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ABSTRACT. This work focuses on the resolution of the Fokker-Planck equation that governs the 

evolution of the fibers orientation distribution. To reduce the computing time, that equation is solved 

along some flow trajectories in order to extract the significant information of the solution from the 

application of the Karhunen-Loève decomposition. Now, from this information one could solve the 

Fokker-Planck equation everywhere in the flow domain or simply adjust a closure relation that becomes 

optimal for such flow, solving the evolution of some orientation moments which require a less amount of 

computation. This paper focuses on this last strategy. For this purpose we start introducing the 

Karhunen-Loève decomposition that is applied later to automatically extract the main solution 

characteristics for adjusting empirically a natural closure relation.  

 

KEYWORDS: Short fiber suspensions; Closure relations; Numerical modeling; Model reduction; 

Karhunen-Loève decomposition 
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1. Introduction 

1.1. Short Fiber Suspensions flow models  

Numerical modeling of non-Newtonian flows usually involves the coupling between equations of motion, 

which define an elliptic problem, and the fluid constitutive equation, which introduces an advection 

problem related to the fluid history. In short fiber suspensions (SFS) models, the extra-stress tensor 

depends on the fiber orientation whose evolution can be modeled from a transport problem. In all cases the 

flow kinematics and the fiber orientation are coupled: the kinematics of the flow governs the fiber 

orientation, and the presence and orientation of the fibers modify the flow kinematics. Thus, for example, in 

a contraction flow of a dilute suspension, large recirculating areas appear (Lipscomb et al. (1988)). 

 

If one uses SFS flows in material forming processes, the final fiber orientation state depends on the process 

and exhibits flow-induced anisotropy. Thus, we need to compute the fiber orientation in order to predict the 

final mechanical properties of the composite parts, which depend strongly on the fiber orientation. 

Moreover, the numerical simulation of such flows becomes interesting if one wants to identify their 

rheological parameters using some rheometric devices and an appropriate inverse technique. 

 

The mechanical model governing the SFS flow is given by the following equations: (Batchelor (1970), 

Hand (1962), Hinch and Leal (1975, 1976)) 

 

•  The momentum balance equation, when the inertia and mass terms are neglected, results 

0 Divσ =                                                        (1)                                                                     

where σ  is the stress tensor. 

•  The mass balance equation for incompressible fluids  

0 Divv =               (2) 

where v  represents the velocity field. 
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•  The constitutive equation for a dilute suspension of high aspect-ratio particles is given, with other 

simplifying assumptions (Tucker (1991)), by 

( ){ }2 :  ppI D N a Dσ η= − + +         (3) 

where p  denotes the pressure, I  the unit tensor, η  the viscosity which depends on the chosen model, 

D  the strain rate tensor, pN  a scalar parameter depending on both the fiber concentration and the fiber 

aspect ratio, " : " the tensorial product twice contracted (i.e. klijkl

ij

DaDa = : ) and a  the fourth order 

orientation tensor defined by: 

 ( )  a dρ ρ ρ ρ ψ ρ ρ= ⊗ ⊗ ⊗∫         (4) 

where ρ  is the unit vector aligned in the fiber axis direction, " ⊗ " denotes the tensorial product (i.e. 

( ) jiij
ρρ=ρ⊗ρ ), and )(ρψ  is the orientation distribution function satisfying the normality condition  

( ) 1 dψ ρ ρ =∫           (5) 

If ( ) ( )ρ−ρδ=ρψ ˆ , with ) (δ  the Dirac's distribution, all the orientation probability is concentrated in 

the direction defined byρ̂ , and the corresponding orientation tensor results ρ⊗ρ⊗ρ⊗ρ= ˆˆˆˆâ .  

We can also define the second order orientation tensor as: 

 ( )  a dρ ρ ψ ρ ρ= ⊗∫          (6) 

It is easy to verify that if )ˆ()( ρ−ρδ=ρψ , the fourth order orientation tensor can be written as  

 a a a= ⊗            (7) 

whose components are defined by klijijkl aaa = . 

For general expressions of )(ρψ  the previous relation is not exact, and equation (7) becomes a closure 

approximation known as the quadratic closure relation: klij

quad

ijkl aaa = . However, other closure relations 

are usually applied (Advani and Tucker (1990), Dupret et al. (1998)), among them we can consider the 

linear closure relation: 
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1
( )

(4 )(2 )

1
            ( )

(4 )

lin

ijkl ij kl ik jl il jk

d d

ij kl ik jl il jk kl ij jl ik jk il

d

a
N N

a a a a a a
N

δ δ δ δ δ δ

δ δ δ δ δ δ

= − + + +
+ +

+ + + + +
+

       (8) 

where 
d

N  refers to the space dimension, i.e.  

2 in  2
 

3 in  3d

D
N

D


=                                                                                          (9)  

  

The hybrid closure relation  

 (1 )  hyb quad lin

ijkl ijkl ijkla f a f a= + −       (10) 

where ( ) det( )dN

df N a= ; and finally, the natural closure relation (Dupret and Verleye (1999)) that 

in the 2D case takes the form  

1 1
det( )( ) ( ) 

6 3
nat

ijkl ij kl ik jl il jk ij kl ik jl il jka a a a a a a aδ δ δ δ δ δ= + + + + +   (11) 

The 3D isotropic orientation state is defined by the uniform distribution function  

( ) 1
 

4
ρ

π
Ψ =         (12) 

and then, the second order orientation tensor related to that isotropic orientation state is  

 
3

I
a =          (13) 

It is easy to verify that for isotropic orientation distributions (2D or 3D) the linear closure becomes 

exact. 

 

•  If we consider spheroidal fibers immersed in a dilute suspension, we can describe the orientation 

evolution by means of the Jeffery equation  (Jeffery (1922)) 

( )( )( )   :       
d

k D D
dt

ρ
ρ ρ ρ ρ ρ= Ω + − ⊗     (14) 
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where Ω  is the vorticity tensor, and k  is a constant that depends on the fiber aspect ratio r  (fiber 

length to fiber diameter ratio):   

( ) ( )2 21 1  k r r= − +        (15) 

On the other hand the evolution of the fiber orientation distribution ψ  is governed by the Fokker-Planck 

equation,  

( )
( ) 0 

d d

dt dt

ψ ρ ρ
ψ ρ

ρ
 ∂+ = ∂         (16) 

where the material derivative is given by: 

  
d

v Grad
dt t

ψ ψ ψ∂= +
∂

       (17) 

Now, taking into account equations (6), (14) and (16), the equation that governs the evolution of the 

second order orientation tensor can be deduced  

( )( )    2 :  
d a

a a k D a a D a D
dt

= Ω − Ω + + −     (18) 

A similar equation can be derived for the evolution of the fourth order orientation tensor, which in this 

case involves the sixth-order orientation tensor.  

 

To take account of fiber interaction effects in semi-concentrated suspensions Folgar and Tucker (1984) 

proposed the introduction of a diffusion term in the Fokker-Planck equation, i.e.  

( ) ( )
( )  

r

d d
D

dt dt

ψ ρ ρ ψ ρ
ψ ρ

ρ ρ ρ
 ∂ ∂ ∂  + =   ∂ ∂ ∂         (19) 

Fiber interaction being taken into account, the equation governing the evolution of a then yields: 

( )( )    2 : 4  
r

d

da I
a a k D a a D a D D a

dt N

 
= Ω − Ω + + − − −     (20) 

 

The Fokker-Planck formalism circumvents the necessity of using closure relations, but it induces some 

difficulties related to its multidimensional character (the distribution function is defined in the physical and 

the configuration spaces) and moreover advection terms are defined in both spaces. By these reasons the 
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number of works devoted to the treatment of the FP equation is relatively reduced (Lozinski and Chauvière 

(2003); Chauvière and Lozinski (2004)). In these techniques, usually, to account for the multidimensional 

character of the FP equation, a time-splitting is often considered to decouple the advection problem in 

physical space and the advection-diffusion problem in the conformation space. The first problem can be 

solved by a numerical method appropriate for hyperbolic partial differential equations (discontinuous 

Galerkin, SUPG, …). Then, the advection-diffusion problem defined in the conformation space can be 

treated using different implicit techniques (SUPG, wavelets-Galerkin, spectral techniques, …) preserving 

stability, accounting for distribution relatively localized as well as periodic boundary conditions in the 

conformation space. 

 

In general we can solve the FP equation from its associated Ito stochastic differential equation for a large 

set of realizations.  The CONNFFESSIT method (Ottinger and Laso (1992)) was the first implementation of 

the stochastic approach. The Brownian Configuration Fields (Hulsen et al. (1997)) can be considered as an 

improvement of the CONNFFESSIT method. However, the control of the statistical noise is a major issue 

in stochastic micro-macro simulations, problem that does not arise in the deterministic Fokker-Planck 

approach. 

 

This work focuses on the resolution of the Fokker-Planck equation that governs the evolution of the fibers 

orientation distribution. To reduce the computing time, that equation is solved along some flow trajectories 

in order to extract the significant information of the solution from the application of the Karhunen-Loève 

decomposition. Now, from this information one could solve the Fokker-Planck equation everywhere in the 

flow domain or simply adjust a closure relation that becomes optimal for such flow, solving the evolution 

of some orientation moments which require a less amount of computation. Some antecedents exist 

concerning closure relation fitting; see for example Parsheh et al. (2006) or Gillet-Chaulet et al. (2006). 

The present paper focuses on the definition of an empirical natural closure approximation for each 

particular flow. For this purpose we start introducing the Karhunen-Loève decomposition (Ryckelynck et 

al. (2006)) that is applied later to automatically extract the main solution characteristics for adjusting 

empirically a natural closure relation.  
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1.2. The Karhunen-Loève decomposition 

We assume that the evolution of a certain field ( )txu ,  is known. In practical applications, this field is 

expressed in a discrete form, that is, it is known at the nodes of a spatial mesh and for some times 

( ) p
i

p

i
utxu ≡, . We can also write introducing a spatial interpolation ( ) ( ),p

i iu x u x t p t≡ = ∆ , 

[ ]1, ,p P∀ ∈ A  [ ]1, ,i N∀ ∈ A . The main idea of the Karhunen-Loève (KL) decomposition is how to 

obtain the most typical or characteristic structure ( )xφ  among these ( ) pxu
p ∀ , . This is equivalent to 

obtaining a function ( )xφ  that maximizes α . 

( ) ( )

( )( )

2

1 1

2

1

 
p P i N

p

i i

p i

i N

i

i

x u x

x

φ
α

φ

= =

= =
=

=

   =
∑ ∑

∑               (21) 

The maximization leads to: 

( ) ( ) ( ) ( )

( ) ( )

1 1 1

1

   = 

                                            ;   

p P j Ni N
p p

i i j j

p i j

i N

i i

i

x u x x u x

x x

φ φ

α φ φ φ

= ==

= = =

=

=

          
= ∀

∑ ∑ ∑
∑

#

# #
                    (22) 

which can be rewritten in the form  

( ) ( ) ( ) ( )

( ) ( )

1 1 1

1

      

                                           ;      

j N p Pi N
p p

i j j i

i j p

i N

i i

i

u x u x x x

x x

φ φ

α φ φ φ

= ==

= = =

=

=

  
=     

= ∀

∑ ∑ ∑
∑

#

# #
                   (23) 

Defining the vectors a  such that its i-component is ( )ixa , Eq. (23) takes the following matrix form 

    ;             
T T

k kφ φ α φ φ φ φ αφ= ∀ ⇒ =# # #             (24) 

where the two points correlation matrix is given by 

( ) ( ) ( )
1 1

  
p P p P

T
p pp p

i jij

p p

k u x u x k u u
= =

= =

= ⇔ =∑ ∑             (25) 

 



 8

which is symmetric and positive definite. If we define the matrix Q  containing the discrete field history: 

1 2
1 1 1

1 2
2 2 2

1 2

 

P

P

P

N N N

u u u

u u u
Q

u u u

   =    

A
A

B B D B
A

                           (26) 

is easy to verify that the matrix k  in  Eq. (25) results: 

  T
k Q Q=                 (27) 

1.3 “A posteriori” reduced modeling 

If some direct simulations are carried out, we can determine ( ) [ ] [ ]PpNiutxu p
i

p

i
,,1 , ,,1 ,, AA ∈∀∈∀≡ , 

and from these the n eigenvectors related to the n-highest eigenvalues 

( ) [ ] [ ]nkNix ikk
,,1 , ,,1 , AA ∈∀∈∀φ=φ  that are expected to contain the most information about the 

problem solution. For this purpose we solve the eigenvalue problem defined by Eq. (24) retaining all the 

eigenavules belonging to the interval defined by the highest eigenvalue and that value divided by a large 

enough value (
810  in our simulations).  In practice n is much lower than N. Thus, we can try to use these n 

eigenfunctions for approximating the solution of a problem slightly different to the one that has served to 

define ( ) p

i

p

i utxu ≡, .  For this purpose we need to define the matrix B   

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 11 2

2 2 21 2

1 2

 

n

n

N N Nn

x x x

x x x
B

x x x

φ φ φ
φ φ φ

φ φ φ

   =     

A
A

B B D B
A

            (28) 

Now, if we consider the linear system of equations resulting from the discretization of a partial differential 

equation (PDE) in the form  

( ) ( 1)
 

m m
K U F

−=         (29) 

where the superscript refers to the time step, then, assuming that the unknown vector contains the nodal 

degrees of freedom, it can be expressed as: 
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( ) ( )( )

1

 
i n

m mm

i i
i

U Bζ φ ζ
=

=
= =∑               (30) 

Eq. (29) results 

( ) ( 1) ( ) ( 1)
   

m m m m
K U F K B Fζ− −= ⇒ =      (31) 

and by multiplying both terms by T
B  it results 

( ) ( 1)
  

T m T m
B K B B Fζ −=               (32) 

which proves that the final system of equations is of low order, i.e. the dimension of  
T

B K B  is nn × , 

with Nn << ,  and the dimensions of both 
( )

 
mζ  and 

( 1)T m
B F

−
 are 1×n . 

Remark 1. Equation (32) can be also derived introducing the approximation (30) into the PDE Galerkin 

form. 

 

2. Simulating complex flows 

We consider the use of a decoupled strategy which solves the flow kinematics (from the orientation state 

known at the previous iteration or time step), and then the orientation state can be updated using the velocity 

field just computed.  The flow kinematics can be solved accurately by using standard discretization 

techniques as for example the finite element method. This paper focuses on the resolution of the orientation 

problem which involves some specific difficulties.  

2.1 Extracting the solution structure 

One possibility for reducing the computing time associated with the resolution of the Fokker-Planck 

equation (18) consists of decoupling the resolution of the purely advection problem in the physical space 

and the advection-diffusion defined in the conformation space. Now, the first problem can be accurately 

integrated using the method of characteristics along some nodal trajectories, being the one defined in the 

conformation space discretized using some stabilized finite element strategy for accounting its advection 

character. The model reduction described later will operate only on the conformation space discretization.  
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We briefly summarize this strategy in the 2D case, the 3D case being a direct extension. In that case the 

Fokker-Planck equation can be written using polar coordinates as: 

, ,

( , , ) ( , , )
( , , )  r

x t

d x t d x t
x t D

dt dt ϕ

ψ ϕ ϕ ψ ϕψ ϕ
ϕ ϕ ϕ
   ∂ ∂ ∂ + =   ∂ ∂ ∂      (33) 

where  
, ,

 
x t

d

dt ϕ

ϕ
 is computed from the Jeffery equation (13): 

( )

12 11 12

12 12 11

11 12

12 11

0-sin cos cos
 

0cos sin sin

cos cos
                      - cos sin

sin sin

D Dd
k

D Ddt

D D
k

D D

ϕ ϕ ϕϕ
ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ ϕ

Ω        
= + −        −Ω −        

          −      
  (34) 

By multiplying the second equation by  cosϕ , the first one by  sinϕ  and subtracting the first one from the 

second one, it results: 

( )

( )

12

12

11 12

12 11

0 cos
 sin cos

0 sin

cos
           + sin cos

sin

d

dt

D D
k

D D

ϕϕ ϕ ϕ
ϕ

ϕ
ϕ ϕ

ϕ

Ω   = − +   −Ω   
  −   −   

    (35) 

where the components of both the vorticity and the strain rate tensor could depend on the physical 

coordinates x  and time t.  

 

Applying a stabilized finite element discretization of Eq. (33) in the conformation space (ϕ ) it results 

(taking into account the solution periodicity in the angular coordinate): 

 

2 2 2
** *

0 0 0

2 *

0

          
r

d d d
d d d

dt dt dt

D d

π π π

π

ψ ϕ ψ ϕψ ϕ ψ ϕ ψ ψ ϕ
ϕ ϕ

ψ ψ ϕ
ϕ ϕ

∂ ∂  + + = ∂ ∂  
∂ ∂= −
∂ ∂

∫ ∫ ∫
∫

   (36) 
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The weighting function 
*ψ  is approximated as ψ  whereas 

*
ψ  is approximated in a different way in order 

to account for the advection character of the differential operation. Different alternatives exist, out of the 

scope of the present work. In our simulations a SUPG (streamline upwind Petrov Galerkin) stabilization 

has been used. Finally, after introducing the different finite element interpolations and perform the 

numerical integration the following linear system is obtained: 

1 1

1 2 1 2 1
K K F K K K Fψ ψ ψ ψ

• •
− −= + ⇒ = +      (37) 

In this equation vector F  accounts for the normality condition of the orientation distribution that is 

enforced using a Lagrange multiplier technique.  

 

Now, for integrating in the physical domain we use the method of characteristics by its simplicity and high 

accuracy. For this purpose, we assume that we are looking for the solution along the streamline related to 

point X  where at the initial time t=0 the orientation distribution is known. 

Now, the orientation distribution updating is given by: 

1

1 1

1

1 2

( ; , 0) ( ; , 0) ( ( ; , 0), ) 

( ( ; , 0), ) ( ( ; , 0), )

                          ( ( ; , 0), )  

n n n n

n n n n

n n

x t X t x t X t v x t X t t t

x t X t t x t X t t

K K x t X t t F t

ψ ψ

ψ

+

+ +

−

= = = + = ∆ = = = +  + = + ∆ 
      (38) 

where 1( ; , 0)nx t X t+ =  denotes the position that at time 1nt +  occupies a fluid volume located at point  

X  at time t=0. 

 

Using this simple uncoupled strategy one can compute the evolution of the fiber orientation distribution 

along some nodal trajectories identified by the parameter l. Those distributions could be stored at some 

time steps (snapshots) leading to the following eigenvalue problems:  

[ ]( ) (l)

( ) (l)
 ;    1, ,l

l
Q Q l Lφ αφ= ∈ A       (39) 

with 
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1 2
( ) 1 ( ) 1 ( ) 1

1 2
( ) 2 ( ) 2 ( ) 2

( )

1 2
( ) ( ) ( )

 

l

l

l

c c c

P

l l l

P

l l l

l

P

l N l N l N

Q

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ

   =     

A
A

B B D B
A

     (40) 

where (l) denotes the nodal trajectory, lP  the number of the selected distributions along each trajectory 

(snapshots), and L is the total number of nodal trajectories where the Fokker-Planck equation has been 

integrated, of course, L N<< , with N the total number of nodes used to discretize the physical domain 

where the flow is defined and cN  the number of nodes used in the conformation space discretization (ϕ ).  

Now, from the solution of Eq. (39) we can compute the most significant eignfunctions allowing to write: 

( ) ( ) ( )( )

( )
1

( ) ( )  ( )
li n

l l ll

il i
i

t t B tψ ζ φ ζ
=

=
≈ =∑       (41) 

Vector ψ  has cN  components that are in fact the values of the distribution function at the nodes used to 

discretize the conformation domain (the unit circle or the unit surface in the 2D or 3D case respectively). 

 

Now we will define a global reduced approximation basis B  from the different reduced approximation 

bases 
( )l

B . For this purpose, we proceed as follows: 

•  
(1)

B B= , 1n n=  and l=1 

•  While l L≤  

o 1l l← +   

o 0i =  

o While li n≤  

̇ 1i i← +  

̇ If  ( )( ) ( )

1

n T
l l

i i j j
j

TOLφ φ φ φ
=

 − >  ∑  

Ü 
( )

 
l

i
B B φ =    

Ü 1n n← +  
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that is, we update the reduced approximation basis introducing only vectors that are not too close to the 

existing ones (for a given tolerance TOL). 

 

The final reduced approximation basis consists of the n vectors contained in matrix B , and it could be 

expected that that basis represents accurately all the orientation distributions in the whole flow domain.  

 

In order to accelerate the computation it could be interesting to solve the equation governing the evolution 

of the second order orientation equation instead of the resolution of the Fokker-Planck equation, along all 

the nodal trajectories, but as previously argued this approach involves the introduction of an appropriate 

closure relation allowing the expression of the fourth order orientation tensor from the expression of the 

second order one. 

 

Remark 2. It is also possible to derive an evolution equation for the fourth order orientation tensor that 

involves the sixth order one, and also requires the definition of an appropriate closure relation. Despite 

that, this strategy could be more appealing because the constitutive equation directly uses the fourth order 

orientation tensor, and the procedure described in this work could be applied for deriving this closure 

relation, from now on we only consider the evolution problem related to the second order tensor and the 

associated closure problem. 

 

Now, we denote by [ ];  1, ,
j

j nφ ∈ A  the n  approximation vectors contained in matrix B , that are 

expected to describe accurately the evolution of the orientation distribution solution along any flow 

streamline, i.e. 

0
1

( ( ; , 0)) ( )  ( )
i n

i i
i

x t x t t B tψ ζ φ ζ
=

=
= ≈ =∑      (42) 

where 0( ; , 0)x t x t =  denotes the position at time t of a fluid particle located at 0x  at time 0t = . 

 

Taking into account the expressions of the second and fourth order orientation tensors, given by Eqs. (6) 

and (4) respectively, it results: 
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( 2) 0 ( 2) (2)
1

( ( ; , 0)) ( )  ( )
i n

ii

i

a x t x t t a A tζ ζ
=

=
= ≈ =∑     (43) 

and  

( 4) 0 ( 4) (4)
1

( ( ; , 0)) ( )  ( )
i n

ii

i

a x t x t t a A tζ ζ
=

=
= ≈ =∑     (44) 

where ( 2) a  and ( 4 ) a  denote the vector form of the second and fourth order orientation tensors 

respectively, being ( 2) ia  and ( 4) ia  the vector forms of the tensors defined by the integrals: 

2

0
 ( )  i

i

a d
π
ρ ρ ρ ρ φ ϕ ϕ= ⊗ ⊗ ⊗∫  with   

cos

sin

ϕ
ρ

ϕ
 =       (45) 

and 

2

0
 ( ) 

ii
a d

π
ρ ρ φ ϕ ϕ= ⊗∫        (46) 

We would mention that the value of ( )iφ ϕ at point  ϕ  can be determined by standard interpolation from 

the nodal values of 
iφ  contained in the vector 

i
φ . Finally, matrix 

(2)
A and  

(4)
A  are built from vectors 

( 2) ia  and ( 4) ia  which defines their different columns. 

 

2.2 Natural closure relation 

Any closure approximation of the fourth order orientation tensor can be written  using the Caley-Hamilton 

theorem as well as partial normalization and symmetry (see Dupret and Verleye, 1999), in the general form:   

6

(4) (4) i
1

3

(4) (4) i
1

    in   3D

    in   2D

i

i

i

i

i

i

a w

a w

β

β

=

=
=

=

 = =

∑
∑        (47) 

where 
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(4) 1

(4) 2

(4) 3

2
(4) 4

2
(4) 5

2 2
(4) 6

( )

( )

( )

( )

( )

( )

w S I I

w S I a

w S a a

w S I a

w S a a

w S a a

= ⊗ = ⊗ = ⊗ = ⊗ = ⊗ = ⊗

        (48) 

and where ( ) S refers to the symmetric component. 

All the coefficients iβ  are not independent due to the normalization conditions. Thus, we have in 3D 

1 4

2 5

3 6

10 1 0 1 2 4 4 0

0 7 2 0 1 6 4( ) 6

0 0 4 7 5 2(3 4 ) 0

D P P

D P D

D

β β
β β
β β

−                = − − − +                −        
  (49) 

and in 2D 

1
3

2

8 1 4 0

0 1 1 1

Pβ
β

β
−      

= − +                   (50) 

where  det( )P a=  and ( )( )21
1

2
D Tr a= −  (with Tr () the tensor trace). 

 

From now on, and for the sake of generality, we consider the 3D case. Thus, Eq. (49) can be written in the 

matrix form: 

  
u d

f g hβ β= +         (51) 

Eq. (47) results: 

1 1
6

(4) (4) i
1

 
0

                                                       =W

i
u

i d
i d

d

f g f h
a w W W W W

I

W

β
β β β

β

β

− −=

=

      = = = = + =          
+

∑
& %

  (52) 

Now, considering Eq. (52) for the n couples of tensors   ,  
i

i

a a     extracted from the most significant 

distribution functions (as explained in the previous section), one could be interested in determining the 

optimal value of 
d

β , that is close to the procedure used by Dupret and Verleye to derive the natural 
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closure relation, but they considered only the distribution related to an initial isotropic distribution of 

infinite slender fibers, without diffusion effects and in a simple shear flow.  

 

2.3 Local natural closure relation 

For computing the unknown beta coefficients we proceed by using a moving least square technique. For this 

purpose we define the approximation error 

( ) 2

(2) (2) (2) (4)
1

( , )   
i n

i i ii id d
i

J a a a a W Wεβ δ γ β
=

=

 = − − − ∑ & %
     (53) 

where the weighting coefficient 
i
γ  scales with 

i
λ  related to the eigenfunction 

i
φ  that was used for 

computing tensors 
i

a  and 
i

a . The window function ( )dεδ  is introduced for increasing the weight of 

closer couples  ,  
i

i

a a     in the error expression. In our simulations we have considered the following 

window function: 

( )
2

( )    with

d

d d e
d

ε
ε

ε
δ

δ δ
ε ε π

 −   = =        (54) 

Now, the optimality condition implies 

( ) T

(2) (2) (4)i
1

0 2    
i n

i i ii i d
id

J
a a W a W Wεδ γ β

β

=

=

∂  = = − − − ∂ ∑ & & %
  (55) 

that is: 

 

( )

( )

T

(2) (2) i
1

T

(2) (2) (4)i
1

   

           

i n

i i i d
i

i n

i i ii

i

a a W W

a a W a W

ε

ε

δ γ β

δ γ

=

=

=

=

 − =  
 = − − 

∑
∑

& &

& %
    (56) 

or 

( )

( )

1
T

(2) (2) i
1

T

(2) (2) (4)i
1

   

           

i n

i i id
i

i n

i i ii

i

a a W W

a a W a W

ε

ε

β δ γ

δ γ

−=

=

=

=

 = − ×  
 × − − 

∑
∑

& &

& %
    (57) 
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which allows to compute at each ( 2) a  the closure relation coefficients 
d

β  and then from Eq. (51) 
u

β  

which defined completely the closure relation: 

(4) (2) (2)=W( ) ( )a a aβ=        (58) 

 

Remark 3. If one consider a unit window function, i.e. ( ) 1dεδ = , it results a global least squares 

approximation that implies that closure coefficient does not depend anymore on ( 2 ) a . 

3. Numerical tests 

3.1 Simple shear flow 

We consider a 2D simple shear flow whose kinematics is defined by ( ,  0)
T

v yγ
•

=  being the shear rate 

1γ
•
= . The fiber suspension is characterized by fibers whose shape factor leads to 0.8k =  and the 

diffusion coefficient was set to 0.1
r

D = .  The orientation distribution (assumed 2D) is discretized using 

the SUPG finite element method on the mesh associated with the conformation space that consists of 

200
c

N =  nodes uniformly distributed in [0,2 [π . 

 

When the Fokker-Plank equation is integrated along a trajectory from the isotropic initial state until 

reaching the steady state characterized by a small enough variation between two consecutive time steps, that 

is: 

6
1 1 0( ) ( ) 10 ( ) ( )

n n
t t t tψ ψ ψ ψ−
+ − ≤ −   

and the Karhunen-Loève decomposition is applied to the snapshots selected during the orientation 

distribution evolution (around 20), the modes depicted in figure 1 are then obtained.  

 

We can notice that the linear combination of only 5 orientation distributions (the ones depicted in figure 1) 

are enough to represent accurately the evolution of the orientation distribution along the considered 

streamline. It is also important to remark that these functions have not a full physical meaning, because, for 
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example, they take negative values. However their linear combination can reproduce perfectly the evolution 

of the distribution function coming from the resolution of the Fokker-Planck equation. However, in the 

procedure described in the previous section the second moment of those distributions (second order 

orientation tensor) is calculated, and due to the characteristics of those distributions the derived tensors 

have not a unit trace. Despite this fact one could continue to apply the procedure proposed in the previous 

section ignoring those physical or conceptual difficulties.   

 

Other possibility to avoid these modes without a full physical meaning, consists of assuming that the 

orientation distribution can be written everywhere on the considered streamline as a linear combination of 

some orientation distributions (snapshots), for example, those were used for applying the Karhunen-Loève 

decomposition. In order to avoid the consideration of two distributions too close, one could start with the 

initial distribution, adding a new distribution to the reduced approximation basis only when it is far enough 

from all the functions defining the reduced approximation basis. The advantage of this approach is that all 

the modes used for approximating the orientation distribution evolutions are real physical distributions and 

consequently the associated second order orientation tensors are perfectly defined from all points of view. 

Figure 2 shows the different modes defined on the same streamline by using the just described strategy.  We 

can notice the smoothness, periodicity, definite positive and normality of those distributions that define the 

reduced approximation basis which also contains 5 functions.  

 

Finally, one could consider a last possibility related to the snapshot proper orthogonal decomposition. This 

technique is based on finding the significant modes from the application of the Karhunen-Loève 

decomposition, but assuming that those modes can be written as a linear combination of the snapN  snapshot 

that were used to define the decomposition. The main advantage of this strategy derives from the fact that it 

is easy to prove that theses modes result from the eigenproblem defined by  

( )  
T

Q Q λϒ= ϒ         (59) 

whose size is 
snap snapN N×  instead of c cN N× , and where only the eigenvectors related to large enough 

eigenvalues are retained, 
8

110iλ λ−> , 1λ  being the highest eigenvalue. From those eigenvectors the 
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reduced approximation modes are computed using the fact that those modes are linear combination of the 

snapshots, i.e.: 

[ ] ,      i 1, ,ii
Q nφ = ϒ ∈ A        (60) 

The most significant modes 
i

φ  related to the eigenvectors  iϒ through  ii
Qφ = ϒ  are depicted in figure 

3. 

 

In any case, these three numerical schemes offer three reduced approximation basis that can be used to 

define the natural closure according to the procedure defined in the previous section. 

 

In order to compare these different strategies, we have computed the reference second order orientation 

tensor from the resolution of the Fokker-Planck equation, and then the different orientation tensors using the 

closures proposed in the previous section. The reference and approximated second order orientation 

tensors were compared at different times, for different values of the diffusion coefficients, using the 

following error measure: 

 
ref aprox

E a a= −         (61) 

Table 1 groups the different computed errors at the end of the evolution process. We can notice that when 

the diffusion coefficient is small enough the standard natural closure relation works perfectly because we 

are close to the hypothesis under which it was derived. However, when the diffusion coefficient is 

increased, the solution accuracy is degraded. On the other hand, the adaptive natural closure that we have 

defined works perfectly for any diffusion coefficient, except for the too small values that induce numerical 

difficulties in the finite element discretization of the Fokker-Planck equation in the conformation space.  We 

must mention that due to the fact that the Karhunen-Loève and the Snapshot Karhunen-Loève natural 

closures are built from modes (approximation functions) that have not a full physical meaning we have 

preferred using a global least square technique. Moreover, the global least squares fitting can be applied 

without a significant impact on the solution accuracy and with a considerable computing time reduction.  

 

 

3.2 Extensional flow 
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We consider a 2D extensional flow whose kinematics is defined by ( ,  )
T

v x yε ε
• •

= −  being the 

elongation rate 1ε
•
= . The fiber suspension is characterized by fibers whose shape factor leads to 

0.8k = .  The orientation distribution (assumed 2D) is discretized using the SUPG finite element method 

on the mesh associated with the conformation space that consists of 200cN =  nodes uniformly 

distributed in [0,2 [π . 

 

Figures 4 and 5 depict the time evolution of the error defined in Eq. (61) for 0.01
r

D =  and 0.1
r

D =  

respectively, where only the snapshot natural closure is compared with the standard natural one. We can 

notice the superior accuracy of the snapshot natural closure for both diffusion coefficients. 

 

3.3 Driven cavity flow model: an example of complex flow 

In this section we consider the complex flow generated in a driven cavity ] [ ] [0,1 0,1Ω = ×  that involves 

a short fiber suspension characterized by the same material parameters that in the previous tests. The 

velocity is prescribed on the domain boundary according to: 

( )0, ( 1, ) ( , 0) 0v x y v x y v x y= = = = = =   and ( ) ( )2 2
max, 1 16 (1 ) ,0

T
v x y v x x= = − . The 

velocity field is then solved by assuming a Newtonian behavior and by applying a standard mixed finite 

element formulation where the velocity and pressure approximations verify the LBB stability condition. The 

Fokker-Planck equation governing the evolution of the fiber orientation distribution function is then solved 

along some closed streamlines, where the periodicity condition of that distribution function was imposed as 

described in Ammar and Chinesta (2005).  From the computed orientation distribution function, the 

characteristic modes are extracted by using the technique previously described based on the application of 

the Karhunen-Loève decomposition, allowing to fit the empirical natural closure introduced in section 2.3 

using the snapshot natural closure strategy previously introduced. Now, the evolution equation associated 

with the second order orientation tensor is solved by assuming different closure relations: linear, quadratic, 

hybrid, natural and the empirical natural one. 
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If the Fokker-Planck equation is solved in the whole domain considering a fine enough mesh, the fiber 

distribution function can be computed everywhere without addressing any closure relation. Thus, the second 

order orientation tensor related to the just computed distribution function can be used as reference solution 

for comparison purposes.  

 

The error between the computed second order orientation tensor and the reference solution coming from the 

solution of the Fokker-Planck equation is reported in Table 2.  

 

From the previous results we can conclude that in the case of real complex flows it is difficult to conclude 

about the net superiority of a particular closure relation. In this kind of flows there are regions in which 

advection terms dominate the diffusion ones (as for example in the neighborhood of the upper wall in the 

driven cavity flow) whereas in others regions diffusion terms dominate the advection ones. The contrast 

between these two competitive behaviors increases as the diffusion coefficient decreases because for high 

enough diffusion coefficients the spatial gradients of the orientation field are quite reduced. 

4. Conclusions 

This work focused on the resolution of the Fokker-Planck equation that governs the evolution of the fiber 

orientation distribution. To reduce the computing time, that equation is solved along some flow trajectories 

in order to extract the significant information of the solution from the application of the Karhunen-Loève 

decomposition. This extraction has been made using three different strategies: (i) the standard Karhunen-

Loève decomposition; (ii) the simple use of some snapshots of the orientation distribution evolution (linear 

independence is checked during the basis construction) and (iii) applying the snapshot-Karhunen-Loève 

decomposition that makes optimal the snapshot basis. From this reduced approximation bases we adjust a 

closure relation that becomes optimal for such flow, that allows solving the evolution of some orientation 

moments which require a less amount of computation. The accuracy of the proposed approach has been 

illustrated in some numerical examples concerning some simple flows, and seems to be an appealing 

strategy when the salient diffusion effects have an unfavourable effect on the natural closure approximation. 

Thus, a mixed strategy combining the natural closure in the regions where the orientation is dominated by 
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advection terms and the adjustable one when the diffusion effects becomes important could be nice 

candidate to be considered when fast and accurate solutions are desired. 
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Diffusion Natural 
Closure 

KL - Natural 
Closure 

Snapshot 
Natural Closure 

Snapshot-KL 
Natural Closure 

0.1 0.0139 0.0095 0.0091  0.0355 
0.01 0.0046 0.0196 0.0113  0.0471 

 
Table 1. Error of the different closure approximations: standard natural closure (Dupret and Verleye, 1999) 
and the adaptive natural closure described in section 2 using the three different reduced approximation 
bases just defined: the first one using the modes coming from the direct application of the Karhunen-Loève 
decomposition, the second one using some appropriate snapshots and the last one based on the use of the 
snapshot Karhune-Loève decomposition. 
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Diffusion Linear Quadratic Hybrid Natural Empirical 
Natural 

1 0.0031 0.0704 0.0062 0.0019 0.0008       
0.1 0.1992 0.1516 0.0800 0.0353 0.0289 
0.01 1.1286 0.1452 0.1048 0.1216 0.1126 

 
Table 2. Error of the different closure approximations: linear, quadratic, hybrid, standard natural closure 
(Dupret and Verleye, 1999) and the snapshot natural closure described in section 2. 
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Figure 1. Significant modes related to the evolution of the orientation distribution function along a 
streamline computed from the Karhunen-Loève decomposition.  
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Figure 2. Reduced approximation modes related to the evolution of the orientation distribution function 
along a flow streamline.  
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Figure 3. Significant modes related to the snapshot – Karhunen-Loève techniques. 
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Figure 4. Error evolution in an elongational flow for 0.01

r
D =  
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Figure 5. Error evolution in an elongational flow for 0.1

r
D =  

 


