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Abstract. In this paper, we study health monitoring, using ambula-
tory sensors, where the data available are limited, and can be both un-
reliable and ambiguous. Hence, the need to consider a person’s context:
surrounding environment and previous situations. We propose studying
multiple situational hypotheses, and the relations between hypotheses
present and past. Such hypotheses are managed with a multi-agent sys-
tem: the agents embody hypotheses on several levels of abstraction, from
a general, rough scenario, down to precise states of both physiology and
activity. These agents’ hypotheses are evaluated and compared so that
plausible hypotheses emerge. We discuss both the representation of sit-
uations, and multi-agent adaptive control mechanisms. This is a mainly
theoretical approach, although these proposals are illustrated by an ap-
plication on real data from a daily office life scenario.

1 Introduction

Our goal is to design a system to monitor a person’s situation, using data from
ambulatory sensors and expectations regarding a planned activity, in order to
detect any alarming event or pattern thereof. The system is to be tailored to this
person’s specific physiology, and adaptable to the environment and the general
context. For this, we need to bridge a semantic gap between noisy, incomplete and
unreliable data from the sensors, and a set of loosely-defined situation models.
However, a set of physiological data is only “alarming” depending on the context
(for example: a high heart rate is normal if the subject is running), and the
sensor data are both unreliable and ambiguous: several different situations can
correspond to a given set of observed data.

In this paper, we propose a layered representation of context with the con-
cepts of State and Micro-scenario. We handle uncertainty with multiple hypothe-

ses on these levels, each managed by an autonomous agent, with heterogeneous
and personalized data models, and using a mechanism of prediction-verification.
These hypotheses/agents are created, evaluated, and destroyed according to their
plausibility with regards to the observed data and the global population, for
which we also introduce probe agents to monitor and regulate the agent popula-
tion, based on a dynamically constructed contextual frame. This work’s topic of



research, which was partly funded by the Superco project of the DGA (French
defense procurement agency), is therefore both the representation of situations,
and the management of multiple and varying hypotheses by a multi-agent sys-
tem; it does not consider hardware issues (such as sensor communication).

2 State of the Art

In this paper, we consider the complex problem of automated medical situation
recognition, from an array of physiological and activity sensors, which are worn
by a person. Bridging the semantic gap between the sensor data and the situation
is often seen as requiring a division into smaller sub-problems which are not, by
themselves, enough to reason globally [AD03].

Adding to the complexity is the fact that the data from these sensors can
be unreliable [SD05], and in the case of human physiology, ambiguous: a set of
observations can correspond to several possible situations [RP07]. As a sensor’s
reliability can be known a-priori depending on the context, one needs both a
structured method of representing context, and a means of adaptive control on
the overall sensor-reasoning link.

Context can be seen as scripted scenarios [Cr06], composed of several layers
of abstractions, formally linked by relations and roles in situation networks. This
is handled with autonomous, auto-regulated modules using prior knowledge, sep-
arated from the algorithms [AB05], and handling information about the system’s
past and present state.

Adaptive control can be considered as selecting the most relevant algorithms
(a selection which must be learnt [PQ07]), tweaking local parameters and chang-
ing decision plans [MG03], dynamically focusing the system’s resources on the
most informative and/or crucial sensors [MM08][Ha95], and choosing between
anticipating long-term problems and fixing immediate issues [AP10].

To handle the ambiguity, and the fact that situation models are defined het-
erogeneously with regards to the sensors, we chose to manage multiple hypothe-
ses. These hypotheses can then be evaluated and compared through a confidence
score, which has links to both POMDP [TY08] and fuzzy logic [PB10]. [PB10]
seeks to provide “embedded decision support”, in the form of adaptive alarms,
based on high level information extraction and intelligent information process-
ing.

3 Representing a Person’s Situation

In this section, we describe our layered situation model, and the links between
situational hypotheses in the knowledge base. Then, we give an insight on the
alarming situations we aim at detecting.



3.1 Interpretation and Abstraction Levels

At the lowest abstraction level are the sensor data (Breath Rate BR, Heart Rate
HR, 3-axis accelerometer...). This is tangible evidence of the subject’s health and
activity, the ground context.

On the other hand, there is a theoretical context: a planned activity, as a
succession of steps: the Scenario; in the project’s military application, this would
be a soldier’s mission plan. It is used as a loose, theoretical frame for our hy-
pothesis generation engine. It represents what should happen in the timeframe
we study, and this knowledge is used to suggest new hypotheses. It can also
be used to reinforce the likelihood of a hypothesis which would correspond to
the expected Scenario. Conversely, we can measure the deviation between the
detected situations and planned scenario; deviations could be a cause for alarm.

We introduce two intermediate levels for hypothesis formulation (shown in
Fig. 1), in order to bridge the gap between the observed data and this Scenario.

The lower one is the State level, of either physiology or activity (noted Eϕ and
Eα respectively). This level is composed of a limited set of observable models,
to interpret the sensor data based on proven medical and actimetric knowledge.

The second level is made of Micro-scenarios (µS), which are combinations of
these States, and represent steps in the global Scenario; the models to interpret
the State hypotheses in terms of Micro-Scenarios are based on common sense
knowledge or acquired through dedicated learning processes. The µS set is, by
construction, larger and more open than the State set.

Fig. 1: Interpretation/Knowledge Levels. Example of µS{Nap} composed of
Eϕ{Drowsiness}

and Eα{Supine}
.

3.2 Prior Knowledge

In the timeframe we study (several hours), a person can be in several successive
situations, following (or not) the steps of the Scenario, which is a chain of cou-
ples (µSi, ti) representing Micro-scenario µSi supposedly beginning at time ti.

Micro-scenarios are a composition of States Eϕ and Eα, associated with
contextual information and a meaning in terms of “task knowledge” (as per Fig.
1). Such a composition is of the form:

µSx ≡ Ei ∧ Ej ∧ ... , where Ei = Ei1 ∨ Ei2 ∨ ... (1)



meaning:

1. ∧: the Ei hypothesis is a necessary part of this Micro-scenario.
2. ∨: the Ei hypothesis is among a group of possibly coexisting or successive

possible States in the Micro-scenario.
3. Ei is either a state Eϕ/Eα, or a group of possible such states.

For example, a Desk work Micro-scenario could be:

µS{desk−work} ≡ Eα{Sit−still}∧{Eϕ{Basal}∨Eϕ{Focused}∨Eϕ{Digestion}}

which would be read as “Desk-work is composed of the Sitting still activity, and
of at least one of either Basal, Focused or Digestion physiology”.

The States, on the other hand, represent low-level hypotheses which are ver-
ified by comparing a model to the sensor data. As such, they possess knowledge
as to which sensor input is needed, with which pre-processing, and computation
models to evaluate the hypothesis’ plausibility (see Sect. 5.1). The States can
also be given an expected duration (e.g. for Digestion).

Our system evolves over time, following the monitored person’s actions and
physiology. Thus, most transitions, from a situation to another, are detected
first by a change in the sensor data, and therefore, in the differences between the
State hypotheses’ models and the input data. This led us to choose to handle
these transitions at the State level, by introducing, for each State hypothesis, a
set of successors: other States which can follow after a change in observations.
For each State, this set is ordered by a distance d, defined as a measure of how
different two State data models are (e.g. Drowsiness is closer to Basal than
to Exertion), so as to generate only the most relevant new hypotheses when a
change is detected (see Sect. 4).

These States and Micro-scenarios thus form a situation network, as the exam-
ple of Fig. 2 shows, with two kinds of edges: µS composition (in green, dashed)
and State succession (in red, solid).

Fig. 2: Example of small situation network.

3.3 Alarming Situations

At this stage of our studies, we consider four kinds of alarms; this is preliminary
work, but it gives a basis upon which to later build. As stated before, our purpose



is not to derive a diagnosis for a patient, but to provide estimations regarding

the user’s condition. In this context, an alarm is approached as a multi-faceted
notion, related to a situation rather than a single physiological model:

– A Value Alert can occur when “human thresholds” are passed (e.g.HR = 0).
As this is a simple filter, we do not concern ourselves with it as it can be
handled by the sensors.

– µS Alerts happen when Micro-scenarios known to be alarming are verified:
a simple example would be that of a person lying face-down with very high
heart and breath rates. This is handled by µS agents (see Sect. 5).

– For Scenario Alert, we wish to measure a semantic distance between the
current hypotheses and the planned Scenario, which would be a task for a
probe (see Sect. 5.4).

– System Alert : the system is unable to find any likely hypotheses.
– Hardware Alert : out of this paper’s scope, the detection of sensor failure.

An ambulatory health monitoring system cannot, at any given time, decide
on a single likely situation. Therefore, we need to be able to handle multiple
hypotheses, on different time scales (to monitor both immediate and long-term
hypotheses), with different sensor input.

4 Multiple Hypotheses Management

Fig. 3: Focus, Anticipation, Exploration.

Faced with a potentially large number of hypotheses, we need to select a
relatively small number of hypotheses to evaluate and compare. We introduce a
confidence value to evaluate each hypothesis, and the following mechanisms to
navigate between hypotheses, on each level of abstraction, as shown on Fig. 3:

1. Focus is a higher level of abstraction suggesting something at a lower level:
the Scenario steers the creation of µS hypotheses, which need specific States
to be verified; these States then require specific data (see Sect. 5.2). This is
a top-down method.

2. Anticipation occurs when a State agent’s confidence value drops, reflecting a
change in the data it analyses. This drop is used to choose which new State
hypotheses to generate, among its successors using d (as defined in Sect.
3.2), and the aperture A described in Sect. 5.2.



3. Exploration represents the need to link a State to a meaning in the working
environment: States with a high confidence value generate Micro-scenarios
based on prior knowledge such as the example of Fig. 2, if none of their
possible µS already exist. This is purely bottom-up, and allows to widen the
hypothesis set.

We therefore have two different prediction approaches, where Anticipation han-
dles changes in the data while Exploration is based on opening the hypotheses
to wider possibilities. The example shown in Fig. 3 is to be read as follows:

1. T0: the Scenario focuses the system by generating µS{desk−work}, which
likewise generates Eϕ{basal}

and Eα{sit−still}
to read their confidence values;

these States require specific data and so choose the sensors’ focus.
2. T1: a change in the physiological data occurs and Eϕ{basal}

’s confidence value
drops; it anticipates its possible replacement, in this example, by Eϕ{eating}

.
3. T2: after a verification period δexplo, Eϕ{eating}

considers itself very plausible
and reflects this by exploring a broader meaning with regards to the working
context, through µS{meal} and µS{tea−time break}. The Meal Micro-scenario
can then be compared to the Scenario’s expectation of a “Lunch” to happen
at some point.

5 Multi-Agent System

Each hypothesis at either µS or State level is represented by an agent (which
we call Hypothesis Agents, or HA), whose role is first to compute a confidence
value, and to choose a course of action from its evaluation. Agents are useful
here because the hypotheses are to be evaluated with regards to specific data
(either confidence values or observations from the sensors), thus giving them
a confidence value that is computed autonomously. This “absolute” confidence
value is then compared with thresholds that are dynamically set according to
the global population of hypotheses. In other words, evaluating a given hypoth-
esis (for example, that a person is digesting) does not impact the evaluation
of another (for example, that this person is sitting, or speaking). A multi-agent
system is well-suited to our need of autonomously-evaluated entities, with an
adaptive regulation of the population as a whole.

One of the givens of our problem is that the State models can be heteroge-
neous; for example:

a. “digestion” is defined by a duration, and the contextual condition that it can
only happen after “eating”.

b. The physiological state of “exertion” is characterized by minimum expected
values for heart rate and breathing frequency, while “ingestion” is recognized
by mean values of these signals, and a high variability on certain data.

To handle these models’ heterogeneity, we add two types of agents to the
common HA architecture: Probes (see Sect. 5.4), and Data factories, which are



agents coupled with each sensor. They possess a library of transformation al-
gorithms to both denoise the data, and process them according to each State
agent’s current, specific needs (for example, some agents need an instant value,
while others may require a standard deviation) on a per-demand basis. They are
not further described here.

To differentiate between hypotheses, we introduce a confidence value c which
takes values in the same Ic ⊂ IR for each HA (so as to be compared to one
another); the closer the data are from the hypothesis’ model, the higher is c.

5.1 Confidence Value Computation Models

We built the system with the assumption that States’ data models would be
known, and that the methods for computing their confidence values from the
observed data could be quite heterogeneous, although comparable. The Micro-

scenario models are, on the other hand, combinations of States. Simply put, our
architecture is built on the basis of:

– State hypotheses, with confidence values cE computed from the observed
data through data fusion, each with their own model thereof.

– Micro-scenario hypotheses, with confidence values cµS computed from its
composing States’ cE values.

In our current system, to compute State confidence values, we extract a set
of statistical features (mean, standard deviation, median, ...) from each type of
observed signal. For signal s (heart rate, breath frequency,...), the jth feature is

denoted f
(j)
s . Then, we define confidence value as the average value of distances

(noted ρ) between evaluated features and those provided by states models mEi
,

denoted f
mEi
s . S is the number of observed signals and Js is the set of features

extracted from signal s:

cEi
=

1

S

S∑

s=1

1

Js

Js∑

j=1

ρ(f (j)
s , f

mEi
s ) .

To evaluate Micro-scenario confidence values based on their State composi-
tions, we assume that States are independent and that we can interpret their
(normalised) confidence values as their existence probabilities, so that we can
apply probability rules:

cµS = cE1
× cE2

if µS = E1 ∧ E2 ,

cE1
= cEi

+ cEj
− cEi

× cEj
if E1 = Ei ∨ Ej .

This approach relies on the knowledge of models for each State (see Sect.
3.2), to be able to compare features extracted from the observed data. The
models are assumed to be known and tailored to a subject’s physiology. This
is a preliminary work and we are currently working on establishing a Bayesian
approach exposed in [AF11], to learn models in an off-line process and compute
the confidence values in an on-line process.



5.2 Available Information and Data

Table 1: Available Information.
Current Logs Input

Current hy-
potheses: for
each agent:
{Name, c, Cr}

Global pa-
rameters: nt,
A, {δ}actions,
{thresholds}

Traces of each action
(agent creation, confidence
values written in the Black-
Board...: {time, agent,
action, target, value}

Data from the sen-
sors, processed by
data factories, are
available for the
State agents

Table 1 shows the three domains of available information for the system: the
current system status, in a Blackboard through which the Hypothesis Agents
(HA) share their confidence values; the Logs, containing traces of each agent
action and past confidence values; the input sensor data used by the State agents.
Here, nt is the number of current HA at time t, and the other parameters are
used for the adaptive control of the HA population.

– nt is the current number of agents
– aperture A: an indicator ruling how much leeway a State agent has when

generating new hypotheses by anticipation and exploration.
– {δ}actions : the {δ} durations represent the time an agent needs to ascertain

its Confidence Range Cr (see Sect. 5.3) before undertaking an action.
– The {thresholds} are dynamically ajusted, for µS and State HA’s, and de-

termine the limits of the Confidence Ranges.

5.3 Hypothesis Agents

The very purpose of evaluating hypotheses is to decide which among those are
plausible. We introduce a Confidence Range noted Cr, used by each agent to
decide on its own course of action. It is an indicator of which hypotheses are
considered likely, and which will be discarded, as can be seen in Sect. 6. Cr can
be either High,Medium, or Low, with two thresholds (high and low), which are
dynamically adjusted, according to the current agent population, as a means of
adaptive control (see Sect. 5.4). Figure 4 shows that an agent’s life cycle consists
in periodically computing its confidence value from some input data, thus deter-
mining Cr, which in turn determines action with regards to time spent in this
confidence range (the δ values, as seen in Sect. 4). The State have specific action
capabilities, through the Exploration and Anticipation mechanisms, shown here
on Fig. 4 and described in Sect. 4).

Each agent has a model to compute its confidence value, and parameters to
rule its actions:

Agent = {Name,Model, c, Cr, {input}, {P}, decision, fop}



Fig. 4: Hypothesis Agent life cycle.

– c is the confidence value (cE / cµS).
– Cr is the confidence range.
– the input is, for the States, the data from the sensors’ data factories, and

for the µS, the confidence values of its composing States.
– {P} are the control parameters: thresholds, δ durations, and A.
– the decision is shown in Fig. 4 and in Sect. 4: various actions undertaken

according to Cr.
– fop is the agent’s operating frequency.

5.4 Probes: Adaptive Control and Specific Tasks

Table 2: Three areas of context.
Ambient Environment Prior Knowledge Agent Environment

Temperature, sound,
weather.

Scenario, “mission”. present and past system output
(Blackboard and Logs): agent cre-
ations, confidence values...

We denote as probes, agents which operate independently from the Hypoth-
esis Agents (HA). Table 2 shows the probes’ role: providing a contextual frame
for the dynamic population of autonomous agents. These probes act either con-
stantly, providing information about the global system status, or on a per-
demand basis, to handle specific non-recurring requests made by the HA. Thus,
we define three kinds of probes.

Fig. 5: Evolution of an agent’s confidence value.

A Regulation Probe controls A, and sets the δ durations and Cr thresholds
for States and µS to regulate the agent population. Its decision is based on in-
formation such as nt, or their mean confidence value. For example, if there are



too many agents at a given time, its role will be to limit hypothesis generation:
Fig. 5 shows an example of an agent’s confidence values over time, where explo-

ration happens at times t1 and t7; at time t5, the agent does stop die because the
probe changed the low threshold, so that the agent goes back up to the medium

confidence range between t4 and t5. At t5, the agent’s continued existence (and
the subsequent agent creations at t7) are a direct result of this probe’s decision.

The Consistency Probe searches through the logs for a specific occurence
(for example, upon creation, the Digestion agent requests that this probe check
whether Eating recently had a high confidence value, and stops otherwise).
Searching through the logs is a link between the HA and their context which
can be computationally heavy, and is performed therefore only when needed.

An Alarm Probe is planned, to measure a semantic distance between the
planned Scenario and the Micro-scenarios which have, at each time t, a high

confidence value: it is still ongoing work, with the aim of detecting potentially
alarming deviations from the expected plan.

6 Experimentation and Preliminary Results

Six healthy volunteers participated in the study, providing informed consent.
It was approved by the CHU Grenoble’s ethics committee. The data from only
one user were used in this section. Heart and respiration rates, body tempera-
ture, signals from 3D-accelerometer were recorded with a 5s period. The subjects
were asked to come with work and lunch between 11 a.m and 1 p.m and given
a Scenario of “daily life” steps. The data were used as shown in Fig. 6 (ground
truth underlined in black, from the experimenter’s annotations), with a restricted
situation network of 16 States and 9 µS and personalized data models. This il-
lustrative example was implemented using java threads.

The first observation to be made is that the system correctly identifies the
ground truth in this example, with very little ambiguity.

The hypothesis generation mechanism is based on both transitions and loose
theoretical guidance. In both cases, the creator agent must often make tries not
once but on a certain period of time. This may lead to a rather large number
of agent creations, with often low confidence values. These new hypotheses are
quickly discarded (in blue on Fig. 6: they are maintained only for a maximum
initialization period which, for each hypothesis, is the minimum duration needed
to evaluate this hypothesis). These creations can result in changes in the dynamic
thresholds (as in the example of Fig. 5).

We observe that Micro-scenarios such as coffee-break, which are composed
of large sets Ei of possible States (see (1) in Sect. 3.2), representing transitory,
chaotic combinations of States (here, coffee-break models a person drinking,
talking, moving around or staying put, in no particular order), are not, with
our current model, easily distinguishable from other Micro-scenarios composed
of some common States. This results in some ambiguity in Fig. 6, which was ex-



Fig. 6: Agents’ confidence ranges over time, for one person.

pected as a premise; this is mitigated by the semantic closeness of the ambiguous
Micro-Scenarios. Further work will aim at defining a measure of semantic dis-
tance between Micro-scenarios, in order to both compare them to the expected
Scenarios, and to be able to regroup numerous and similar Micro-scenarios into
a more generic one if need be.

Having made these first observations, we will now have to greatly increase our
situation network, in order to demonstrate the efficiency we aim at, concerning
the management of multiple hypotheses, and considering constraints such as
real-time decision-making and power efficiency.

7 Discussion and Perspectives

In this paper, we have laid the theoretical foundations for a multi-agent, multi-
hypotheses based personalized health monitoring system. With encouraging pre-
liminary results, we will now aim at integrating a Baysian-based confidence
computation method, so as to be able to compare and choose the most effective
approach. Hidden Markov Models are a robust approach, and can provide a com-
mon basis for the models (including sound machine learning processes), while
our current heterogeneous States are more flexible and allow for a wide range of
possibilities, but are more ad-hoc and based on human expert knowledge.

We wish to stress here the role that prior knowledge has in the current state
of our work, both at the level of State data model, and of the situation network.
Errors in either would greatly reduce the system’s effectiveness. However, the
idea is to be able to manage a rather large number of possibles; therefore, further
work will imply enlarging the situation network: we will then be able to effectively
compare the computational complexity of this approach with other, Bayesian-
based techniques, which have a risk of combinatorial explosion (it should however



be noted that the real-time aspects are not necessarily an issue, since the data
from the sensor suite come at intervals of five to fifteen seconds), as well as
combinations of both: the very purpose of our exploration mechanisms is to
reduce the number of currently studied hypotheses to a manageable level.

With a larger situation network, the need for consistency checking will greatly
increase, especially in order to limit the computational costs. The use of probes to
reify contextual constraints on the agent population (e.g. such as filters [BB10]),
will be developed further.

References

[AB05] Design and assessment of an intelligent activity monitoring platform.
EURASIP J. Appl. Signal Process. (2005) 2359-2374.

[AD03] Amigoni F., Dini M., Gatti N. and Somalvico M.: Anthropic Agency: A Multi-
agent System for Physiological Processes. Artif. Intell. Med. 27 (2003) 305-334.

[AF11] Amate L., Forbes F., Fontecave J., Vettier B. and Garbay C.: Probabilistic
Model Definition for Physiological State Monitoring. to appear in IEEE Intl.
Workshop on Statistical Signal Processing (2011)

[AP10] Abras S., Ploix S., Pesty S. and Jacomino M.: Advantages of MAS for the
resolution of a power management problem in smart homes. PAAMS (2010).

[BB10] Badeig F., Balbo F., and Pinson S.: A contextual environment approach for
multi-agent-based simulation. ICAART (2010).

[Cr06] Crowley J.: Situation Models for Observing Human Activity. ACM Queue
Magazine (2006).

[GA07] Gonzalez G., Angulo C. and Raya C.: A Multi-Agent-Based Management Ap-
proach for Self-Health Awareness in Autonomous Systems EASE (2007) 79-88.

[GG07] Guyet T., Garbay C. and Dojat M.: Knowledge construction from time series
data using a collaborative exploration system. J. of Biomedical Informatics 40
(2007) 672-687.

[Ha95] Hayes-Roth B.: An Architecture for Adaptive Intelligent Systems. Artif. Intell.
72 (1995) 329-365.
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