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1. Introduction

In this paper I try to show how the exceptional bundles can be useful to study vector bundles on
the projective spaces. The exceptional bundles appeared in [5], and they were used to describe
the ranks and Chern classes of semi-stable sheaves. In [1] the generalized Beilinson spectral
sequence, built with exceptional bundles, was defined, and it was used in [2] and [3] to describe
some moduli spaces of semi-stable sheaves on P2. The general notion of exceptional bundle and
helix, on Pn and many other varieties, is due mainly to A.L. Gorodentsev and A.N. Rudakov
(cf. [7] , [14]). A.N. Rudakov described completely in [12] the exceptional bundles on P1 × P1 ,
and used them in [13] to describe the ranks and Chern classes of semi-stable sheaves on this
variety. The exceptional vector bundles on P3 have been studied (cf [4], [10], [11]) but they
have not yet been used to describe semi-stable sheaves on P3. On higher Pn almost nothing is
known.

In the second part of this paper, new invariants of coherent sheaves of non-zero rank are defined.
In some cases they are more convenient than the Chern classes.

In the third part the exceptional bundles and helices are defined, and their basic properties are
given.

In the fourth part, I define some useful hypersurfaces in the space of invariants of coherent
sheaves on Pn. On P2, this space is R2, with coordinates (µ,∆), where µ is the slope and ∆ the
discriminant of coherent sheaves, as defined in [5]. On Pn, the space of invariants is Rn, and
the coordinates are the invariants defined in the second part.
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2 J.M. DRÉZET

In the fifth part, the description of ranks and Chern classes of semi-stable sheaves on P2 is
recalled. The ranks and Chern classes of semi-stable sheaves on P3 are not known, and in this
case I can only try to formulate the problem correctly, using the notions of the fourth part.

In the sixth part, some partial results are given on the description of the simplest moduli spaces
of semi-stable sheaves on Pn. A moduli space is simple when the corresponding point in the
space of invariants belongs to many hypersurfaces defined in part 4 (in this case a suitable
generalized Beilinson spectral sequence applied to the sheaves of this moduli space is supposed
to degenerate). In the case of P3, n ≥ 3, many questions remain open.

2. Logarithmic invariants

Let X be a projective smooth algebraic variety of dimension n, E a vector bundle (or coherent
sheaf) on X, of rank r > 0. The logarithmic invariants ∆i(E) ∈ Ai(E) ⊗ Q of E are defined
formally by the following formula :

log(ch(E)) = log(r) +
n∑
i=1

(−1)i+1∆i(E),

where ch(E) is the Chern character of E. For example, we have

∆1(E) =
c1

r
, ∆2(E) =

1

r
(c2 −

r − 1

2r
c2

1),
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1

r
(
c3

2
+ c1c2(

1

r
− 1

2
) + c3

1(
1

3r2
− 1

2r
+

1

6
)),

∆4(E) =
1

r
(
c4

6
+ c22(

1

2r
− 1

12
) + c1c3(

1

2r
− 1

6
)

+c2
1c2(

1

r2
− 1

r
+

1

6
) + c4

1(
1

4r3
− 1

2r2
+

7

24r
− 1

24
),

where for 1 ≤ i ≤ n, ci is the i-th Chern class of E. The first invariant is the slope and the
second the discriminant of E.

Proposition 2.1. Let L be a line bundle, E,F vector bundles on X. Then

(1) ∆1(L) = c1(L) and ∆i(L) = 0 if i > 1.
(2) ∆i(E ⊗ F ) = ∆i(E) + ∆i(F ) if 1 ≤ i ≤ n. Thus ∆i(E ⊗ L) = ∆i(E) if 2 ≤ i ≤ n.
(3) ∆i(E

∗) = (−1)i∆i(E) if 1 ≤ i ≤ n.

Démonstration. This is clear from the definition of the ∆i’s. �

Since ch(E)/r is a polynomial in ∆1(E), . . . ,∆n(E), the Riemann-Roch theorem on X can
be written in the following way :

χ(E)

r
= P (∆1(E), ...,∆n(E)),



EXCEPTIONAL BUNDLES 3

where P is a polynomial with rational coefficients that depends only on X. If X is a surface
with fundamental class K, we have

P (∆1,∆2) =
∆1(∆1 −K)

2
+ χ(OX)−∆2.

If X is a volume with fundamental class K, and if c2 is the second Chern class of the tangent
bundle of X, we have

P (∆1,∆2,∆3) = ∆3 −∆1∆2 +
1

2
K∆2 +

1

6
∆3

1 −
1

4
K∆2

1 +
1

12
(K2 + c2)∆1 + χ(OX).

In particular, for X = P3,

P (∆1,∆2,∆3) = ∆3 −∆1∆2 − 2∆2 +

(
∆1 + 3

3

)
.

For X = P4,

P (∆1,∆2,∆3,∆4) = −∆4 + ∆1∆3 +
1

2
∆2(∆2 −∆2

1) +
5

2
(∆3 −∆1∆2)

+

(
∆1 + 4

4

)
.

In the case of Pn, let Γ be the hyperplane of elements of rank 0 in the Grothendieck group
K(Pn). Then we have a surjective map

(∆1, . . . ,∆n) : K(Pn)\Γ −→ Qn.

Two elements of K(Pn)\Γ are in the same fiber of this map if and only if they are colinear.

3. Exceptional bundles

3.1. Definition of exceptional bundles

Let E be an algebraic vector bundle on a smooth projective irreducible algebraic variety X.
Then E is called exceptional if H i(X,Ad(E)) = 0 for every i. If X is one of the varieties
considered here (a projective space or a smooth quadric surface) then E is exceptional if and
only if E is simple (i.e. the only endomorphisms of E are the homotheties) and Exti(E,E) = 0
for every i ≥ 1.

For example, on Pn the line bundles are exceptional. So is the tangent bundle. In general, if E
is an exceptional bundle and L a line on X, then E ⊗ L is also exceptional.

3.2. Helices

Suppose that X = Pn, with n ≥ 2. An infinite sequence (Ei)i∈Z of exceptional bundles is
called exceptional if the following three conditions are satisfied :
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(1) The sequence is periodical, i.e for all i ∈ Z we have

Ei+n+1 ' Ei(n+ 1).

(2) There exists an integer i0 such that for i0 ≤ i < j ≤ i0 + n we have

Extk(Ei, Ej) = 0 if k > 0,

Extk(Ej, Ei) = 0 for all k.

(3) For every integer j, the canonical morphism

evj : Ej ⊗ Hom(Ej−1, Ej) −→ Ej

(resp. ev∗j : Ej−1 −→ Ej ⊗ Hom(Ej−1, Ej)
∗ )

is surjective (resp. injective).

If σ = (Ei)i∈Z is a sequence of exceptional bundles, let τ(σ) denote the sequence (E ′i)i∈Z,
where E ′i = Ei−1 for each i. Suppose that σ satisfies condition 1. Then any subsequence
(Ei, . . . , Ei+n) is called a foundation or a basis of σ. Suppose that σ is exceptional. Then it
is not difficult to see that condition 2 above is verified for every integer i0, and that ker(evj)
and coker(ev∗j ) are exceptional bundles. We can thus define two new sequences of exceptional
bundles, associated to σ and j mod (n+ 1). The first sequence

Lj(σ) = (E ′i)i∈Z

is defined by :

E ′i = Ei if i 6= j − 1 (mod n+ 1) and i 6= j (mod n+ 1),

E ′j−1+k(n+1) = ker(evj)(k(n+ 1)),

E ′j+k(n+1) = Ej−1+k(n+1),

for all k. The second sequence Rj−1(σ) is defined in the same way, by replacing in σ each pair
(Ej−1+k(n+1), Ej+k(n+1)) by

(Ej+k(n+1), coker(ev∗j )(k(n+ 1))).

The sequence Lj(σ) is called the left mutation of σ at Ej and Rj−1(σ) the right mutation of σ
at Ej−1. For these two sequences, conditions 1 and 2 above are satisfied.

Suppose that condition 3 is also satisfied for Lj(σ), i.e. that it is an exceptional sequence. Then
it has a foundation of type

(Ej−1, Ej+1, . . . , Ej+n−1, F1),

where F1 is an exceptional bundle. It is possible to define

L2
j(σ) = Lj−1 ◦ Lj(σ).

Suppose that this is again an exceptional sequence. Then it has a foundation of type

(Ej−1, Ej, . . . , Ej+n−2, F2, Ej+n−1),

where F2 is an exceptional bundle. It is then possible to define

L3
j(σ) = Lj−2 ◦ L2

j(σ).

If this process can be continued, we can define the exceptional sequence Lkj (σ), for 1 ≤ k ≤ n,
which has, if k ≤ n− 1, a foundation of type

(Ej−1, Ej+1, . . . , Ej+n−k, Fk, Ej+n−k+1, . . . , Ej+n−1),
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where Fk is an exceptional bundle. In particular, Ln−1(σ) has a foundation of type

(Ej−1, Ej+1, Fn−1, Ej+2, . . . , Ej+n−1),

so Lnj (σ) has a foundation of type

(Ej−1, Fn, Ej+1, . . . , Ej+n−1).

The exceptional bundle Fk(−n), for 1 ≤ k ≤ n, is denoted by L(k)Ej, and L(0)Ej = Ej.

A helix is an exceptional sequence σ such that for every integer j, the sequences Lkj (σ) are
defined, for 1 ≤ k ≤ n, and such that

Lnj (σ) = τ(σ).

The last condition means that Fn ' Ej.

The helices have an interesting property : any left or right mutation of a helix is a helix.
So it is possible to define infinitely many helices and exceptional bundles simply by making
successive mutations of one helix. The simplest helix is the sequence (O(i))i∈Z. The helices
that can be obtained by successive mutations of this helix are called constructive helices and
the corresponding exceptional bundles are the constructive exceptional bundles. All helices and
vector bundles on P2 are constructive (see [1, 5, 7]), and so are all helices on P3 (see [11]).

All the mutation transformations defined above can be expressed in terms of τ and L0 only.
For example, we have Lj = τ i ◦ L0 ◦ τ−j. There are some relations among τ and L0 :

Ln0 = τ,

L0 ◦ τ ◦ L0 ◦ τ−1 ◦ L0 ◦ τ = τ ◦ L0 ◦ τ−1 ◦ L0 ◦ τ ◦ L0,

L0 ◦ τn = τn ◦ L0,

L0 ◦ τ i ◦ L0 ◦ τ−i = τ i ◦ L0 ◦ τ−i ◦ L0 if 2 ≤ i ≤ n− 1.

3.3. Generalized Beilinson spectral sequence

Let (E0, . . . , En) be a foundation of a constructive helix. Then the sequence

(L(n)En, L
(n−1)En−1, . . . , L

(1)E1, E0)

is a foundation of the helix Ln ◦ Ln−1 ◦ . . . ◦ L1(σ). There exists a canonical resolution of the
diagonal ∆ of Pn × Pn :

0 −→ p∗1L
(n)En ⊗ p∗2E∗n −→ p∗1L

(n−1)En−1 ⊗ p∗2E∗n−1 −→ . . .

−→ . . . p∗1L
(1)E1 ⊗ p∗2E∗1 −→ p∗1E0 ⊗ p∗2E∗0

φ−−−−→O∆ −→ 0,

where p1, p2 denote the projections Pn × Pn −→ Pn and φ is the trace morphism. It follows
easily that for every coherent sheaf E on Pn there exists a spectral sequence Ep,q

r of coherent
sheaves on Pn, converging to E in degree 0 and to zero in other degrees, such that the only
possibly non-zero Ep,q

1 terms are

Ep,q
1 = E∗−p ⊗Hq(E ⊗ L(−p)E−p),
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for −n ≤ p ≤ 0, 0 ≤ q ≤ n . The morphisms dp,q1 come from the morphisms in the preceding
resolution of O∆. This spectral sequence is called the generalized Beilinson spectral sequence as-
sociated to E and the foundation (E0, . . . , En). If this foundation is (O(i))0≤i≤n, the generalized
Beilinson spectral sequence if of course the ordinary Beilinson spectral sequence.

From the generalized Beilinson spectral sequence one can deduce the generalized Beilinson
complex

0 −→ X−n −→ X−n+1 −→ . . . −→ X−1 −→ X0 −→ X1 −→ . . . −→ Xn −→ 0

where for −n ≤ k ≤ n

Xk =
⊕
p+q=k

Ep,q
1 .

This complex is exact in non-zero degrees and its cohomology in degree 0 is isomorphic to E .

4. The geometry associated to exceptional bundles

4.1. The space of invariants and its canonical hypersurface

Consider the space Rn, with coordinates (∆1, . . . ,∆n). Then to each coherent sheaf E on Pn
with non-zero rank one associates the point

(∆1(E), . . . ,∆n(E))

of Rn, which will be also denoted by E . Recall that there exists a polynomial P in n variables
with rational coefficients, such that for every coherent sheaf E on Pn with non-zero rank we
have

χ(E) = rk(E).P (∆1(E), . . . ,∆n(E)).

The hypersurface H of Rn defined by the equation

P (0, 2∆2, 0, 2∆4, . . .) = 0

is called the canonical hypersurface. If E is a stable sheaf on Pn, then E belongs to the halfspace

P (0, 2∆2, 0, 2∆4, ...) < 0

if and only if the expected dimension of the moduli space of semi-stable sheaves that contains
E is strictly positive.

For example, on P2, the equation of H is

∆2 =
1

2
.

On P3 it is

∆2 =
1

4
,

and on P4

∆4 = ∆2
2 −

35

6
∆2.
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Question 1. Is the expected dimension of a moduli space of semi-stable sheaves on Pn always
nonnegative ?

4.2. Hypersurfaces associated to exceptional bundles and limit hypersurfaces

Let E be an exceptional bundle on Pn. Then to E one associates the hypersurface S(E) of Rn

defined by the equation

P (∆1(E)−∆1, . . . ,∆n(E)−∆n) = 0.

It contains the points corresponding to sheaves E such that

χ(E , E) =
n∑
i=0

(−1)i dim(Exti(E , E)) = 0.

To define the limit hypersurfaces we need to consider an exceptional pair, i.e. a pair (E0, E1) of
exceptional bundles that can be inserted as a pair of consecutive elements in some helix. Then
it follows from the definition of a helix that there exists a sequence (Fi)i∈Z of exceptional
bundles such that F0 = E0 , F1 = E1, and for every integer i we have an exact sequence

0 −→ Fi−1 −→ Fi ⊗ Hom(Fi, Fi+1) −→ Fi+1 −→ 0.

Then the hypersurfaces S(Fi) have a limit when i tends to +∞ or −∞. It is possible to
define more complicated limit hypersurfaces (limits of limits, and so on). Let C(E) denote the
intersection of S(E) and the canonical hypersurface H.

In the case of P2, the curve S(E) is a parabola in R2, of equation

∆2 =
1

2
(∆1(E)−∆1)2 +

3

2
(∆1(E)−∆1) +

1

2
+

1

2rk(E)2
,

and C(E) consists of two points on the line H. The limit points on H coincide with the
non-limit points.

In the case of P3, the equation of the surface S(E) is

∆3 = −1

6
z3 + (∆2 +

5

12
− 1

4rk(E)2
)z + ∆3(E),

with z = ∆1−∆1(E)− 2 . The curve C(E) is obtained by taking ∆2 = 1/4 in the preceding
equation. In this case, the limit curves are distinct from the non-limit ones. Some other
surfaces and curves may be interesting in the case of P3 : the images of the preceding ones by
the translations

(∆1,∆2,∆3) −→ (∆1,∆2,∆3 + k),

where k is an integer. In [11], Nogin proved that the semi-orthogonal bases of K(P3) are the
sequences

([E0]⊗ αk, [E1]⊗ αk, [E2]⊗ αk, [E3]⊗ αk),
(E0, E1, E2, E3) beeing a foundation of a helix, α the class of the ideal sheaf of a point and k
an integer. The multiplication by αk corresponds to the preceding translation in R3.
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4.3. The case of P1 × P1

The space of invariants is here R3 with coordinates (a, b,∆2), a, b beeing the two coordinates
of ∆1. The equation of H is

∆2 =
1

2
.

The surfaces S(E) are quadrics, and the corresponding conics C(E) have been used in [12]. It
is also possible here to define the notion of limit surface (or curve). This case is similar to the
case of P3 (cf. [4]).

5. Existence theorems

5.1. The existence theorem on P2

Let E be a stable coherent sheaf on P2, not exceptional, and E an exceptional bundle such that
rk(E) < rk(E) and | ∆1(E)−∆1(E) |≤ 1 . Then we have

χ(E, E) ≤ 0 if ∆1(E) ≤ ∆1(E),
χ(E , E) ≤ 0 if ∆1(E) > ∆1(E).

The first condition means that the point E in R2 is over the curve S(E∗(−3))1 and the second
that it is over the curve S(E). Conversely the following is proved in [5] :

Theorem 5.1. Let q = (∆1,∆2) be a point in Q2. Suppose that for every exceptional bundle
E such that

| ∆1(E)−∆1 |≤ 1

the point q is over S(E∗(−3)) if ∆1(E) ≤ ∆1(E), and over S(E) if ∆1(E) > ∆1(E). Then
for every triple (r, c1, c2) of integers, with r > 0 such that ∆i(r, c1, c2) = ∆i for i=1,2, there
exists a stable vector bundle of rank r and Chern classes c1, c2.

1this means that ∆2(E) is greater than, or equal to the ∆2 coordinate of the point of S(E∗(−3)) whose first
coordinate is ∆1(E).
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S(E∗(−3) S(E)

∆2 = 1/2

P Q∆1(E)

The coordinates of the point P (resp. Q) above are (∆1(E)−xE, 1/2) (resp. (∆1(E)+xE, 1/2)),
where xE is the smallest root of the equation

x2 + 3x+
1

3rg(E)2
= 0.

Let IE =]∆1(E)− xE,∆1(E) + xE[, and Exc be the set of isomorphism classes of exceptional
bundles on P2. Let M(r, c1, c2) denote the moduli space of semi-stable coherent sheaves on P2,
of rank r and Chern classes c1, c2. The preceding theorem can be improved and one obtains
easily the final form of the existence theorem on P2 :

Theorem 5.2. (1) The family of intervals (IE)E∈Exc is a partition of Q.
(2) There exists a unique mapping

δ : Q −→ Q
such that for all integers r, c1, c2 with r ≥ 1 one has

dim(M(r, c1, c2)) ≥ 0⇐⇒ ∆2 ≥ δ(∆1),

(with ∆1 = c1
r

and ∆2 = 1
r
(c2 − r−1

2r
c2

1) .)
(3) If E in an exceptional bundle on P2, δ is given on ]∆1(E)− xE,∆1(E)] by S(E∗(−3))

and on [∆1(E),∆1(E) + xE[ by S(E).

5.2. The existence theorem on P1 × P1

A.N. Rudakov has proved in [13] a result analogous to theorem 5.1, using the exceptional
bundles on P1×P1 , but it seems more difficult than in the case of P2 to obtain the analogous
result to theorem 5.2.
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Question 2. It is easy to deduce from Rudakov’s result that there exists a surface S in R3,
defined by an equation

∆2 = f(∆1),

such that for all integers r, a, b, c2 with r ≥ 1, there exists a stable non-exceptional coherent
sheaf on P1 × P1 of rank r and Chern classes (a, b), c2 if and only if the associated point in
R3 (whose coordinates are the corres- ponding ∆1,∆2) is over2 S . It would be interesting to
give a description of S. It should be made of pieces of the surfaces S(E) or perhaps of the limit
surfaces defined in section 4.3 .

5.3. The existence theorem on Pn, n ≥ 3

In this case, almost nothing is known, except for rank-2 stable reflexive sheaves on P3 (cf. [8]).

Question 3. Is there a surface S in R3, of equation

∆2 = f(∆1,∆3),

such that for all integers r, c1, c2, c3 with r ≥ 1, the moduli space M(r, c1, c2, c3) of semi-stable
sheaves on P3 of rank r and Chern classes c1, c2, c3 has a positive dimension if and only if the
associated point of R3 (whose coordinates are the corresponding ∆1,∆2,∆3) is over3 S ?

In particular, do the gaps in c3 found in [8] can be filled if one allows non-reflexive rank-2 stable
sheaves ?

If it exists, is S made of pieces of the S(E) and the limit surfaces ?

6. Descriptions of moduli spaces of semi-stable sheaves using exceptional
bundles

6.1. The case of P2

Let E be an exceptional bundle on P2, and ∆1 a rational number such that ∆1(E) − xE <
∆1 ≤ ∆1(E). There exists exceptional bundles F ,G such that (E,F,G) is a foundation of a
helix. Then to study moduli spaces of semi-stable sheaves M(r, c1, c2) such that c1/r = ∆1

it is convenient to use the Beilinson spectral sequence associated to (G∗(3), F ∗(3), E∗(3)). We
obtain a good description of M(r, c1, c2) if ∆2 = δ(∆1), i.e. if the point of R2 corresponding
to M(r, c1, c2) lies on the curve S(E∗(−3)) (or more generally in some cases where M(r, c1, c2)
is extremal, i.e if dim(M(r, c1, c2)) > 0 and dim(M(r, c1, c2 − 1)) ≤ 0).

2this means that ∆2 ≥ f(∆1).
3this means that ∆2 ≥ f(∆1,∆3).
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Suppose that ∆2 = δ(∆1). Let H be the exceptional bundle cokernel of the canonical map

F −→ G⊗ Hom(F,G)∗,

and

m = −χ(E ⊗H∗), k = −χ(E ⊗G∗),
where E is a coherent sheaf of rank r and Chern classes c1, c2. Then m > 0 and k > 0.
If E is semi-stable then the only two non zero Ep,q

1 terms in the Beilinson spectral sequence
associated to (G∗, F ∗, E∗) and E are F (−3)⊗H0(E ⊗H∗(3)) and G(−3)⊗H0(E ⊗G∗(3)).
So the spectral sequence degenerates and we have an exact sequence

0 −→ F (−3)⊗ Cm −→ G(−3)⊗ Ck −→ E −→ 0.

Consider now the vector space

W = Hom(F ⊗ Cm, G⊗ Ck) = L(Hom(F,G)∗ ⊗ Cm,Ck),

with the obvious action of the reductive group

G0 = (GL(m)×GL(k))/C∗.
This action can be linearized in an obvious way, so we have the notion of semi-stable (or stable)
point of PW . A non-zero element of W will be called semi-stable (resp. stable) if its image in
PW is. Let q = dim(W ) and

N(q,m, k) = P(W )ss/G0.

which is a projective variety. The following result is proved in [2] :

Theorem 6.1. (1) Let α be a non-zero element of W , f the corresponding morphism of
vector bundles. Then f is injective as a morphism of sheaves, and coker(f) is semi-stable
(resp. stable) if and only if α is semi-stable ( resp. stable).

(2) The map f 7−→ coker(f) defines an isomorphism

N(q,m, k) ' M(r, c1, c2).

There is a similar result for some other extremal moduli spaces of semi-stable sheaves (cf. [3]).
In this case we have to consider morphisms of the following type

(E(−3)⊗ Ch)⊕ (F (−3)⊗ Cm) −→ G(−3)⊗ Ck,

and the group acting on the space of such morphisms is non reductive.

There is a canonical isomorphism

N(q,m, k) ' N(q, k, qk −m).

Hence to N(q, k, qk −m) is associated another moduli space M(r′, c′1, c
′
2) which is canonically

isomorphic to M(r, c1, c2), with

∆1(E)− xE <
c′1
r′
<
c1

r
≤ ∆1(E).

Finally, we obtain an infinite sequence of moduli spaces of semi-stable sheaves all isomorphic to
M(r, c1, c2). This phenomenon does not occur for moduli spaces such that ∆2 > δ(∆1). Here
are some examples of descriptions of moduli spaces obtained with the preceding theorem :
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M(1, 0, 1) 'M(3,−1, 2) 'M(8,−3, 8) ' P2,

M(4,−2, 4) 'M(24,−10, 60) 'M(140,−58, 1740) ' P5,

M(4,−1, 3) 'M(11,−4, 13) 'M(29,−11, 73) ' N(3, 2, 3).

Question 4. It is also possible to study more complicated moduli spaces (non extremal ones)
using some foundation of a helix. We can for example obtain descriptions of moduli spaces by
monads. What is the best choice for the generalized Beilinson spectral sequence ? Or are there
foundations of helices that would lead to more interesting monads than those obtained from the
classical Beilinson spectral sequence ?

6.2. The case of Pn , n ≥ 3

If we want to use exceptional bundles to study a moduli space of semi-stable sheaves on Pn, we
have to choose a foundation of helix such that the Beilinson spectral sequence associated to it
and to sheaves in this moduli space is as simple as possible. This is the case of course if many
Ep,q

1 are zero. Let (E0, . . . , En) be a foundation of helix, r, c1, . . . , cn integers with r ≥ 1, E
a coherent sheaf on Pn of rank r and Chern classes c1, . . . , cn, and Ep,q

r the Beilinson spectral
sequence associated to (E0, . . . , En) and E . Then, if 0 ≤ i ≤ n, we can hope that the terms
Ep,−i

1 will be zero for all p only if χ(E ⊗ L(i)Ei) = 0. This means that the point corresponding
to E in the space of invariants belongs to the hypersurface S(L(i)Ei). Of course this is not
sufficient.

Suppose for example that all the Ep,−i
1 , for 0 ≤ i ≤ n − 2, vanish, and that En,−n

1 = 0. Then
we have an exact sequence

0 −→ E∗n ⊗Hn−1(E ⊗ L(n)En) −→ E∗n−1 ⊗Hn−1(E ⊗ L(n−1)En−1) −→ E −→ 0.

In general the vanishing of the cohomology groups necessary to obtain the above exact sequence
are very hard to verify.

Let E,F be exceptional bundles on Pn which are consecutive terms in some helix, and m,k two
positive integers. We want to study morphisms

E ⊗ Cm −→ F ⊗ Ck.

Let

W = Hom(E ⊗ Cm, F ⊗ Ck) = L(Cm ⊗ Hom(E,F )∗,Ck).

on which acts the reductive group G0. Recall the characterization of semi-stable and stable
points of W :
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Proposition 6.2. Let α be a non-zero element of W . Then α is semi-stable (resp. stable) if
and only if for every non-zero subspace H ⊂ Cm, if

K = α(Hom(E,F )∗ ⊗H),

we have
dim(K)

dim(H)
≥ k

m
(resp. >).

Let q = dim(Hom(E,F )). Then we have dim(N(q,m, k)) > 0 if and only if

xq <
m

k
<

1

xq
,

where xq is the smallest root of the equation

X2 − qX + 1 = 0.

Suppose that there exist an injective morphism of sheaves

E ⊗ Cm −→ F ⊗ Ck.

Let E be its cokernel. Then it is easy to see that the preceding inequalities are verified if
and only if the expected dimension of the moduli space of semi-stable sheaves with the same
invariants as E is positive.

The first problem is the injectivity of stable maps.

Proposition 6.3. Let x be a point of Pn. Suppose that the canonical map

evx : Ex ⊗ Hom(E,F ) −→ Fx

is stable (for the action of (GL(Ex)×GL(Fx))/C∗). Suppose that

k

m
≥ χ(E∗ ⊗ F )− rk(F )

rk(E)
.

Then the morphism of vector bundles associated to a semi-stable element of W is injective on
the complement of a finite set, and injective if the preceding inequality is strict.

The proof uses the same arguments as on P2. Of course, the stability of evx is independent of
x.

Question 5. Is evx always stable ?

The answer is yes on P2.

If we allow n
m

to be smaller than the bound in the preceding proposition, it may happen that a
semi-stable morphism is non injective on some subvariety of Pn. For example let (E0, E1, E2, E3)
de a foundation of some helix on P3. It follows easily from the generalized Beilinson spectral
sequence that if C is a smooth curve in P3, and F a vector bundle on C such that

H0(L(3)E3 ⊗ i∗F) = H1(L(3)E3 ⊗ i∗F) = 0,

(where i is the inclusion of C in P3) then there exists an exact sequence

0 −→ H0(L(2)E2 ⊗ i∗F)⊗ E∗2 −→ H0(L(1)E1 ⊗ i∗F)⊗ E∗1 −→ . . .
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. . . −→ H0(E0 ⊗ i∗F)⊗ E∗0 −→ i∗F −→ 0.

In this case, we get a morphism

H0(L(2)E2 ⊗ i∗F)⊗ E∗2 −→ H0(L(1)E1 ⊗ i∗F)⊗ E∗1
which is non injective along C. For example, this happens if C is a degree 19 curve not on a
cubic, F a general line bundle on C of degree g + 2 on C (where g is the genus of C), and

(E0, E1, E2, E3) = (O, Q(3), Q∗(4), Q∗3(4)),

where Q (resp. Q3) is the cokernel of the canonical morphism O(−1) −→ O ⊗ H0(O(1))∗

(resp. O(−3) −→ O ⊗H0(O(3))∗). In this case we have a morphism

Q(−4)⊗ C10 −→ Q∗(−3)⊗ C11

which is non injective along C.

Question 6. What is the smallest number z such that if k
m
> z , then every semi-stable

morphism is injective on a nonempty open subset of Pn ?

The next problem is the relation between the (semi-)stability of morphisms and the (semi-
)stability of cokernels. On Pn, n ≥ 3, no general result is known. The only non trivial case
where the problem is completely solved is on P3, with E = O(−2) , F = O(−1) , m = 2, k = 4.
In this case, R.M. Miro-Roig and G. Trautmann have proved in [9] that the (semi-)stability
of the map is equivalent to the (semi-)stability of the cokernel, and it follows that the moduli
space M(2, 0, 2, 4) is isomorphic to N(4, 2, 4).

Question 7. In which cases is there an equivalence between the (semi-)stability of morphisms
and the (semi-)stability of cokernels ?

Suppose that every (semi-)stable morphism is injective on a nonempty open subset of Pn, and
that m and k are relatively prime (so N(q,m, k) is smooth). Then there exists a universal
cokernel on N(q,m, k) × Pn, i.e a coherent sheaf F on N(q,m, k) × Pn, flat on N(q,m, k),
such that for every stable morphism α, if π(α) denotes its image in N(q,m, k), then Fπ(α) is
isomorphic to coker(α) (for every closed point y in N(q,m, k), Fy denotes the restriction of
F to {y} × Pn). This family of sheaves on Pn is a universal deformation at each point of
N(q,m, k). It is also injective, i.e. if y, y′ are distinct points of N(q,m, k) then the sheaves Fy,
Fy′ on Pn are not isomorphic.

Question 8. Let S be a smooth projective variety, F a coherent sheaf on S × Pn, flat on S,
such that for every closed point s, Fs has no torsion, F is a universal deformation of Fs, and
such that if s, s′ are distinct points of S, the sheaves Fs and Fs′ are not isomorphic. Does it
follow that S is a component of a moduli space of stable sheaves on Pn, and F the universal
sheaf ?
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