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Abstract. We introduce in this paper a new heuristic constraint for
PRF models, referred to as the Document Frequency (DF) constraint,
which is validated through a series of experiments with an oracle. We then
analyze, from a theoretical point of view, state-of-the-art PRF models
according to their relation with this constraint. This analysis reveals
that the standard mixture model for PRF in the language modeling
family does not satisfy the DF constraint on the contrary to several
recently proposed models. Lastly, we perform tests with a simple family
of tf-idf functions based on a parameter controlling the satisfaction of
the constraint. This last series of experiments further validate the DF
constraint.

1 Introduction

Pseudo-relevance feedback (PRF) has been studied for several decades, and a lot
of different models have been proposed, in all the main families of information
retrieval (IR) models. In the language modelling approach to IR, for example, the
mixture model for PRF is considered state-of-the-art, and numerous studies use
it as a baseline. It has indeed been shown to be one of the most effective models
in terms of performance and stability wrt parameter values in [11]. However,
several recently proposed PRF models seem to outperform this mixture model,
as models based on bagging, models based on a mixture of Dirichlet compound
multinomial distributions, geometric relevance models or the log-logistic models
of the recent information-based family [4, 14, 2, 13]. This paper aims at providing
an explanation of such improvements. In a nutshell, many of the recent models
tends to favor terms with a high document frequency in the feedback set, a
behavior we will capture with the Document Frequency constraint.

The notations we use throughout the paper are summarized in table 1, where
w represents a term. We note n the number of pseudo relevant document used,
F the feedback set and tc the number of term for pseudo relevance feedback. We
call FTF , the feedback set term frequency and FDF , the feedback document fre-
quency. The remainder of the paper is organised as follows. We give in Section 2
some basic statistics on three PRF models, which reveal global trends of PRF
models. We then introduce in section 3 the Document Frequency constraint, that
PRF models should satisfy, prior to reviewing standard PRF models according
to their behavior wrt this constraint in section 4. We then introduce in section 5



Notation Description

General

q, d Original query, document
RSV (q, d) Retrieval status value of d for q

c(w, d) # of occurrences of w in doc d
ld Length of doc d

avg
l

Average document length in collection
N # of docs in collection
Nw # of documents containing w

IDF(w) − log(Nw/N)

tdfr(w, d) c(w, d) log(1 + c
avg

l

ld
)

PRF specific

n # of docs retained for PRF
F Set of documents retained for PRF:

F = (d1, . . . , dn)
tc TermCount: # of terms in F added to query

FTF (w) =
P

d∈F
c(w, d)

FDF (w) =
P

d∈F
I(c(w, d) > 0)

Table 1: Notations

a simple family of feedback functions which allows us to better understand the
relations between the different constraints, prior to discuss some related work in
section 6.

2 Some Statistics on PRF

We begin this paper by analyzing the terms chosen and the performance obtained
by three different, state-of-the-art, pseudo-relevance feedback (PRF hereafter)
methods, namely the mixture model and the divergence minimization method in
the language modeling family [15], and the mean log-logistic information model
in the information-based family [2]. These models are reviewed later in section 4,
and their exact formulation is not necessary here. In order to have an unbiased
comparison, we use the same IR engine for the retrieval step. Thus, all PRF
algorithms are computed on the same set of documents. Once new queries are
constructed, we use either the Dirichlet language model (for the new queries
obtained with the mixture model and the divergence minimization method) or
the log-logistic model (for the new queries obtained with the mean log-logistic
information model) for the second retrieval step, thus allowing one to compare
the performance obtained by different methods on the same initial set of PRF
documents. Two collections are used throughout this study: the ROBUST col-
lection, with 250 queries, and the TREC 1&2 collection, with topics 51 to 200.
Only query titles were used and all documents were preprocessed with standard
Porter stemming, and all model parameters are optimized through a line search
on the whole collection. The results obtained are thus the best possible results



Table 2: Statistics of the size of the Intersection

Collection n tc Mean Median Std

robust 10 10 5.58 6.0 1.60
trec-12 10 10 5.29 5.0 1.74
robust 20 20 12 12 3.05
trec-12 20 20 11.8 13 3.14

one can get with these models on the retained collections. We first focus on a
direct comparison between the mixture model and the mean log-logistic infor-
mation model, by comparing the terms common to both feedback methods, i.e.
the terms in the intersection of the two selected sets. Table 2 displays the mean,
median and standard deviation of the size of the intersection, over all queries,
for the collections considered. As one can note, the two methods agree on a little
more than half of the terms (ratio mean by tc), showing that the two models se-
lect different terms. To have a closer look at the terms selected by both methods,
we first compute, for each query, the total frequency of a word in the feedback
set (i.e. FTF (w)) and the document frequency of this word in the feedback set
(i.e. FDF (w)). Then, for each query we can compute the mean frequency of the
selected terms in the feedback set as well as its mean document frequency, i.e.
q(ftf) and q(fdf):

q(ftf) =

tc
∑

i=1

ftf(wi)

tc
and q(fdf) =

tc
∑

i=1

fdf(wi)

tc

We then compute the mean of the quantities over all queries.

µ(ftf) =
∑

q

q(ftf)

|Q|
and µ(fdf) =

∑

q

q(fdf)

|Q|

An average IDF can be computed in exactly the same way, where IDF is the
standard inverse document frequency in the collection. Table 3 displays the
above statistics for the three feedback methods: mixture model (MIX), mean
log-logistic(LL) information model and divergence minimization model (DIV).
Regarding the mixture and log-logistic models, on all collections, the mixture
model chooses in average words that have a higher FTF, and a smaller FDF.
The mixture model alos chooses words that are more frequent in the collection
since the mean IDF values are smaller. On the other hand, the statistics of the
divergence model shows that this model extracts very common terms, with low
IDF and high FDF, which is one of the main drawback of this model. In addition
to the term statistics, the performance of each PRF algorithm can also be as-
sessed. To do so, we first examine the performance of the feedback terms without
mixing them with the original queries, a setting we refer to as raw. Then, for
each query we keep only terms that belong to the intersection of the mixture and
log-logistic models (as the divergence model is a variant of the mixture model,



Table 3: Statistics of terms extracted by. Suffix A means n = 10 and tc = 10 while
suffix B means n = 20 and tc = 20

Settings Statistics MIX LL DIV

robust-A
µ(ftf) 62.9 46.7 57.9
µ(fdf) 6.4 7.21 8.41

Mean IDF 4.33 5.095 2.36

trec-1&2-A
µ(ftf) 114 .0 79.12 98.76
µ(fdf) 7.1 7.8 8.49

Mean IDF 3.84 4.82 2.5

robust-B
µ(ftf) 68.6 59.9 68.2
µ(fdf) 9.9 11.9 14.4

Mean IDF 4.36 4.37 1.7

trec-1&2-B
µ(ftf) 137.8 100.0 118.45
µ(fdf) 12.0 13.43 14.33

Mean IDF 3.82 4.29 2.0

we do not consider it in itself for this intersection), but keep their weight pre-
dicted by each feedback method. We call this setting interse. A third setting,
diff, consists in keeping terms which do not belong to the intersection. Finally,
the last setting, interpo for interpolation, measures the performance when new
terms are mixed with the original query. This corresponds to the standard setting
of pseudo-relevance feedback. Table 4 displays the results obtained. As one can
note, the log-logistic model performs better than the mixture model, as found in
[2]. What our analysis reveals is that it does so because it chooses better feed-
back terms, as shown by the performance of the diff setting. For the terms in
the intersection, method interse, the weights assigned by the log-logistic model
seem more appropriate than the weights assigned by the other feedback models.

Table 4: MAP (%) Performance of different methods. Suffix A means n = 10 and
tc = 10 while suffix B means n = 20 and tc = 20

robust-A trec-1&2 robust-B trec-1&2-B

FB Model MIX LL DIV MIX LL DIV MIX LL DIV MIX LL DIV

raw 23.8 26.9 24.3 23.6 25.7 24.1 23.7 25.7 22.8 25.1 27.0 24.9
interse 24.6 25.7 24. 24.2 24.5 23.4 25.3 26.2 22.6 26.1 26.5 24.7

diff 3 11.0 0.9 3 9 0.9 3.0 10.0 0.15 2.1 11.2 0.5
interpo 28.0 29.2 26.3 26.3 28.4 25.4 28.2 28.5 25.9 27.3 29.4 25.7

Let’s summarize our finding here. (a) The log-logistic model performs better
than the mixture and divergence models for PRF. (b) The mixture and diver-
gence models choose terms with a higher FTF . (c) The mixture model selects
term with a smaller FDF , whereas (d) the divergence model selects terms with
a smaller IDF. A first explanation of the better behavior of the log-logistic model
can be that the FDF and IDF effect are dealt with more efficiently in this model,
as shown by the statistics reported in table 3.



3 The Document Frequency Constraint

We adopt the axiomatic approach to IR [7] in order to present the Document
Frequency constraint. Axiomatic methods were pioneered by Fang et al [7] and
followed by many works. In a nutshell, axiomatic methods describe IR functions
by constraints they should satisfy. According to [2], the four main constraints for
an IR function to be valid are: the weighting function should (a) be increasing
and (b) concave wrt term frequencies, (c) have an IDF effect and (d) penalize
long documents. We first want to briefly discuss whether these constraints would
make sense for PRF models.

In the context of PRF, the first two constraints relate to the fact that terms
frequent in the feedback set are more likely to be effective for feedback, but that
the difference in frequencies should be less important in high frequency ranges.
The IDF effect is also relevant in feedback, as one generally avoids selecting terms
with a low IDF, as such terms are scored poorly by IR systems. The constraint
on document length is not as clear as the others in the context of PRF, as one
(generally) considers sets of documents. What seems important however is the
fact that occurrence counts are normalized by the length of the documents they
appear in, in order not to privilege terms which occur in long documents.

Let FW (w;F,Pw) denote the feedback weight for term w, with Pw a set of
parameters dependent on w.3. We now introduce a new PRF constraint which
is based on the results reported in the previous section. Indeed, as we have seen,
the best PRF results were obtained with models which favor feedback terms
with a high document frequency (FDF (w)) in the feedback set, which suggests
that, all things being equal, terms with a higher FDF should receive a higher
score. This constraint can be formalized as follows:

PRF Constraint 1 [Document Frequency - DF]
Let ǫ > 0, and wa and wb two words such that:
(i) IDF(a) = IDF(b)
(ii) The distribution of the frequencies of wa and wb in the feedback set are given
by:

T (wa) = (x1, x2, ..., xj , 0, ..., 0)

T (wb) = (x1, x2, ..., xj − ǫ, ǫ, ..., 0)

with ∀i, xi > 0 and xj − ǫ > 0 (hence, FTF (wa) = FTF (wb) and FDF (wb) =
FDF (wa) + 1).
Then: FW (wa;F,Pwa

) < FW (wb;F,Pwb
)

In other words, FW is locally increasing with FDF (w). The above constraint is
sometimes difficult to check. The following theorem is useful to establish whether
a PRF model, which can be decomposed in the documents of F, satisfies or not
the DF constraint:
3 The definition of Pw depends on the PRF model considered. It minimally contains

FTF (w), but other elements, as IDF(w), are also usually present. We use here this
notation for convenience.



Theorem 1. Suppose FW can be written as:

FW (w;F,Pw) =
n

∑

d=1

f(xd
w;P′

w) (1)

with P′
w = Pw \ xd

w and f(0;P′
w) ≥ 0. Then:

1. If the function f is strictly concave, then FW meets the DF constraint.
2. If the function f is strictly convex, then FW does not meet the DF constraint.

If f is strictly concave, then the function f is subadditive (f(a+ b) < f(a)+
f(b)). Let a and b be two words satisfying the conditions of the DF constraint.
Then, we have:

FW (b) − FW (a) = f(xj − ǫ) + f(ǫ) − f(xj)

As the function f is subadditive, we have: FW (b) − FW (a) > 0. If f is strictly
convex, then f is superadditive as f(0) = 0, and a comparable reasoning leads
to FW (b) − FW (a) < 0. In the remainder of the paper, we will simply use the
notation FW (w) as a shorthand for FW (w;F,Pw).

3.1 Validation of the DF Constraint

The DF constraint states that, all other parameters being equal, terms with
higher DF should be preferred. Thus, in average, one should observe that terms
with high DF scores yield larger increase in MAP values. To see whether this
is the case, we computed the impact on the MAP of different terms selected
from true relevance judgements, and plotted this impact against both TF and
DF values. Our relying on true relevant documents and not documents obtained
from pseudo-relevance feedback is based on (a) the fact that pseudo-relevance
feedback aims at approximating relevance feedback, an (b) the fact that it is more
difficult to observe clear trends in pseudo-relevance sets where the precision (e.g.
P@10) and MAP of each query have large variances. The framework associated
with true relevance judgements is thus cleaner and allows easier interpretation.
In order to assess the impact of DF scores on the MAP values independently of
any IR model, we make use of the following experimental setting:

– Start with a first retrieval with a Dirichlet language model;
– Let Rq denote the set of relevant documents for query q: Select the first 10

relevant documents if possible, else select the top |Rq|(|Rq| < 10) relevant
documents;

– Construct a new query (50 words) with the mixture model;
– Construct a new query (50 words) with the log-logistic model;
– Compute statistics for each word in the new queries.

Statistics include a normalized FDF , equal to FDF (w)/|Rq|, and a normalized
FTF , first using a document length normalization, then using the transformation



log(1 + FTF (w))/|Rq| to avoid too important a dispersion in plots. Each word
w is added independently with weights predicted by the retained PRF model.
For each word w, we measure the MAP of the initial query augmented with this
word. The difference in performance with the intial query is then computed as:
∆(MAP) = MAP(q+w)−MAP(q). We thus obtain, for each term, the following
statistics: ∆(MAP), log(1 + FTF (w))/|Rq|, FDF (w)/|Rq|.

Figures 1 display a 3D view of these statistics for all queries, based on Gnuplot
and two collections: TREC1&2 and ROBUST.

The TF statistics was normalized to account for different lengths and a Gaus-
sian Kernel was used to smooth the data cloud. The shape of the plots obtained
remains however consistent without any normalization and a different Kernel.

As one can note, on all plots of Figures 1, the best performing regions in
the (TF,DF) space correspond to large DFs. Furthermore, for all TF values,
the increase in MAP parallels the increase in DF (or, in other words, ∆(MAP)
increases with DF for fixed TF). This validates the DF constraint and shows the
importance of retaining terms with high DF in relevance feedback. Interestingly,
the reverse is not true for TF. This implies that if terms with large TF are
interesting, they should not be given too much weight. The results displayed in
Table 3 suggest that the mixture model [15] suffers from this problem.

4 Review of PRF Models

We review in this section different PRF models according to their behavior wrt
the DF constraint we have defined. We start with language models, then re-
view the recent model introduced in [14] which borrows from both generative
approaches à la language model and approaches related to the Probability Rank-
ing Principle (PRP), prior to review Divergence from Randomness (DFR) and
Information-based models.

Mixture Model: Zhai and Lafferty [15] propose a generative model for the set
F. All documents are i.i.d and each document is generated from a mixture
of the feedback query model and the corpus language model:

P (F|θF , β, λ) =
V
∏

w=1

((1 − λ)P (w|θF ) + λP (w|C))FTF (w) (2)

where λ is a “background” noise set to some constant. For this model,
FW (w) = P (w|θF ) and θF is learned by optimising the data log-likelihood
with an Expectation-Maximization (EM) algorithm. The above formula shows
that the mixture multinomial model behaves as if all documents were merged
together. As a result, the mixture model is agnostic wrt to DF, and thus does
not satisfy the DF constraint.

Divergence Minimization: For language models, a divergence minimization
model was also proposed in [15] and leads to the following feedback model:

FW (w) = P (w|θF ) ∝ exp
( 1

(1 − λ)

1

n

n
∑

i=1

log(p(w|θdi
)) −

λ

1 − λ
log(p(w|C)

)
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Fig. 1: (log(FTF),FDF) vs ∆ MAP; true relevant documents are used with n = 10,
tc = 50 and Gaussian kernel grids (30 × 30). Top row: log-logistic model; bottom row:
mixture (language) model, left column:ROBUST Collection and right column: TREC-
12 collection

Furthermore, this equation corresponds to the form given in equation 1 with
a strictly concave function (log). Thus, by Theorem 1, this model satisfies the
DF constraint. Despite this good theoretical behavior, our previous experi-
ments, reported in Table 4, as well as those reported in [11], show that this
model does not perform as well as other ones. Indeed, as shown in Table 3,
the IDF effect is not sufficiently enforced, and the model fails to downweight
common words.

Relevance Model: Another PRF model proposed in the framework of the
language modeling approach is the so-called relevance model, proposed by
Lavrenko et al. [8], and defined by:

FW (w) ∝
∑

d∈F

PLM (w|θd)P (d|q) (3)

where PLM denotes the standard language model. The above formulation
corresponds to the form of equation 1 of Theorem 1, with a linear function,
which is neither strictly concave nor strictly convex. This model is neutral
wrt the DF constraint. The relevance model has recently been refined in the
study presented in [13] through a geometric variant, referred to as GRM,



and defined by:

FW (w) ∝
∏

d∈F

PLM (w|θd)
P (d|q)

As the log is on a concave function, the GRM model satisfies the DF con-
straint according to Theorem 1.

EDCM: Xu and Akella [14] propose a mixture of eDCM distributions to model
the pseudo relevance feedback set. Terms are then generated according to
two latent generative models based on the (e)DCM distribution and asso-
ciated with two variables, relevant zFR and non-relevant zN . The variable
zN is intended to capture general words occurring in the whole collection,
whereas zFR is used to represent relevant terms occurring in the feedback
documents. Disregarding the non-relevant component for the moment, the
weight assigned to feedback terms by the relevant component is given by
(M-step of the EM algorithm):

P (w|zFR) ∝
∑

d∈F

I(c(w, d) > 0)P (zFR|d, w) + λc(w, q)

This formula, being based on the presence/absence of terms in the feedback
documents, is thus compatible with the DF constraint.

DFR Bo: Standard PRF models in the DFR family are Bo models [1]:

FW (w) = Info(w,F) = log2(1 + gw) + FTF (w) log2(
1 + gw

gw

) (4)

where gw = Nw

N
in Bo1 model and gw = P (w|C)(

∑

d∈F ld) in Bo2 model. In
other words, documents in F are merged together and a geometric probability
model is used to measure the informative content of a word. As this model
is DF agnostic, it does not satisfy the DF constraint.

Log-logistic: In information-based models [2], the average information brought
by the feedback documents on given term w is used as a criterion to rank
terms, which amounts to:

FW (w) = Info(w,F) =
1

n

∑

d∈F

− log P (Xw > tdfr(w, d)|λw)

where tdfr(w, d) is given in table 1, and λw a parameter associated to w and
set to: λw = Nw

N
. Two instanciations of the general information-based family

are considered in [2], respectively based on the log-logistic distribution and
a smoothed power law (SPL). The log-logistic model for pseudo relevance
feedback is thus defined by:

FW (w) =
1

n

∑

d∈F

[log(
Nw

N
+ tdfr(w, d)) + IDF(w)] (5)

It is straightforward to show that both the log-logistic and the SPL models
lead to concave functions. So, according to Theorem 1, these models satisfies
the DF constraint.



5 Well-founded, Simple PRF Reweighting

Let us introduce the family of feedback functions defined by:

FW (w) =
∑

d∈F

tdfr(w, d)kIDF(w) (6)

with tdfr is given in table 1 and corresponds to the normalization used e.g.
in DFR and information-based models. This equation amounts to a standard
tf-idf weighting, with an exponent k which allows one to control the convex-
ity/concavity of the feedback model.

If k > 1 then the function is strictly convex and, according to Theorem 1,
does not satisfy the DF constraint. On the contrary, if k < 1, then the function
is strictly concave and satisfies the DF constraint. The linear case, being both
concave and convex, is in-between.

One can then build PRF models from equation 6 with varying k, and see
whether the results agree with the theoretical findings implied by Theorem 1.
We used the reweighting scheme of equation 6 and a log-logistic model to assess
their performance. The new query q

′

w was updated as in DFR and information-
based models:

q
′

w =
qw

maxw qw

+ β
FW (w)

maxw FW (w)
(7)

Figure 2 a) displays the term statistics (µ(ftf), µ(fdf), mean IDF) for dif-
ferent values of k. As one can note, the smaller k, the bigger µ(fdf) is. In other
words, the slowlier the function grows, the more terms with large DF are pre-
ferred. Figure 2 b) displays the MAP for different values of k. At least two
important points arise from the results obtained. First, convex functions (k > 1)
have lower performance than concave functions for all datasets, and the more
a model violates the constraints, the worse it is. This confirms the validity of
the DF constraint. Second, the square root function (k = 0.5) has the best per-
formance on all collections: it also outperforms the standard log-logistic model.
When the function grows slowly (k equals to 0.2), the DF statistics is some-
how preferred compared to TF. The square root function achieves a different
and better trade-off between the TF and DF information. This is an interesting
finding as it shows that the TF information is still useful and should not be too
downweighted wrt the DF one.

6 Related Work

There are a certain number of additional elements that can be used in PRF set-
tings. The document score hypothesis states that documents with a higher score
(defined by RSV (q, d)) should be given more weight in the feedback function
as in relevance models [8]. Moreover, the study presented in [10], for example,
proposes a learning approach to determine the value of the parameter mixing
the original query with the feedback terms. In addition, the study presented



Power k µ(ftf) µ(fdf) Mean IDF

0.2 70.46 7.4 5.21
0.5 85.70 7.1 5.09
0.8 88.56 6.82 5.14
1 89.7 6.6 5.1

1.2 91.0 6.35 5.1
1.5 90.3 6.1 5.0
2 89.2 5.8 4.9

(a) Statistics on TREC-12-A

Power k robust-A trec-12-A robust-B trec-12-B

0.2 29.3 28.7 28.7 30.0
0.5 30.1 29.5 29.4 30.5

0.8 29.6 29.3 29.4 30.3
1 29.2 28.9 29.1 29.9

1.2 28.9 28.6 28.6 29.6
1.5 28.6 28.1 28.3 28.9
2 28.1 27.2 27.4 28.0

log-logistic 29.4 28.7 28.5 29.9

(b) MAP (%) for different power function

Fig. 2: (a) Statistics on TREC-12-A. (b) MAP (%) for different power function. Suffix
A means n = 10 and tc = 10 while suffix B means n = 20 and tc = 20

in [12] focuses on the use of positional and proximity information in the rele-
vance model for PRF, where position and proximity are relative to query terms.
Again, this information leads to improved performance. Furthermore, the study
presented in [5] for example proposes an algorithm to identify query aspects and
automatically expand queries in a way such that all aspects are well covered.

Another comprehensive, and related, study is the one presented in [3, 6].
In this study, a unified optimization framework is retained for robust PRF.
Lastly, several studies have recently put forward the problem of uncertainty
when estimating PRF weights [4, 9]. These studies show that resampling feedback
documents is beneficial as it allows a better estimate of the weights of the terms
to be considered for feedback.

The study we have conducted here differs from the above ones as it aims at
explaining, through a specific constraint, why some PRF systems work and oth-
ers do not. Our experimental validation has revealed that the DF constraint is an
essential ingredient to be used while designing PRF models, and our theoretical
development has shed light on those models which or which do not comply to
this constraint.

7 Conclusion

The main contributions of this paper are the formulation of the Document Fre-
quency constraint and its validation.

The performance of PRF models varies from one study to another, as differ-
ent collections and different ways of tuning model parameters are often used. It
is thus very diffcult to draw conclusions on the characteristics of such or such
models. What is lacking to do so is a theoretical framework which would al-
low one to directly compare PRF models, independently of any collection. The
theoretical analysis we conduct provides explanations on several experimental
findings reported for different PRF models, and thus paves the way towards a
theoretical assessment of PRF models.



First, two widely used models in the language modeling family, the simple
mixture and the divergence minimization models, are deficient as one does not
satisfy the DF constraint while the other does not sufficiently enforce the IDF
effect. Second, the mixture of eDCM distributions [14], the geometric relevance
model [13], the log-logistic and the smoothed power law models [2] were shown
to satisfy the DF constraint. Hence, we argue that the DF constraint do capture
the behavior of these recent models and yield an explanation to the obtained
improvements.

Finally, we have introduced a simple family of reweighting functions which al-
low to further compare the different ingredients of PRF models. The experiments
conducted with this family bring additional confirmation of the well-foundedness
of the DF constraint.
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