
HAL Id: hal-00742159
https://hal.science/hal-00742159v1

Submitted on 16 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counterexample Guided Synthesis of Monitors for
Realizability Enforcement

Matthias Güdemann, Gwen Salaün, Meriem Ouederni

To cite this version:
Matthias Güdemann, Gwen Salaün, Meriem Ouederni. Counterexample Guided Synthesis of Monitors
for Realizability Enforcement. Automated Technology for Verification and Analysis - 10th Interna-
tional Symposium, ATVA 2012, Oct 2012, Thiruvananthapuram, India. pp.238-253, �10.1007/978-3-
642-33386-6_20�. �hal-00742159�

https://hal.science/hal-00742159v1
https://hal.archives-ouvertes.fr

Counterexample Guided Synthesis of Monitors

for Realizability Enforcement

Matthias Güdemann1, Gwen Salaün2,1, and Meriem Ouederni3

1 INRIA Rhône-Alpes, Grenoble, France
2 Grenoble INP, France

3 LINA, University of Nantes, France

Abstract. Many of today’s software systems are built using distributed
services, which evolve in different organizations. In order to facilitate
their integration, it is necessary to provide a contract that the services
participating in a composition should adhere to. A contract specifies
interactions among a set of services from a global point of view. One
important problem in a top-down development process is figuring out
whether such a contract can be implemented by a set of services, ob-
tained by projection and communicating via message passing. It was
only recently shown, that this problem, known as realizability, is decid-
able if asynchronous communication (communication via FIFO buffers)
is considered. It can be verified using the synchronizability property. If
the system is not synchronizable, the system is not realizable either. In
this paper, we propose a new, automatic approach, which enforces both
synchronizability and realizability by generating local monitors through
successive equivalence checks and refinement.

1 Introduction

Many software systems are now built using independently developed services,
which are mostly geographically and organizationally distributed. The specifi-
cation and analysis of interactions among such distributed systems is a major
concern for ensuring their correctness and reliability. In order to simplify the con-
struction of these systems, their design often relies on a contract, which describes
from a global point of view the admissible interaction sequences exchanged be-
tween the participants. In the area of Service Oriented Computing (SOC), this
contract is called choreography and the participants are called peers. The peers
correspond to a distributed implementation of this choreography, and can be
derived by projection, i.e., by projecting the choreography specification to each
peer by ignoring the messages that are not sent or received by that peer. A
crucial question in this context is to check whether the peers behave exactly
as required in the choreography. This property is called realizability [10, 1] and
particularly matters when the system is developed following a top-down devel-
opment process.

Figure 1 presents a simple example of choreography involving three peers
(identified using 1, 2, and 3), which exchange three messages in sequence (a be-
tween 1 and 2, b between 2 and 3, and c between 1 and 2) and loops. On the right

2 M. Güdemann, G. Salaün, and M. Ouederni

hand side of Figure 1, we give the projection obtained from this choreography,
where question marks correspond to receptions and exclamation marks to emis-
sions. Realizability aims at checking whether the distributed implementation
respects the ordering constraints specified in the global choreography.

Fig. 1. Choreography, Peers, Realizability

Most distributed systems interact asynchronously where messages are sent
and received through unbounded FIFO buffers. In this context, checking the re-
alizability is a very difficult issue, because the distributed version of the system
can generate infinite state spaces. This is the case of the distributed system given
in Figure 1 for instance where peer 1 can infinitely send messages. Whether re-
alizability is decidable was an open problem for several years. However, it was
recently shown that it is decidable, verifying the synchronizability property [3].
A set of peers is synchronizable if and only if the system behavior, considering
the send messages, preserves the same message sequences under synchronous
and 1-bounded asynchronous communication. If a set of peers is synchronizable,
one can check if it conforms to a choreography specification. If the system is not
synchronizable then it is also not realizable. Both synchronizability and realiz-
ability checking involves finite state spaces and can be verified using equivalence
checking techniques. The system described in Figure 1 is not synchronizable for
example, because peer 1 can send a and c in sequence in the asynchronous sys-
tem, whereas b occurs before c in the synchronous system as specified in the
choreography.

Although this result is a significant step forward for formally analysing chore-
ographies, there are still open issues that deserve to be studied. One of them
arises when the realizability check returns false, due to one (or several) message
exchange(s) violating the choreography ordering constraints. In this situation,
there is no established solution for enforcing realizability and the designer is
supposed to patch the choreography manually. However, correcting ordering is-
sues may be a real burden for a designer, who just wants that the distributed
implementation of his/her system behaves as specified in the choreography. This
means that we need a way to control the distributed system to make it respect
the global requirements. It is worth observing that, in this paper, when we refer
to a problem in the choreography, this will always be an issue in the order of
messages. Finding bugs (other than ordering issues) in choreographies can be
achieved using existing verification tools.

Counterexample Guided Synthesis of Monitors for Realizability Enforcement 3

In this paper, we propose a new approach, which identifies all problems which
prevent synchronizability and realizability of a choreography, and provides a
possible solution to enforce them. To do so, we generate monitors, which act as
local controllers interacting with their peer and the rest of the system in order
to make the peers respect the choreography requirements. These monitors are
obtained by first generating the set of distributed peers by projection from the
choreography specification. Then, we check in sequence the system synchroniz-
ability and realizability using equivalence checking. If one of these properties
is violated, we exploit the generated counterexample to augment the monitors
with a new synchronization message. Monitors are obtained through an iterative
process, automatically refining their behaviors. The successive addition of these
messages will finally enforce both synchronizability and realizability.

Our approach can be automated using any existing verification toolbox han-
dling Labeled Transition Systems and providing an equivalence checker. We chose
to encode choreographies into the value-passing process algebra LNT [6], one of
the input languages of the CADP verification toolbox [12]. By doing so, we reuse
existing state space exploration tools for generating peers and distributed sys-
tems, and equivalence checking techniques for verifying synchronizability and
realizability. The process is fully supported (no human intervention) by calling
various tools, some we reused from CADP, others we implemented ourselves, e.g.,
for automating the iterative part of the process. We have validated our approach
on hundreds of examples, some of them borrowed from real-world scenarios found
in the literature.

Our monitor synthesis solution presents several advantages compared to ex-
isting results. Our approach goes beyond realizability checking by enforcing the
system to respect the choreography. It is non-intrusive (peers are not modified or
extended) and preserves the system parallelism by generating distributed moni-
tors. It finds all problems in the choreography which prevent its realizability and
suggests a distributed, implementable way to fix it. This is helpful in Service Ori-
ented Computing or Component Based Software Engineering where black-box
components are assumed. In the Web service domain, BPEL wrappers [2] can be
automatically generated from our monitor models for controlling the distributed
peers. In domains where the direct usage of the monitors is not an accept-
able solution, the generated synchronization messages can serve to augment the
choreography and provide a suggestion of how to fix it manually.

2 Background

We use conversation protocols [10] as choreography specification language in
this paper. A conversation protocol is a low-level formal model, which can be
computed from other existing specification formalisms such as collaboration di-
agrams [4], BPMN 2.0 choreographies [19], Singularity channels [22], or Message
Sequence Charts (MSC) [1].

A conversation protocol is a Labeled Transition System (LTS) specifying the
desired set of interactions from a global point of view. Each transition speci-

4 M. Güdemann, G. Salaün, and M. Ouederni

fies an interaction between two peers Psender, Preceiver on a specific message m.
A conversation protocol makes explicit the execution order of interactions. Se-
quence, choice, and loops are modeled using a sequence of transitions, several
transitions going out from the same state and a cycle in the LTS, respectively.

Definition 1 (Conversation protocol). A conversation protocol CP for a
set of peers {P1, . . . ,Pn} is an LTS CP = (SCP , s0

CP , LCP , TCP) where SCP is
a finite set of states and s0

CP ∈ SCP is the initial state; LCP is a set of labels
where a label l ∈ LCP is a tuple mPi,Pj such that Pi and Pj are the sending and
receiving peers, respectively, Pi 6= Pj, and m is a message on which those peers
interact; finally, TCP ⊆ SCP ×LCP ×SCP is the transition relation. We require
that each message has a unique sender and receiver: ∀mPi,Pj , m′P

′

i,P
′

j ∈ LCP :
m = m′ =⇒ Pi = P ′i ∧ Pj = P ′j.

In the remainder of this paper, we denote a transition t ∈ TCP as s
m
Pi,Pj

−−−−−→ s′

where s and s′ are source and target states and mPi,Pj is the transition label.

We use LTSs for specifying the peer interaction model. This behavioral model
defines the order in which the peer messages are executed. A label is a tuple
(m, d) where m is the message name and d stands for the communication direc-
tion (either an emission ! or a reception ?). The set of messages in one peer LTS
constitutes the peer alphabet.

Definition 2 (Peer). A peer is an LTS P = (S, s0, Σ, T) where S is a finite set
of states, s0 ∈ S is the initial state, Σ = Σ! ∪Σ? is a finite alphabet partitioned
into a set of send and receive messages, and T ⊆ S × Σ × S is a transition
relation. We write m! for a message m ∈ Σ! and m? for m ∈ Σ?.

Peers are obtained by projection from a conversation protocol. After the
projection they are determinized and minimized using standard algorithms [14],
which is possible as the number of states and messages is finite.

Definition 3 (Projection). Peer LTSs Pi = (Si, s
0
i , Σi, Ti) are obtained by

replacing in CP = (SCP , s0
CP , LCP , TCP) each label mPj ,Pk ∈ LCP with m! if

j = i, with m? if k = i, and with τ (internal action) otherwise; and finally
removing the τ-transitions by applying standard minimization algorithms [14].

The synchronous composite system corresponds to the distributed system
computed over a set of peers communicating synchronously. In this context, a
communication between two peers holds if and only if both agree on a synchro-
nization label, i.e., if one peer is in a state in which a message can be sent, then
the other peer must be in a state in which that message can be received.

Definition 4 (Synchronous System). Given a set of peers {P1, . . . ,Pn} with
Pi = (Si, s

0
i , Σi, Ti), the synchronous system (P1 | . . . | Pn) is the LTS (S, s0, Σ, T)

where:
– S = S1 × . . . × Sn

– s0 ∈ S such that s0 = (s0
1, . . . , s

0
n)

Counterexample Guided Synthesis of Monitors for Realizability Enforcement 5

– Σ = ∪iΣi

– T ⊆ S × Σ × S, and for s = (s1, . . . , sn) ∈ S and s′ = (s′1, . . . , s
′
n) ∈ S

(interact) s
m
−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
j where ∃ si

m!
−−→ s′i ∈

Ti, and sj
m?
−−→ s′j ∈ Tj such that ∀k ∈ {1, . . . , n}, k 6= i ∧ k 6= j ⇒ s′k = sk

In the asynchronous composite system, the peers communicate with each
other asynchronously through FIFO buffers, i.e., each peer Pi is equipped with
a k-bounded message buffer Qk

i . If k is not made explicit, noted Qi, it means
that k = ∞ and stands for unbounded buffers. A peer can either send a message
m ∈ Σ! to the tail of the receiver buffer Qj at any state where this send message
is available, or read a message m ∈ Σ? from its buffer Qi if the message is
available at the buffer head.

Definition 5 (Asynchronous System). Given a set of peers {P1, . . . ,Pn}
with Pi = (Si, s

0
i , Σi, Ti), and Qi being its associated buffer, the asynchronous

system ((P1, Q1) || . . . || (Pn, Qn)) is the LTS (S, s0, Σ, T) defined as follows:

– S ⊆ S1 × Q1 × . . . × Sn × Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i)∗

– s0 ∈ S such that s0 = (s0
1, ∅, . . . , s

0
n, ∅)

– Σ = ∪iΣi

– T ⊆ S × Σ × S,
and for s = (s1, Q1, . . . , sn, Qn) ∈ S and s′ = (s′1, Q

′
1, . . . s

′
n, Q′n) ∈ S

(send) s
m!
−−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
j , (i) si

m!
−−→ s′i ∈ Ti,

(ii) Q′j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 6= j ⇒ Q′k = Qk, and (iv) ∀k ∈
{1, . . . , n} : k 6= i ⇒ s′k = sk

(read) s
m?
−−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?
−−→ s′i ∈ Ti, (ii) mQ′i =

Qi, (iii) ∀k ∈ {1, . . . , n} : k 6= i ⇒ Q′k = Qk, and (iv) ∀k ∈ {1, . . . , n} : k 6=
i ⇒ s′k = sk

A system is synchronizable [11, 3] when its behavior remains the same under
both synchronous and asynchronous communication semantics. This is checked
by bounding buffers to k = 1 and comparing interactions in the synchronous
system with send messages in the asynchronous system.

Definition 6 (Synchronizability). Given a set of peers {P1, . . . ,Pn}, the syn-
chronous system (P1 | . . . | Pn) = (Ss, s

0
s, Ls, Ts), and the 1-bounded asyn-

chronous system ((P1, Q
1
1) || . . . || (Pn, Q1

n)) = (Sa, s0
a, La, Ta), two states r ∈ Ss

and s ∈ Sa are synchronizable if there exists a relation R such that R(r, s) and:

– for each r
m
−→ r′ ∈ Ts, there exists s

m!
−−→ s′ ∈ Ta, such that R(r′, s′);

– for each s
m!
−−→ s′ ∈ Ta, there exists r

m
−→ r′ ∈ Ts, such that R(r′, s′);

– for each s
m?
−−→ s′ ∈ Ta, R(r, s′).

The set of peers is synchronizable if R(s0
s, s

0
a).

The approach presented in [3] proposes a sufficient and necessary condition
showing that the realizability of conversation protocols is decidable.

6 M. Güdemann, G. Salaün, and M. Ouederni

Definition 7 (Realizability). A conversation protocol CP is realizable if and
only if (i) the peers computed by projection from this protocol are synchronizable,
(ii) the 1-bounded system resulting from the peer composition is well-formed, and
(iii) the synchronous version of the distributed system {P1, . . . ,Pn} is equivalent
to CP.

Well-formedness states that whenever the i-th peer buffer Qi is non-empty,
the system can eventually move to a state where Qi is empty. For every syn-
chronizable set of peers, if the peers are deterministic, i.e., for every state, the
possible send messages are unique, well-formedness is implied.

Both synchronizability and realizability properties are checked automatically
using equivalence checking (weak trace equivalence in [3, 17]). This check requires
the modification of the asynchronous system for hiding receptions (m? τ),
renaming emissions into interactions (m! m), and removing τ -transitions using
standard minimization techniques.

Running Example. For illustration purposes we specify the use of an applica-
tion in the cloud. This system involves four peers: a client (cl), a Web interface
(int), a software application (appli), and a database (db). We show first a conver-
sation protocol (Figure 2) describing the requirements that the designer expects
from the composition-to-be. The conversation protocol starts with a login in-
teraction (connect) between the client and the interface, followed by the setup
of the application triggered by the interface (setup). Then, the client can access
and use the application as far as necessary (access). Finally, the client decides to
logout from the interface (logout) and the application stores some information
(start/end time, used resources, etc.) into a database (log).

Fig. 2. Running Example: Choreography Specification

Figure 3 shows the four peers obtained by projection. This set of peers seems
to respect the behavior specified in the conversation protocol, yet this is difficult
to be sure using only visual analysis, even for such a simple example. In addition,
as the choreography involves looping behavior, it is hard to know whether the
resulting distributed system is bounded and finite, which would allow its formal
analysis using existing verification techniques. Actually, this set of peers is not
synchronizable (and therefore not realizable), because the trace of send messages
“connect, access” is present in the 1-bounded asynchronous system, but is not
present in the synchronous system. Synchronous communication enforces the

Counterexample Guided Synthesis of Monitors for Realizability Enforcement 7

sequence “connect, setup, access” as specified in the choreography, whereas in
the asynchronous system peer cl can send connect! and access! in sequence.

Fig. 3. Peer Projection

In the rest of this paper, we propose an automated technique to identify all
problematic messages in a choreography. Our approach augments the system
with new participants and interactions in order to restore the correct message
sequences as specified in the global contract.

3 Counterexample Guided Realizability Enforcement

In our approach, we augment each peer by an accompanying monitor, which
observes the behavior of the peer, and if necessary, controls the send messages
according to the temporal ordering of the global specification. Adding moni-
tors guarantees that the local behavior of the peers is not changed at all. The
monitors locally receive the messages sent by their peer and relay them later
after synchronization with the other monitors. They are refined by an iterative
process, when it terminates the choreography is realized by the set of peers and
monitors.

3.1 Monitors

A monitor interacts with its corresponding peer, with the other monitors and
with receiving peers (via their buffers in the asynchronous system). The interac-
tion with other monitors is done via synchronization messages, either incoming
synchronizations of the form m← for the synchronized monitor or outgoing syn-
chronizations of the form m→, initiated by the synchronizing monitor. We call a
message synchronized if there exists a synchronization message which delays it.

The monitor interacts with its corresponding peer over the send messages.
The monitor locally receives the message from the peer. If the message needs
to be synchronized, it first waits for the incoming synchronization message and
then relays the message to the receiver, otherwise it relays the message directly
to its receiver. If required, it will emit an outgoing synchronization message
afterwards.

Definition 8 (Monitor). A monitor is an LTS M = (S, s0, Σ, T) where S is

a finite set of states, s0 is the initial state, Σ = Σ! ∪ Σ? ∪ Σ← ∪ Σ→is a finite

8 M. Güdemann, G. Salaün, and M. Ouederni

alphabet partitioned into sets of sending, locally receiving, incoming and outgoing
synchronization messages and T ⊆ S × Σ × S is a transition relation.

The synchronous parallel composition of the peers and their monitors de-
scribes the system where all participants interact using synchronous communi-
cation.

Definition 9 (Monitored Synchronous System). Given a set of peers {P1,

. . . ,Pn} with Pi = (Si, s
0
i , Σi, Ti) and a set of monitors {M1, . . . , Mn} with Mi =

(Si, s
0
i , Σi, Ti), the monitored synchronous system ((P1, M1) | . . . | (Pn, Mn)) is

the LTS SS′ = (S, s0, Σ, T) where:
– S = S1 × S1 × . . . × Sn × Sn

– s0 ∈ S such that s0 = (s0
1, s

0
1 . . . , s0

n, s0
n)

– Σ = ∪iΣi

– T ⊆ S×Σ×S, for s = (s1, s1 . . . , sn, sn) ∈ S and s′ = (s′1, s
′
n . . . , s′n, s′n) ∈ S

(send) s
τ
−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
i where ∃ si

m!
−−→ s′i ∈ Ti,

and si
m?
−−→ s′i ∈ Ti such that ∀k ∈ {1, . . . , n}, k 6= i ⇒ s′k = sk ∧ s′k = sk

(interact) s
m
−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
j where ∃ si

m!
−−→ s′i ∈

Ti, and sj
m?
−−→ s′j ∈ Tj such that ∀k ∈ {1, . . . , n} : (k 6= j ⇒ s′k = sk) ∧ (k 6=

i ⇒ s′k = sk)

(sync) s
τ
−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ→i ∩ Σ←j where si

m→

−−→ s′i ∈ Ti

and sj
m←

−−→ s′j ∈ Tj and ∀k ∈ {1, . . . , n} : s′k = sk∧(k 6= i∧k 6= j ⇒ s′k = sk)
and finally removing the τ-transitions.

In the monitored asynchronous system, each pair (Pi, Qi) is composed with
the LTS of its monitor Mi. The asynchronous behavior of the peers and monitors
corresponds to the distributed system where the sending peers communicate with
their monitors, which relay the messages to the buffers of the receiving peers.
This is shown in Figure 4 for two peers. The remote interactions between the
monitors, local interactions between peers and their buffers or between peers
and their monitors are marked with dashed lines. They are not observable from
an external point of view. The visible interactions are the messages sent from
one peer to the other. These are relayed by the monitor of the sending peer and
are stored in the buffer of the receiving peer.

Peer1

Buffer1

Monitor1 Buffer2

Peer2

Monitor2

read

read

send relay

sync

relay
send

Fig. 4. Interactions in the Monitored Asynchronous System

Counterexample Guided Synthesis of Monitors for Realizability Enforcement 9

Definition 10 (Monitored Asynchronous System). Given a set of peers
{P1, . . . ,Pn} with Pi = (Si, s

0
i , Σi, Ti), Qi its associated buffer and a set of cor-

responding monitors {M1, . . . , Mn} with Mi = (Si, s
0
i , Σi, Ti), the asynchronous

system ((P1, M1, Q1) || . . . || (Pn, Mn, Qn)) is the LTS AS′ = (S, s0, Σ, T)
where:
– S ⊆ S1 × S1 × Q1 × . . . × Sn × Sn × Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?

i)∗

– s0 ∈ S such that s0 = (s0
1, s

0
1, ∅, . . . , s

0
n, s0

n, ∅)
– Σ = ∪iΣi

– T ⊆ S × Σ × S, and for
s = (s1, s1, Q1, . . . , sn, sn, Qn) ∈ S and s′ = (s′1, s

′
1, Q

′
1, . . . s

′
n, s′n, Q′n) ∈ S

(send) s
τ
−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
i , (i) si

m!
−−→ s′i ∈ Ti and

si
m?
−−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} : Q′k = Qk, and (iii) ∀k ∈ {1, . . . , n} :

k 6= i ⇒ s′k = sk and s′k = sk

(relay) s
m!
−−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ?

j ∩ Σ!
i, (i) si

m!
−−→ s′i ∈ Ti,

(ii) Q′j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 6= j ⇒ Q′k = Qk, (iv) ∀k ∈

{1, . . . , n} : s′k = sk, and (v) ∀k ∈ {1, . . . , n} : k 6= i ⇒ s′k = sk

(read) s
m?
−−→ s′ ∈ T if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?
−−→ s′i ∈ Ti, (ii) mQ′i =

Qi, (iii) ∀k ∈ {1, . . . , n} : k 6= i ⇒ Q′k = Qk, (iv) ∀k ∈ {1, . . . , n} : k 6= i ⇒

s′k = sk, and (v) ∀k ∈ {1, . . . , n} : s′k = sk

(sync) s
τ
−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ→i ∩Σ←j , (i) si

m→

−−→ s′i ∈ Ti and

sj
m←

−−→ s′j ∈ Tj, (ii) ∀k ∈ {1, . . . , n} : s′k = sk, (iii) ∀k ∈ {1, . . . , n} : Q′k =

Qk, and (iv) ∀k ∈ {1, . . . , n} : k 6= i, j ⇒ s′k = sk

and finally removing the τ-transitions.

Using Def. 9 and 10, synchronizability and realizability are checked as fol-
lows: For synchronizability, we check the equivalence between the monitored
synchronous and monitored asynchronous system with 1-bounded buffers. For
realizability we check the equivalence between the monitored synchronous sys-
tem and the choreography.

3.2 Iterative Construction of the Monitors

We use an iterative approach to identify all the problematic messages in a chore-
ography. At each iteration an equivalence check is conducted. If the check fails,
its result is analyzed to decide which synchronization message must be added to
the choreography. This results in the extended conversation protocol (ECP).

Definition 11 (Extended Conversation Protocol). An extended conversa-
tion protocol ECP for a set of peers {P1, . . . ,Pn} and corresponding set of mon-
itors {M1, . . . , Mn} is an LTS (SECP, s0

ECP, LECP ∪ L+
ECP, TECP) where SECP,

s0
ECP, LECP are defined analogous to Def. 1; a synchronization label l ∈ L+

ECP

is a tuple syncMj ,Mk where Mj and Mk are the synchronizing and synchronized
monitor (j 6= k); finally, TECP ⊆ SECP×(LECP∪L+

ECP)×SECP is the transition
relation.

10 M. Güdemann, G. Salaün, and M. Ouederni

The extended conversation protocol is augmented iteratively with synchro-
nization messages until the choreography becomes realizable. This works for all
non-faulty choreographies. Those which involve divergent choices are considered
as faulty [22]. Realizability cannot be enforced in that case, as it is impossible to
control divergent choices in a distributed system without changing the local be-
havior of the peers. Faulty choreographies are identified beforehand by detecting
non-confluent diamonds of interactions in the conversation protocol using the
executable temporal logic (XTL) [13].

The complete approach to enforce realizability of a choreography is shown as
activity diagram in Figure 5. In a first step, we discard faulty choreographies.
Then, we project the peers and start with the synchronizability check. At each
iteration, the equivalence between the monitored synchronous and the 1-bounded
monitored asynchronous system is checked. If this check fails, we analyze the
counterexample, identify the problematic message, and augment the ECP with
the necessary synchronization message. The synchronizability loop of the activity
is executed as long as the system is not synchronizable. When the choreography
is finally synchronizable, we proceed with the realizability check of the activity.
Here, we check the equivalence between the monitored synchronous system and
the original CP. The analysis of the counterexamples and the introduction of the
synchronization messages is done as before, and we continue the activity until
the realizability check succeeds.

project CP
onto peers

check
synchronizability

check
realizability

read counterexample
extract sync message

add sync
message to ECP

[else]

check non-
faulty CP

[else]

[ok]

[realizable]

read counterexample
extract sync message

add sync
message to ECP

[else]
start

Synchronizability Check Realizability Check

exit

[synchronizable]

monitor
generation

monitor
generation

Fig. 5. Approach Overview

Now, we explain how we augment the ECP with synchronization messages
for the monitors. If the equivalence check does not succeed in iteration k, a
counterexample is returned. This is a finite trace, whose prefix is contained in
both systems, but the sending of the last message m′ is only possible in one of
them. Therefore the sending of this message m′ must be controlled by a monitor,
in order to adhere to the specification. To do so, we introduce synchronization
messages into ECPk as follows:

Counterexample Guided Synthesis of Monitors for Realizability Enforcement 11

1. Locate in ECPk the message m′, its sending peer Pi and the states s∗, s∗
′

for which there exists s∗
m′Pi,P

−−−−→ s∗
′

∈ TECPk

2. Add a new state snew to the set of states SECPk+1

3. Replace each s∗
mPi,Pl

−−−−→ s∗
′

∈ TECPk
with snew

mPi,Pl

−−−−−→ s∗
′

(with snew
mPi,Pl

−−−−−→
snew if s∗ = s∗

′

) in TECPk+1

4. For every incoming transition to s∗, s
m
Pj ,P

j′

−−−−−→ s∗ ∈ TECPk
, add a new

transition s∗
sync

Pj ,Pi

m′−−−−−−→ snew to TECPk+1
(for Mj to Mi, where syncm′ is a

new name) and add the synchronization message sync
Pj ,Pi

m′ to L+
ECPk+1

After each iteration, we derive the monitors from the extended conversation
protocol. This can be achieved by using a process similar to the peer projection.

Definition 12 (Monitor Projection). Monitor LTSs Mi = (Si, s
0
i , Σi, Ti)

are obtained by replacing in ECP = (SECP, s0
ECP, LECP ∪ L+

ECP, TECP) each

transition s
m

Pj,Pk

−−−−−→ s′ (i) with a sequence of transitions s
m?
−−→ s∗, s∗

m!
−−→ s′

if m 6∈ L+
ECP and Pj = Pi, (ii) with a sequence of transitions s

m′?
−−→ s∗,

s∗
sync←

m′−−−−→ s∗
′

, s∗
′ m′!
−−→ s′ if m = syncm′ ∈ L+

ECP and Pk = Pi, (iii) with

s
sync→

m′−−−−−→ s′ if m = syncm′ ∈ L+
ECP and Pj = Pi, and (iv) with τ otherwise;

adding the new states s∗, s∗
′

to Si, and finally removing the τ-transitions.

Note that this projection does result in a correct monitor, but not necessarily
in the most permissive one. Due to the lack of space, we do not give its formal
definition here. Intuitively, we use an additional state machine composed with
the monitor. This creates all possible interleavings of the monitor behavior and
of the outgoing synchronization messages.

The iterative extension of the conversation protocol is guaranteed to termi-
nate after a finite number of steps and to result in a realizable choreography.
We must omit the proofs here, but the basic argument is as follows: the number
of messages that may be synchronized is bounded and no message can be syn-
chronized more than once; the equivalence checks assure that we find the right
message to synchronize.

Complexity. In theory it can be necessary to synchronize every message m ∈
LCP of the conversation protocol. As the parallel composition and equivalence
checks have a worst case complexity exponential in the number of peers #P ,
the worst case complexity of our approach is O(|LCP| · |SCP|

#P). Nevertheless,
our experience showed that this is unlikely in practical cases. Most often the
number of additional synchronization messages is rather small and compositional
verification techniques help to reduce the complexity of the parallel composition
(for experimental details see Section 4).

Running Example. We illustrate the construction of the most permissive mon-
itors for the example choreography shown in section 2, which is is not synchro-
nizable. The message sequence “connect, access” is possible in the asynchronous

12 M. Güdemann, G. Salaün, and M. Ouederni

system, but not in the synchronous one. The message access can only be sent
from cl to appli after setup, therefore it must be deferred to be sent after that.
To do so, we add a synchronization message for access to the choreography. This
synchronization message is emitted by the monitor for int, who is the sender of
the message setup. The left hand side of Figure 6 shows the extended conversa-
tion protocol with the first synchronization message.

connect

access
cl,int

setup
int,appli

cl,appli

log
appli,db

logout
cl,int

sync
int,cl

access

setup!

sync

setup!setup?
access

sync
access

setup?

sync
access

Fig. 6. After First Iteration

The right hand side of Figure 6 shows the monitor for the peer int. In the ini-
tial state it accepts the message sent by its peer (setup?). It relays this message to
its receiver (setup!) and sends an outgoing synchronization message (sync→access)
afterwards. What may seem counter-intuitive is the possibility of the message se-
quence “setup?, setup!, setup?, setup!” followed by two synchronization messages.
This is the result of constructing the most permissive monitor. As the peer is
not blocked after it sends the first message, it may proceed to send it again. The
monitor can relay both these messages. Nevertheless, after it relays the second
one without an outgoing synchronization message, both must be synchronized,
as synchronization messages are not buffered.

After the introduction of the first synchronization message, the choreography
is synchronizable but not realizable. The equivalence check returns the coun-
terexample “connect, setup, log”, but logout must always precede log. A second
synchronization message is therefore introduced right after the logout message.
It is exchanged between the monitors for the peer cl (who sends logout) and for
the peer appli. The left hand side of Figure 7 shows the monitor for appli after
the second iteration. It accepts the local emission of the log message from its
peer, waits for the incoming synchronization message, and then relays log.

Still, the choreography is not realizable in this form. The next counterexample
is “connect, setup, logout, connect”, i.e., the peer cl starts a new connection
attempt, before the log message is sent to db. A third synchronization message
is introduced directly after log, between the monitor for appli and the monitor
for cl. The right hand side of Figure 7 shows the monitor for appli after the
third iteration. After the integration of the three synchronization messages, the
choreography is finally both synchronizable and realizable.

Counterexample Guided Synthesis of Monitors for Realizability Enforcement 13

log?

sync

log!

log

log!log?

log!
log?

sync
connect

sync
log

sync
log

sync
connect

sync
connect

sync
connect

Fig. 7. Iterative Monitor Construction for Peer appli

4 Tool Support

Implementation. Our approach is tool-independent; every formal verification
tool for equivalence checking of LTSs is usable. To automate the process, we
chose the formal language LOTOS NT (LNT) [6]. It enables the description of
concurrent processes, communicating via messages. It is fully integrated into
CADP [12], which includes efficient methods for minimization under different
equivalence relations, equivalence and model checking. The encoding into LNT
also permits to analyze choreographies for bugs (other than message ordering
issues) using CADP tools, e.g., temporal properties expressed in MCL [16].

The conversation protocol, peers, monitors are encoded via the state machine
pattern as LNT processes. We exploit the parallel composition operator of LNT
to construct the most permissive monitors with all possible interleavings of the
synchronization messages. The buffer behaviors are also encoded using LNT
processes; the buffer operations are specified as LNT data types. The projection
from the ECP onto the distributed peers is realized using label hiding and LTS
reduction. The parallel composition of the FIFO buffers, peers and monitors,
as well as of the monitored peers is done using the parallel composition and
rendez-vous synchronization of LNT.

Experiments. We developed a test case generator, which we used to gener-
ate hundreds of conversation protocols with varying parameters, e.g., number of
peers, states and transitions. Our database of examples also includes 65 chore-
ographies taken from the literature, as well as variants of them.

Table 1 shows the results for some of the experiments we conducted. For
each example it shows the number of peers involved, the number of transitions
and states in the choreography, and the number of additional synchronization
messages. The fifth column shows the number of states and transitions of the
largest intermediate LTS while creating the monitored asynchronous system.
We use compositional verification, in particular smart parallel composition [8],
where reductions are applied during the parallel composition and a composition
sequence is decided heuristically. The final column shows the time for the longest
iteration as well as the overall time for all computations and checks on a 3 Ghz
Xeon CPU with 12 Gbyte RAM.

The number of peers has a significant influence on the state space of the
intermediate LTSs, more so than the number of transitions, e.g., see examples

14 M. Güdemann, G. Salaün, and M. Ouederni

cp0031 and cp0032. The asynchronous behavior of many peers with only few
messages generates many possible interleavings, while the behavior of few peers
but more messages generally creates much less. This is the case, e.g., in cp0153,
which has a small number of peers, but a higher number of transitions, yet the
intermediate state space of the LTS is rather small.

Table 1. Experimental Results

example |peers| |T |/|S| |sync|
parallel time

composition max / total

cp0121 3 12 / 8 0 355 / 931 - / 54s
cp0016 3 4 / 3 1 121 / 337 46s / 1m 31s
cp0063 4 5 / 4 3 337 / 988 58s / 3m 54s
cp0153 3 29 / 16 5 15,182 / 59,033 53s / 7m 03s
cp0031 7 11 / 11 6 158,741 / 853,559 5m 47s / 19m 31s
cp0032 9 11 / 12 5 105,598 / 856,617 25m 53s / 1h 25m 10s

5 Related Work

There exists much work on the verification of realizability, e.g., [10, 1, 4, 21, 15,
3], but none provides a solution if the choreography is not realizable. Let us fo-
cus on related approaches, which propose solutions for ensuring realizability of a
choreography. In [5], the authors identify three principles for global descriptions
under which they define a sound and complete end-point projection, i.e., the
generation of distributed processes from the choreography description. If these
rules are respected, the distributed system obtained by projection will behave
exactly as specified in the choreography. The same approach is chosen for BPMN
2.0 choreographies [18]. In [20], the authors propose to modify their choreogra-
phy language to include new constructs (dominated choice and loop). During
projection of these new operators, some communication is added to make the
peers respect the choreography specification. However, these solutions prevent
the designer from specifying what (s)he wants to, and complicates the design
by obliging the designer to make explicit extra-constraints in the specification,
e.g., by associating dominant roles to certain peers. In [9], the authors propose a
Petri Net-based formalism for choreographies and algorithms to check realizabil-
ity and local enforceability. A choreography is locally enforceable if interacting
peers are able to satisfy a subset of the requirements of the choreography. To en-
sure this, some message exchanges in the distributed system are disabled. In [21],
the authors propose automated techniques to check the realizability of collabo-
ration diagrams for different communication models. In case of non-realizability
messages are added directly to the peers to enforce realizability. Collaboration
diagrams are much less expressive than conversation protocols, as choices and
loops cannot be specified, except for repetition of the same interaction.

Counterexample Guided Synthesis of Monitors for Realizability Enforcement 15

Beyond advocating a solution for enforcing realizability, our contribution
differs from these related works as follows. We focus on asynchronous commu-
nication and choreographies involving loops that may result in infinite state
spaces. Our approach is non-intrusive; we do not add any constraints on the
choreography language or specification, and the designer neither has to modify
the original choreography specification, nor the peer models. Instead, we gen-
erate local monitors that preserve the system parallelism and control the peer
behaviors to make them respect the choreography requirements.

The technique we rely on here shares some similarities with counterexample-
guided abstraction refinement (CEGAR) [7]. In CEGAR, an abstract system
is analyzed for temporal logic properties. If a property holds, the abstraction
mechanism guarantees that the property also holds in the concrete design. If the
property does not hold, the reason may be a too coarse approximation by the
abstraction. In this case, the counterexample generated by the model checker, is
used to refine the system to a finer abstraction and the process is iterated.

To the best of our knowledge, our approach is the first application of equiva-
lence checking for a technique inspired from CEGAR. Moreover, our contribution
goes beyond CEGAR related approaches, because we do not only automatically
find problems in the model, but also offer a fix for (all of) them. Our approach
allows to solve a problem, namely automatically fixing message ordering issues
in a distributed system modeled using global contracts, for which no solution
has been yet suggested.

6 Conclusion

In this paper, we have presented a new solution to identify all necessary changes
to choreographies and synthesize distributed, local monitors which enforce re-
alizability. Our approach is directly applicable to all notations which are trans-
formable into conversation protocols. This is the case for most existing languages
such as BPMN 2.0, collaboration diagrams, WS-CDL, Singularity channels, and
MSC. We generate the monitors in successive iterations by checking both the
synchronizability and realizability properties on the distributed system obtained
by projection from the choreography specification. If one of these two properties
is not satisfied, we use the counterexample resulting from this check to extend
the monitors with additional synchronization messages. When both properties
are finally ensured, we know that the system is bounded, synchronizable, and
realizable. This assures the correct behavior of the distributed system according
to the choreography, without making any change in the services themselves. Our
main perspective aims at working with models closer to implementations that
consider not only message passing communications, but also data exchanged be-
tween peers. This impacts choreography semantics and raises new issues such as
dead code detection.

Acknowledgements. The authors would like to thank Samik Basu, Tevfik
Bultan, Frédéric Lang, and Radu Mateescu for interesting discussions on the
topics of this paper.

16 M. Güdemann, G. Salaün, and M. Ouederni

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and Verification of MSC
Graphs. Theoretical Computer Science, 331(1):97–114, 2005.

2. T. Andrews et al. Business Process Execution Language for Web Services (WS-
BPEL). BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems, 2005.

3. S. Basu, T. Bultan, and M. Ouederni. Deciding Choreography Realizability. In
Proc. of POPL’12. ACM Press, 2012.

4. T. Bultan and X. Fu. Specification of Realizable Service Conversations using
Collaboration Diagrams. Service Oriented Computing and Applications, 2(1):27–
39, 2008.

5. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Pro-
gramming for Web Services. In Proc. of ESOP’07, LNCS. Springer, 2007.

6. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang, W. Serwe,
and G. Smeding. Reference Manual of the LOTOS NT to LOTOS Translator
(Version 5.4). INRIA/VASY, 149 pages, 2011.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In Proc. of CAV’00, volume 1855. Springer, 2000.

8. P. Crouzen and F. Lang. Smart Reduction. In Proc. of FASE’11, volume 6603 of
LNCS. Springer, 2011.

9. G. Decker and M. Weske. Local Enforceability in Interaction Petri Nets. In Proc.
of BPM’07, volume 4714 of LNCS. Springer, 2007.

10. X. Fu, T. Bultan, and J. Su. Conversation Protocols: A Formalism for Specification
and Verification of Reactive Electronic Services. Theoretical Computer Science,
328(1-2):19–37, 2004.

11. X. Fu, T. Bultan, and J. Su. Synchronizability of Conversations among Web
Services. IEEE Transactions on Software Engineering, 31(12):1042–1055, 2005.

12. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A Toolbox for
the Construction and Analysis of Distributed Processes. In Proc. of TACAS’11,
volume 6605 of LNCS. Springer, 2011.

13. H. Garavel and R. Mateescu. XTL: A Meta-Language and Tool for Temporal Logic
Model-Checking. In Proc. STTT’98, 1998.

14. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

15. N. Lohmann and K. Wolf. Realizability Is Controllability. In Proc. of WS-FM’09,
volume 6194 of LNCS. Springer, 2010.

16. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS. Springer, 2008.

17. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

18. OMG. Business Process Model and Notation (BPMN) – Version 2.0. 2011.
19. P. Poizat and G. Salaün. Checking the Realizability of BPMN 2.0 Choreographies.

In Proc. of SAC’12. ACM Press, 2012.
20. Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the Theoretical Foundation of

Choreography. In Proc. of WWW’07. ACM Press, 2007.
21. G. Salaün and T. Bultan. Realizability of Choreographies using Process Algebra

Encodings. In Proc. of IFM’09, volume 5423 of LNCS. Springer, 2009.
22. Z. Stengel and T. Bultan. Analyzing Singularity Channel Contracts. In Proc. of

ISSTA’09. ACM, 2009.

