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Abstract. In this article we offer a communication system to people who undergo 
a severe loss of motor function as a result of various accidents and/or diseases so 
that they can control and interact better with the environment, for which a brain-
computer interface has been implemented through the acquisition of EEG signals 
by electrodes and implementation of algorithms to extract characteristics and ex-
ecute a method of classification that would interpret these signals and execute cor-
responding actions The first objective is to design and construct a system of com-
munication and control based on the thought, able to catch and measure EEG 
signals. The second objective is to implement the system of data acquisition in-
cluding a digital filter in real time that allows us to eliminate the noise. The third 
objective is to analyze the variation of the EEG signals in front of the different 
tasks under study and of implementing an algorithm of extraction of characteris-
tics. The fourth objective is to work on the basis of the characteristics of the EEG 
signals, to implement a classification system that can discriminate between the 
two tasks under study on the basis of  the corresponding battles. 

1 Introduction 

The work presented in this paper is based on [Roman-Gonzalez 2010 (1)] and 
[Roman-Gonzalez 2010 (2)]. There are a significant number of people suffering 
from severe motor disabilities due to various causes, high cervical injuries, cere-
bral palsy, multiple sclerosis or muscular dystrophy. In these cases the communi-
cation systems based on brain activity play an important role and provide a new 
form of communication and control, either to increase the integration into the so-
ciety or to provide to these people a tools for interaction with their environment 
without a continued assistance. There are various techniques and paradigms in the 
implementation of brain-computer interfaces (BCI). A brain-computer interface is 
a communication system for generating a control signal from brain signals such as 
EEG and evoked potentials. The Communication between the two essential parts 
of BCI (brain and computer), is governed by the fact that the brain generates the 



 

command and the computer must to interpret [Roman-Gonzalez 2010 (1)]. The 
amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease 
and is characterized by the death of motor neurons, which turns in a loss of control 
over voluntary muscles [U. Hoffman et al.] [Wolpaw et al. 2002] [Kuo-Kai et al. 
2010]. A stroke or other accident can lead to degeneration of parts of the brain, 
which makes people unable to communicate more with the environment, they 
have the same cognitive abilities, this is what is known as Syndrome "Locked-In" 
in France there is approximately 500 patients with this syndrome and about 8000 
and 9000 patients with ALS, data published in [Lecocp and Cabestaing 2008] 
[Kirby]. To measure and study the brain activity signals, there are different me-
thods such as: magnetic resonance imaging (MRI), computed tomography (CT), 
the ECOG scale, single photon emission computed tomography (SPECT), CT po-
sitron emission tomography (PET), magnetoencephalography (MEG), functional 
MRI (fMRI), but these signals are not practical to implement a human-machine in-
terface, because some are only anatomical information, other techniques are very 
invasive, others are a lot of exposure to radiation and another are very expensive 
[Lee and Tan 2006] [Kirby]. To work with electroencephalographic (EEG) is the 
most convenient and therefore the BCI is based on detecting the EEG signals as-
sociated with certain mental states. 
While the development of BCI is a recent line of investigation, encouraging re-
sults have been obtained that may lead to the possibility of developing a BCI with 
an effectiveness of approximately 70%. 
The paper is structured as follow: Section 2 presents an overview on the theory. 
Section 3 shows practical application. Finally Section IV reports our conclusions. 

2 Theoretical Background 

2.1 The Electroencephalogram (EEG) 

The electroencephalogram (EEG) is a study of brain function that reflects the 
brain's electrical activity. To collect brain electrical signal using electrodes placed 
on the scalp, which is added a conductive paste to enable the brain electrical sig-
nal, which is of a scale of microvolts, can be recorded and analyzed. 
EEG signals have different rhythms within the frequency band with the following 
characteristics: [Roman-Gonzalez 2010 (1)] [Kirby]. 

 
Rhythm Alfa or Mu: It is characteristic of the state of consciousness and physical 
and mental rest with the eyes closed. 

• Low voltage (20-60 μv/3-4mm) with variable morphology. 
• High frequency (8-13 Hz). 



 

• Zones of origin: later. 
• Visual blockade before palpebral opening and stimuli (reactivity). 
• No differentiable childhood after the 8 years, 10 hertz, established after 

12 years. 
Rhythm Beta: It is characteristic of the state of consciousness in states of cortical 
activation (replace of α). 

• Low voltage (10-15 μv/1-1.5 mm) with variable morphology. 
• High frequency (13-25 ó + Hz) to greater predominant frequency in an-

xious and unstable subjects. 
• Zones of origin: central frontals. 

Rhythm Theta: It is characteristic of the state of deep and normal sleep in the 
childhood (10 years), abnormal during the state of consciousness. 

• Preponderant before 2 years (emotional situations). 
• Appearance in specific physiological conditions (hyperventilation and 

deep sleep). 
• High voltage (50 μv/7mm). 
• Low frequency (4-8 Hz). 
• Zones of origin: thalamic zones, parietotemporal region. 

Rhythm Delta: It is characteristic of indicative pathological states of neuronal dif-
ficulty (comma) and occurs during deep sleep. 

• High voltage (70–100 μv/9-14 mm) with variable morphology. 
• Low frequency (4 - ó Hz). 
• Subcortical origin (not defined). 

 
In the EEG signals, can be observed what is called evoked potentials, these 
evoked potentials is a neurophysiologic examination that assesses the role of 
acoustic sensory system, visual, and somatosensory pathways through evoked res-
ponses to a stimulus known and standardized. There are several types of event-
related evoked potentials (ERP) and visual evoked potential (VEP) evoked poten-
tials acoustic (PEA), motor evoked potentials (MRP), Steady State Visual Evoked 
Responses (SSVEP), etc. which are discussed in articles [Hoffmann et al.] [Wol-
paw et al. 2002] [Lecocq and Cabestaing 2008] [Golle et al. 2010] [Trejo et al. 
2006]. 

 
Fig. 1 EEG rhythms in time and frequency domain  [Kuo-Kai 2010] [Kirby] 



 

2.2 International System of Positioning Electrodes 10/20 

Although, there are several different systems (Illinois, Montreal, Aird, Cohn, Len-
nox, Merlis, Oastaut, Schwab, Marshall, etc.), the 10/20 international system is the 
most widely used at present. To place the electrodes according to this system 
proceeds as follows: 
The inactive or common electrode is placed remote of the skull (earlobe, nose, or 
chin). It is counted on data points such as: nasion and inion. Ten percent of the da-
ta points are the prefrontal and occipital planes. The rest is divided in four equal 
parts of 20% each.  
Five cross-sectional planes exist: 

• Prefrontal: Fpz 
• Frontal: Fz 
• Vertex: Cz 
• Parietal: Pz 
• Occipital: Oz 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Positioning of the electrodes 
 
The number of electrodes used and the position, depends on the particular signal 
that we want to analyze. The oscillation of the sensorimotor cortex, changes dy-
namically the execution of the movement of a member: 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3 Sensory and Motor Homunculus [Solis-Escalante and Pfurtscheller 2009] 



 

2.3 The Brain Computer Interfaces 

A brain computer interface is a communication system that can generate control 
signals from brain signals, i.e. a BCI is a system that translates brain activity into 
commands for a computer or other device. A BCI allows users to interact with 
their environment using just brain activity, without using nerves and muscles. 
A general block diagram for a brain-computer interface is shown below: 
 

 
Fig. 4 General block diagram for a BCI 

2.4 Asynchronous Interfaces 

This kind of interface analysis the user voluntary activity, this analysis retains at 
all times a communication link with the system, in this case the system conti-
nuously analyzes the signals from the user's brain activity and classify mental sta-
tus periodically. In other cases, the interface can measure temporal variations in 
the rates associated with motor activity of the user, such amplitude variations can 
be detected and then transform them into commands, the analysis of motor activity 
requires lengthy training. 
Spontaneous brain activity produces the following types of signals that are used in 
interfaces [Lecocq and Cabestaing 2008]: 

1) Slow Cortical Potential Shifts (SCPS). 
2) Oscillatory activity sensorimotriz. 
3) Spontaneous EEG signals. 

2.5 Synchronous Interfaces 

This type of interfaces analyzed EEG signals evoked potential stimuli received by 
the user from the system (can be visual, auditory or tactile), in this case is the sys-
tem that performs the task of communication, the user simply react or not to a se-
ries of stimuli. In this case do not work with spontaneous brain activity, if not ra-



 

ther with the brain's response to stimuli and then transform this response com-
mands. For such interfaces requires a limited learning. 
The main types of signals that are used in these synchronous interfaces are [Le-
cocq and Cabestaing 2008]: 

1) Steady State Visual Evoked Responses (SSVERs). 
2) Event Related Potentials (ERPs). 

2.6 Invasive or Noninvasive Interfaces 

The signals of brain activity that can be measured can be signs at the scalp as the 
electroencephalogram (EEG) can be at the level of the cerebral cortex as the elec-
trocorticogram (ECoG) or the need for implanting electrodes into the brain. Then 
we distinguish the invasive methods such as those that require the installation of 
electrodes inside the skull. Noninvasive methods are those that can measure sig-
nals only from the surface of the scalp [Lecocq and Cabestaing 2008] [Milan and 
Carmena 2010]. 
In the invasive methods, when an electrode is connected directly to a neuron, it 
measures its post-synaptic electrical activity and / or the potential cast for its axon 
[Lecocq and Cabestaing 2008]. 
The most used non-invasive technique is to work with the EEG signals collected 
from electrodes placed on the scalp. 

 
Fig. 5 Invasive method for measuring brain activity [Lecuyer 2007] 

2.7 BCI P300 Speller 

This kind of BCI was originally proposed by Farwell and Donchin [Farwell and 
Donchin 1988] and is also studied in [Lecocq and Cabestaing 2008] and [Garcia-
Cossio and Gentiletti 2008], is a non-invasive communication interface based on 
event-related evoked potentials ERPs P300 type. This interface allows the user to 
write a text on the computer, is a 6x6 matrix that is displayed on the screen and is 
made up of 26 letters of the alphabet, nine numbers and a symbol that enables the 
cancellation of the previous selection. 
The P300 speller is based on a paradigm which consists of presenting stimuli in 
the form of lighting in each row or column. The user's task is to take attention to 



 

the character to select and count the times that is affected by lighting. The illumi-
nations are done in a random and repeated several times for each character. 

 

 
Fig. 6 P300 Speller matrix 

2.8 Wheelchair Control with BCI 

Currently there are several research teams working to develop and improve the 
control system of a wheelchair based on measurements of the EEG signals of 
brain activity in patients with severe loss of motor activity. In this area, one of the 
first to submit a rough prototype wheelchair controlled by EEG signals was by 
Tanaka in [Tanaka et al. 2005] and is also studied in [Lecocq and Cabestaing 
2008]. Tanaka used a noninvasive BCI asynchronous analyzing EEG signals be-
tween 0.5 and 30 Hz, in the training phase of the system the user must imagine the 
movement left and right for 20 seconds for each move, the acquisition is made at 
1024 Hz and based on these signals the system learns to discriminate between 
both types of movement. 
One of the latest studies in relation to control a wheelchair with EEG signals was 
introduced by Toyota [Toyota 2009]. This system has the capacity to analyze the 
EEG wave signal every 125 milliseconds and decide whether to turn left, turn 
right or forward. The analyzed waves are shown in real time on the computer 
screen to give visual feedback. This system uses a cheek movement to slow or 
stop the wheelchair; this movement can be made by an accumulation of air in that 
area. 

 
Fig. 7  Toyota wheelchair controlled by BCI [Toyota 2009] 



 

Another work with wheelchair control based on EEG is done by the project 
OpenViBE [Lecuyer 2007] and [renard and Delannoy 2009]. OpenViBE is a free 
platform to develop BCI applications, within these different applications was a 
control of a wheelchair, for which uses electrodes at positions C3 and C4 of the in-
ternational position of electrodes 10/20 to capture the signals of intention to move 
left or right hand and thus represent the rotation the wheelchair to the right or left 
respectively, for EEG signals representing the movement of feet, an electrode is 
placed in the front and thus represents the advancement of the wheelchair. In a 
first moment is perceived to be very difficult to handle the wheelchair with these 
premises, so in a second experiment using the signal from the feet to select from 
several target destinations, so once you select your destination, as Wheelchair uses 
other algorithms to get to your chosen destination and progress. 

3 Development of the Work 

  
Fig. 8  Block Diagram 

3.1 Data Acquisition 

For the data acquisition, electrodes of 8 mm of Ag/AgCl fixed on C3 and C4 of 
the international system of positioning 10/20 were used. Signal amplification was 
made through amplifier EEG of 8-channel model Procomp Infinity. The sampling 
frequency is of 256 Hz. 
A digital band-pass filter has been implemented between 0.5 and 30 Hz in real 
time to especially eliminate the noise originating from the mains and other 
sources. 



 

 . 
Fig. 9 Electrodes 

 

 
Fig. 10 Amplifier Procomp Infinity 

 

3.2 Features Extraction 

The stage of extraction of characteristics is probably the most critical step in the 
processing of signal EEG, with a view to maximizing the potential success of the 
classification stage as well as the global yield of the system. A second objective of 
the stage is to compress the data without loss of excellent information through the 
process of classification so that it can operate in real-time. The rhythm μ, which 
corresponds to an oscillation of signal EEG between the 8 and 13 Hz, is caught in 
the sensorimotor zone located in the central hairy region. This rhythm, present in 
most adults, has particularity to present attenuation in its amplitude when some 
types of movement are performed, or what is more important when the intention is 
had to realize some movement, or simply imagining movements of the extremi-
ties, as shown in Figures 11 to 14. 
 

 
Fig. 11 Cerebral activity during the imagination of movements of the right hand and left hand 



 

 
Fig. 12 Difference in the frequency band alpha between movement and rest 

 
 

It is possible to stress that movements of the right hand produce a variation in the 
activity of the left part of the brain and vice versa. 
 

 
Fig. 13 Difference in the frequency band alpha between movement of the right hand and left 

hand in the electrode of the position C3 
 

 
Fig. 14 Difference in the frequency band alpha between movement of the right hand and left 

hand in the electrode of the position C4 



 

To quantify these characteristics (visibly observable) and then apply the 
classification methods, we use two different sets of characteristics: The first is a 
set of autoregressive parameters that represent spectral analysis, and the second 
will be to obtain spectral energy in Mu and Beta band for each electrode. 

3.3 Autoregressive Adaptative Parameters (AAR) 

To represent the characteristics previously described in numbers that allow us to 
implement a sort algorithm because we used autoregressive adaptive parameters 
that allows us to represent the frequency response of the signal as shown in Figure 
15. 
A model AAR of order p is written as follows: 
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The difference with the stationary molding autoregressive (AR) is that parameters 
AAR vary with them; the prediction of the error is calculated as follows: 
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For parameter calculation, we used the method of least mean squares (LMS), 
which is given by the following equation: 
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Fig. 15 Comparison of frequency response with the FFT and parameter AAR 

 
With 6 parameters AAR at each electrode, there are a total of 12 characteristics. 
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3.4 Spectral Energy in Mu and Beta Band (PST) 

In this case we will calculate the spectral energy in the Mu band (8-13 Hz) and 
Beta band (17-24 Hz) for each electrode (positions C3 and C4) which is why we 
will have in total a set of 4 features. The analysis is performed continuously in 
each moment of time as shown in Figure 16, we take a window of 1 second, this 
window will move in every moment of time in each window the work being done 
is to filter the signal first with a bandpass filter of 8-13 Hz and then calculate the 
spectral energy in the band Mu using the equation (4): 

∑
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Where:  
 PST = Spectral energy. 
 N = 256, as the windows is 1 sec. and de sampling frequency is 256 Hz 
 
Then we filter the window with a bandpass filter between 17 and 24 Hz to 
calculate the energy in the Beta band. 
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Fig. 16 Window signal to obtain the spectral energy in the Mu and Beta Band 

3.5 Classification 

The phase of classification is the final task of the process. The entrance to the sort 
algorithm is the set of characteristics extracted in the previous stage, and the exit 
is an indication of the mental state of the user. In this case, we are working with 
two states: left and right. 
For the present work, two methods of classification were developed: linear discri-
minating analysis and neuronal network. Both methods give similar results of a 
constant weight vectors; this way, the activation function would be as follows: 
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4 Test Process 

4.1 Fixation of Electrodes 

Bipolar electrodes are used; each electrode is placed at 2.5 centimeters toward the 
back and at positions C3 and C4, as shown in Figures 17 and 18. 

 

 
Fig. 17 Fixation of the bipolar electrodes in C3 and C4 

 

 
Fig. 18 Photographs with the fixed electrodes 

 
To fix the electrodes, gel and conductive grease were used. 
 

       
Fig. 19 Gel and conductive grease 

4.2 Acquisition of the Signal and Training 

Each of the tests lasts for only 9 seconds, and during the training process, we per-
formed 60 tests. The test begins at rest, and after 3 seconds, the system randomly 
chooses a value to send to the right or left signal. This is why the person will have 



 

the 6-second rest to imagine the movement specified (for better understanding, 
please refer to Figure 20). 

 
Fig. 20 Composition of the 9 seconds of the test [Schlogl et al. 2003] 

 

  
Fig. 21 Photographs during the process of acquisition of EEG signals 

 
For the training, two stages were performed. First is offline training, where there is 
no feedback; this serves to register and keep the data for analysis. Second is online 
training where feedback regarding function to the preliminary results of the offline 
analysis exists; this training serves so that the user can learn to control the cerebral 
activity more effectively. In Figures 22 and 23, we can observe the forms imple-
mented for each of the trainings. 

 

 
Fig. 22 Interface for offline training 



 

 
Fig. 23 Interface for online training with feedback 

5 Results 

To be able to evaluate the obtained results, 2 methods were taken into account: 
 

Error Rate. This is the error that takes place when trying to classify the produced 
signals both enters types of tasks under study (movement of the right hand or the 
left hand). 

 
Mutual Information. This is the amount of information that can be recovered 
through classification and the extracted characteristics. 

 
We have worked with 2 data bases: Graz Data Base and Metz Data Base 
As the analysis was performed in a continuous manner because the evaluation was 
realized in every moment of time with each sample of collected, we can observe 
the values of the error and mutual information based on time below: 
 
Results for Graz Data: 
 
 
AAR, p = 6, Method 
LMS, ERROR RATE  

UC = 0.0055  
Neural Network  
Min =    15.7143 %  
Time =   5.6797 sec 
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AAR, p = 6, Method 
LMS, ERROR RATE  

UC = 0.0055  
LDA  
Min =    12.8571 %  
Time =   5.2969 sec 
 
 
 

 
AAR, p = 6, Method 
LMS, MI  

UC = 0.0055  
Neural Network  
Max =    0.4583  
Time =   5.7422 sec 
 
 
 

AAR, p = 6, Method 
LMS, MI  

UC = 0.0055  
LDA  
Max =    0.5328  
Time =   5.1563 sec  
 
 
 

The difference between the spectral energy of the band can be graphical alpha (8 – 
13 Hz) of C3 and C4 when types of movement both take place. Furthermore, we 
can graph the function of the resulting activation of the classification method that 
is obtained when the movements is either left or right. Both graphs are based on 
time because of the continuous analysis that I am realized in every moment of 
time, as shown in Figures 24 and 25. 
 
Using the spectral energy (PST) we have the following results: 

 
Method PST, MUTUAL 
INFORMATION 

 
Neural Network 
Máx = 
   0.4567 
 
Time = 
   5.0469 sec 
 
Files TRAIN 

0 1 2 3 4 5 6 7 8 9
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



 

Method PST, ERROR 
RATE 
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Method PST, MUTUAL 
INFORMATION 
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Fig. 24 Difference of the spectral energy between the electrodes C3 and C4 

 



 

 
Fig. 25 Graph of the function of the activation for movements of the right hand and left hand 

 
Through these graphs, it can be observed that the classes under study are separa-
ble. 

 
After making this first step OFFLINE training and have analyzed the data, we turn 
to step ONLINE training using the vector and the constant found in the previous 
step based on the results shown. As a result we obtained the following confusion 
matrix 

Confusion Matrix 
 Classe Right Left TOTAL 
 Right 59 11 70 (*) 

Left 8 62 70 (+) 
% Right 84.29 15.71 100 

Left 11.43 88.57 100 
 

 
Results for Metz Data: 
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Method PST, 
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Confusion Matrix 
 Classe Right Left TOTAL 
 Right 26 3 29 (*) 

Left 1 30 31 (+) 
% Right 89.66 10.34 100 

Left 3.23 96.77 100 

6 Discussion and Conclusions 

We can observe that in the results obtained on data published by the University of 
Graz, the use of autoregressive parameters provides better results than the spectral 
energies, whereas the reverse is true for the our Metz data. This may be due to the 
fact that data published by the University of Graz match better filtered signals, and 
therefore the AAR model which reflects all the spectrum is more significant than 
the energies of the Mu and Beta band. 
Moreover, one can observe in the data provided from the University of Graz and 
in our database, there is a smaller error when trying to classify a signal 
representing a movement of left hand that represents a movement of the right hand 
this may be caused likely that the system assumes a state of rest as a movement to 
the left hand and thereby the left hand classification would be more decisive. 
We conducted trials with much hand movement and with only the imagination of 
movements, the best results are obtained when the user only imagine the 
movement, this may be because there is a greater concentration only when we 
imagine the movement while it is possible to achieve movements automatically 
without thinking. 
Through this article we provide the basis and foundation for developing a brain-
computer interface, showing the different steps to implement a BCI, the different 
stages of processing and analyzing the different techniques currently used. 
The most important aspects to be taken into account in order to have good results: 
A good fixation of the electrodes on the scalp, which required a measure of the 
impedance of the electrodes on the scalp, which should be less than 5 K ohms. It is 
always necessary prior training stage. However there are investigations that seek 
to perform discrimination tasks without training, but the results are not encourag-
ing. Each person has a different way of managing their brain activity. To ensure 
good training, each individual or user needs to perform at least 60 tests. 
The analysis has been performed in a continuous manner during the 9 seconds of 
each test, and the best results—with minimum error and maximum value for mu-
tual information—are found between the fifth and sixth seconds 
The results so far are very encouraging, in some cases reaching rates of 93% ef-
fective, but even more must be done about it because it is necessary to increase the 
number of free degrees, a better definition of states, speed in the interpretation, to 
be able to have more complex applications 
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