

1≤l≤s

µlnl =
∑

1≤l≤s

βlql.

In particular the tuple Λ̃ = (α1, · · · , αr,−β1, · · · ,−βs) is a polarization on W such that

αi is the weight of Pi and −βl the weight of Ql. It is called the associated polarization on

W. It is compatible with ζ in the following sense: If M ′
i ⊂ Mi, and N ′l ⊂ Nl are linear

subspaces, and if the subspaces of Pi and Ql are defined by

P ′i = ⊕
i≤j
M ′

j ⊗ Aji, and Q′l = ⊕
l≤m

N ′l ⊗B∗ml

respectively then we have∑
1≤i≤r

λim
′
i =

∑
1≤i≤r

αip
′
i, and

∑
1≤l≤s

µln
′
l =

∑
1≤l≤s

βlq
′
l.

If the set of stable points in W with respect to the associated polarization is non-empty

then by 3.3.2 the weights satisfy the conditions∑
i≤j≤r

αjpj > 0 for any i and
∑

1≤l≤m

βlql > 0 for any m.

Equivalently the conditions may also be written as∑
i≤j≤r

αjpj > 0 for 2 ≤ i ≤ r and 1−
∑
m≤l≤s

βlql > 0 for 2 ≤ m ≤ s.

Substituting the weights of the original polarization on W , we can reformulate these

conditions. In the cases treated in the examples they reduce to the following

5.4.1. Weight conditions.

Let W be of type (r, s) and let Λ = (λ1, . . . , λr,−µ1, . . . ,−µs) be a proper polarization

of W with positive λi and µl. If the set Ws(G, Λ̃) of stable points of W with respect to

the associated polarization Λ̃ is non-empty, then in case of

type (2, 1): λ2 − a21λ1 > 0,

type (3, 1): λ3 − a32λ2 + (a32a21 − a31)λ1 > 0, λ1(m1 + a21m2 + a31m3) < 1,

type (2, 2): λ2 − a21λ1 > 0, µ1 − b21µ2 > 0.
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5.5. Comparison of invariant polynomials

In the following we assume that Λ̃ = (α1, . . . , αr,−β1, . . . ,−βs) is the polarization on

W associated to the polarization Λ = (λ1, . . . , λr,−µ1, . . . ,−µs). The semi–stable locus

Wss(G, Λ̃) with respect to this polarization is more precisely defined by the character X
associated to it as in 3.1. If q is lowest common denominator of α1, . . . , αr, β1, . . . , βs, we

have

X (g) = (
∏

1≤i≤r

det(gi)
−qαi)(

∏
1≤l≤s

det(hl)
qβl)

for an element g ∈ G with components gi and hl. By the matrix relations between the

polarizations q is also a common denominator of λ1, . . . , λr, µ1, . . . , µs, such that, if p

denotes the lowest, we have q = pu for some u. The character χ with respect to the given

polarization can be defined by

χ(g, h) =
∏

1≤i≤r

det(gi)
−pλi

∏
1≤l≤s

det(hl)
pµl ,

where the gi resp. hl are the diagonal components of g resp. h, see 2.2. Now the relations

between the polarizations imply by a straightforward calculation that

X (θ(g, h)) = χ(g, h)u.

If F is a Xm-invariant polynomial on W it follows that

F (ζ((g, h).w)) = F (θ(g, h).ζ(w)) = χ(g, h)umF (ζ(w)),

i.e. that F ◦ ζ is a χum-invariant polynomial on W . As a consequence we obtain the

5.5.1. Lemma: ζ−1(Wss(G, Λ̃)) ⊂ W ss(G,Λ),

i.e. if w ∈ W and ζ(w) is G-semi-stable in W with respect to the polarization Λ̃ =

(α1, . . . , αr,−β1, . . . ,−βs) then w is G-semi-stable in W with respect to the polarization

Λ = (λ1, . . . , λr,−µ1, . . . ,−µs) (in the sense of 4.1).

Proof. There exists a Xm-invariant polynomial F on W such that F (ζ(w)) 6= 0. Then

F (ζ((g, h).w)) = F (ζ(w)) 6= 0

for any element (g, h) in the unipotent subgroup H ⊂ G. This means that w is G-semi-

stable. �

5.5.2. Remark: When we consider the subgroup G′ ⊂ G defined by the condition

det(g1) = det(hs) = 1,

we have θ(G′) ⊂ G′ as follows from the definition of G′ in 3.5. With respect to these

groups the semi-stable points are those over the semi-stable loci in P(W ) resp. P(W),

with respect to the line bundles

L = OP(W )(t) and L = OP(W)(t),
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where t and t is defined as in 3.4 in the different cases endowed with the modified action

defined by the characters. However, we cannot compare P(W ) and P(W) directly because

the morphism ζ does not descend.

We need the analogous statement of Lemma 5.5.1 also in the case of stable points. For

that is is more convenient to use the subspace criterion (1) of A. King in the case of Gred

and G. This gives also another proof in the semi–stable case.

5.5.3. Lemma: With the same notation as in the previous Lemma

ζ−1(Ws(G, Λ̃)) ⊂ W s(G,Λ)

Proof. Let w = (φli) be a point of W with maps Mi ⊗H∗li
φli−→ Nl and suppose that w is

not G–stable with respect to the polarization Λ. We can assume that it is not Gred–stable,

too. Then there are linear subspaces M ′
i ⊂ Mi and N ′l ⊂ Nl for all i and l such that the

family ((M ′
i)), (N

′
l )) is proper and such that

φli(M
′
i ⊗H∗li) ⊂ N ′l and

∑
i

λim
′
i −
∑
l

µln
′
l ≥ 0.

With these subspaces we can introduce the subspaces P ′i ⊂ Pi and Q′l ⊂ Ql as

P ′i = ⊕
i≤j
M ′

j ⊗ Aji and Q′l = ⊕
m≤l

N ′m ⊗B∗lm.

They form a proper family of subspaces and satisfy

ξi(P
′
i ⊗ Ai,i−1) ⊂ P ′i−1 , γ(w)(P ′1 ⊗H∗s1) ⊂ Q′s , ηl(Q

′
l+1 ⊗Bl+1,l) ⊂ Q′l

for the possible values of i and l. But by the definition of the spaces and because Λ̃ is the

associated polarization, the formulas of 5.4 imply the dimension formula∑
i

αip
′
i −
∑

βlq
′
l =

∑
i

λim
′
i −
∑
l

µln
′
l ≥ 0.

This states that also ζ(w) is not G–stable. �

In section 7 we will derive sufficient conditions for the equality

ζ−1(Ws(G, Λ̃)) = W s(G,Λ) and ζ−1(Wss(G, Λ̃)) = W ss(G,Λ).

In the following section we show how this equality implies the existence of a good and

projective quotient W ss(G,Λ)//G using the result for Wss(G, Λ̃)//G from Geometric

Invariant Theory.
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6. Construction and properties of the quotient

We keep the notation of the previous sections and let Λ̃ be the polarization on W asso-

ciated to the polarization Λ on W . We do not require that they are proper here, but we

will do that later for the examples. In addition we introduce the saturation

Z = Gζ(W ) ⊂W

of the image of W with respect to the action of G.

6.1. Construction of the quotient

6.1.1. Proposition: Let W and W together with their G– and G–structure be as in

section 2 and 5, let Λ be a polarization for (W,G) and Λ̃ be the associated polarization

for (W,G).

(1) If ζ−1(Ws(G, Λ̃)) = W s(G,Λ), then there exists a geometric quotient W s(G,Λ) −→
M s of W s by G, which is a quasi–projective nonsingular variety.

(2) If in addition ζ−1(Wss(G, Λ̃)) = W ss(G,Λ) and (Z̄ r Z) ∩Wss(G, Λ̃) = ∅,
then there exists a good quotient W ss(G,Λ)

π−→ M , such that M is a normal projective

variety, M s is an open subset of M , and W s(G,Λ)→M s is the restriction of π.

We recall here the definition of a good and a geometric quotient of C.S. Seshadri, see [29],

[27]. Let an algebraic group G act on an algebraic variety or algebraic scheme X. Then

a pair (ϕ, Y ) of a variety and a morphism X
ϕ−→ Y is called a good quotient if

(i) ϕ is G–equivariant (for the trivial action of G on Y ),

(ii) ϕ is affine and surjective,

(iii) If U is an open subset of Y then ϕ∗ is an isomorphism OY (U) ≈ OY (ϕ−1U)G,

where the latter denotes the ring of G–invariant functions,

(iv) If F1, F2 are disjoint closed and G–invariant subvarieties of X then ϕ(F1), ϕ(F2)

are closed and disjoint.

If in addition the fibres of ϕ are the orbits of the action and all have the same dimension,

the quotient (ϕ, Y ) is called a geometric quotient.

As usual we write X//G for a good quotient space and X/G for a geometric quotient

space.

Proof. We will prove the second statement first, assuming that the conditions of (1) and

(2) are satisfied. We use the abbreviations W ss = W ss(G,Λ),Wss = Wss(G, Λ̃) and

similarly W s,Ws for the subsets of the stable points. By the result of A. King, 3.1, there

exists a good projective quotient of Wss by the reductive group G. So there exists also a



QUOTIENTS BY NON-REDUCTIVE GROUPS 35

good and projective quotient of the closed invariant subvariety Z̄ ∩Wss which we denote

by

Z̄ ∩Wss π0−→M.

By assumption (2) Gζ(W ss) = Z ∩Wss = Z̄ ∩Wss. We let π be the composition

W ss ζ−→ Gζ(W ss)
π0−→M.

We know already that M is projective. We will then verify that (π,M) is the good

quotient of the proposition. We consider first the commutative diagram

G×W ss
µ //

p

��

Gζ(W ss)

π0
��

W ss π // M

in which p is the projection and µ is defined by (g, w) 7→ gζ(w). There is an action of G

on G×W ss by g.(g, w) = (gθ(g)−1, g.w) and it follows that µ is G–equivariant.

Claim: The morphism µ is a geometric quotient of G×W ss by G.

Proof of the claim: We show first that the fibres of µ are the G–orbits. So let

(g, w) , (g′, w′) be two elements in G × W ss such that µ(g, w) = µ(g′, w′). Then

ζ(w) = g−1g′ζ(w′). By Lemma 5.3.1 g = g−1g′ ∈ G and g.(g, w) = (g′, w′). The

claim will be proved if we show that µ has local sections. For this it suffices to use the

remark following Lemma 5.3.1 and a local section of the quotient map G→ G/G.

Now we are going to verify the 4 properties of a good quotient for π. Clearly (i) is satisfied

by the definition of π.

Proof of (ii). It is clear that π is surjective. The morphism π is affine because π = π0 ◦ ζ
and π0 and ζ are affine.

Proof of (iii). Let U ⊂M be an open subset. Then

O(U) ⊂ O(π−1(U))G

since π is G–invariant. Conversely let f ∈ O(π−1(U))G. The f ◦ p ∈ O(G × π−1(U))G,

and since µ is a geometric quotient, f ◦ p descends to an f̄ ∈ O(µ(G×π−1(U))), which is

G–invariant. Now again f̄ descends because π0 is a good quotient. This proves equality

O(U) = O(π−1(U))G.

Proof of (iv). Let F1, F2 be disjoint, closed, G–invariant subvarieties of W ss. Then

p−1(F1), p−1(F2) are disjoint, closed and G–invariant subvarieties of G×W ss. Since µ is

a good quotient, µ(p−1(F1)), µ(p−1(F2)) are disjoint, closed and G–invariant in Gζ(W ss).

Finally, since π0 is a good quotient, π0 ◦µ(p−1(F1)), π0 ◦µ(p−1(F2)) are disjoint and closed

subvarieties of M . But π0 ◦ µ(p−1(Fi)) = π(Fi), which proves (iv).
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The normality of M follows from the fact that Gζ(W ss) is smooth and π0 is a good

quotient, [27], with respect to the reductive group G. That π becomes a geometric

quotient on the open set W s of stable points follows from the fact that the G–orbits in

Gζ(W s) = Z ∩Ws intersect W s in G–orbits. In particular the stabilizers of w in G and

of ζ(w) in G are isomorphic, such that all orbits have the same dimension.

The proof of (1) is a modification of the above. In any case π0 induces the geometric

quotient Z̄ ∩Ws π0−→M0 with M0 open in M . Now Gζ(W s) = Z ∩Ws is a π0-saturated

open subset of Z̄ ∩Ws, such that we obtain a geometric quotient Gζ(W s)
π0−→ M s with

M s ⊂ M0 open. By the same arguments as above applied to the diagram related to

G×W s → Gζ(W s) we conclude that W s π−→M s is a geometric quotient. �

Remarks: 1) The idea of this proof comes from [34], and has already been used in [13]

and [8].

2) If the second condition of (2) is not satisfied, we cannot even prove that W ss(G,Λ)

admits a good quasi–projective quotient, because Z ∩Wss might not be saturated. Of

course the projectivity of the quotient depends on this condition.

6.2. S–equivalence

We suppose that the hypotheses of proposition 6.1.1 are satisfied, with polarization Λ for

(W,G) and associated polarization Λ̃ for (W,G).

It is easy to define the Jordan-Hölder filtration of G-semi-stable elements of W with

respect to Λ̃ (cf.[21] for a more general situation). Using the preceding results we can

also define a Jordan-Hölder filtration of a G-semi-stable element of W with respect to Λ.

Let w = (φli) ∈ W ss(G,Λ). Then there exist a positive integer p, an element h ∈ H and

filtrations

M0
i = {0} ⊂M1

i ⊂ · · · ⊂Mp
i = Mi, N0

l = {0} ⊂ N1
l ⊂ · · · ⊂ Np

l = Nl,

with ∑
i

λi dim(M j
i ) =

∑
l

µl dim(N j
l )

for each j, such that h.w = (φli) satisfies

φli(H
∗
li ⊗M

j
i ) ⊂ N j

l ,

and that if

φjli : H∗li ⊗ (M j
i /M

j−1
i ) −→ N j

l /N
j−1
l

is the induced morphism, then (φjli)li is G-stable with respect to Λ for any j. This

filtration and h need not be unique, but p is unique and the (φjli), too, up to the order

and isomorphisms. Conversely, an element of W having such a filtration is G-semi-stable

with respect to Λ. We say that two elements (φli) and (φ′li) of W ss(G,Λ) are S-equivalent
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if they have Jordan-Hölder decompositions (φjli), (φ′li
j) respectively of the same length,

and if there exists a permutation σ of {1, . . . , p} such that (φ′li
j) is isomorphic to (φ

σ(j)
li )

for any j.

The following result is also easily deduced from 6.1.1.

6.2.1. Proposition: Let w,w′ ∈ W ss(G,Λ). Then π(w) = π(w′) if and only if w and w′

are S-equivalent.

It follows that the set of closed points of M is exactly the set of S-equivalence classes of

elements of W ss.

7. Comparison of semi–stability

We are going to investigate conditions for the weights of the polarizations under which a

(semi–)stable point w ∈ W is mapped to a (semi–)stable point ζ(w) ∈ W. For the

estimates we need the following constants which depend on the dimensions mi and the

composition maps Hli ⊗ Ai1 → Hl1.

7.1. Constants

Let K be the family of proper linear subspaces

K ⊂ ⊕
2≤i

Mi ⊗ Ai1

such that K is not contained in ⊕
2≤i
M ′

i ⊗Ai1 for any family (M ′
i) 6= (Mi) of subspaces. For

any l we let the map

⊕
2≤i

Mi ⊗ Ai1 ⊗H∗l1
δl−→ ⊕

2≤i
Mi ⊗H∗li

be induced by the maps Ai1 ⊗H∗l1 → H∗li associated to the composition maps, which are

supposed to be surjective, see 2.1. We introduce the constant

cl(m2, . . . ,mr) = sup
K∈K

ρl(K) with ρl(K) =
codim(δl(K ⊗H∗l1))

codim(K)
.

Similarly we define the constants di(n1, . . . , ns−1) in the dual situation. Let

⊕
l<s

N∗l ⊗H∗li
δ∨i←− ⊕

l<s
N∗l ⊗Bsl ⊗H∗si

be induced by the maps Bsl ⊗H∗si → H∗li and let L be the family of proper subspaces

L ⊂ ⊕
l<s
N∗l ⊗Bsl
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which are not contained in ⊕
l<s
N ′l ⊗Bsl for any family (N ′l ) 6= (N∗l ) of subspaces. Then we

define

di(n) = di(n1, . . . , ns−1) = sup
L∈L

codim(δ∨i (L⊗H∗si))
codim(L)

.

7.1.1. Lemma: If mi ≤ m̄i for all i ≥ 2, then cl(m2, . . . ,mr) ≤ cl(m̄2, . . . , m̄r).

Proof. It will be sufficient to assume that mi = m̄i for all i except one, m2 < m̄2 say.

Then let M̄i be vector spaces of dimensions m̄i and suppose that

M̄2 = L2 ⊕M2 and M̄i = Mi for i ≥ 3.

For any K ∈ K we consider the subspace

K̄ = (L2 ⊗ A21)⊕K ⊂ (M̄2 ⊗ A21)⊕ (⊕
2<j
Mj ⊗ Aj1).

Then codim(K̄) = codim(K) and also codim(δl(K̄ ⊗H∗l1)) = codim(δl(K ⊗H∗l1)) because

δl is a direct sum of the surjective operator Aj1⊗H∗l1 → H∗l1 such that δl(L2⊗A21⊗H∗l1)

equals L2 ⊗H∗l2 and δl(K̄ ⊗H∗l1) = (L2 ⊗H∗l2) ⊕ δl(K ⊗H∗l1). Therefore ρl(K) = ρl(K̄).

Once we have shown that also K̄ belongs to the analogous family K̄, the Lemma is proved.

To see this let M̄ ′
2 ⊂ M̄2 and M̄ ′

i = M ′
i ⊂Mi for i ≥ 3 be subspaces such that

K̄ ⊂ ⊕
2≤i
M̄ ′

i ⊗ Ai,1.

Then in particular

L2 ⊗ A21 ⊂ M̄ ′
2 ⊗ A21

and thus L2 ⊂ M̄ ′
2. But then M̄ ′

2 = L2 ⊕M ′
2 with M ′

2 = M̄ ′
2 ∩M2 and it follows that

K ⊂ ⊕
2≤i

M ′
i ⊗ Ai1.

Since K ∈ K we obtain M ′
i = Mi for all i and then also M̄ ′

2 = M̄2. �

7.2. Study of the converse I

Let Λ = (λ1, . . . λr,−µ1, . . . ,−µs) be a polarization on W and let Λ̃ = (α1, . . . , αr,

−β1, . . . ,−βs) be the associated polarization on W (the associated polarization has been

defined in 5.4). We had shown in 5.5.1 and 5.5.3 that if w ∈ W and ζ(w) is (semi–)stable

in W with respect to G and Λ̃, then so is w with respect to G and Λ. We are going

to derive sufficient conditions for the converse, i.e. whether ζ(w) is (semi–)stable if w is

(semi–)stable.

In the sequel we are going to use the following notation: Given a family M ′ = (M ′
i) of

subspaces M ′
i ⊂Mi we set

Pi(M
′) = ⊕

i≤j
M ′

j ⊗ Aji
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and call a subspace P ′i ⊂ Pi saturated if there is such a family with P ′i = Pi(M
′). Note that

in this case
∑
i

αip
′
i =

∑
i

λim
′
i. Similarly we introduce the spaces Ql(N

′) for a subfamily

N ′ = (N ′l ) of (Nl) and call them saturated.

Let w = (φli) be given and assume that ζ(w) is not semi–stable with respect to Λ̃. Then

there exist linear subspaces P ′i ⊂ Pi and Q′l ⊂ Ql such that

ξi(P
′
i ⊗ Ai,i−1) ⊂ P ′i−1, γ(w)(P ′1 ⊗H∗s1) ⊂ Q′s, ηl(Q

′
l+1 ⊗Bl+1,l) ⊂ Q′l

and such that ∑
i

αip
′
i −
∑
l

βlq
′
l > 0,

where as before the small characters denote the dimension of the spaces. If there were

subspaces M ′
i ⊂ Mi and N ′l ⊂ Nl with P ′i = Pi(M

′) and Q′l = Ql(N
′) as in 5.5.3, then

γ(w)(P ′1 ⊗H∗s1) ⊂ Q′s would imply that ϕli(M
′
i ⊗H∗li) ⊂ N ′l and we would have∑

i

λim
′
i −
∑
l

µln
′
l =
∑
i

αip
′
i −
∑
l

βlq
′
l > 0,

and w would not be semi–stable. In the following we are going to construct families

M ′′, N ′′ of subspaces M ′′
i ⊂ Mi and N ′′l ⊂ Nl such that P ′′i = Pi(M

′′) and Q′′l = Ql(N
′′)

are as close to P ′i , Q
′
l as possible and such that there is a useful estimate for∑

i

λim
′′
i −

∑
l

µln
′′
l .

Step 1: We can assume that P ′i has a decomposition

P ′i = M ′
i ⊕Xi in Mi ⊕ (⊕

i<j
Mj ⊗ Aji)

and such that Xr = 0. To derive this, we remark that for a subspace S of a direct sum

E⊕F of vector spaces there exists a linear map E
u−→ F such that the isomorphism

(
1 0
u 1

)
of

E ⊕ F transforms S into S ′ ⊕ S ′′, where S ′ is the projection of S in E and S ′′ = S ∩ F .

Using this and descending induction on i we can find an element h ∈ HL ⊂ GL, see 2.4,

such that the truncations θL,i(h) ∈ GL(Pi), see 5.3, map P ′i onto a direct sum M ′
i ⊕ Xi

for any i. Since ξi(P
′
i ⊗ Ai,i−1) ⊂ P ′i−1 we easily derive that

⊕
i<j

M ′
j ⊗ Aji ⊂ Xi ⊂ ⊕

i<j
Mj ⊗ Aji

for all possible i. We put

ρi = codim(⊕
i<j
M ′

j ⊗ Aji, Xi) = codim(Pi(M
′), P ′i ).

Note that ρr = 0.

Step 2: Let M ′′
1 , . . .M

′′
r be subspaces of M1, . . . ,Mr respectively such that

Pi(M
′′) ⊃ P ′i
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is minimal over P ′i for any i. Then M ′
i ⊂M ′′

i since these spaces are the first components

of P ′i ⊂ Pi(M
′′) respectively and we have M ′

1 = M ′′
1 . We let

σi =
∑
i≤j

(m′′j −m′j)aji = codim(Pi(M
′), Pi(M

′′)).

Step 3: We are going to define the subspaces N ′l ⊂ N ′′l ⊂ Nl as images.

Let P1 ⊗H∗l1
γl(w)−−−→ Nl be the map which is the sum of the composed maps

Mi ⊗ Ai1 ⊗H∗l1 →Mi ⊗H∗li
φli−→ Nl.

Then we define

N ′l = γl(w)(P ′1 ⊗H∗l1) = φl1(M ′
1 ⊗H∗l1) + γl(w)(X1 ⊗H∗l1)

and

N ′′l = γl(w)(P1(M ′′)⊗H∗l1) = φl1(M ′′
1 ⊗H∗l1) +

∑
2≤j

φlj(M
′′
j ⊗H∗lj).

It follows N ′l ⊂ N ′′l for any l.

Step 4: If the weights βl are supposed to be positive, we may assume that

γ(w)(P ′1 ⊗H∗s1) = Q′s and ηl(Q
′
l+1 ⊗Bl+1,l) = Q′l

for l < s. Otherwise we could choose subspaces Q̄′l ⊂ Q′l by descending induction as

images. Then −
∑
l

βlq̄
′
l ≥ −

∑
βlq
′
l would improve the assumption on the choice of the

spaces P ′i and Q′l. Now it follows that for any l

Q′l ⊂ Ql(N
′′)

because P ′1⊗H∗s1 is mapped to ⊕
l≤s
N ′′l ⊗B∗sl and the maps ηl are the identity on the spaces

N ′′m. Note that we even have Q′l ⊂ Ql(N
′) since γl | P ′1⊗H∗s1 factorises through ⊕

l≤s
N ′L⊗B∗sl

as follows from the definition of N ′l .

7.2.1. Lemma: Suppose that all β1, . . . , βs > 0, and let ∆ =
∑
i

λim
′′
i −

∑
l

µln
′′
l . Then

∆ >
∑
l

βlq
′
l −
∑
l

µln
′
l +
∑
i

αi(σi − ρi)−
∑
l

µlcl(m2, . . . ,mr)(σ1 − ρ1).

Proof. Let

Yl = δl(X1 ⊗H∗l1) ⊂ Zl = ⊕
2≤i

M ′′
i ⊗H∗li.

Since X1 is not contained in a direct sum with spaces smaller than M ′′
i we get

codim(Yl, Zl) ≤ cl(m
′′
2, . . . ,m

′′
r) codim(X1, ⊕

2≤j
M ′′

j ⊗ Aj1).
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By Lemma 7.1.1 and above definitions we get

codim(Yl, Zl) ≤ cl(m
′′
2, . . . ,m

′′
r)(
∑
1≤i

m′′i ai1 − p′1) = cl(m2, . . . ,mr)(
∑
2≤i

(m′′i −m′i)ai1 − ρ1).

The map
∑
j

φlj sends (M ′′
1 ⊗H∗l1)⊕Zl onto N ′′l by definition of N ′′l and also maps (M ′

1⊗

H∗l1)⊕ δl(X1 ⊗H∗l1) onto N ′l . Therefore, since M ′
1 = M ′′

1 , we have a surjection

Zl/Yl → N ′′l /N
′
l

and the dimension estimate

n′′l − n′l ≤ cl(m2, . . . ,mr)(
∑
2≤i

(m′′i −m′i)ai1 − ρ1).

Now we can derive the estimate of the Lemma. If there is no summation condition it is

understood that the sum has to be taken over all indices of the given interval. We have

∆ =
∑
i

λim
′′
i −

∑
l

µln
′′
l

=
∑
i

λim
′
i −
∑
l

µln
′
l +
∑
j

λj(m
′′
j −m′j)−

∑
l

µl(n
′′
l − n′l).

Substituting for λj in the third sum and replacing the first by∑
i

λim
′
i =

∑
i

αi dim(⊕
i≤j
M ′

j ⊗ Aji) =
∑
i

αi(p
′
i − ρi)

and using the definition of σi we get

∆ =
∑
i

αip
′
i −
∑
l

µln
′
l +
∑
i

αi(σi − ρi)−
∑
l

µl(n
′′
l − n′l).

Now using the assumed estimate for the first sum and the derived estimate for n′′l −n′l we

get

∆ >
∑
l

βlq
′
l −
∑
l

µln
′
l +
∑
i

αi(σi − ρi)−
∑
l

µlcl(m2, . . . ,mr)(σ1 − ρ1).

�

7.2.2. Corollary: Suppose that s = 1, let Λ = (λ1, . . . , λr,− 1
n1

) and let Λ̃ be the associ-

ated polarization (α1, . . . , αr,− 1
n1

). If all αi > 0 and if

λ2 ≥
a21

n1

c1(m2, . . . ,mr)

then

ζ−1Wss(G, Λ̃) = W ss(G,Λ) and ζ−1Ws(G, Λ̃) = W s(G,Λ).

Remarks: (1) Note that by the normalization of the polarizations we must have µ1n1 = 1

such that 1/n1 is the only possible value for µ1 = β1.
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(2) If all αi > 0, then the necessary conditions for W s(G,Λ) 6= ∅ and Ws(G, Λ̃) 6= ∅ are

both satisfied, see 5.4. The condition of the corollary is an extra condition.

Proof. Let us first assume that ζ(w) is not semi–stable and let the spaces P ′i and Q′1 be

as at the beginning of 7.2. The only β1 = 1/n1 is positive. Let the other spaces be

chosen as in 7.2. The difference
∑
βlq
′
l −

∑
µln

′
l reduces to q′1/n1 − n′1/n1, and since

N ′1 = γ(w)(P ′1 ⊗H∗11) = Q′1, this difference is zero. Therefore

∆ >
∑
i

αi(σi − ρi)−
1

n1

c1(m2, . . . ,mr)(σ1 − ρ1).

Since all the αi are positive we have∑
i

αi(σi − ρi) ≥ α1(σ1 − ρ1) + α2(σ2 − ρ2).

Moreover, ξ2 induces a surjection

P2(M ′′)⊗ A21/P
′
2 ⊗ A21 → P1(M ′′)/P ′1

because M ′
1 = M ′′

1 . Therefore we obtain the dimensions estimate (σ2 − ρ2)a21 ≥ σ1 − ρ1.

It follows that

∆ > (− 1

n1

c1(m2, . . . ,mr) + α1 +
α2

a21

)(σ1 − ρ1).

Since λ2 = a21α1 + α2 ≥ a21
n1
c1(m2, . . . ,mr) the last expression is non–negative. This

proves the case of semi–stability. For the case of stability we assume that w is stable and

that ζ(w) is already semi–stable. If ζ(w) were not stable, we would find subspaces P ′i and

N ′1 as in 7.2 such that
∑
αip
′
i − µ1n

′
1 = 0 and such that at least one P ′i is different from

Pi. Now let the spaces M ′′
i and N ′′I be constructed as above. Then we have

∆ ≥
∑
i

αisi −
c1

n1

s1 ≥
∑
2<i

αisi + (λ2 −
c1

n1

a21)
s1

a21

≥ 0,

where si = σi − ρi = dim(Pi(M
′′)/P ′i ), and where we use that s2a21 ≥ s1. If the family

M ′′ is different from M , then 0 > ∆, and if it is equal, then ∆ = 0. In order to obtain a

contradiction we have to show that M ′′ is different from M . Assume that it is not. Then

si = dim(Pi/P
′
i ) and we must have si = 0 for i ≥ 3 and s1(λ2− c1

n1
a21) = 0. If also s1 = 0,

then by the above estimate also s2 = 0, contradicting the choice of the P ′i . Therefore

s1 6= 0 and λ2 = c1
n1
a21. But then ∆ = α2(s2 − s1

a21
) and we have s2a21 = s1. From this it

is easy to see that P ′i = Pi(M̃) where M̃i = Mi for i 6= 2 and M̃2 = M ′
2 6= M2. Then we

have ∑
i

αim̃i − µ1n
′
1 =

∑
i

λip
′
i − µ1n

′
1 = 0

which contradicts the stability of w. �
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7.3. Study of the converse II

We keep the notation of 7.2 and compare the (semi–)stability of points in W and W in

two steps, each reducing to the case s = 1. We consider the intermediate space

V = WL ⊕ ⊕
1≤l≤s

Hom(P1 ⊗H∗l1, Nl)

and the maps

W
ζ1−→ V

ζ2−→W.

Here ζ1 is defined by

w 7→ (ξ2, . . . , ξr, γ1(w), . . . , γs(w)),

where γl(w) is the map defined by w = (φli) as in 7.2. The map ζ2 is defined by

(x2, . . . , xr, γ1, . . . , γs) 7→ (x2, . . . , xr, γ, η1, . . . , ηs−1),

where now γ : P1 ⊗ H∗s1 → Qs is induced by the tuple (γ1, . . . , γs) as the sum of the

compositions

P1 ⊗H∗s1 → Nl ⊗Hl1 ⊗H∗s1 → Nl ⊗B∗sl
which are induced by the γl and the pairings Bsl ⊗Hl1 → Hs1. It is obvious that

ζ = ζ2 ◦ ζ1.

Note that both ζ1 and ζ2 are injective by the same reason as for ζ.

On V the group GL ×GR acts naturally and we have the embedding

G = GL ×GR
θL×id
↪→ GL ×GR,

see 5.3. It follows as in section 5 that ζ1 is compatible with the group actions and

that w,w′ ∈ W are on the same G–orbit if and only if ζ1(w), ζ1(w′) are on the same

GL × GR orbit. Similarly we have the group embedding GL × GR ↪→ GL × GR = G

and ζ2 is equivariant and satisfies the analogous statements for the orbits. Given the

polarization Λ = (λ1, . . . , λr,−µ1, . . . ,−µs) for (W,G) we consider the polarization Λ =

(α1, . . . , αr,−µ1, . . . ,−µs) for (V,GL × GR) where the αi are defined as in 5.4. As in

5.5.1, 5.5.3 it is easy to show that

ζ−1
1 Vss(GL ×GR,Λ) ⊂ W ss(G,Λ) and ζ−1

1 Vs(GL ×GR,Λ) ⊂ W s(G,Λ)

and similarly that

ζ−1
2 Wss(G, Λ̃) ⊂ Vss(GL ×GR,Λ) and ζ−1

2 Ws(G, Λ̃) ⊂ Vs(GL ×GR,Λ).

Note that as for W ss,W s, we have unipotent sub-orbits in Vss and Vs, see 4.1. We are

going to show that in all 4 cases equality holds under suitable conditions on the weights

of the polarizations. Then the same is true for ζ.
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7.4. Estimate for ζ1

Let w = (φli) in W be given and assume that ζ1(w) is not semi–stable. Then there are

linear subspaces P ′i ⊂ Pi and N ′l ⊂ Nl and a unipotent element h ∈ HR such that for

(γ′1, . . . , γ
′
s) = h.(γ1, . . . , γs) we have

ξi(P
′
i ⊗ Ai,i−1) ⊂ P ′i−1 and γ′l(P

′
l ⊗H∗l1) ⊂ N ′l

for all i ≥ 2 and all l, and such that∑
i

αip
′
i −
∑
l

µln
′
l > 0.

We may assume that h = id because HR acts on W in the same way and we can replace

w by h.w. Moreover, we may assume that all N ′l are equal to γl(P
′
1⊗H∗l1) since all µl > 0.

Now we proceed as in 7.2 replacing the spaces Ql by Nl. Therefore we find subspaces

M ′
i ⊂M ′′

i ⊂Mi such that M ′
1 = M ′′

1 and such that

P ′i = M ′
i ⊕Xi , Pi(M

′) ⊂ P ′i ⊂ Pi(M
′′)

and the family M ′′ is minimal with this property. We denote

ρi = codim(Pi(M
′), P ′i ) , σi = codim(Pi(M

′), Pi(M
′′))

and let

N ′′l = γl(P1(M ′′)⊗H∗l1) ⊃ N ′l .

As in 7.2.1 we consider the surjection

Zl/Yl → N ′′l /N
′
l ,

where Yl ⊂ Zl are the same, and we get the estimate

n′′l − n′l ≤ cl(m2, . . . ,mr)(σ1 − ρ1)

for any l. The estimation of the discriminant ∆ is now simpler than in 7.2.

7.4.1. Lemma: With the above notation

∆ :=
∑
i

λim
′′
i −

∑
l

µln
′′
l >

∑
i

αi(σi − ρi)−
∑
l

µlcl(m)(σ1 − ρ1)

where cl(m) = cl(m2, . . . ,mr).

Proof. By replacing dimensions and inserting the estimate for n′′l − n′l as in 7.2 we get

∆ =
∑
i

αip
′
i −
∑
l

µln
′
l +
∑
i

αi(σi − ρi)−
∑
l

µl(n
′′
l − n′l)

>
∑
i

αi(σi − ρi)−
∑
l

µlcl(m)(σ1 − ρ1).

�



QUOTIENTS BY NON-REDUCTIVE GROUPS 45

7.4.2. Corollary: Let Λ = (λ1, . . . , λr,−µ1, . . . ,−µs) be a polarization for W and let

Λ̄ = (α1, . . . , αr,−µ1, . . . ,−µs) be the associated polarization for V as in 7.3. If all

αi > 0 and

λ2 ≥ a21

∑
l

µlcl(m)

then

ζ−1
1 Vss(GL ×GR, Λ̄) = W ss(G,Λ) and ζ−1

1 Vs(GL ×GR, Λ̄) = W s(G,Λ).

Proof. The proof is the same as for 7.2.2, because the spaces P ′i and Pi(M
′′) are defined

in the same way and we thus get the estimate (σ2 − ρ2)a21 ≥ σ1 − ρ1. �

7.5. Estimate for ζ2

The analogous estimate for ζ2 follows by duality while we can assume that s = 1 or r = 1.

The proof could be done by formally transform it into a dual situation which is similar to

that of 7.4, but it is better to keep direct track of the weights. Let (x2, . . . , xr, γ1, . . . γs)

be given in WL ⊕ V and assume that its image under ζ2 is not semi–stable. Then there

are subspaces P ′i ⊂ Pi and Q′l ⊂ Ql such that

xi(P
′
i ⊗ Ai,i−1) ⊂ P ′i−1 , γ(P ′i ⊗H∗s1) ⊂ Q′s , ηl(Q

′
l+1 ⊗Bl+1,l) ⊂ Q′l,

where γ is defined as in 7.3, and such that∑
i

αip
′
i −
∑
l

βlq
′
l > 0.

We assume that all αi ≥ 0, and then we may assume that P ′i is maximal, i.e. the inverse

image of P ′i−1 ⊗ A∗i,i−1 under Pi → Pi−1 ⊗ A∗i,i−1 for i ≥ 2, and similarly P ′1 in P1 under

P1 → Qs ⊗Hs1. As in 7.4 we can find subspaces N ′l ⊂ Nl such that

Q′l = N ′l ⊕X ′l and hence (Ql/Q
′
l)
∗ = (Nl/N

′
l )
∗ ⊕Xl.

We choose subspaces N ′′l ⊂ N ′l which are maximal such that

Ql(N
′′) ⊂ Q′l ⊂ Ql(N

′).

We have N ′′s = N ′s. We let P ′′1 be the inverse image of Qs(N
′′) under P1 → Qs ⊗ Hs1.

Then P ′′1 ⊂ P ′1. Furthermore we let inductively P ′′i ⊂ P ′i be the inverse images for i ≥ 2.

Then we have injections

(P ′i/P
′′
i )⊗ Ai,i−1 → P ′i−1/P

′′
i−1

and induced by factorization the images

P ′i/P
′′
i ⊗ Ai,i−1 ⊗ . . .⊗ A21 � (P ′i/P

′′
i )⊗ Ai1 � P ′1/P

′′
1 .

The induced injections

P ′i/P
′′
i � (P ′1/P

′′
1 )⊗ A∗i1
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imply the dimension estimates

p′i − p′′i ≤ ai1(p′1 − p′′1)

for i ≥ 2. Next we consider the homomorphism

Z1 = ⊕
l<s

(Nl/N
′′
l )∗ ⊗H∗l1

δ∨1←− ⊕
l<s

(Nl/N
′′
l )∗ ⊗Bsl ⊗H∗s1.

We have Xs ⊂
⊕
l<s

(Nl/N
′′
l )∗ ⊗Bsl and consider the subspace

Y1 = δ∨1 (Xs ⊗H∗s1) ⊂ Z1.

By the definition of the constant d1(n) = d1(n1, . . . , ns−1) we get

dim(Z1/Y1) ≤ d1(n) codim(Xs) = d1(n)(σs − ρs)

where

σl = codim(Q∗l (N/N
′), Q∗l (N/N

′′)) and ρl = codim(Q∗l (N/N
′), (Ql/Q

′
l)
∗).

Further we have a surjective map

Z1/Y1 → (P1/P
′′
1 )∗/(P1/P

′
1)∗

which is induced by the mapQ∗s⊗H∗s1 → P ∗1 and the induced surjectionQ∗s(N/N
′′)⊗H∗s1 →

(P/P ′′1 )∗, since N ′′s = N ′s. So we get

p′1 − p′′1 ≤ d1(n)(σs − ρs).

Now we can estimate the discriminant in

7.5.1. Lemma: Let all the αi be non-negative and let ∆ :=
∑
i

αip
′′
i −

∑
l

µln
′′
l . Then

∆ >
∑
l

βl(σl − ρl)−
∑
i

αiai1d1(n)(σs − ρs).

Proof. Since
∑
i

αipi =
∑
l

µlnl we also have

∆ =
∑
l

µl(nl − n′′l )−
∑
i

αi(pi − p′′i ).

with the same steps as in the previous proofs we get

∆ =
∑
i

αip
′
i −
∑
l

βlq
′
l +
∑
l

βl(σl − ρl)−
∑
i

αi(p
′
i − p′′i )

Inserting the assumption on the first difference and the estimate for p′i − p′′i we get the

result. �

As in the previous cases we obtain the
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7.5.2. Corollary: In the above notation let all αi > 0, and all βl > 0, and let

µs−1 ≥ bs,s−1d1(n)
∑
i

αiai1.

Then

ζ−1
2 Wss(G, Λ̃) = Vss(GL ×GR, Λ̄) and ζ−1

2 Ws(G, Λ̃) = Vs(GL ×GR, Λ̄).

Proof. : In the notation of 7.5 there is a surjection (Qs−1(N ′)/Q′s−1)∗ ⊗ Bs,s−1 →
(Qs(N

′)/Q′s)
∗ because N ′′s = N ′s. Therefore (σs−1− ρs−1)bs,s−1 ≥ σs− ρs. If the condition

of the Corollary is satisfied, then ∆ > 0 follows, where we use µs−1 = βsbs,s−1 + βs−1. �

Combining the results of 7.4.2 and 7.5.2 we get the

7.5.3. Proposition: Let Λ = (λ1, . . . , λr,−µ1, . . . ,−µs) be a polarization for (W,G) and

let Λ̃ = (α1, . . . , αr,−β1, . . . ,−βs) be the associated polarization for (W,G). Suppose that

all αi > 0, and all βl > 0 and that

λ2 ≥ a21

∑
l

µlcl(m) and µs−1 ≥ bs,s−1d1(n)
∑
i

αiai1.

Then

ζ−1Wss(G, Λ̃) = W ss(G,Λ) and ζ−1Ws(G, Λ̃) = W s(G,Λ).

8. Projectivity conditions

The projectivity of the quotient in 6.1.1 depends on the second condition in (2), i.e.

whether the boundary Z̄ r Z of the saturated set contains no semi–stable points of W.

Again this condition depends on the chosen polarization and conditions for the weights.

In order to derive these conditions in some cases we describe the boundary in terms

independent of the group action.

8.1. Saturated boundary.

The elements of W are tuples w = (x2, . . . , xr, γ, y1, . . . , ys−1) of linear maps

Pi ⊗ Ai,i−1
xi−→ Pi−1, P1 ⊗H∗s1

γ−→ Qs, Ql+1
yl−→ B∗l+1,l ⊗Ql

If w ∈ Z, there are an element w ∈ W and automorphisms ρi ∈ Aut(Pi) , σl ∈ Aut(Ql)

such that

xi = ρi−1 ◦ ξi ◦ (ρ−1
i ⊗ id), γ = σ1 ◦ γ(w) ◦ (ρ−1

1 ⊗ id), yl = (id⊗ σl) ◦ ηl ◦ σ−1
l+1.
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Here id stands for the different identities of the spaces A,B and H. We let x̃i respectively

ξ̃i be the mapping

Pi ⊗ Ai,i−1 ⊗ . . .⊗ A21 → Pi−1 ⊗ Ai−1,i−2 ⊗ . . .⊗ A21

induced by xi respectively ξi for i ≥ 3. From the relations between the xi and ξi it follows

easily that for each i ≥ 3 the composition x2 ◦ x̃3 ◦ . . . ◦ x̃i has a factorization

Pi ⊗ Ai,i−1 ⊗ · · · ⊗ A21

����

// P1

Pi ⊗ Ai1
x1i

66

where the vertical map is the surjection induced by the pairings. This follows from the

commutative diagrams induced by the automorphism ρi and because ξ2◦ ξ̃3◦· · ·◦ ξ̃i admits

such a factorization for each i ≥ 3. We put x21 = x2. By the dual description for the

maps yl we are given factorizations

B∗sl ⊗Ql��

��
Qs

yls
66

// B∗s,s−1 ⊗ . . .⊗B∗sl ⊗Ql

of the maps ỹl ◦ . . . ◦ ỹs−2 ◦ ys−1 for l ≤ s − 2. By similar arguments there are also

factorizations

Pi ⊗ Ai1 ⊗H∗s1

����

x1i⊗id // P1 ⊗H∗s1
γ // Qs

Pi ⊗H∗si
γsi

33

(Li)

for all i ≥ 2 and dually factorizations

Ql ⊗Hl1��

��
P1

γl1

33

γ
// Qs ⊗Hs1

yls⊗id
// B∗sl ⊗Ql ⊗Hs1

(Rl)

for all l. Moreover, there are further factorizations of the induced composed maps

Pi ⊗H∗si ⊗Bsl

����

γsi⊗id// Qs ⊗Bsl

ỹls // Ql

Pi ⊗H∗li
Φli

44

(Lli)
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and dually

Ql ⊗Hli��

��
Pi

Ψli

44

x̃1i

// P1 ⊗ A∗i1 γl1⊗id
// Ql ⊗Hl1 ⊗ A∗i1

(Rli)

All these factorizations are based on mappings induced by the pairings. All factorization

conditions are independent of the chosen automorphisms. One can rediscover the original

components φli of w from Φli or Ψli if xj = ξj and yl = ηl for all j and all l. In fact we

have

8.1.1. Lemma: Let w = (x2, . . . , xr, γ, y1, . . . , ys−1) ∈W. Then w ∈ Z if and only if

(1) rank xi =
∑

i≤jmjaj,i−1 for i ≥ 2

(1∗) rank yl =
∑

k≤l bl+1,knk for l ≤ s− 1

(2) x2 ◦ x̃3 ◦ . . . ◦ x̃i has a factorization Pi ⊗ Ai1
xi1−→ P1 for i ≥ 3

(2∗) ỹl ◦ . . . ◦ ỹs−2 ◦ ys−1 has a factorization Qs
yls−→ B∗sl ⊗Ql for l ≤ s− 2

(3) γ ◦ (x1i ⊗ id) has factorizations (Li) and (Lli)

(3∗) (yls ⊗ id) ◦ γ has factorizations (Rl) and (Rli).

Proof. If w ∈ Z, the three conditions are satisfied by the above, where rank xi is the

dimension of the image of ξi and rank yl is the rank of ηl as the map Ql+1 → B∗l+1,l ⊗
Ql. Let conversely w satisfy these conditions. We proceed by descending induction to

find automorphisms ρi by which the xi can be identified with the ξi. Note that the

factorization conditions are maintained under automorphisms. Since xr has maximal

rank it is an injection Mr ⊗ Ar,r−1 → Mr−1 ⊕Mr ⊗ Ar,r−1 = Pr−1. Hence we can find

an automorphism ρr−1 of Pr−1 such that ρr−1 ◦ xr becomes ξr. Let us assume now that

modulo some automorphisms ρr−1, . . . , ρi we have xj = ξj for j > i. We are going to find

an automorphism ρi−1 such that ρi−1 ◦ xi = ξi. Because of the rank condition we can

assume that ⊕i≤jMj⊗Aj,i−1 is the image of xi in Pi−1. Now using all the xi ◦ ξ̃i+1 ◦ . . .◦ ξ̃k
we find that xi has a factorization through the standard map

Pi ⊗ Ai,i−1 → ⊕
i≤j
Mj ⊗ Aj,i−1

x̄i−→Mi−1 ⊕ ⊕
i≤j
Mj ⊗ Aj,i−1.

induced by the pairings. Now the rank condition implies that x̄i induces an automorphism

on ⊕i≤jMj ⊗ Aj,i−1. This can be used to make x̄i the identity via an automorphism

ρ′i−1. Now xi = ξi. By the analogous dual procedure we can also find automorphism

σl ∈ Aut(Ql) such that we can assume that yl = ηl. Finally the factorizations (Lli)

or (Rli) resulting from (3) and (3∗) yield mappings Φli or Ψli from which we get φli as

composition

Mi ⊗H∗li � Pi ⊗Hli
Φli−→ Ql � Nl.
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It follows from the special type of the ξi and ηl that these are original components of an

element w = (φli) inducing γ(w) = γ. �

8.1.2. Corollary: With the same notation as in 8.1.1, if w ∈ Z̄ r Z, then

(1) rank xi ≤ rank ξi and rank yl ≤ rank ηl with strict inequality for at least one i or l,

and

(2), (2∗), (3), (3∗) of 8.1.1 are satisfied.

Proof. All conditions are closed and thus hold for points in Z̄. If w ∈ Z̄rZ then by 8.1.1

equality in (1) cannot hold for all i and l. �

We are going to derive effective sufficient conditions for the projectivity of the quotient

in the cases (2, 1), (2, 2), (3, 1).

8.1.3. Proposition: Let the polarizations Λ and Λ̃ be as in proposition 7.5.3 and let

Z = Gζ(W ). Then Z̄ r Z contains no semi–stable point in the following cases

(i) (r, s) = (2, 1) and λ2 ≥ c1(m2)a21µ1

(ii) (r, s) = (2, 2) and

λ2 ≥ (µ1c1(m2)+µ2(c2(m2)−b21c1(m2))a21, µ1 ≥ (λ1(d1(n1))−d2(n1)a21)+λ2d2(n1))b21.

Proof. We present only the case (ii), case(i) is an easier version of (ii). Let (x2, γ, y1) ∈ Z̄r
Z and let us assume that rank x2 is not maximal. Let K be the kernel of M2⊗A21

x2−→ P1

and let M ′
2 ⊂M2 be the smallest subspace such that K is contained in M ′

2⊗A21. We put

P ′2 = M ′
2,

P ′1 = x2(M ′
2 ⊗ A21) , Q′2 = γ(P ′1 ⊗H∗21) and Q′1 = y1(Q′2 ⊗B21)

and consider

∆ = α1p
′
1 + α2p

′
2 − β1q

′
1 − β2q

′
2.

By definition p′1 = dim(M ′
2⊗A21/K). Diagram (L2) reduces in our case, with M2 replaced

by M ′
2, to

M ′
2 ⊗ A21 ⊗H∗21

δ2 ����

x2⊗id// // P ′1 ⊗H∗21

γ // // Q′2

M ′
2 ⊗H∗22

γ22

33 33

and γ22 vanishes on δ2(K ⊗H∗21) because K is the kernel of x2. Therefore

q′2 ≤ dim(M ′
2 ⊗H∗22/δ2(K ⊗H∗21)) ≤ c2(m′2)p′1.
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In order to estimate q′1 we consider diagram (L21) enlarged by the commutative square of

induced pairings

M ′
2 ⊗ A21 ⊗H∗21 ⊗B21

����

// // M ′
2 ⊗H∗22 ⊗B21

����

γ22⊗id// // Q′2 ⊗B21

y1 // // Q′1

M ′
2 ⊗ A21 ⊗H∗11

δ1 // // M ′
2 ⊗H∗12

Φ12

33 33 .

Again the map Φ12 vanishes on δ1(K ⊗H∗11) and we get

q′1 ≤ dim(M ′
2 ⊗H∗12/δ1(K ⊗H∗11)) ≤ c1(m′2)p′1.

Now we have the estimate

∆ ≥ α2p
′
2 + (α1 − β1c1(m2)− β2c2(m2))p′1.

Therefore the condition α1 ≥ β1c1(m2) + β2c2(m2) would be sufficient, because α2p
′
2 > 0.

We modify the last estimate as follows. Since the weights in case (2, 2) are related by

λ1 = α1

λ2 = a21α1 + α2
and

µ2 = β2

µ1 = β1 + β2b21

and since we have

λ2 − a21λ1 > 0 and p′2a21 − p′1 > 0,

we get the estimate

∆ > (
λ2

a21

− µ1c1(m2)− µ2c2(m2) + µ2c1(m2)b21)p′1.

This shows that ∆ > 0 if x2 is degenerate and the first condition of (ii) is satisfied. In

case rank y1 is not maximal the second condition follows by the dual procedure. �

8.2. The case (3,1)

In order to derive a similar result in case (3, 1) we introduce the additional constant c′3(m3)

analogous to c3(m3) := c1(0,m3) in 7.1. Let

M3 ⊗ A32 ⊗H∗12
τ−→M3 ⊗H∗13

be the linear map induced by the pairing and let K be the family of all proper subspaces

K ⊂M3 ⊗A32 which are not contained in M ′
3 ⊗A32 for any subspace M ′

3 ⊂M3 different

from M3. We put

c′3(m3) = sup
K∈K

codim(τ(K ⊗H∗12))

codim(K)

For brevity we write c′3 = c′3(m3), c3 = c3(m3) = c1(0,m3) and c1 = c1(m2,m3).
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8.2.1. Proposition: Let (r, s) = (3, 1), let Λ = (λ1, λ2, λ3,−µ1) be a polarization for

(W,G) and Λ̃ = (α1, α2, α3,−µ1) be the associated polarization for (W,G), and assume

that all αi > 0. (In this case µ1 = 1
n1

.) If

(1) α2c3 + λ1c
′
3 ≥ µ1c3c

′
3

(2) λ2 ≥ a21µ1c1

(3) λ3 ≥ a31µ1c1

then Z̄ r Z contains no semi–stable point.

Moreover, condition (1) may be replaced by any of the conditions

(i) λ3 ≥ µ1c
′
3a32 + a31λ1

(ii) λ3 ≥ µ1c3a31 + a32α2

(iii) λ3 ≥ µ1c3a32a21

Remark: Z̄ r Z contains no semi–stable point also in each of the following cases

(a) λ1 ≥ µ1c3

(b) α2 ≥ µ1c
′
3

(c) α3 ≥ µ1c3a31 or α3 ≥ µ1c
′
3a32.

This can be seen by a direct estimate of the discriminant ∆ after substituting for q′1 in

the following proof.

Proof. Let (x2, x3, γ) ∈ Z̄rZ. We distinguish the following cases of degeneracy of x2 and

x3.

case 1: x3 is injective: Then by the proof of 8.1.1 we can assume that x3 = ξ3 is the

canonical embedding and that x13 and x2 have a factorization x̄2 in the following diagram

M3 ⊗ A32 ⊗ A21

����

// ξ̃3 // (M2 ⊕M3 ⊗ A32)⊗ A21

��

x2 // P1

M3 ⊗ A31

x13

22

//
ξ′3

// M2 ⊗ A21 ⊕M3 ⊗ A31

x̄2

66 .

Here also ξ′3 is the canonical embedding. Moreover it is easy to verify that in this case

also the composed map γ ◦ (x̄2 ⊗ id) admits a decomposition

(M2 ⊗ A21 ⊗H∗11)⊕ (M3 ⊗ A31 ⊗H∗11)
δ1−→ (M2 ⊗H∗12)⊕ (M3 ⊗H∗13)

γ̄−→ Q1.

Here K = Ker(x̄2) 6= 0 since x̄2 cannot be injective by the assumption on its rank. We

choose subspaces M ′
2,M

′
3 such that

K ⊂M ′
2 ⊗ A21 ⊕M ′

3 ⊗ A31
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and such that these subspaces are minimal with this property. Now we consider the spaces

P ′3 = M ′
3, P ′2 = M ′

2 ⊕ (M ′
3 ⊗ A32), P ′1 = x2(P ′2 ⊗ A21), Q′1 = γ(P ′1 ⊗H∗11)

and their discriminant

∆ = α1p
′
1 + α2p

′
2 + α3p

′
3 − β1q

′
1.

By the definition of the constant c1(m′2,m
′
3) and the diagram

(M ′
2 ⊗ A21 ⊕M ′

3 ⊗ A31)⊗H∗11

����

// // P ′1 ⊗H∗11
// // Q′1

M ′
2 ⊗H∗12 ⊕M ′

3 ⊗H∗13

33 33

we obtain the estimate

q′1 ≤ c1(m′2,m
′
3)p′1 ≤ c1(m2,m3)p′1,

where by the definition of P ′1 we have p′1 = m′2a2 +m′3a31 − k. Inserting this we obtain

∆ ≥ (µ1c1 − λ1)k + (λ2 − µ1c1a21)m′2 + (λ3 − µ1c1a31)m′3

If µ1c1−λ1 > 0, conditions (2) and (3) imply that ∆ > 0. If, however, λ1 ≥ µ1c1 we have

the direct estimate

∆ ≥ (λ1 − µ1c1)p′1 + α2p
′
2 + α3p

′
3 > 0.

This proves the proposition in the first case.

case 2: x3 is not injective

Here we let K denote the kernel of x3 and we choose a subspace M ′
3 ⊂ M3 such that

K ⊂M ′
3 ⊗ A32 and M ′

3 is minimal with this property. Then we consider the subspaces

P ′3 = M ′
3, P ′2 = x3(M ′

3 ⊗ A32), P ′1 = x2(P ′2 ⊗ A21), Q′1 = γ(P ′1 ⊗H∗11).

We have the exact sequences

0 → K → M ′
3 ⊗ A32

x2−→ P ′2 → 0

0 → L → M ′
3 ⊗ A31

x13−−→ P ′1 → 0

where L denotes the kernel of x13. From the factorization properties restricted to the

spaces P ′i and Q′1 we extract the following commutative diagram of surjections

M ′
3 ⊗ A31 ⊗H∗11

δ1
��

// P ′1 ⊗H∗11

γ

��
M ′

3 ⊗ A32 ⊗ A21 ⊗H∗11

44

**

M ′
3 ⊗H∗13

γ13 // Q′1

M ′
3 ⊗ A32 ⊗H∗12

//

τ

OO

P ′2 ⊗H∗12

γ12

OO

.
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From this we get again the estimates

q′1 ≤ c3(m′3)p′1 ≤ c3(m3)p′1 and q′1 ≤ c′3(m′3)p′2 ≤ c′3(m3)p′2,

where p′1 = m′3a31− l and p′2 = m′3a32− k. Let 0 < t < 1 be a real number. Then we have

q′1 ≤ tc′3p
′
2 + (1− t)c3p

′
1.

Substituting this into the discriminant we get

∆ ≥ (λ1 − (1− t)µ1c3)p′1 + (α2 − tµ1c
′
3)p′2 + α3m

′
3.

Now condition (1) enables us to find t with

1− λ1

µ1c3

≤ t ≤ α2

µ1c′3
,

such that the first two terms of the estimate are non–negative. Therefore ∆ > 0, and

again (x2, x3, γ) is not semi–stable.

In order to show that (1) can be replaced by one of (i), (ii) or (iii) we substitute αi and

p′i and get after cancelation

∆ = −λ1l − α2k + λ3m
′
3 − µ1q

′
1

≥ −λ1l − α2k + λ3m
′
3 − µ1c

′
3(m′3a32 − k)

= −λ1l + (µ1c
′
3 − α2)k + (λ3 − µ1c

′
3a32)m′3 .

If α2 ≥ µ1c
′
3, then by a direct estimate we get ∆ > 0. Therefore we may assume that

µ1c
′
3 − α2 > 0. Since in addition l ≤ m′3a31, we get

∆ > (λ3 − µ1c
′
3a32 − a31λ1)m′3.

This shows that (1) can be replaced by (i). In the same way one shows that (1) can be

replaced by (ii), using the other estimate of q′1. That finally (1) can be replaced by (iii)

can be shown by substituting first m′3 ≥
p′2
a32

and canceling α2p
′
2 and then substituting

p′2 ≥
p′1
a21

to get

a32a21∆ ≥ λ1p
′
1(a32a21 − a31) + (λ3 − µ1c3a32a21)p′1.

�

8.3. Proof of theorems 1.5.1 and 1.5.2

Theorem 1.5.1 is an immediate consequence of proposition 6.1.1, corollary 7.2.2 and propo-

sition 8.1.3. Theorem 1.5.2 follows immediately from theorem 1.5.1 and 9.1.
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9. Examples

9.1. Constants

We give here some constants (cf. 7.1) used in the examples. The following result is proved

in [12], prop. 6.1.

9.1.1. Proposition : For homomorphisms of type

(M1 ⊗O(−2))⊕ (M2 ⊗O(−1))→ N1 ⊗O

on a projective space of dimension n we have

c1(m) =
m(m− 1)

2(m(n+ 1)− 1)
if m ≤ n+ 1, c1(m) =

n+ 1

2(n+ 2)
if m ≥ n+ 1,

9.1.2. Lemma: For homomorphisms of type

M1 ⊗O(−d)⊕O(−2)⊕O(−1)→ N1 ⊗O

on the projective space PV the constant c1(1, 1) is dim(V )/ dim(Sd−1V ).

Proof. We put s(p) = dim(SpV ). The homomorphisms δ1 of 7.1 reduces here to the

canonical map

(Sd−2V ∗ ⊕ Sd−1V ∗)⊗ SdV → S2V ⊕ V.
If K is a proper subspace of Sd−2V ∗ ⊕ Sd−1V ∗ which is not contained in one of the

summands, it contains elements (f, g) with f 6= 0 or elements (f, g) with g 6= 0. But since

f ⊗ SdV → S2V is surjective, the map δ(K)→ S2V is surjective. Hence codim(δ(K)) ≤
s(1). If K contains an element (0, g) with g 6= 0, then δ(K) = S2V ⊕ V . For then

δ(K) contains V , and since δ(K) → S2V is surjective, if follows that δ(K) = S2V ⊕ V .

Therefore, if codim(δ(K)) > 0, there is a basis (f1, g1), . . . , (fk, gk) of K with f1, . . . fk
linearly independent, i.e. dim(K) ≤ s(d−2) or codim(K) ≥ s(d−1). Therefore c1(1, 1) ≤
s(1)/s(d− 1). But now we can find subspaces which realize this bound. For any z ∈ V ∗
we let K be the space of all (f, fz), f ∈ Sd−2V ∗. Then K ∼= Sd−2V ∗ and it follows also

that in this case δ(K) ∼= S2V . Then codim(δ(K))/ codim(K) = s(1)/s(d− 1). �

9.2. First example of type (2, 1)

We use the abbreviation mF for Cm ⊗ F for a sheaf and a positive integer and consider

here homomorphisms

2O(−2)⊕O(−1)
(φ1,φ2)−−−−→ 3O

over P2 of type (2, 1). The polarization Λ = (λ1, λ2,−µ1) is supposed to be proper

for W and W, i.e. λi > 0 and αi > 0 for all i. The only constant involved here is

c1(m2) = c(1) = 0. Therefore the conditions of 7.2.2 and 8.1.3 are automatically satisfied

by α2 = λ2 − 3λ1 > 0. Hence all the quotients of W ss(G,Λ) will be good and projective
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under this condition. Since 2λ1 + λ2 = 1 and 3µ1 = 1, we can replace the polarization by

the rational number t = λ2 >
3
5

(cf. 9.3). The numerical condition for (semi–)stability

then becomes

∆ =
1− t

2
m1 + tm2 −

1

3
n < 0 (≤ 0),

where (m1,m2, n) is the dimension vector of a (φ1, φ2)–invariant sub-family of vector

spaces, such that m1 ≤ 2, m2 ≤ 1, n ≤ 3. One can easily check that t = 2
3

is the only

value for which ∆ might be zero, and this is the case for the values (0, 1, 2) and (2, 0, 1).

And indeed, the homomorphisms φ given by matrices ∗ ∗ 0

∗ ∗ z2

∗ ∗ z3

 and

 0 0 z1

0 0 z2

∗ ∗ z3


with generically chosen entries and linear forms zi are semi–stable and not stable for t = 2

3
.

9.2.1. The case t > 2
3

It is easy to show that in this case (φ1, φ2) is t–stable if and only if

• φ2 is nowhere zero

• for any (ψ1, ψ2) = h.(φ1, φ2) with h ∈ H and any 1–dimensional subspace M1 ⊂
C2 we have ψ1(M1(⊗O(−2)) 6= 0.

The first condition says that coker(φ2) is isomorphic to the universal quotient bundle Q

on P2, and the second that φ1 induces a 2–dimensional subspace of H0Q(2). It follows

that the sets W s(t) of stable points are the same for t > 2
3
, which we denote by W s

+.

Moreover, from the above characterization of stable homomorphism we deduce that the

geometric quotient M+ = W s
+/G is isomorphic to the Grassmannian

M+
∼= Gr(2, H0Q(2))

which is smooth of dimension 26. There is an interesting subvariety Z ⊂ M+ which

consists of the images of the homomorphisms 0 0 z1

0 0 z2

∗ ∗ z3

 (1)

which belong to W s
+. These are those (φ1, φ2) for which the induced homomorphism

2O(−2) → Q is not injective. We will see next that Z is isomorphic to the non–stable

locus of M0 below and is smooth of dimension 10.

9.2.2. The case t = 2
3
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We write W ss
0 for W ss(2

3
). When considering the matrix representations we find that

W s
+ ⊂ W ss

0 and that the remaining part W ss
0 rW s

+ consists of those homomorphisms for

which φ2 is zero in exactly one point. Such homomorphisms are equivalent to matrices ∗ ∗ z

∗ ∗ w

f g 0

 (2)

where z, w are independent linear and f, g are independent quadratic forms. Note, how-

ever, that W s
+ intersects the non–stable locus of W ss

0 in matrices equivalent to those of

type (1). But the orbit closures in W ss
0 of both types (1) and (2) of matrices contain the

direct sums  0 0 z

0 0 w

f g 0

 (3)

of independent linear and quadratic forms. From that it follows that the induced mor-

phism

M+ →M0

of the quotients is bijective and moreover an isomorphism by Zariski’s main theorem, be-

cause both spaces are normal. The points of the non–stable locus M0rM s
0 are represented

by matrices of type (3). It is again routine to deduce from this observation that

M0 rM s
0
∼= P2 ×Gr(2, H0O(2)).

The subvariety Z ⊂ M+ corresponds to this set under the isomorphism. We can also

identify the set M s
0 of stable points with Gr(2, H0Q(2)) r Z.

9.2.3. The case 3
5
< t < 2

3

Similarly to the case W s
+ we find that here W s

− = W s(t) is independent of t and that

W s
− ⊂ W ss

0 . The remaining part consists now of all homomorphisms which are equivalent

to a matrix of type (1). Note that now homomorphisms of type (2) are contained in W s
−.

The induced morphism

M− →M0

is again surjective but not injective over M0rM s
0 . Let Y be the inverse image of M0rM s

0 .

Then Y consists of the points which are represented by matrices of type (2) which are

not equivalent to matrices of type (3). It is easy to check that the restricted morphism

M− r Y −→
≈

M s
0

is bijective and therefore also an isomorphism by Zariski’s main theorem. We are going

to verify that Y is a divisor in M−. There is a morphism

Y
p−→ P2
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which assigns to the class of (φ1, φ2) the point x at which φ2 is degenerate. In this case

coker(φ2) ∼= O ⊕ Ix(1)

where Ix is the ideal sheaf of x. For such (φ1, φ2) we are given an exact diagram

0

2O(−2)

OO

O

0 // 2O(−2)⊕O(−1)

OO

(Φ1,Φ2)
// 3O // F //

OO

0

0 // O(−1)

OO

Φ2 // 3O // O ⊕ Ix(1)

OO

// 0

0

OO

2O(−2)

OO

0

OO

such that (φ1, φ2) corresponds to a 2–dimensional subspace Γ ⊂ H0(O(2) ⊕ Ix(3)). The

condition of defining a element of Y is that Γ is neither contained in H0Ix(3) nor in

H0(O(2))s for any section s of O ⊕ Ix(1). We let Ux ⊂ Gr(2, H0(O(2) ⊕ Ix(3)) denote

the open subvariety of such Γ. By assigning to Γ the class of (φ2, φ2) where φ1 is defined

by a lifting in the above diagram, we get a morphism Ux →M− whose image is the fibre

Yx = p−1(x). The morphism

Ux � Yx

is nothing but the quotient of Ux by the algebraic group Aut(O ⊕ Ix(1)). It follows that

Yx is a variety of dimension 23. Using the techniques of this paper for this quotient, we

can even prove that Y is smooth. Finally Y has dimension 25 and thus is a divisor in the

irreducible and normal variety M−.

Remarks: (1) One would like to interpret the matrices of type (2) as representing exten-

sions of the sheaves coker(f, g) and Ix(1) = coker
(
z
w

)
. Indeed a matrix of type (2) defines

such an extension, but this extension is isomorphic to the direct sum.

(2) The above correspondence between (φ1, φ2) and Γ indicates that the quotient spaces

considered here are spaces of coherent systems as in [23].

9.2.4. The flip
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The diagram M− →M0
≈←M+ can be interpreted as a flip. It is induced by the inclusions

W s
− ⊂ W ss

0 ⊃ W s
+. The orbits of stable points of type (2) in W s

− and of type (1) in W s
+

don’t intersect in W ss
0 but so do their closures in W ss

0 . Thus the fibres of M− →M0 and

M0 ←M+ correspond to the two different types of semi–stable orbits in W ss
0 defining the

same points in M0 rM s
0 .

9.3. General homomorphisms of type (2, 1)

In a more general situation of type (2, 1) we consider homomorphisms

m1O(−2)⊕m2O(−1)→ n1O

over Pn. A polarization in this case is determined by the rational number t = m2λ2 with

0 < t < 1 and 1− t = m1λ1, µ1 = 1/n1. A Λ–(semi–)stable homomorphism is then called

t–(semi–)stable. We write W ss(t) and W s(t) for W ss(G,Λ) and W s(G,Λ). In terms of t

the conditions are

1 > t >
(n+ 1)m2

(n+ 1)m2 +m1

and t ≥ (n+ 1)m2

n1

c1(m2).

The constant c1(m2) is given in proposition 9.1.1. Such polarizations exist if and only if

n1 > (n+ 1)m2c1(m2).

In order to measure t–stability we introduce the numbers

r1 =
m′1
m1

, r2 =
m′1
m2

, s2 =
n′1
n1

and call (r1, r2, s1) φ–admissible if there are subspaces M ′
1 ⊂ M1,M

′
2 ⊂ M2, N

′
1 ⊂ N1 of

dimensions m′1,m
′
2, n

′
1 such that φ maps M ′

1⊗O(−2)⊕M ′
2⊗O(−1) into N ′1⊗O. Then φ

is t–(semi–)stable if and only if for any φ–admissible proper triple (r1, r2, s1), i.e. a triple

which is neither (0, 0, 0) or (1, 1, 1), we have

∆t = (1− t)r1 + tr2 − s1 < 0 (≤ 0).

A polarization t is called critical if there are proper triples with ∆t = 0. Thus the critical

values of t are the rational numbers
s1 − r1

r2 − r1

,

where we may assume s1 6= 0, 1 and thus r1 6= r2. We let tmax be the maximal critical

value if there are such with 0 < t < 1 and put tmax = 0 otherwise. If t is not critical we

have W s(t) = W ss(t).

9.3.1. Lemma: Suppose that m2 and n1 are relatively prime and that tmax < t < 1.

Then φ = (φ1, φ2) is t–stable if and only if

(1) φ2 is stable with respect to the group GL(M2)×GL(N1).



60 J.M.DRÉZET AND G.TRAUTMANN

(2) For any 1–dimensional subspace C
j
↪→ M1, and any h ∈ Hom(M1 ⊗O(−2),M2 ⊗

O(−1)) the map (ϕ1 + h ◦ ϕ2) ◦ j : O(−2)→ N1 ⊗O is not zero.

Proof. By the characterization of stability in section 3 the homomorphism φ2 is stable if

and only if for any proper pair M ′
2 ⊂ M2, N

′
1 ⊂ N1 of φ2–admissible subspaces r2 < s1.

Now let (φ1, φ2) be stable. If φ2 were not stable there would be a proper φ2–admissible

pair (r2, s1) with s1 ≤ r2. But then s1 < r2 because m2, n1 are supposed to be relatively

prime. Then s1/r2 < t because s1/r2 is a critical value and thus ∆t = r2t − s1 > 0,

contradicting the stability of (φ1, φ2). The condition (2) is trivially satisfied if (φ1, φ2) is

t–stable, because otherwise (1, 0, 0) would be admissible with ∆t = 1− t > 0. We have to

show now that conversely (1), (2) imply that (φ1, φ2) is t–stable. For this let (r1, r2, s1)

be a proper (φ1, φ2)–admissible triple. If r1 ≤ r2 and r2 = 0, there is nothing to prove.

If r2 > 0 then r2 < s1 by (1) and we have t(r2 − r1) < s1 − r1 and hence ∆t < 0. If

however r2 < r1 we have ∆t < 0 in case r1 ≤ s1. Since the case s1 ≤ r2 is only possible if

s1 = r2 = 0 and then r1 = 0 by (2), we can assume that r2 < s1 < r1. But then

r1 − s1

r1 − r2

< t

because the fraction is a critical value, and last inequality is the inequality ∆t < 0. �

Now we are able to describe the space M+ = W s(t)/G for tmax < t which is independent

of t. According to the lemma W s(t) can only be non–empty if there are stable morphisms

φ2. This is the case if and only if

1

σ(n)
<

n1

m2

< σ(n)

where σ(n) = 1
2
(n+1+

√
(n+ 1)2 − 4), see [6]. We restrict ourselves now to the case where

in addition to the previous conditions on n1,m2 we have n1 ≥ nm2 and (n1,m2) = 1.

Then a stable φ2 is injective and a subbundle (except at finite number of points in case

n1 = nm2, see [6], [9]). The quotient space of this space of stable homomorphisms by

GL(M2)×GL(N1) is denoted by N = N(n+ 1,m2, n1). It is a smooth projective variety

and there is a universal sheaf E on N × Pn. For x ∈ N let Ex denote the fibre sheaf

representing x. Since it is the cokernel of the representing homomorphism φ2, we get

h0Ex(2) = (n+ 1)

(
n1(n+ 2)

2
−m2

)
.

Therefore p∗E(2) is locally free on N where p denotes the first projection of N ×Pn. Now

M+ can be non–empty only if

m1 ≤ (n+ 1)

(
n1(n+ 2)

2
−m2

)
.

If conversely this is the case for any stable φ2 and any subspace M1 ⊂ H0Ex(2) where

x = [φ2], there is a lifting φ1 : M1 ⊗O(−2)→ N1 ⊗O of M1 ⊗O(−2)→ Ex, and (φ1, φ2)
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satisfies (1), (2) of the lemma. It follows now easily by considering corresponding families

that

M+
∼= GrN(m1, p∗E(2))

where GrN denotes the relative Grassmannian. It is more difficult to characterize the

other moduli spaces M(t) = W ss(t)/G for the intervals between the critical values or for

the critical values and to interpret the flips between them.

9.4. Example of type (2, 2)

We consider now a simple example of type (2, 2) on P3 of homomorphisms

O(−2)⊕O(−1)
φ−→ O ⊕ 3O(1).

Again the polarizations Λ = (λ1, λ2,−µ1,−µ2) are supposed to be proper for W and W

such that we have λi > 0, µl > 0 and

λ2 > 4λ1 and µ1 > 4µ2.

All constants cl(m2) and di(n1) are again zero, because m2 = n1 = 1. Then by the above

conditions also the conditions for proposition 7.5.3 and proposition 8.1.3 are satisfied,

such that there exists a good and projective quotient W ss(G,Λ)//G for any polarization

satisfying the conditions. Since we have λ1 + λ2 = 1 and µ1 + 3µ2 = 1, the polarization

Λ is determined already by λ2 and µ1, for which the above conditions become

1 > λ2 >
4

5
and

3

7
> 1− µ1 > 0. (1)

Next we derive the conditions for the occurrence of true semi–stable points. If

(m1,m2, n1, n2) is the dimension vector of a φ–invariant sub-family we have to consider

the equation

∆ = (1− λ2)m1 + λ2m2 − µ1n1 −
1

3
(1− µ1)n2 = 0.

By inserting all possible dimension vectors we get the 6 conditions

1− µ1 =
3

k
λ2, 1− µ1 = −3

k
λ2 +

3

k
(2)

for k = 1, 2, 3. If one of these is satisfied, there might be non–stable points in W ss(G,Λ).

In the following figure 1 the lines with the equations (2) are shown together with the

rectangle (1) (lower right), for the points of which we get good and projective quotients.



62 J.M.DRÉZET AND G.TRAUTMANN

-
0

λ2

6

1

1

1− µ1

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B











































�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

3/7

4/5

Figure 1

The homomorphism φ defined by the matrix
z2

2 − z1z3 z0

z3
0 z2

1

z3
1 z2

2

z3
2 z2

3


,

where the zi are homogeneous coordinates of P3, is easily verified to be G–stable for each

polarization Λ in the rectangle (1). Therefore the moduli spaces are not empty. On

each of the 3 lines in the rectangle (1) each point defines one and the same open set

W ss(G,Λ) and hence one and the same moduli space with semi–stable and non–stable

points. Similarly, on each of the 4 open triangles we have one and the same moduli space,

which is a smooth projective geometric quotient. Each of the 7 spaces has dimension 77.

The reader may also verify that the moduli space for an open triangle admits a morphism

to the moduli space of each of its edges, thereby defining a chain of flips.
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9.5. More general homomorphisms of type (2, 2)

More general homomorphisms for which we know the constants explicitly are homomor-

phisms of type

m1O(−2)⊕ 2O(−1)→ 2O ⊕ n2O(1)

over P3, say. By proposition 9.1 the constants are here

c1(2) = d2(2) =
1

7
and c2(2) = d1(2) =

4

7
.

Let W be the space of those homomorphisms. A proper polarization

Λ = (λ1, λ2,−µ1,−µ2) for W satisfies

m1λ1 + 2λ2 = 1 , 2µ1 + n2µ2 = 1

with λ1, λ2, µ1, µ2 positive. We will also assume that α2 > 0, β1 > 0, i.e. λ2 > 4λ1 and

µ1 > 4µ2. These four conditions can be replaced by

4

8 +m1

< λ2 <
1

2
and

4

8 + n2

< µ1 <
1

2
(1)

9.5.1. Claim: There are polarizations Λ such that W ss(G,Λ) admits a good and projective

quotient in the following cases

(i) m1 < 6 and n2 < 8

(i’) m1 ≤ 6 and n2 = 8

(ii) 8 ≤ m1 + 3 ≤ n2 and 8m1 + 8 < 7n2

Proof. The conditions of 7.2.2 for the equivalence of (semi–)stability become

λ2 ≥
4

7
(µ1 + 4µ2) and µ1 ≥

16

7
(4λ2 − 15λ1) (2)

and the conditions of 8.1.3 for the projectivity of the quotient become

λ2 ≥
4

7
µ1 and µ1 ≥

4

7
λ2 . (3)

The first condition of (3) follows already from the first of (2). After replacing λ1 and µ2

conditions (2) and (3) are equivalent to

7
4
n2λ2 ≥ (n2 − 8)µ1 + 4

7
16
m1µ1 ≥ (4m1 + 30)λ2 − 15

µ1 ≥ 4
7
λ2

(4)

Using (1) for λ2, we find that (4) has a solution (λ2, µ1) if the system

7n2

8+m1
≥ (n2 − 8)µ1 + 4

µ1 > 16
7(8+m1)

(5)
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has a solution µ1. For this we distinguish the cases n2 < 8, n2 = 8, 8 < n2. If n2 < 8 the

first inequality of (5) has a solution µ1 <
1
2

if m1 < 6. If n2 = 8, then m1 ≤ 6, which is

case (i’). If n2 > 8, the first inequality of (5) reduces to

7n2 − 4m1 − 32

(n2 − 8)(m1 + 8)
≥ µ1 >

4

n2 + 8
. (6)

Then (5) has a solution µ1 if and only if

7n2 − 4m1 − 32 > 0

(7n2 − 4m1 − 32)(n2 + 8) > 4(n2 − 8)(m1 + 8)

7(7n2 − 4m1 − 32) > 16(n2 − 8)

These inequalities reduce to

7n2 > 4m1 + 32

7n2 > 8m1 + 8

33n2 > 28m1 + 96

They are all satisfied if we suppose (ii) of the claim. �

In figure 2 the lines of the critical values of the polarizations i.e. of the pairs (λ2, µ1) are

shown together with the small region of those pairs which satisfy the sufficient conditions

(4) for the existence of a good and projective quotient, based on the values m1 = 3 and

n2 = 5.

9.6. Example of type (3, 1)

As an example of type (3, 1) we consider only the space of homomorphisms

O(−4)⊕O(−2)⊕O(−1)→ 5O

over P3. We assume again that all λi and all αi are positive. Then the conditions of 7.2.2

together with the normalization of the polarization are

λ1 + λ2 + λ3 = 1

λ2 > 10λ1

λ3 − 4λ2 + 20λ1 > 0.

µ1 = 1
k

λ2 ≥ 4
5
c1(1, 1)

As additional condition for the projectivity of the quotient we use condition (a) of the

remark following proposition 8.2.1. Since in this case both the constants c3(1) and c′3(1)

are zero, this condition is just λ1 ≥ 0 and is already satisfied by our assumption.

For homomorphisms of the above type the condition λ3 <
4
5

is necessary if W s(G,Λ) 6= ∅.
For if φ = (φ1, φ2, φ3) is an element of W then φ3 has degree 1 and thus contains at

most 4 independent components. Then m1 = m2 = 0 and m3 = 1, n1 = 4 is a choice of

dimensions of φ–invariant subspaces and the discriminant becomes ∆ = λ3 − 1
5
.
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By 9.1.2 the value of c1(1, 1) is 1
5
. Now it is easy to see that there exist polarizations Λ

which satisfy the above inequalities. That W s(G,Λ) is then indeed non–empty follows

from the existence of generic matrices as in 9.4. Moreover there are again regions of

polarizations for which the sets W ss(G,Λ) are the same and which are responsible for

flips.

 0

 1

 0  1

Figure 2

Here the horizontal axis represents m2λ2 and the vertical axis represents n1µ1

for m1 = 3 and n2 = 5.
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10. Construction of fine moduli spaces of torsion free sheaves

Let n,k be integers such that n ≥ 2 and

(n+ 1)(n+ 2)

2
< k ≤ (n+ 1)2.

Let V be a vector space of dimension n + 1, Pn = P(V ). We will study in this chapter

morphisms of sheaves on Pn of type

Φ = (Φ1,Φ2) : O(−2)⊗ C2 −→ O(−1)⊕ (O ⊗ Ck).

Let

f1 : C2 −→ V ∗

the linear map induced by Φ1. For semistable morphisms (with respect to a given polar-

ization) f1 is non zero. So it is of rank 1 or 2. Morphisms Φ such that f1 is of rank 2 are

called generic, and those such that f1 is of rank 1 are called special.

10.1. Generic morphisms

Suppose that Φ = (Φ1,Φ2) is a generic morphism. Let P = Im(f1) and Pn−2 ⊂ Pn be

the linear subspace of zeroes of linear forms in P . Then Φ1 is isomorphic to the canonical

morphism

O(−2)⊗ P −→ O(−1)

hence we have ker(Φ1) ' O(−3), and Im(Φ1) ' IPn−2(−1) (the ideal sheaf of Pn−2

twisted by O(−1)). Let

Φ′ : O(−3) −→ O ⊗ Ck

be the restriction of Φ2 to ker(Φ1). It vanishes on Pn−2 and induces a linear map

f ′ : Ck∗ −→ H0(IPn−2(3)).

10.1.1. Lemma : If Φ is semi-stable (for some polarization) then f ′ is injective.

Proof. Let K0 = ker(f ′)⊥ ⊂ Ck. Then Im(Φ′) ⊂ O ⊗K0. The morphism

O(−2)⊗ C2 −→ O(−1)⊕ (O ⊗ Ck/K0)

induced by Φ vanishes on O(−3) = ker(Φ1). Hence it induces a morphism

(ψ1, ψ2) : IPn−2(−1) −→ O(−1)⊕ (O ⊗ Ck/K0)

where ψ1 is the inclusion. Since Hom(IPn−2(−1),O) = Hom(O(−1),O), we can (by

replacing Φ by an element of its Hom(O(−1),O ⊗ Ck)-orbit) suppose that ψ2 = 0. It

follows that Im(Φ) ⊂ O(−1)⊕ (O ⊗K0), and since Φ is semi-stable, we have K0 = Ck,

i.e. f ′ is injective. �
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Note that we have taken k ≤ (n+ 1)2 = h0(IPn−2(3)), to allow the injectivity of f ′.

Suppose that f ′ is injective. Let K = Im(f ′). then Φ′ is isomorphic to the canonical

morphism

φK : O(−3) −→ O ⊗K∗.
It is easy to see that P and K depend only on the G-orbit of Φ. Conversely, suppose

P and K are given. We can define an element (Φ1,Φ2) of W associated to P and K

as follows : let (z1, z2) be a basis of P . Let (z1q1i + z2q2i)1≤i≤k be a basis of K, with

q1i, q2i ∈ S2V ∗. Using this basis we can identify K and K∗ with Ck. We define

Φ1 : O(−2)⊗ C2 −→ O(−1)

by

C2 // V ∗

(λ, µ) � / λz1 − µz2

and

Φ2 : O(−2)⊗ C2 −→ O ⊗K∗ ' O ⊗ Ck

over x ∈ Pn by

Φ2x(x
2 ⊗ (λ, µ)) = (λq2i(x) + µq1i(x))1≤i≤k.

10.1.2. Lemma : Let K ⊂ H0(IPn−2(3)) a linear subspace of dimension k. Then ΦK is

injective outside of a closed subvariety of codimension 2.

Proof. Let x ∈ Pn. Then ΦK is non injective at x if and only if all the elements of K

(which are homogeneous polynomials of degree 3) vanish at x. Suppose that ΦK is non

injective on an irreducible hypersurface S. Then all the polynomials in K vanish on S.

Let f be an irreducible equation of S. Then all the elements of K are multiple of f . It

follows that f is of positive degree d ≤ 3, and K ⊂ S3−dV ∗.f . But this in impossible

since

dim(K) >
(n+ 1)(n+ 2)

2
= dim(S2V ∗).

�

10.1.3. Lemma : Let Φ = (Φ1,Φ2) ∈ W be defined by P ⊂ V ∗ and K ⊂ H0(IPn−2(3)).

Suppose that there exists a polarization such that Φ is semi-stable. Then Φ is generically

injective and coker(Φ) has no torsion. Moreover, if K is generic, Φ is injective.

Proof. Lemma 10.1.2 implies that Φ is injective outside a closed subvariety of codimension

≥ 2. It follows that Φ is generically injective and that coker(Φ) has no torsion. To

prove that Φ is injective for a generic K, it suffices to find a K such that Φ is injective.

Let (z1, z2) be a basis of P . Let q1, · · · , qr, (resp. q′1, · · · , q′s) be linearly independant
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elements of S2V ∗ that have no common zeroes in Pn, with r + s = k (this is possible since

2n+ 2 ≤ k ≤ (n+ 1)2). Let

K =
( ⊕

1≤i≤r

z1qi

)
⊕
( ⊕

1≤j≤s

z2q
′
j

)
.

It is easy to see that for such a K, Φ is injective. �

10.2. The obvious moduli space of morphisms and its universal sheaf

Let P ⊂ V ∗ a plane, Pn−2 ⊂ Pn the subspace defined by P and K ⊂ H0(IPn−2(3)) a linear

subspace of dimension k. Let E(P,K) = coker(Φ), where Φ is a morphism associated to

P and K. Since the G-orbit of Φ is determined by P and K, E(P,K) is well defined. We

will give another construction of E(P,K).

Let FK = coker(ΦK). It is a torsion free sheaf according to lemma 10.1.2.

10.2.1. Lemma : We have Ext1(OPn−2(−1),FK) ' C, and the non-trivial extension of

FK by OPn−2(−1) is isomorphic to E(P,K).

Proof. The exact sequence

(∗) 0 −→ O(−3) −→ O ⊗K∗ −→ FK −→ 0

implies H0(FK(1)) ' V ∗ ⊗K∗, H1(FK(1)) = {0}. Using the exact sequence

0 −→ IPn−2 −→ O −→ OPn−2 −→ 0

we obtain the exact sequence

0→ Hom(O(−1),FK) = V ∗⊗K∗ −→ Hom(IPn−2(−1),FK) −→ Ext1(OPn−2(−1),FK)→ 0.

From (∗) we get H0(FK(2)) ' S2V ∗ ⊗K∗, H0(FK(3)) ' S3V ∗ ⊗K∗/CiK , where iK is

the inclusion K ∈ S3V ∗. From the exact sequence

0 −→ O(−2) −→ O(−1)⊗ P⊥∗ −→ IPn−2 −→ 0

we deduce the exect sequence

0 // Hom(IPn−2(−1),FK) // S2V ∗ ⊗ P⊥ ⊗K∗ θ // S3V ∗ ⊗K∗/CiK

where θ comes from the multiplication

µ : S2V ∗ ⊗ P⊥ ⊂ S2V ∗ ⊗ V ∗ −→ S3V ∗.

The kernel of µ is canonically isomorphic to ∧2P⊥ ⊗ V ∗ and it is easy to see that iK is

contained in the image of µ⊗ IK∗ . It follows that we have an exact sequence

0 −→ V ∗ ⊗K∗ −→ ker(θ) −→ CiK −→ 0

and that Ext1(OPn−2(−1),FK) ' C.
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The last assertion follows from the commutative diagram with exact rows and columns :

0

��

0

��

0

��
0 // O(−3) //

��

O ⊗K∗ //

��

FK //

��

0

0 // O(−2)⊗ C2 //

��

O(−1)⊕ (O ⊗K∗) //

��

E(P,K) //

��

0

0 // IPn−2(−1) //

��

O(−1) //

��

OPn−2(−1) //

��

0

0 0 0

�

Let M be the projective variety of pairs (P,K), where P is a plane of V ∗ and K ⊂
H0(IPn−2(3)) is a vector subspace of dimension k (Pn−2 beeing the codimension 2 linear

subspace of Pn defined by P ). We can view M as a moduli space for generic morphisms.

We will give a construction of a universal sheaf E on M× Pn, i.e E is flat on M and for

every (P,K) ∈M, E(P,K) is isomorphic to the cokernel of a generic morphism associated

to (P,K). It is also possible to define a universal morphism whose cokernel is isomorphic

to E, but we will see this more generally in 10.4.

Let Gr(2, V ∗) be the grassmannian of planes in V ∗ and q : M→ Gr(2, V ∗) be the obvious

projection. Let U be the universal subsheaf of O × V ∗ on Gr(2, V ∗). Let

pM : M× Pn →M, p2 : M× Pn → Pn

be the projections. Then we have a canonical obvious morphism of vector bundles on

M× Pn
p∗2(O(−1))⊗ U −→ O.

Let P be its cokernel. It is a flat family of sheaves on Pn. For every (P,K) ∈M we have

P(P,K) = OPn−2 . Let K be the universal sheaf on M × Pn, such that K(P,K) = K. Then

we have a canonical obvious morphism of vector bundles on M× Pn

p∗2(O(−3)) −→ K∗.

Let F be its cokernel. Then for every (P,K) ∈M, F(P,K) is the sheaf that was noted FK
before. By lemma 10.2.1, the sheaf Ext1pM(P ⊗ p∗2(O(−1)),F) is a line bundle L on M.

Then we have a universal extension

0 −→ F −→ E −→ P ⊗ p∗2(O(−1))⊗ p∗M(L) −→ 0
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on M× Pn. Then using lemma 10.2.1 it is easy to see that for every (P,K) ∈M, E(P,K)

is isomorphic to the cokernel of a generic morphism associated to (P,K).

10.3. Special morphisms

Let Φ = (Φ1,Φ2) be a special morphism. Let f1 : C2 → V ∗ the associated application of

rank 1. Let H be the hyperplane of Pn defined by Im(f1). We have an exact sequence

0 // O(−2) // O(−2)⊗ C2 Φ1 // O(−1) // OH(−1) // 0.

Let

Φ2 : C2 −→ H0(OH(2))⊗ Ck

be the linear map induced by Φ2.

10.3.1. Lemma : If Φ is semi-stable (for a given polarization) then Φ2 is injective.

Proof. Let C1, C2 be the two factors C of C⊕ C = C2. We can suppose thet ker(f1) = C1.

Let

Φ2i : O(−2)⊗ Ci −→ O ⊗ Ck

i = 1, 2, be the restrictions of Φ2, defined by q1i, · · · , qki ∈ S2V ∗. Let (z1, · · · , zn+1)

be a basis of V ∗, such that z1 is an equation of H. By using the action of

Hom(O(−1)⊗ C2,O ⊗ Ck) on W we can assume that q21, · · · , q2k ∈ S2 < z2, · · · , zn+1 >.

Now Φ2 is not zero on C1 : otherwise we would have q1i ∈ z1V
∗, and Im(Φ2) ⊂ O ⊗ Ck′ ,

with

k′ ≤ n+ 1 + dim(S2 < z2, · · · , zn+1 >) ≤ dim(S2V ∗) < k,

and this would contradict the semi-stability of Φ. Hence, by considering the action of

GL(2), it suffices to prove that Φ2 does not vanish on C2. Suppose it does. Then Φ2

vanishes on O(−2)⊗C2, because q2i ∈ S2 < z2, · · · , zn+1 >, and again Im(Φ2) ⊂ O ⊗ Ck′ ,

with k′ ≤ dim(S2V ∗) < k, which contradicts the semi-stability of Φ. �

10.3.2. Lemma : Suppose that Φ is semi-stable with respect to some polarization. Then

it is injective outside of a closed subvariety of codimension ≥ 2, and coker(Φ) has no

torsion.

Proof. It suffices to prove the first statement. Let x ∈ Pn and u ∈ C2 such that

Φ1(x2 ⊗ u) = 0. Then we have either u ∈ C1 or u 6∈ C1 and x ∈ H. Suppose that Φ

is not injective at all points of an irreducible hypersurface D 6= H. Then the same is

true for Φ|O(−2)⊗C1 . Suppose that this morphism is defined by quadratic forms q1, · · · , qk.
These forms vanish on D, hence they are all multiple of an equation of D. It follows

as in the proof of 10.3.1 that Im(Φ2) ⊂ O ⊗ Ck′ , with k′ < k, which contradicts the

semi-stability of Φ.
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Now it remains to prove that Φ2 is generically injective on H, but this follows easily from

the fact that Φ2 is defined by an injection C2 → H0(OH(2))⊗ Ck. �

10.4. Fine moduli spaces of torsion-free sheaves

10.4.1. Définition : Let S be a smooth variety, F a coherent sheaf on S × Pn, flat on

S. We say that S is a fine moduli space of sheaves with universal sheaf F if the following

properties are verified :

(i) For every closed point s ∈ S the Kodäıra-Spencer map

ωs : TsS −→ Ext1(Fs,Fs)

is bijective.

(ii) For every closed points s1, s2 ∈ S with s1 6= s2, Fs1 and Fs2 are not isomorphic.

(iii) For every flat family E of coherent sheaves on Pn parametrized by an algebraic

variety T , and for any closed points s ∈ S, t ∈ T such that Fs ' Et, there exists an

open neighbourhood U of t in T , and a morphism f : U → S such that f(t) = s

and

(f × IPn)∗(F) ' E|U .

(cf. [11]).

For example moduli spaces of stables sheaves admitting a universal sheaf are fine moduli

spaces of sheaves.

10.4.2. Application of theorem 1.5.2

Polarizations for morphisms

O(−2)⊗ C2 −→ O(−1)⊕ (O ⊗ Ck)

are defined by pairs (λ1, λ2) of positive rational numbers such that λ2 + λ1k = 1 (so here

λ2 is associated to O(−1) and λ1 to O ⊗ Ck).

By theorem 1.5.2, there exists a projective good quotient of the open subset W ss of

semi-stable points as soon as

t = λ2 >
n+ 1

n+ 1 + k
.

The critical polarizations in our range are given by

λ1 =
1

2p
, t = λ2 = 1− k

2p
,

n+ 1 + k

2
< p ≤ (n+ 1)(n+ 2)

2
.

Let

q =
(n+ 1)(n+ 2)

2
−
[
n+ 1 + k

2

]
+ 1
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(where [x] denotes the integer part of x). Then we obtain exactly q moduli spaces of

morphisms corresponding to non critical values : M1, · · · ,Mq, where for 1 ≤ i < q

Mi = M(t) for t = 1− 1

2p
− ε

with p = i +
[
n+1+k

2

]
, ε beeing a sufficiently small positive rational number. We have

Mq = M (cf. the end of 10.2).

10.4.3. Fine moduli spaces

Suppose that we choose a polarization such that t is not a critical value. In this case we

have W ss = W s, and the stabilizer in G of the points of W s is the canonical subgroup

isomorphic to C. Let M(t) = W s/G, and π : W s →M(t) be the quotient map. On

W s × Pn we have a universal morphism

Ψ : p∗2(O(−2))⊗ C2 −→ p∗2(O(−1))⊕ (O ⊗ Ck)

(where p2 is the projection W s × Pn → Pn) such that F = coker(Ψ) is a flat family of

torsion free sheaves on Pn parametrized by W s (this is a consequence of lemmas 10.1.3

and 10.3.2). There is a canonical action of G on F such that C acts by multiplication.

Recall that a G-sheaf E on W s×Pn descends to M(t)×Pn if there exists a coherent sheaf

E ′ on M(t)× Pn and a G-isomorphism (π × IPn)∗(E ′) ' E .

10.4.4. Theorem : There exists a G-line bundle L on M(t) × Pn such that F ⊗ L
descends to M(t). Let E be the corresponding sheaf on M(t) × Pn. Then M(t) is a fine

moduli space of sheaves on Pn with universal sheaf E.

Proof. On W s we have a canonical action of G on the bundles OW s ⊗ C2, L = OW s and

OW s ⊗Ck. On these bundles C acts as ordinary multiplication by scalars. Let A0, B0 be

the G-bundles

A0 = (p∗2(O(−2))⊗ C2)⊗ p∗W (L−1), B0 = (p∗2(O(−1))⊕ (O ⊗ Ck))⊗ p∗W (L−1)

(where pW is the projection W s× Pn → W s). On these bundles C acts trivially. We can

multiply the universal morphism with p∗W (L−1) and we obtain a new universal morphism

Ψ0 : A0 −→ B0.

Now it is easy to see that the bundles A0, B0 descend to M(t) × Pn either directly

from our construction of the quotient, or by using the more general results of [10], 2.3.

Let A = A0/G, B = B0/G. The G-morphism Ψ0 also descends and we get a universal

morphism of vector bundles on M(t)× Pn
Ψ : A −→ B.

We define now E = coker(Ψ), and it is clear that π∗(E) ' F ⊗ L−1.
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Now we prove that the Kodäıra-Spencer map of E at z ∈M(t) is bijective. Let w ∈ π−1(z).

Then we have a commutative diagram

TwW
Tπ //

ωw
��

TzM(t)

ωz
��

Ext1(Fw,Fw) Ext1(Ez, Ez)

The tangent map Tπ is surjective because M(t) is a geometric quotient. So it suffices to

prove that ωz is surjective and that dim(Ext1(Ez, Ez)) = dim(M(t)). Consider the exact

sequence

0 −→ A0w = O(−2)⊗ C2 −→ B0w = O(−1)⊕ (O ⊗ Ck) −→ Fw −→ 0.

It is well known that (up to a sign) ωw is the composition

Hom(A0w,B0w) −→ Hom(A0w,Fw) −→ Ext1(Fw,Fw)

of maps induced by the preceeding exact sequence. Now the result follows easily from the

exact sequence

0 −→ End(Fw) −→ End(B0w) −→ Hom(A0w,B0w)/End(A0w) −→ Ext1(Fw,Fw) −→ 0.

We must now verify that if z1, z2 ∈ M(t) are distinct closed points, then Ez1 and Ez2 are

not isomorphic. This follows from the more general following result : if two injective

morphisms of vector bundles on Pn
O(−2)⊗ Cn1 −→ (O(−1)⊗ Cm2)⊕ (O ⊗ Cm1)

have isomorphic cokernels, then they are in the same orbit.

The property (iii) of the definition of a fine moduli space is easily verified. �

It follows that the q moduli spaces of morphisms M1, · · · ,Mq, with their corresponding

universal sheaves, are also fine moduli spaces of torsion free sheaves on Pn. The moduli

space Mq is the same as the obvious one M (cf. 10.2), and the corresponding universal

sheaf is the same (up to an element of Pic(M)) as E.

These examples are generalizations of the case of P2 (with k = 7) that was treated in [11].

But in this case our results are not needed, because we get only two fine moduli spaces :

one is the obvious moduli space and the other is the corresponding moduli space of stable

sheaves on P2.

On Pn, n ≥ 3, our moduli spaces are new. We don’t know if the corresponding moduli

space of stable sheaves is among them.

10.4.5. Remark: it is not hard to prove that all the moduli spaces M1, · · · ,Mq are

distinct.
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[3] Dixmier, J., Quelques aspects de la théorie des invariants, Gazette Soc. Math. de France 1989

[4] Dixmier, J., Raynaud, M., Sur le quotient d’une variété algébrique par un groupe algébrique, Advances
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[9] Drézet, J.-M., Exceptional bundles and moduli spaces of stables sheaves on Pn, In Vector Bundles in

Algebraic Geometry, Proceedings Durham 1993, London Math. Soc. Lecture Note Ser. 208, Cam-

bridge 1995
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