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Abstract
Inter-aural time differences (ITDs) constitute an important localization cue for azimuth estimation,

particularly below 1.5 kHz. As a first approximation, it is commonly assumed that ITDs do not de-
pend on frequency. Nevertheless, Kuhn (JASA, 1977) shows theoretically and experimentally that due to
diffraction effects around the head, ITDs depend on frequency. Low frequency ITDs should thus theo-
retically be 1.5 times greater than high frequency ones. To study this point, different classical tools are
adapted to compute the ITD variations with frequency: onset time differences, maximum of the cross
correlation, and phase differences. The reliability of each tool regarding ITD computation is assessed on
the basis of head-related transfer functions (HRTFs) coming from a spherical head model. The effective
frequency dependence of ITDs is finally shown by analyzing real animal HRTFs.

1 Introduction
Mammals and birds use mainly Interaural Time differences (ITDs) and Interaural Level Differences

(ILDs) to localize sound sources in their environment. Even though it is commonly accepted that the
ILD conveys information through location-dependent variations across the audible spectrum, the ITD is
usually thought of as a broadband quantity, that is, it does not depend on frequency, and is often reported
as a single quantity.

The view of the ITD as a single broadband quantity is a good first approximation of the high frequency
limit of the ITDs, as supported by theoretical studies [3]. However, a more detailed analysis of the
acoustics of the head indicates that ITDs vary significantly with frequency. As an example, [3] considered
a spherical head model with rigid boundaries, and showed that in this case the ratio of the high to the low
frequency ITDs is equal to 2/3 near the horizontal plane. Accordingly, given that a typical cat hears a
maximum high-frequency ITD of about 350 µs, then the maximum low-frequency ITD is of about 450
µs, which is a sufficiently high difference for the cat to distinguish.

Additionaly, neurophysiological insight shows that the ITD is extracted in a frequency-dependent
way. Indeed one of the first stages of the auditory processing is a form of spectral decomposition induced
by the cochlea, and the ITDs are extracted downstream, by neurons that display sensitivity only in a
restricted frequency band. This raises the question of the relevance of the variations of ITDs across the
frequency spectrum to animal behavior.

To be able to assess the functional advantage (if any) of the frequency dependence of the ITDs, new
frequency-dependent methods of ITD estimation need to be devised. Then one must make sure that the
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observed variations are not due to estimation error, which is done in the present study by quantifying the
robustness of the different methods to measurement noise. Finally, using synthesized cat HRTFs, it is
shown that the variations of ITDs can help disambiguate between sources originating from the front or
the back of the interaural axis, and also convey proprioceptive information, i.e. information about the
animal’s body position.

2 Frequency-dependent ITDs
Usual definitions of the ITDs distinguish between the interaural phase delay and the interaural group

delay, in the present study, ITDs are defined as the phase delays. Those have already been shown to
depend on frequency, both in theoretical and experimental studies [3, 1, 5]. In his classical textbook,
Blauert [5] reports frequency-dependent interaural phase delays, but the apparent noise makes it hard to
conclude on a potential systematic variation of the ITD with frequency. For the purpose of the present
study, a review of existing frequency-dependent methods to compute ITDs is presented, and all methods
are evaluated in terms of their robustness to measurement noise.

A complete linear representation of the acoustical effects of the head, body, etc. on the incoming
wavefield is given in the frequency domain by Head Related Transfer Functions (HRTFs, or alternatively
impulse responses, HRIR, in the time domain), a pair of filters for every position usually lying on a
sphere around the subject’s head. Those filters can be either experimentally measured, or computed
theoretically for simple geometrical shapes (e.g. for a sphere [1]) or more complex ones [2]. The methods
described here explain how to obtain frequency-dependent estimation of ITDs offline from those filter
representations, i.e. not on ongoing signals.

Three methods were considered, two based on the temporal representation (HRIRs), and one on the
frequency representation (HRTFs). They were adapted from classical estimators to yield frequency-
dependent results. For the time-based methods, the HRIRs are first passed through a bank of bandpass
filters with variable center frequency (CF), and then the classical (broadband) method is applied to the
result. The filterbank used here is a Gammatone filterbank because it is known to be a simple yet good
representation of the cochlear spectral decomposition. Obviously, any other type of bandpass filter would
yield similar results, provided is has approximately the same bandwidth.

2.1 Onset time differences
A natural way to estimate broadband ITDs is to compare the times of arrival of the waves at the

eardrum. This can be done on HRIRs by computing the onset times of the two impulse responses. Typi-
cally, a threshold is arbitrarily picked α ∈ [0, 1], and the onset time of each impulse response is computed
as the time when a fraction α of the maximum of the impulse response is reached by the sound pressure:

T Onset(hr) = min
t
{hr(t) ≤ αmax

s
(hr(s))} (1)

An ITD then follows by ITDOnset = T Onset(hr) − T Onset(hl). As mentioned ealier, a frequency-dependent
equivalent of this estimator is devised by filtering the HRIR prior to computation with a Gammatone
filterbank. Noting hCF

l,r (t) the HRIR filtered through a Gammatone filter with center frequency CF, one
can then define:

ITDOnset(CF) = T Onset(hCF
r ) − T Onset(hCF

l ) (2)

2.2 Cross-correlation
Another popular estimator of ITDs is the peak of the cross-correlation function of the two HRIRs,

which is known to represent the difference in phase delays of the two filters [6]. It can be similarly
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adapted to compute frequency-dependent ITDs by first passing the impulse responses through a bank of
Gammatone filters:

ITDXcorr(CF) = argmaxτ

∫ +∞

−∞

hCF
L (t) × hCF

R (τ + t)dt (3)

2.3 Phase differences
Finally the definition of ITD as the interaural phase delay difference suggests an immediate estimator

of the frequency-dependent ITDs, that is the difference in phases between the two HRTFs converted into
time delays. Those can be extracted by computing the unwrapped phase (the ∠(.) operator) of the ratio of
the two transfer functions:

ITDPhase(CF) =
1

2πCF

〈
∠

(
HRTFr( f )
HRTFl( f )

)〉
Γ

(4)

In order to be able to compare this estimation to the two previously described ones, phase delays are
smoothed around the same center frequencies, with a weighing equal to the frequency response of a
Gammatone filter (the < . >Γ operator). This ensures that the same frequency components are pooled
when computing the ITDs in this method, as compared to the previous ones.

3 Methods: Assessing the robustness of the estimators
To compare the relative performance of the estimators derived above when facing different levels of

measurement noise, a completely noise-free HRTF dataset was needed. Fortunately, it has been shown
that HRTFs were well approximated by a spherical model with rigid boundaries, which has the advantage
of having an analytical solution [1]. This allowed us to simulate surrogate experiments where measure-
ment error was modeled by an additive gaussian white noise ξ. All impulse responses were normalized
so that the front position (0◦azimuth) has an RMS value of 1, and then the signal-to-noise ratio is defined
as follows:

NSR =
RMS(ξ(t))

RMS(h(θ, t))
(5)

Where θ is the azimuth of the considered HRIR, and the RMS is defined as usual as:

RMS (h) =

√
1
T

∫ T

0
h(s)2ds (6)

ITDs were then computed using the methods described above, and compared back to the original noise-
free solution. All the HRTFs were generated for 1024 frequency points, at a samplerate of 44.1kHz. This
simulation was done 25 times for each of 36 evenly distributed positions on the horizontal plane to the
left of the sphere, at a distance of 2 meters.

Comparing the result of those experiments to the reference ITD (for which NSR = −∞ dB), biases,
standard deviations and confidence intervals could be derived at different frequency points, in a manner
independent of the azimuth (and of the absolute mean value of the ITD). Formally, statistics reported here
were computed on the signed error term E defined for a given azimuth θ, center frequency and NSR:

E(θ,CF,NSR) = ITD(θ,CF,NSR) − ITD(θ,CF,−∞) (7)
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4 Results: Estimation performance

4.1 Non-biasedness
A first check of the validity of our approach is to test that our estimators indeed are non biased, this

means that the expectation of the estimator is equal to the theoretical value. In our framework, this means
that the error term E has an expected value of zero. Reported in Figure 1 are the histograms of error
expectations for the three methods, pooled over different NSR ranges. As can be observed the mean is
almost always zero, and in only a few cases does the mean diverge significantly from zero.

Additionally, only at very low NSRs, well below the usual NSRs encountered with modern digital
recording hardware, does one find biases that are more than a few microseconds. Most of those biases are
negative, indicating that all the methods are biased towards a smaller absolute value for the ITD. In many
of those cases, this is due to an artifact that is termed “DC failure” in this study, and will be discussed in
more details in the following section.

Figure 1: Histograms of biases. Biases are here defined as the mean over frequencies and positions of
the error term devised in Eq. 7. Each row pools three different NSRs’ biases on a single histogram.

Columns are the different methods. For low NSRs, the biases have a mean of zero, but as the NSR goes
up, the different methods show a bias towards smaller absolute ITDs.

4.2 Estimator dispersion
Considering the standard deviation (STD) of the error term over all positions and frequencies empha-

sizes some qualitative differences between the different methods, as reported in Figure 2. Yet, the first
conclusion one can draw out of these simulations is that the STD is quite insensitive to NSR, indeed only
at extreme noise levels (NSR bigger than -20 dB) do the STDs get bigger than 10 µs (in our case 2.5% of
the maximum ITD).

The 1/f behavior of the STD of the Phase method estimator, and to a lesser extent of the Xcorr
method can be easily explained. Indeed, this ITD value is obtained by dividing the average IPD over a
certain window by the frequency. If the interaural phase value is non-zero for a few close-to-DC ( f = 0)
components of the spectrum, then the resulting estimation will diverge as CFgets close to zero. This effect
is all the more problematic as signal processing hardware usually is unreliable in the very low frequency
range.

4



Figure 2: Estimation performances: The different panels display the standard deviation of the different
estimators as a function of frequency and NSR. The first panels displays the standard deviation for the

Onset method, it shows a more-or-less constant variation with NSR, even though at high or low
frequencies the STD tends to be bigger. For the other two methods, the STD seems to follow a 1/f

behavior.

This particular sensitivity on the few first values of the complex spectrum can also lead to bigger
artifacts, termed “DC failures” in the rest of the study. Those “DC failures” typically occur when the
ITD magnitude is quite low, e.g. for low absolute azimuths, for which the interaural phase spectrum is
dominated by that of the noise. To assess whether a computed ITD function was indeed a “DC failure”,
a threshold on the error term E evaluated at the lowest CF was set to 1ms. This allowed us to report
failure rates as a function of NSR in the Figure 3. Indeed, for the two phase-based methods (Xcorr and
Phase), this problem arises at moderate NSRs, and these methods yield abnormally high estimations for
a significant proportion of the positions. This constitues a potential problem when directly using phase-
derived methods to compute frequency-dependent ITDs, especially in the lowest frequencies and for low
ITDs and low NSRs.

4.3 Confidence intervals and broadband variations
An additional statistic that was derived from the simulations is the 95% confidence intervals across the

spectrum for all the positions. Those are a good representation of the variability of the measures, and their
trustworthiness. Reported in Figure 4 are the ITD functions for four positions on the horizontal plane, for
a spherical head model and alongside are plotted the confidence intervals for every measure. The point
here is to show visually that the ITD variations observed across the audible spectrum are indeed bigger
than the confidence intervals themselves. This constitutes a concrete argument that the ITD are indeed
dependent on frequency, because the variations observed are systematic, and bigger than the expected
noise. Moreover, in modern experimental setups, the NSR can be as low as - 60 dB, range in which the
estimator STD is expected to be too small to be noticed. Hence HRTF-derived ITD curves can indeed be
trusted, provided that the signal-to-noise ratio is high enough.

5 Discussion: Investigating cat HRTFs
The cat is a widely used biological model when studying the neurophysiological basis of sound source

localization. As was pointed out earlier, in such studies the ITD is often implicitly assumed to be a fixed
quantity with respect to frequency, even though it has been shown that ITD-sensitive neurons’ responses
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Figure 3: ITD computation failure: Indicates the proportion of abnormally high values for low frequency
ITDs, termed “DC failure” (see text). These failures happend more often in phase-based methods than in

the onset time differences method.

are frequency-dependent [4]. Hence it is of special importance to work on a more precise characterization
of the ITDs for this species and moreover to try and uncover the functional advantage of such frequency
variations, that is do those variations convey any more information than the pure, broadband quantity.

For this purpose, HRTFs were derived from 3D models (see Figure 5) of a stuffed cat using a pre-
viously published Boundary Element Method [2]. This study restricts itself to the analysis of positions
on the horizontal plane, with a resolution of 5 ◦in azimuth. Since the filters were generated using nu-
merical methods, they can be though of as completely free of noise and measured in absolutely anechoic
conditions. Moreover, since those HRTFs were based on 3D mesh models, it was possible to change the
position of the cat head, as it was significantly slanted in the original stuffed animal.

5.1 Front-back disambiguation
Reported in Figure 6 are the frequency-dependent ITDs as computed on our cat HRTFs. The gray

dashed line corresponds to the upper limit of the phase locking in the cat auditory nerve, this gives an
order of magnitude of the range where the cat actually processes time cues such as the ITD, i.e above
≈ 5kHz the cat cannot extract ITDs.

As could have been expected the ITDs for the front hemisphere are in qualitative agreement with the
ones of the spherical model, displaying the same monotonously decreasing trend. Noticeably, though, the
ITD curves seem to be equal up to a constant multiplicative scaling factor, i.e. the they never cross. This
means that they do not convey more information than the pure broadband ITDs (in our framework, the
high-frequency limit of the ITD curve).

Nonetheless, when considering ITDs on the whole horizontal plane (including the back hemidisc),
one can draw different conclusions. A simple symmetry assumption implies that if the animal were a
perfect sphere then the back ITDs would be exactly equal to the front ones. Multiple deviations to those
assumptions hold for the cat, namely the presence of the body, and the fact that the ears do not lie on a
diameter of the sphere. This implies that the ITDs for positions placed on the back of the animal should
be different, and especially in their frequency variations, as shown on Figure 6. The back ITDs indeed
display sharper transitions from the low-frequency to high-frequency behavior, especially for intermediate
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Figure 4: ITD curves for a spherical head model with a 20cm diameter. Each row is a different NSR, and
each column a different estimation method. Positions shown are 0 ◦, 30 ◦, 60 ◦and 90 ◦. Gray areas

indicate numerically computed 95 % confidence intervals

positions. Additionally, this variation occurs in a frequency range where the cat is known to process ITDs,
implying that this cue could be taken advantage of to disambiguate front and back originating sound
sources.

5.2 Proprioceptive information
Another striking effect on the ITD variations across the spectrum is the fact that it depends on the body

posture of the animal. For sound sources originating from the front of the animal, the effect is reduced,
as could be expected, because the acoustic wave does not encounter the body before reaching the ears of
the animal. Notice that this would not necessarily hold if we were to consider HRTFs in a non-anechoic
setup, as the body could get in the way of acoustic reflections. Hence the only effect seen here is a global
shift of the ITD curves to more positive ITDs (because the head points to the right), with no significant
deviation from the spherical model.

For sound sources originating from the back of the animal, ITD curves display a more complicated
pattern. The most proeminent effect is that for sound sources that lie on the median plane (orthogonal to
the interaural axis, here -45 ◦) the ITD is zero in the high and low frequencies, but it displays a significant
variation in between, due to diffraction on the body. For left sound sources (positive ITDs), the effect is
very reduced, and since the acoustic wave only sees the head, the ITD pattern is very much similar to that
found for the spherical model, or the animal for frontal positions. As the source moves right though, the
pattern seen is more complicated, and indeed significantly different from the expected one with a straight
head.

6 Conclusion
This study has shown that there were multiple ways of estimating frequency-dependent ITDs. Amongst

the methods presented here, some have a higher robustness to noise. The onset estimator has the undis-
putable advantage of showing only a moderate dependence of estimation performance with respect to
frequency, i.e. it performs well in the whole audible spectrum. The natural phase estimator and the cross
correlation estimator qualitatively show a 1/f behavior in the dependence of the estimation error. But the
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Figure 5: Cat 3D models top view: Angles are measured relative to the body axis, in the trigonometric
sense (positive θ to the left of the animal). Given our conventions, the head points -45 ◦to the right of

this axis. Keep in mind that positive ITDs come from sources to the left of the cat.

phase method has a hard time evaluating relatively small ITDs at low NSRs, and thus might not be suited
to computing the ITDs on, say, smaller mammals like the cat or the gerbil, especially at low frequencies.

Nevertheless, they all agree on the fact that the ITD is not a fixed quantity with respect to frequency.
This argues for rethinking this binaural cue to take into account frequency variations.

Additionaly, those frequency variations might, much as the ILDs, convey some useful information
in their frequency variations. Indeed in the example of cat HRTFs, the presence of the body for sources
coming from the back impose dramatic changes in the ITD vs. freq patterns. This could enable the
animal to use time cues to disambiguate sound sources coming from the back. Moreover, it seems that
the body posture also has an effect on the ITDs. Whether this is an advantage (ITD variations encode an
additional dimension of the stimulus) or a drawback (ITDs are not robust to animal position change) is
up for discussion.

These results advocate for a reconsideration of the ITDs as a frequency-dependent quantity. Our
results strongly suggest that these variations convey both proprioceptive information, and additional in-
formation about the source’s localization (namely the front vs. back disambiguation). Altogether these
effects should be taken into consideration when investigating the mamallian ability to localize sound
sources based on binaural timing cues, design localization algorithms or rendering 3D sounds.
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