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Abstract

We introduce a semi-parametric estimator of the Poisson intensity parame-
ter of a spatial stationary Gibbs point process. Under very mild assumptions
satisfied by a large class of Gibbs models, we establish its strong consistency
and asymptotic normality. We also consider its finite-sample properties in a
simulation study.

Keywords: central limit theorem; Georgii-Nguyen-Zessin formula; Papangelou con-
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1 Introduction

Spatial Gibbs point processes form a major class of stochastic processes allowing the
modelling of dependence of spatial point patterns. They have applications in many
scientific fields such as biology, epidemiology, geography, astrophysics, physics, and
economics. General references covering as well theoretical as practical aspects of
these processes are e.g. [23], [16] or [14].

Gibbs point processes in Rd can be defined and characterized through the Pa-
pangelou conditional intensity (see [16]) which is a function λ : Rd×Ω → R+ where
Ω is the space of locally finite configurations of points in Rd. The Papangelou condi-
tional intensity can be interpreted as follows: for any u ∈ Rd and x ∈ Ω, λ(u,x)du
corresponds to the conditional probability of observing a point in a ball of volume
du around u given the rest of the point process is x. In the present paper, we assume
that the Papangelou conditional intensity is decomposed as

λ(u,x) = β λ̃(u,x), (1.1)

where β is a positive real parameter and where λ̃ : Rd × Ω → R+. If the point pro-
cess corresponds to a homogeneous Poisson point process λ̃(u,x) = 1. We further

assume that λ̃(u, ∅) = 1 which in case means that β = λ(u, ∅) and that λ̃ represents
the higher order interaction term. Therefore, we suggest the name Poisson intensity
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parameter for the parameter β. The goal of this paper is to develop an estimator
of β without specifying anything on the function λ̃. Our semi-parametric estimator
is based on a smart application of the Georgii-Nguyen-Zessin formula (see [11] for
a general presentation and Section 2.1) which is also a way to characterize a Gibbs
point process. We propose a very simple ratio-estimator of β based on a single ob-
servation of a stationary spatial Gibbs point process observed in a bounded window
and we prove its asymptotic properties (strong consistency and asymptotic normal-
ity) as the window expands to Rd. The problem considered in this paper is related
to two different works that we detail below.

First, due to its easy interpretability the most popular Gibbs model is without
any doubt the (isotropic) pairwise interaction point process. Its Papangelou condi-
tional intensity is given by

λ(u,x) = βλ̃(u,x) with λ̃(u,x) =
∏

v∈x\u

g(‖v − u‖). (1.2)

The function g is called the (isotropic) pairwise interaction function. Estimating the
model (1.2) consists in estimating β and the function g. To the best of our knowledge,
this awkward problem has been considered only in [10]. The authors propose several
methods to estimate non parametrically the function g. Our objective is to make
some advances in that direction which justifies first to propose an estimator of β
independently of the function g and to understand its properties.

Second, many popular methods exist to estimate a parametric Gibbs model. This
includes methods based on the likelihood or the pseudo-likelihood and the Takacs-
Fiksel method. We refer for instance to [16], [14] or [15] and the references therein for
an overview of these methods. A recent contribution [1] investigates a new approach.
The following exponential model is considered

λ(u,x) = βλ̃(u,x) with log λ̃(u,x) = θ⊤v(u,x) (1.3)

where θ is a real p-dimensional parameter vector, v(u,x) = (v1(u,x), . . . , vp(u,x))
⊤

for measurable functions vi : R
d×Ω → R, i = 1, . . . , p. [1] develops a new estimator

of the parameter θ where the parameter β is treated as a nuisance parameter. The
main advantage of the estimator is that it is obtained via the resolution of a linear
system of equations whereas all previous methods cited above require an optimiza-
tion procedure. The ratio-estimator of β we propose is also very computationally
cheap. Hence, it could serve as a complement of the estimate of θ proposed in [1] to
completely identify the model (1.3).

The rest of the paper is organized as follows. Section 2 gives the background and
notation, presents examples of Gibbs point processes and our main assumptions.
Section 3 deals with the core of the paper. We present our estimator and derive its
asymptotic properties as the window of observation expands to Rd. A simulation
study is conducted in Section 4 where we illustrate the efficiency of our estimator.
Proofs of the results are postponed to Appendix.
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2 Background and assumptions

2.1 Basic definitions and tools

A point process X in Rd is a locally finite random subset of Rd, i.e. the number
of points N(Λ) = n(XΛ) of the restriction of X to Λ is a finite random variable
whenever Λ is a bounded Borel set of Rd (see [8]). We let Ω be the space of locally
finite point configurations. If the distribution of X is translation invariant, we say
that X is stationary.

The Papangelou conditional intensity completely characterizes the Gibbs point
process in terms of the Georgii-Nguyen-Zessin (GNZ) Formula (see [20] and [24] for
historical comments and [11] or [18] for a general presentation). The GNZ formula
states that for any measurable function h : Rd × Ω such that the left or right hand
side exists

E
∑

u∈X

h(u,X \ u) = E

∫

Rd

h(u,X)λ(u,X)du. (2.1)

We will not discuss how to consistently specify the Papangelou conditional intensity
to ensure the existence of a Gibbs point process on Rd, but rather we simply assume
we are given a well-defined Gibbs point process. The reader interested in a deeper
presentation of Gibbs point processes and the existence problem is referred to [22, 21]
or [9], see also Section 2.2 for a few examples.

The concept of innovation for spatial point processes is proposed in [4] and is a
key-ingredient in this paper. Inspired by the GNZ formula, it is defined as follows:
for some measurable function h : Rd×Ω → R, the h−weighted innovation computed
in a bounded domain Λ is the centered random variable defined by

IΛ(X, h) =
∑

u∈XΛ

h(u,X \ u)−

∫

Λ

h(u,X)λ(u,X)du. (2.2)

We end this paragraph with a few notation. The volume of a bounded Borel set Λ
of Rd is denoted by |Λ|. The norm ‖ · ‖ stands for the standard Euclidean norm. For
two subsets Λ1 and Λ2 of Rd, d(Λ1,Λ2) corresponds to the minimal distance between
these two subsets. Finally, B(u,R) denotes the closed ball centered at u ∈ Rd with
radius R.

2.2 Examples of Gibbs point processes

We present in this paragraph several classical examples through their Papangelou
conditional intensity. Further details on these models can be found in [16] for exam-
ples (i)-(iv) and (vi)-(vii) and to [13] for the example (v). Let u ∈ Rd,x ∈ Ω and
R > 0.

(i) Strauss point process.

λ(u,x) = βγn[0,R](u,x\u)

where β > 0, γ ∈ [0, 1] and n[0,R](u,x) =
∑

v∈x

1(‖v− u‖ ≤ R) represents the number

of R-closed neighbours of u in x.
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(ii) Strauss point process with hard-core. Let 0 < δ < R the Papangelou condi-
tional intensity is

λ(u,x) =

{
0 if d(u,x \ u) ≤ δ
βγn]δ,R](u,x\u) otherwise

where β > 0, γ ∈ [0, 1].
(iii) Piecewise Strauss point process.

λ(u,x) = β

p∏

j=1

γ
n[Rj−1,Rj ]

(u,x\u)

j

where β > 0, γj ∈ [0, 1], n[Rj−1,Rj ](u,x) =
∑

v∈x

1(‖v − u‖ ∈ [Rj−1, Rj]) and R0 = 0 <

R1 < . . . < Rp = R < ∞.
(iv) Triplets point process.

λ(u,x) = βγs[0,R](x∪u)−s[0,R](x\u)

where β > 0, γ ∈ [0, 1] and s[0,R](x) is the number of unordered triplets that are
closer than R.

(v) Geyer saturation point process with saturation threshold s

λ(u,x) = βγt(x∪u)−t(x\u)

where β > 0, γ ∈ [0, 1], s ≥ 1 and t(x) =
∑

v∈x min(s, n[0,R/2](v,x \ v)).
(vi) Lennard-Jones model with finite range. This corresponds to the pairwise

interaction point process defined by

λ(u,x) = β
∏

v∈x\u

g(‖v − u‖)
)

with for r > 0, log g(r) =
(
θ6r−6 − θ12r−12

)
1]0,R](r), θ > 0 and β > 0.

(vii) Area-interaction point process.

λ(u,x) = βγA(x∪u)−A(x\u)

for β > 0, γ > 0 and where A(x) = | ∪v∈x B(v, R/2)|.
Examples (i)-(iii) and (v)-(vi) are pairwise interaction point processes whereas

example (iv) (resp. (vii)) is based on interactions on cliques of order 3 (resp. of
any order). Example (vi) is the only example which is not locally stable but only
Ruelle superstable, see [22]. We recall that the local stability property states that (for
stationary Gibbs models) the Papangelou conditional intensity is uniformly bounded
by a constant (see [16]).

2.3 Main assumptions and discussion

In this section, we consider the model (1.1) and we present the assumptions we
require to propose in Section 3.1 an estimator of the Poisson intensity parameter.
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To stress on the fact that the Papangelou conditional intensity satisfies (1.1) and
that we aim at estimating β we denote, from now on, the corresponding Papangelou
conditional intensity λβ.

The two following assumptions will be considered and discussed throughout the
paper.

(a) The Papangelou conditional intensity has a finite range R, i.e.

λβ(u,x) = λβ(u,xB(u,R)), (2.3)

for any u ∈ Rd, x ∈ Ω, β > 0.
(b) The function λ̃ satisfies for any u ∈ Rd

λ̃(u, ∅) = 1. (2.4)

As this paper deals with stationary Gibbs point processes, we stress on the fact
tha the Papangelou conditional intensity is invariant by translation for any β > 0.
We emphasize that no more assumption will be required. In particular we do not
require that the Gibbs point process is locally stable. This is noticeable since local
stability is often an assumption made when dealing with such models, see e.g. [5].
We also underline that in the following, we do not assume that R is known. In place
of this, we assume we are given an upper-bound of R.

Let us discuss these assumptions regarding the examples presented in Section 2.2.
Examples (i)-(vii) exhibit Papangelou conditional intensities which satisfy (1.1) and
(2.3) with finite range R. Example (i)-(vi) satisfy the assumption (2.4), whereas

example (vii) is a counter-example since for the latter one λ̃(u, ∅) = γπ(R�2)2 6= 1
for γ > 0. Condition (b) can thus be viewed as an identifiability condition.

3 Semi-parametric estimator of β⋆

3.1 Definition

In the following, we let β⋆ > 0 denote the true parameter and we denote by Pβ⋆ the
probability measure of X, i.e. X ∼ Pβ⋆ .

Our estimator is based on an application of the GNZ formula (2.1) for the fol-

lowing function h given for all u ∈ Rd, x ∈ Ω and R̃ ≥ R by

h(u,x) = 1(d(u,x) > R̃) = 1(x ∩B(u, R̃) = ∅). (3.1)

The idea is formulated by the following result. Let Λ be a bounded region of Rd and
let NΛ(X; R̃) and VΛ(X; R̃) denote the following random variables

NΛ(X; R̃) =
∑

u∈XΛ

1((X \ u) ∩ B(u, R̃) = ∅)

VΛ(X; R̃) =

∫

Λ

1(X ∩ B(u, R̃) = ∅)du.

The variable NΛ corresponds to the number of points in XΛ that are separated from
other points in X by a distance greater than R̃ while the variable VΛ is the volume
of Λ after digging a disk hole of radius R̃ centered at each point of X.

5



Proposition 3.1. Assume (1.1), (2.3) and (2.4), then we have for any R̃ ≥ R

ENΛ(X; R̃) = β⋆ EVΛ(X; R̃) (3.2)

where E denotes the expectation with respect to Pβ⋆.

Proof. Using the GNZ formula (2.1) applied to the function h defined by (3.1), we
obtain

ENΛ(X; R̃) = E
∑

u∈XΛ

1((X \ u) ∩B(u, R̃) = ∅)

= β⋆ E

∫

Λ

1(X ∩B(u, R̃) = ∅)λ̃(u,X)du.

Now, using the finite range property (2.3), the assumption (2.4) and the fact that

R̃ ≥ R we continue with

ENΛ(X; R̃) = β⋆ E

∫

Λ

1(X ∩ B(u, R̃) = ∅)λ̃(u,X ∩B(u,R))du

= β⋆ E

∫

Λ

1(X ∩ B(u, R̃) = ∅)λ̃(u, ∅)du

= β⋆ EVΛ(X; R̃).

Using a classical ergodic theorem for spatial point processes obtained in [19],

we can expect that when the observation domain is large NΛ(X; R̃) ≃ ENΛ(X; R̃)

and VΛ(X; R̃) ≃ EVΛ(X; R̃). Using this and Proposition 3.1, we are suggested a
natural and computationally cheap ratio-estimator of the parameter β⋆. We define
this estimator and present its asymptotic properties in the next section.

3.2 Asymptotic properties

To derive asymptotic properties of our procedure when the window expands to Rd,
we assume that X is observed in Λn where (Λn)n≥1 is a sequence of cubes growing
up to Rd.

When u is a point close to the boundary of the window Λn, we can only evaluate
h(u,X ∩ Λn ∩ B(u, R̃)). One simple strategy for eliminating the edge effect bias is

the border method, i.e. by considering the erosion of Λn by R̃ defined by

Λn,R̃ = Λn⊖R̃ = {u ∈ Λn : B(u, R̃) ⊆ Λn}.

Then we define our estimator by

β̂n = β̂n(X; R̃) =
NΛ

n,R̃
(X; R̃)

VΛ
n,R̃

(X; R̃)
. (3.3)

We let F denote the empty space function (see [16]) given, in the stationary case,
by

F (r) = Pβ⋆(X ∩ B(0, r) 6= ∅) = 1− Pβ⋆(X ∩ B(0, r) = ∅)
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for r > 0. Following this definition, by Fu,v : R+ → [0, 1] for any u, v ∈ Rd we denote
the function given by

Fu,v(r) = 1− Pβ⋆

(
X ∩B(u, r) = ∅,X ∩B(v, r) = ∅

)

for r > 0. We now state our main result.

Proposition 3.2. Assume (1.1), (2.3) and (2.4), and let R̃ ≥ R. Then we have the
following statements as n → ∞.
(i) β̂n is a strongly consistent estimator of β⋆.
(ii) If Pβ⋆ is ergodic, the following convergence in distribution holds

|Λn,R̃|
1/2(β̂n − β⋆)

d
−→ N (0, σ2) (3.4)

where

σ2 = σ2(β⋆, R̃) =
β⋆

1− F (R̃)
+

β⋆2

(1− F (R̃))2

∫

B(0,R̃)

(1− F0,v(R̃))dv. (3.5)

(iii) The following convergence in distribution holds

|Λn,R̃|
1/2 (β̂n − β⋆)

σ̂n

d
−→ N (0, 1) (3.6)

where

σ̂2
n = σ̂2

n(X; R̃) = |Λn,R̃|


 β̂n

VΛ
n,R̃

(X; R̃)
+

β̂2
nWΛ

n,R̃
(X; R̃)

V 2
Λ
n,R̃

(X; R̃)


 (3.7)

is a strongly consistent estimator of σ2 where

WΛ
n,R̃

(X; R̃) =

∫

Λ
n,R̃

∫

B(u,R̃)∩Λ
n,R̃

1(X ∩ B(u, R̃) = ∅)1(X ∩B(v, R̃) = ∅)dudv.

If the measure Pβ⋆ is not ergodic, then it can be represented as a mixture of
ergodic measures (see [12, Theorem 14.10]). In this case, the asymptotic distribution
in (3.4) becomes a mixture of Gaussian distributions. Since a mixture of standard
Gaussian distribution is a standard Gaussian distribution, this explains why Pβ⋆ is
assumed to be ergodic for the result (ii) and omitted for the result (iii).

We underline the interesting and unexpected fact that the asymptotic variance
σ2(β⋆, R̃) (and its estimate) are independent on λ̃ which is the unspecified part of
the Papangelou conditional intensity.

4 Simulation study

In this section, we investigate the efficiency of the Poisson intensity estimate in a
simulation study. We consider the models (i)-(v) described in Section 2.2. We set
R = 0.05 and β⋆ = 200 for all the examples except for the model g2 where we set
β⋆ = 50. We consider
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• Strauss point process where models s1 and s2 have respectively γ = 0.2 and
γ = 0.8.

• Strauss point process with hard-core with δ = R/2 and where models shc1

and shc2 have respectively γ = 0.2 and γ = 0.8.

• Piecewise Strauss point process with p = 3 and (R1, R2, R3) = (R/3, 2R/3, R)
and where models ps1 and ps2 have respectively (γ1, γ2, γ3) = (0.8, 0.5, 0.2)
and (γ1, γ2, γ3) = (0.2, 0.8, 0.2).

• Triplets point process where models t1 and t2 have respectively γ = 0.2 and
γ = 0.8.

• Geyer saturation point process with saturation threshold s = 1 where models
g1 and g2 have respectively γ = 0.5 and γ = 1.5.

The estimate of the Poisson intensity we propose depends on a parameter R̃
and ought to work for any value larger than R. To illustrate this, β⋆ is estimated
for different values of R̃. We consider R̃ = R × p, where p is a parameter varying
from 0.9 to 1.2. Each replication has been generated on the domain [0, L]2 and the

estimates are computed on [R̃, L− R̃]2. To illustrate the convergence as the window
grows up, the simulations are done with L = 1 and L = 2. The simulations are done
using the R package spatstat ([3]). The empirical results based on 500 replications
are presented in Table 1.

The results are very satisfactory. We observe that for values of R̃ ≥ R (i.e.
for values equal or larger than the finite range), the estimates are almost unbiased

whereas a non negligible bias is observed when R̃ < R. The bias is negative when the
point process is repulsive (i.e. when λ(u,x) ≥ 1) and positive when the point process
is attractive (i.e. when λ(u,x) ≤ 1) in particular for the model g2. As underlined by

one of the reviewers the sign of the bias when R̃ ≥ R is violated can be explained by
the fact that V is underestimated for attractive point processes and overestimated
for repulsive point processes. The closer R̃ is to the finite range R, the lower the
standard deviations are. The number of points with no R̃-close neighbours is lower
and lower as R̃ grows up, which explains this variance increase. Finally, we can also
highlight that the asymptotic results are partly checked. When the window varies
from [0, 1]2 to [0, 2]2, the standard deviations of the estimates are divided by 2 which
turns out to be the square root of the ratios of the domains areas.

Table 1 points out the dangers to choose a wrong value for the finite range
parameter R. From a practical point of view, if this parameter is not set by the
user, it has to be estimated. When the Papangelou conditional intensity is entirely
modeled the parameters can be estimated using for instance the maximum likelihood
or the pseudo-likelihood (e.g. [16]) and the irregular parameters (such as the finite
range R) can be estimated using the profile pseudo-likelihood ([2]). Such an approach
can not be used here since we do not want to model the higher order interaction
terms. We noticed that for a given (repulsive) point pattern our estimate is increasing

with the value of R̃ until a certain value where the regime is changing. Therefore we
propose to estimate the finite range parameter R as follows: a) Select a reasonable

grid of values for R̃ (we chose [0.02, 0.08] in our example). b) Compute β̂(R̃) for

each value of the grid. c) We consider a piecewise linear regression of β̂(R̃) in terms
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of R̃ and we define R̂ as the breakpoint on the slope (for this step we used the R

package segmented [17]). Empirical results for the models s1 and s2 are presented
in Table 2. Using the strategy described above, we manage to estimate R quite well.
The resulting estimates of the parameter β⋆ seem to be still unbiased. We note that
the standard deviation is greater than in the case where R is exaclty known (i.e.
column p = 1 in Table 1). However the loss of efficiency is quite reasonable.

Finally, we investigate the finite sample properties of the estimator of the asymp-
totic variance of β̂ given by (3.7) and the asymptotic normality result (3.6). Table 3
focuses on the models s1 and s2 and displays the 95% empirical coverage rates (i.e.
the fraction of asymptotic confidence intervals constructed from the asymptotic nor-
mality result (3.6) covering the true parameter value, here β⋆ = 200). As expected,

the theoretical coverage rate is respected whatever the value of R̃ ≥ R and far from
the result when R̃ = 90%R. Depite Proposition 3.2 does not cover this case, it is
interesting to note that the empirical results are still quite satisfactory if we replace
R by its estimated value.

Mean (std dev.) for R̃ = R× p

Model n p = 0.9 p = 1 p = 1.1 p = 1.2

s1 L = 1 99 174.0 (26.2) 203.6 (34.2) 204.3 (38.3) 205.5 (44.4)
L = 2 393 172.6 (12.7) 200.5 (16.4) 200.3 (18.5) 200.6 (20.8)

s2 L = 1 156 192.0 (31.3) 203.3 (41.8) 203.9 (48.1) 204.7 (55.8)
L = 2 622 190.7 (16.0) 200.7 (19.5) 200.3 (22.8) 200.4 (26.5)

shc1 L = 1 94 174.3 (23.2) 201.9 (30.3) 203.3 (36.8) 205.0 (41.9)
L = 2 379 174.1 (12.1) 201.6 (15.7) 201.9 (17.8) 202.1 (21.1)

shc2 L = 1 130 194.3 (30.2) 205.4 (36.7) 207.0 (42.8) 209.1 (51.6)
L = 2 514 190.2 (15.2) 198.5 (17.8) 199.5 (21.1) 200.6 (24.4)

ps1 L = 1 111 172.2 (25.1) 202.6 (33.2) 203.5 (38.7) 206.5 (47.2)
L = 2 445 171.5 (12.4) 201.6 (16.3) 201.7 (18.6) 202.4 (21.6)

ps2 L = 1 134 191.1 (30.7) 201.7 (37.7) 206.2 (45.2) 208.8 (54.2)
L = 2 535 192.8 (14.5) 201.7 (17.5) 202.1 (20.6) 202.0 (24.4)

t1 L = 1 159 181.6 (34.6) 204.5 (40.6) 205.2 (48.7) 205.8 (58.8)
L = 2 634 180.5 (16.7) 201.6 (19.5) 202.1 (22.9) 202.8 (26.7)

t2 L = 1 178 188.7 (30.7) 200.7 (35.0) 202.4 (39.9) 205.1 (50.2)
L = 2 727 189.3 (17.5) 200.0 (20.2) 199.8 (24.5) 199.8 (30.8)

g1 L = 1 110 174.8 (26.6) 201.4 (34.4) 201.5 (40.2) 203.6 (46.0)
L = 2 440 175.0 (13.3) 200.7 (17.4) 201.3 (19.9) 201.6 (23.1)

g2 L = 1 70 54.5 (10.4) 50.0 (10.4) 50.2 (11.4) 50.5 (12.1)
L = 2 276 54.4 (5.4) 50.2 (5.4) 50.2 (5.8) 50.3 (6.3)

Table 1: Mean and standard deviations of estimates of the Poisson intensity pa-
rameter β⋆ for different parameters R̃ based on 500 replications of different mod-
els generated on the window [0, L]2 and estimated on the window [R̃, L − R̃]2 for
L = 1, 2. The second column, n, indicates the average number of points (over the 500
replications) falling into [0, L]2, i.e. the Monte-Carlo estimation of En(X ∩ [0, L]2).
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R̂ β̂
mean (std dev.) mean (std dev.)

s1 L = 1 0.052 (0.004) 197.7 (38.8)
L = 2 0.051 (0.003) 198.9 (22.1)

s2 L = 1 0.051 (0.004) 201.7 (38.9)
L = 2 0.051 (0.003) 198.4 (21.9)

Table 2: Mean and standard deviations of estimates of the finite range parameter and
related Poisson intensity parameter estimates (i.e. β̂(R̂)) based on 500 replications
of Strauss models on the window [0, L]2.

R̃ = p× R R̂
p = 0.9 p = 1 p = 1.1 p = 1.2

s1 L = 1 77.4% 94.8% 95.0% 94.2% 89.2%
L = 2 40.0% 94.8% 93.8% 95.4% 90.4%

s2 L = 1 82.6% 93.2% 94.6% 93.8% 93%
L = 2 69.8% 95.0% 93.6% 92.8% 90.8%

Table 3: Empirical coverage rates (i.e. the fraction of 95% confidence intervals
covering the true parameter value β⋆ = 200) based on 500 replications of Strauss
models on the window [0, L]2.

A Proof of Proposition 3.2

We use the following additional notation in the proofs. The notation
∑ 6= stands for

summation over distinct pairs of points, Λc denotes the complementary set of Λ in
Rd. Let τ = (τx)x∈Rd be the shift group, where τx is the translation by the vector
−x ∈ Rd. For brevity, when there is no ambiguity, we skip the dependence on X

and on R̃ of the variables NΛ
n,R̃

, VΛ
n,R̃

,WΛ
n,R̃

, σ̂2
n.

Proof. (i) There exists at least one stationary Gibbs measure. If this measure is
unique, it is ergodic. Otherwise, it can be represented as a mixture of ergodic mea-
sures (see [12, Theorem 14.10]). Therefore, we can assume, for this proof, that Pβ⋆ is
ergodic. We apply a general ergodic theorem for spatial point processes obtained by
[18]. For this, we have to check that NΛ and VΛ are additive, invariant by translation
and satisfy ENΛ0 < ∞ and EVΛ0 < ∞, where for instance Λ0 is the unit cube [0, 1]d.
The additivity property is straightforward. Regarding the invariance by translation,
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let x ∈ Ω, Λ ⊂ Rd and y ∈ Rd, we have

NτyΛ(τyx; R̃) =
∑

u∈τyx

1τyΛ(u)1(d(u, τyx \ u) > R̃)

=
∑

u∈τyx

1Λ(u+ y)1(d(u, τyx \ u) > R̃)

=
∑

v∈x

1Λ(v)1(d(v − y, τyx \ (v − y)) > R̃)

=
∑

v∈x

1Λ(v)1(d(v,x \ v) > R̃) = NΛ(x; R̃).

Following similar arguments, we also have VτyΛ(τyx; R̃) = VΛ(x; R̃). Let us now focus
on the integrability conditions. First, we have

E
∣∣VΛ0

∣∣ = EVΛ0 = E

∫

Λ0

1(X ∩B(u, R̃) = ∅)du = |Λ0|(1− F (R̃)) = 1− F (R̃) < ∞.

Second, from Proposition 3.1

E
∣∣NΛ0

∣∣ = ENΛ0 = β⋆ EVΛ0 = β⋆(1− F (R̃)).

Therefore as n → ∞, we derive the following almost sure convergences

|Λn,R̃|
−1NΛ

n,R̃
−→ ENΛ0 = β⋆(1− F (R̃))

|Λn,R̃|
−1VΛ

n,R̃
−→ EVΛ0 = 1− F (R̃). (A.1)

Since the function (y, z) 7→ y
z

is continuous for any (y, z) in the open set {(y, z) ∈

R2 : z 6= 0}, we deduce the expected result for any fixed R̃ ≥ R.
(ii) From the definition of the innovations process (2.2), we have

|Λn,R̃|
1/2(β̂n − β⋆) = |Λn,R̃|

1/2
NΛ

n,R̃
− β⋆VΛ

n,R̃

VΛ
n,R̃

=
|Λn,R̃|

−1/2IΛ
n,R̃

(X, h)

|Λn,R̃|
−1VΛ

n,R̃

. (A.2)

Henceforth from Slutsky’s Theorem and (A.1), the result will be deduced if we prove
that |Λn,R̃|

−1/2IΛ
n,R̃

(X, h) tends to a zero mean Gaussian distribution. This will be

done by combining two papers [6] and [7] dealing with asymptotic normality and
variance calculation of innovations processes. For brevity, we write IΛ in place of
IΛ(X, h).

Following [6, Lemma 3], we have to assume that Pβ⋆ is ergodic and to check that
for any bounded domain Λ ⊂ Rd: (I) E |IΛ|3 < ∞, (II) E I2Γn

→ 0 for any sequence
of bounded domains Γn ⊂ Rd such that Γn → 0 as n → ∞ and (III) IΛ depends on
XΛ⊕R̃. (III) follows from the finite range property (2.3) and the definition of h given
by (3.1). We now focus on verifying (I). We have from Cauchy-Schwarz inequality

E |IΛ|
3 ≤ 4

(
EN3

Λ + β⋆3 EV 3
Λ

)
. (A.3)
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On the one hand, we have since for any m ≥ 1, hm(u,x) = h(u,x)

EN3
Λ =ENΛ + 3E

6=∑

u,v∈XΛ

h(u,X \ u)h(v,X \ v)

+ E

6=∑

u,v,w∈XΛ

h(u,X \ u)h(v,X \ v)h(w,X \ w). (A.4)

Let T1, T2 and T3 denote the three terms of the right-hand side of (A.4). Following
the proof of (i) in Proposition 3.2, ET1 ≤ β⋆|Λ|. Now, for any u, v ∈ Rd and x ∈ Ω,
we define the second order Papangelou conditional intensity by

λβ⋆(u, v,x) = λβ⋆(u,x)λβ⋆(v,x ∪ u) = λβ⋆(v,x)λβ⋆(u,x ∪ v).

By using iterated versions of the GNZ formula (2.1), we derive the following com-
putations

T2 = 3E

∫

Λ

∫

Λ

h(u,X ∪ v)h(v,X ∪ u)λβ⋆(u, v,X)dudv

= 3β⋆2 E

∫

Λ

∫

Λ

1(d(u,X ∪ v) > R̃)1(d(v,X ∪ u) > R̃)λ̃(u,X)λ̃(v,X ∪ u)dudv

= 3β⋆2 E

∫

Λ

∫

Λ

1(d(u,X ∪ v) > R̃)1(d(v,X ∪ u) > R̃)λ̃2(u, ∅)dudv

≤ 3β⋆2|Λ|2.

Using similar ideas, we leave the reader to check that T3 ≤ β⋆3|Λ|3. On the other
hand, we also check that

EV 3
Λ = E

∫

Λ

∫

Λ

∫

Λ

1(d(u,X) > R̃)1(d(v,X) > R̃)1(d(w,X) > R̃)dudvdw

≤ |Λ|3.

We finally obtain

E |IΛ|
3 ≤ 4β⋆|Λ|+ 12β⋆2|Λ|2 + 8β⋆3|Λ|3 < ∞

whereby (I) is checked. Following the proof of (I), we may prove that for any bounded
domain Λ

E I2Λ ≤ 2β⋆|Λ|+ 4β⋆2|Λ|2

which proves (II). Therefore we can invoke [6, Lemma 3] to obtain the asymptotic

normality of β̂n.
The derivation of the asymptotic variance of |Λn,R̃|

−1Var IΛ
n,R̃

(X, h) is done using

Lemma B.1 in Appendix B with the function g = h given by (3.1). We omit the
details and leave the reader to check that h fulfills the integrability assumptions
in Lemma B.1 and focus on the derivations of the quantities A1, A2 and A3. First,
it is clear that A1 = β⋆(1 − F (R̃)). Second, note that from (2.3) we have for any
v ∈ Bc(0, R) and x ∈ Ω

λβ⋆(0,x)λβ⋆(v,x)− λβ⋆(0, v,x) = 0.

12



Since B(0, R) ⊆ B(0, R̃)

E

∫

B(0,R̃)\B(0,R)

(
λβ⋆(0,X)λβ⋆(v,X)− λβ⋆(0, v,X)

)
dv = 0

which means that we can substitute R by R̃ in the term A2. Then, we derive

A2 =E

∫

B(0,R̃)

1(d(0,X) > R̃)1(d(v,X) > R̃)
(
β⋆2 − λβ⋆(0, v,X)

)
dv.

Third,

A3 =E

∫

B(0,R̃)

(
1(d(0,X ∪ v) > R̃)− 1(d(0,X) > R̃)

)

×
(
1(d(v,X ∪ 0) > R̃)− 1(d(v,X) > R̃)

)
λβ⋆(0, v,X)dv

=E

∫

B(0,R̃)

1(d(0,X) > R̃)1(d(v,X) > R̃)λβ⋆(0, v,X)dv

which leads to

A2 + A3 = β⋆2 E

∫

B(0,R̃)

1(d(0,X) > R̃)1(d(v,X) > R̃)dv

= β⋆2

∫

B(0,R̃)

(1− F0,v(R̃))dv.

In other words

|Λn,R̃|
−1Var IΛ

n,R̃
(X, h) → β⋆(1− F (R̃)) + β⋆2

∫

B(0,R̃)

(1− F0,v(R̃))dv

which leads to the result from (A.1) and (A.2).
(iii) We check that the proposed estimate σ̂2

n tends almost surely towards σ2 as
n → ∞ (a convergence in probability would be sufficient). From (3.7), (A.1) and
(3.5), we need to prove that

|Λn,R̃|
−1WΛ

n,R̃
−→

∫

B(0,R̃)

(1− F0,v(R̃))dv.

We decompose WΛ
n,R̃

as W
(1)
Λ
n,R̃

+W
(2)
Λ
n,R̃

where

W
(1)
Λ
n,R̃

=

∫

Λ
n,R̃⊖R̃

∫

B(u,R̃)

1(d(u,X) > R̃)1(d(v,X) > R̃)dudv

W
(2)
Λ
n,R̃

=

∫

Λ
n,R̃

\Λ
n,R̃⊖R̃

∫

B(u,R̃)∩Λ
n,R̃

1(d(u,X) > R̃)1(d(v,X) > R̃)dudv

where Λn,R̃⊖R̃
= {u ∈ Λn,R̃ : B(u, R̃) ⊆ Λn,R̃}. Regarding the first term, we can now

apply the ergodic theorem to prove that almost surely

|Λn,R̃⊖R̃
|−1W

(1)
Λ
n,R̃

−→ E

∫

B(0,R̃)

1(d(0,X) > R̃)1(d(v,X) > R̃)dv

13



where the latter comes from the finite range assumption (2.3) and the fact that

R̃ ≥ R. Since |Λn,R̃| ∼ |Λn,R̃⊖R̃
| as n → ∞, the proof is done by verifying that

|Λn,R̃|
−1W

(2)
Λ
n,R̃

→ 0 which is straightforward since

|Λn,R̃|
−1W

(2)
Λ
n,R̃

≤
|Λn,R̃ \ Λn,R̃⊖R̃

|

|Λn,R̃|
|B(u, R̃)| = o(1).

B Auxiliary lemma

The following result is a particular case of [7, Proposition 3.2].

Lemma B.1. Assume the Papangelou conditional intensity of the point process X

satisfies (1.1) and (2.3) with finite range R. Let g : Rd × Ω → R be a nonnegative
measurable function satisfying for any u ∈ Rd and x ∈ Ω

g(u,x) = g(0, τux) and g(u,x) = g(u,xB(u,R̃))

with R̃ ≥ R. We also assume that the following integrability conditions are fulfilled

E[g2(0,X)λβ⋆(0,X)] < ∞

E

∫

B(0,R)

g(0,X)g(v,X)
∣∣λβ⋆(0,X)λβ⋆(v,X)− λβ⋆(0, v,X)

∣∣dv < ∞

E

∫

B(0,R̃)

∣∣(g(0,X ∪ v)− g(0,X)
)(
g(v,X ∪ 0)− g(v,X)

)∣∣∣∣λβ⋆(0, v,X)dv < ∞.

Then, as n → ∞
|Λn|

−1Var IΛn
(X, g) −→ A1 + A2 + A3

where

A1 = E[g2(0,X)λβ⋆(0,X)]

A2 = E

∫

B(0,R)

g(0,X)g(v,X)
(
λβ⋆(0,X)λβ⋆(v,X)− λβ⋆(0, v,X)

)
dv

A3 = E

∫

B(0,R̃)

(
g(0,X ∪ v)− g(0,X)

)(
g(v,X ∪ 0)− g(v,X)

)
λβ⋆(0, v,X)dv.
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