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Abstract

We consider commuting in a congested urban area. While an efficient
time-varying toll may eliminate queuing, a toll may not be politically feasi-
ble. We study the benefit of a substitute: a parking fee at the workplace. An
optimal time-varying parking fee is charged at zero rate when there is queu-
ing and eliminates queuing when the rate is non-zero. Within certain limits,
inability to charge some drivers for parking does not reduce the potential
welfare gain. Drivers who cannot be charged travel when there is queuing.
In some cases, interaction between morning and evening commutes can be
exploited to remove queueing completely.
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1 Introduction

Traffic congestion is an economically important problem affecting cities every-

where. An average American household travels annually about 20,000 miles on

roads and spends about 15% of income on road transportation.1 In 2010, con-

gestion in the US caused around 4.8 billion hours of travel delay and 1.9 billion

gallons of extra fuel consumption with a total cost of $101 billion (Schrank et al.,

2011). Thus, policies to reduce the cost of mobility by car are of first order im-

portance. This paper considers the possibility of using parking fees rather than

congestion pricing to regulate urban congestion by influencing the timing of trips.

Economists have advocated marginal cost pricing of road capacity as a means

to improve efficiency for more than 100 years. However, very few cities have ac-

tually implemented congestion tolls, notably Stockholm, Singapore, and London.

Congestion tolls have been proposed and then scrapped in many places, including

New York, Hong Kong and Copenhagen. So there seems to be important political

obstacles to congestion tolls and it is therefore of interest to look for alternative

policies that can address road congestion.2 It is natural to look at parking pric-

ing, since parking is already priced almost everywhere. Another reason, noted by

Shoup (2005), is that the technology needed to charge for parking is much simpler

than that needed to charge for driving in congested traffic.

It is straightforward that the demand for trips to a city center is affected by the

full price of the trip, including the price of parking. But the problem is not just the

volume of traffic: the timing of demand is extremely important as is evident from

the sharp demand peaks that characterize urban traffic. The physics of congestion

1http://nhts.ornl.gov/2009/pub/profile 2012.pdf and http://www.bls.gov/cex.
2De Borger and Proost (2010) discuss the political economy of road pricing.
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implies that the amount of congestion delay is strongly dependent on the timing

of trips. If only departures from home in the morning became more dispersed

in time, then congestion delay could be much smaller while arrival times could

be quite unaffected. So there is a large potential efficiency gain in the retiming

of trips, even if the total traffic volume is unaffected. Congestion tolling aims to

achieve such temporal dispersion by applying a toll that varies over time with the

amount of congestion. The purpose of this paper is to explore the potential for

time-varying parking pricing to achieve the same effect.

We use a generalized version of the Vickrey (1969) bottleneck model for this

purpose (de Palma and Fosgerau, 2011a). The bottleneck model captures the

essence of congestion dynamics, describing a continuum of drivers equipped with

preferences regarding the timing of a trip to a common destination. This desti-

nation is located behind a bottleneck with a fixed capacity. If the rate at which

drivers want to pass the bottleneck exceeds its capacity then delay results.3 The

delay is a pure loss and it could be reduced with no effect on arrival times if people

could be induced to choose different departure times. A time-varying toll aims to

induce such rescheduling. As long as it induces appropriate rescheduling of trips,

it makes no difference where the toll is collected, it can be on any point of the trip.

In this paper we exploit that drivers park at the destination and pay a parking

fee. We will mainly consider a parking fee that accumulates at a non-negative

time-varying rate. This restriction fundamentally distinguishes such parking fees

from congestion tolls. Congestion tolls may vary freely up and down and may be

lower on the shoulders of the peak and high in the middle. A parking fee charged

3The bottleneck congestion technology is a means to represent city-wide congestion affecting
all traffic and the bottleneck does not necessarily correspond to any single place in a city (Daganzo,
2007; Geroliminis and Daganzo, 2008).
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at a positive rate during parking is always lower for later arrival times. As drivers

differ in the time at which they pass the bottleneck, they differ also in the parking

fee they pay. Therefore a parking fee can be used to induce rescheduling of trips

but in a less flexible way than a toll.

In summary, parking fees seem to be much easier to introduce than congestion

tolls. Like congestion tolls, parking fees may be used to disperse demand over

time in order to reduce congestion and gain efficiency, but the efficiency gain may

be limited by the restrictions inherent in typical parking fees. The objective of this

paper is to present an analysis of parking fees as a means to affect the timing of

road use and as an alternative to congestion tolls.4

We initially make assumptions that allow us to ignore the influence of the

time of unparking. We may think of the destination as the workplace, such that

the model describes the morning commute. For the morning commute, we find

that the imposition of a parking fee causes the departure interval to occur later

than it would in the absence of policy. This shift compensates the early drivers

who pay more for parking than later drivers. The optimal parking fee implements

a situation where every morning there is first an interval with a demand peak

that involves queueing just like an unregulated equilibrium except that it does

not involve everybody traveling in the morning. The optimal parking fee rate is

zero during this interval such that the total parking fee is the same for all these

drivers. The optimal parking fee becomes positive at the time when the queue has

dissolved and is set such that zero queue is maintained during the remainder of

the morning.

4The US Federal Highway Administration has a series of parking pricing projects under their
value pricing pilot program (in San Francisco, San Diego, and New York) that include time-varying
parking fee rates.

4



It is a recurring theme in the debate about charging for parking that some

drivers cannot be charged since they have private parking available. In the current

situation, it turns out they make no difference provided they can fit within the

period where the optimal parking fee rate is zero and queueing occurs. Thus,

within this limit, the existence of private parking does not affect the welfare gains

that can be achieved from a parking fee.

Another way that drivers may escape the time-varying parking fee rate is

through early bird specials, providing all day parking at a discounted price for

drivers who arrive at a parking lot by a certain time such as 8 am. The paper

characterizes the welfare maximizing combination of an early bird special with a

time-varying parking fee rate.

After examining the morning peak, we show that the conclusions of the paper

extend with few modifications to the evening commute, where parking is charged

at the origin of the trip instead of at the destination.5 The optimal parking fee

affects the evening commute similarly to the morning commute, except that the

order of the congested and uncongested intervals is reversed and the departure

interval occurs earlier than it would in the absence of the parking fee.

The analysis so far ignores any interaction between the two commutes. The

paper also analyzes a whole day with explicit interaction between the two com-

mutes. Nonseparability between the morning and evening commutes implies that

the morning commute can be affected via the evening parking fee and vice versa.

5de Palma and Lindsey (2002) compare the morning and the evening commute, assuming that
scheduling utility is additively separable in travel time and delay, where delay is defined in terms
of arrival time for the morning commute and in terms of departure time for the evening commute.
Here, we apply a general form of scheduling preferences that applies to both the morning and the
evening commute. The difference in principle between the two commutes is whether the parking
fee is charged at the origin or at the destination of the trip.
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It turns out the limitations involved in parking pricing as compared to freely time-

varying congestion tolling can then be overcome, and in our stylized setting a

parking fee scheme can be designed to remove congestion completely during both

commutes simultaneously. This finding strengthens the case for using parking

pricing to tackle urban road congestion.

The first to discuss regulation of parking in an economic context might be

Vickrey (1954), who suggested time-varying parking fees as a means of regulating

the use of parking space. Glazer and Niskanen (1992) present an analysis where

parking fees are analyzed as a substitute for road pricing. They note that the idea

rests on the assumption that an increase in the price of parking is equivalent to

an increase in the price of a trip. However, this equivalence fails for people who

can vary the length of time they park. Increasing the parking fee rate may induce

drivers to park for a shorter time, thereby allowing more people to use parking

spaces each day and thereby increasing traffic. However, Glazer and Niskanen

(1992) do not consider congestion dynamics (see also Verhoef et al., 1995).

In a static simulation model, Calthrop et al. (2000) analyze the efficiency gains

from parking fees and road pricing (a cordon toll). They find that these two poli-

cies are sub-additive: as roads are more efficiently priced, there is less need for

pricing of parking. In contrast to us, they also find that second-best pricing of

parking produces a higher welfare gain than a cordon charge around the simulated

city. The explanation for this difference is that they consider the supply of park-

ing but no congestion dynamics, where we take the supply of parking as given and

consider how to exploit congestion dynamics using a time-varying parking fee.

Like us, Arnott et al. (1991) use the bottleneck model, but they consider a

case where parking spaces are located between the bottleneck and the CBD, on
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a line away from the CBD and where the parking cost varies according to the

distance to the CBD. In their analysis, the parking fee does not depend on the

length of time the vehicle is parked. Arnott et al. (1991) find that optimal location-

dependent parking fees do not eliminate queueing, but induce drivers to park in

order of decreasing distance from the CBD, thereby concentrating arrival times

closer to work start times. They find that for most reasonable parameter values, the

optimal location-dependent parking fee is at least as efficient as the optimal time-

varying road toll. In contrast, in the present setting where parking is located at the

destination and with temporal but not spatial variation in the parking fee, only a

smaller share of the efficiency gain from the optimal road toll can be realized by

a parking fee. Qian et al. (2012) present an analysis similar to Arnott et al. (1991)

but with parking capacity provided in two parking lots, where the capacity and

parking fee may be regulated.

Arnott and Rowse (2009) focus on different aspects of parking. They analyze

parking in a spatially homogeneous downtown area. Drivers choose between curb-

side and garage parking, and curbside parking is cheapest. Cruising for parking

contributes to congestion and works to increase the full price for curbside parking

until it equals the price of garage parking. Then increasing the curbside parking

fee may generate an efficiency gain through reduction of cruising and the ensuing

congestion and the efficiency gain may be large relative to the parking fee rev-

enue. Other papers related to cruising include Douglas (1975), Arnott and Rowse

(1999), Anderson and de Palma (2004), Arnott and Inci (2006), and Anderson and

de Palma (2007). Van Ommeren et al. (2011) estimates the cost of cruising for the

residents of Amsterdam. See also Proost and Van Dender (2008) and De Borger

and Wuyts (2009).
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Zhang et al. (2005) link the morning and evening commutes by treating the

length of the work day as a decision variable in a model similar to ours. They do

not analyze time-varying parking fees.

Section 2 introduces the model, Section 3 reviews the benchmark case of no

policy, while Section 4 reviews the optimal time-varying toll at the bottleneck.

Section 5 describes equilibrium under a parking fee, Section 6 considers the op-

timal parking fee, and Section 7 presents an example under specific assumptions

about scheduling preferences. Section 8 considers the case when some drivers

cannot be charged for parking and Section 9 characterizes social optimum in-

cluding an early bird special. Section 10 discusses the evening commute while

Section 11 considers the two commutes in combination. Section 12 concludes.

Most proofs are relegated to the Appendix.

2 Model formulation

There is a continuum of mass N > 0 of drivers who all have to pass a congested

bottleneck. They have identical preferences concerning the timing and cost of

their trip expressed by the twice differentiable money metric utility u (t, a) − τ,

defined for all t ≤ a and τ , where t is the arrival time at the bottleneck, a is the

exit time from the bottleneck and τ is the (monetary) cost of the trip. We speak of

the length of the duration from t to a as the travel time or the bottleneck delay. We

consider only costs in the form of a toll at the bottleneck or a parking fee at the

destination. We refer to u as the scheduling utility.6 Without loss of generality, t

represents also the departure time and a the arrival time at the destination. It is also
6A simple version of scheduling preferences have the so-called α− β − γ form formulated by

Vickrey (1969), estimated by Small (1982), and used by numerous authors since.
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useful to define the schedule delay utility v(t) ≡ u(t, t), which is the scheduling

utility that is obtained when travel time is zero. Throughout this paper we make

the following assumptions regarding the scheduling utility.

Assumption 1 Marginal scheduling utility satisfies u1 > 0 and u2 < 0. Schedule

delay utility v(t) is strictly quasiconcave and attains maximum v(t∗) at t∗.

The assumption first requires that drivers always strictly prefer to depart later

and to arrive earlier, no matter when they depart and arrive. The assumptions on

v will ensure the uniqueness of equilibrium in the model.

The bottleneck has a capacity of ψ cars per time unit. Cars who have not yet

been served wait before the bottleneck, which serves travelers in the sequence of

arrival (first-in-first-out). The bottleneck capacity is always used if there are cars

waiting before it. The physical extension of the queue has no consequences, we

say the queue is vertical.

Cumulative departures are denoted R (·) and departures take place during an

interval [a0, a1]. WhenR (·) is differentiable, we let ρ (·) = R′ (·) be the departure

rate. If queueing begins at time a0 and there is still queue at time t, then the queue

length at time t is R (t)− ψ (t− a0) and the driver departing from home at time t

exits the bottleneck at time

t+
R (t)− ψ (t− a0)

ψ
=
R (t)

ψ
+ a0. (1)

After passing the bottleneck, cars enter a parking space, which is vertical like

the queue. Drivers pay a parking fee at a positive time-varying rate from the time

of arrival at the parking lot until a time Ω which is the same for all drivers. The
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latter assumption allows us to focus attention on the interaction of the parking

fee with the departure time and rules out any interaction with the later departure

from the parking space. Specifically, it does not require that all cars have to leave

the parking space at time Ω. It is sufficient if utility is a separable part of a more

comprehensive utility that also describes preferences regarding times later than Ω,

Later, in Section 11, we shall consider a case without separability between the two

commutes.

We will not consider situations involving mass departures and so the cumu-

lative departure rate will be invertible. For this reason and since the queue is

first-in-first-out, we can make a change of variable and equivalently define the

parking fee rate π (·) ≥ 0 in terms of the departure time t. The parking fee for a

driver departing and arriving at the bottleneck at time t is then P (t) =
∫ Ω
t π (s) ds

and we consider only π such that P ′ (t) = −π (t).7

The analysis considers Nash equilibrium, which is defined by the property

that, given the departure schedule R, no driver is able to strictly increase utility by

unilaterally changing departure time. All drivers achieve the same utility in Nash

equilibrium. The welfare measure employed is the equilibrium utility of drivers

times the number of drivers plus the revenue from any toll or parking fee. Since

utility is the scheduling utility minus the monetary cost, the welfare measure is

equal to the total scheduling utility obtained by drivers.

7This avoids having to deal with issues related to sets of measure zero.
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3 No policy equilibrium

Consider as an introduction the case of no policy. Nash equilibrium has arrivals

at the bottleneck during an interval [a0, a1] , the endpoints of this interval are en-

dogenous and determined in equilibrium. Equilibrium requires that there cannot

be unused capacity during this interval, that there cannot be queue at the time of

the last departure and that the utility of the first and last drivers to depart are the

same.8 Then the departure interval is uniquely determined by the conditions

v (a0) = v (a1) ,

a1 = a0 +N/ψ.

The conditions imply that a0 < t∗ < a1, since v is strictly quasiconcave. There is

always queue in the interior of [a0, a1] . The equilibrium is illustrated in Figure 1.

In equilibrium, the number of departuresR (t) that have occurred at time t can

be determined using (1) by the equation

v (a0) = u

(
t,
R (t)

ψ
+ a0

)
. (2)

This determines R (t) since a → u (t, a) is invertible for all t. Moreover, differ-

entiating (2), the departure rate is given by

ρ (t) = −ψ
u1

(
t, R(t)

ψ
+ a0

)
u2

(
t, R(t)

ψ
+ a0

) > 0.

8If there were unused capacity with departures before or after then some driver could move
into the gap and gain. If there were queue at the time of the last departure, then the last driver
could postpone departure without affecting arrival which would yield a gain.
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v(t)

a0 a1t* t

Figure 1: Schedule delay utility and no policy equilibrium

Here and later, the departure rate is determined almost everywhere.

Figure 2 shows the cumulative departures R as well as the number of cars that

have passed the bottleneck ψ(t−a0). The vertical distance between the two curves

corresponds to the length of the queue and the horizontal distance corresponds to

the delay in the queue.

4 The optimal time-varying toll at the bottleneck

It is well known that a time varying toll can achieve maximum efficiency by re-

moving the incentive to queue (Vickrey, 1969, 1973; Arnott et al., 1993; de Palma

and Fosgerau, 2011b). The efficient toll is charged at the bottleneck at the time

varying rate τ (t). Since total demand is assumed to be completely inelastic, we

can set τ (a0) = 0 at no loss of generality. Efficiency requires v (a0) = v (a1) so

the efficient toll leaves the departure interval [a0, a1] unchanged relative to the no
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#drivers

N/

N

R(t)

(t-a0)

a0 a1 t

Figure 2: No policy equilibrium

policy equilibrium while maintaining the departure rate at ρ (t) = ψ. This requires

τ (t) = v (t)−v (a0) . It follows that the efficient toll inherits strict quasiconcavity

from v. Moreover, a0 < t∗ < a1, and the efficient toll is increasing on [a0, t∗] and

decreasing on [t∗, a1] . The revenue from the efficient toll is

TR = ψ
∫ a1

a0
(v (t)− v (a0)) dt.

Drivers achieve the same utility in equilibrium as under no policy and hence the

revenue from the efficient toll is equal to the welfare gain.

5 Parking fee equilibrium

Consider now a parking fee P (t) =
∫ Ω
t π (s) ds, where Ω is larger than any de-

parture time. By definition it is decreasing as a function of arrival time (since
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P ′ (t) = −π (t)) and hence it cannot replicate the efficient toll, which is increas-

ing early in the peak.

Some basic properties of equilibrium are given in the following theorem. The

proof is included here in the main text since it is helpful in motivating the condi-

tions of the theorem.

Theorem 1 Consider a parking fee schedule P (·) with

b0 < t∗ < b1 (3)

v(t)− P (t) ≥ v(b0)− P (b0)⇔ t ∈ [b0, b1] (4)

b1 = b0 +
N

ψ
(5)

π(t) + u2(t, t) < 0. (6)

Then ∆ ≡ P (b0) − P (b1) ≤ ∆∗ ≡ v (t∗) − v (a0) and there exists a unique

departure time equilibrium solution defined on [b0, b1]. b0 increases strictly as a

function of ∆ as ∆ ranges over [0,∆∗].

Proof. That ∆ ≤ ∆∗ follows from (3) and the quasiconcavity of v. Condition

(4) ensures that nobody will want to depart outside [b0, b1] and condition (5) en-

sures that all cars fit within this interval with capacity utilized throughout. Exis-

tence and uniqueness of equilibrium then follows if there exists a unique departure

rate maintaining constant utility for departures in [b0, b1] . Condition (4) ensures

that utility can be constant in equilibrium for departures within [b0, b1] with non-

negative queue length and this ensures that capacity is fully utilized during [b0, b1].

The equilibrium queue length exists uniquely and then so does the equilibrium de-

parture rate from home. Condition (6) ensures that the equilibrium departure rate
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v(t)





b0 b1t* tb*a0 a1

Figure 3: Equilibrium with parking fee

from home is strictly positive. The final conclusion of the theorem follows from

the strict quasiconcavity of v.

Define for convenience b∗ as the unique time b∗ > t∗ where v (b0) = v (b∗) .

The equilibrium is illustrated in Figure 3.

6 Optimal parking fee

Fixing the difference ∆ at some value and finding the corresponding departure

interval [b0, b1], welfare is maximized for a parking fee that extracts maximal rev-

enue while satisfying the condition (4).

Find the unique b∗ > t∗ with v (b0) = v (b∗) (see Figure 3). Let P (t) = P (b0)

for t ∈ [b0, b∗] . This satisfies the conditions of Theorem 1. It is also true that

R (b∗) = ψ(b∗ − b0), such that the queue is exactly gone at time b∗.

During the remaining time [b∗, b1] let P (t) = v (t)−v (b0)+P (b0) . This also

15



satisfies the conditions of Theorem 1.

With this fee, utility is constant during [b∗, b1] so there can be no queue. There-

fore it is not possible to extract further revenue during this interval. We have

therefore established the optimal parking fee conditional on a value of ∆.

Assume without loss of generality that P (b1) = 0. The welfare function de-

fined in terms of ∆ is

W (∆) = ψ (b∗ − b0) v (b0) + ψ
∫ b1

b∗
v (t) dt. (7)

We can find the optimal value of ∆ as given in the following theorem. All proofs

of this and theorems following below are given in the Appendix.

Theorem 2 The optimal parking fee rate is

π (t) =


0, t ∈ [b0, b∗] ,

−v′ (t) , t ∈ ]b∗, b1] .

Assume further that v (·) is concave. Then the welfare function W (·) is quasicon-

cave on ]0,∆∗[, the welfare maximizing value of ∆ exists, is unique and satisfies

∆ = (b∗ − b0) v′ (b0) ∈]0,∆∗[.

The first statement of this theorem is that the optimal parking fee rate is zero

during the interval [b0, b∗] , which is the interval where there is queue under the

optimal parking fee. Thus all drivers in this interval pay the same total amount for

parking. The parking fee is concentrated on the interval ]b∗, b1] , where it ensures

that there is no queue.

Figure 4 illustrates the evolution of queue lenght under no policy and under
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R(t)-(t-a0)

N/

a0 a1 tb0 b* b1

Figure 4: Evolution of the queue under no policy and under the optimal parking
fee

the optimal parking fee. The dashed line shows that under no policy the queue

first builds and then dissipates between times a0 and a1 and that these times span

a duration of N/ψ time units. Queueing begins later at time b0 under the optimal

parking fee and it also ends earlier at time b∗. Departures continue during [b∗, b1]

at the capacity rate such that there is no queue during this interval. The latest

arrival at time b1 occurs later than it would under no policy.

7 Linear specification

This section specializes results to the case of so-called α − β − γ preferences

(Vickrey, 1969; Arnott et al., 1993). Let v (a) = β · min (a, 0) − γ · max (a, 0)

and let utility be u (t, a) − τ = v (a) − α · (a− t) − τ. Then α is the value of

time, the marginal cost of lateness is γ and the marginal cost of earliness is β.
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Let 0 < β < α, 0 < γ, as is typically assumed (Small, 1982). Then u satisfies

the requirements stated in Section 2. The following proposition, proved in the

Appendix, provides the optimal welfare gain in terms of the welfare function W ,

defined in (7). It thus states that the optimal welfare gain is obtained when the

difference ∆ in parking fee for the first and last drivers is equal to βγ
β+γ

N
ψ

. The

proposition also evaluates the welfare gain in that case.

Proposition 1 The optimal parking fee leads to a welfare gain of

W

(
βγ

β + γ

N

ψ

)
−W (0) =

N2

ψ

β2γ

2 (β + γ)2 .

The interval without queuing has duration

b1 − b∗ =
β

β + γ

N

ψ
.

Thus, a share β
β+γ

of drivers arrive during the later period when the parking

fee removes queueing. The maximal welfare gain corresponds to a share of β
β+γ

of the maximal welfare gain that can be obtained by a time-varying toll at the

bottleneck and the share is strictly less than 1/2 when β < γ as would commonly

be assumed. It is also straightforward to verify that the revenue from the optimal

parking fee corresponds to the same share of β
β+γ

of the revenue from the optimal

time varying toll. The optimal coarse toll, i.e. a toll that has only two values,

captures half the welfare gain that can be obtained by the optimal time-varying

toll (Fosgerau, 2011) and so the optimal parking fee approaches this welfare gain

when β is close to γ. These results are invariant under proportional changes in

(β, α, γ) . A value of γ/β in the range 2− 4 is reasonable and leads to an optimal
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welfare gain in the range [0.08, 0.11] ·N2/ψ, and this is between one fifth and one

third of the gain that could be obtained by the optimal time varying toll or between

two fifths and two thirds of the gain that could be obtained by the optimal coarse

toll.

8 Private parking

We consider now a situation where some drivers cannot be charged for parking.

This could be because they have private parking available that cannot be charged

by the public authority. Let N = Nc +Nu, where Nc is the number of drivers that

can be charged andNu is the number of drivers that cannot be charged. Drivers are

otherwise identical and they cannot affect whether they can be charged for parking

or not. This assumption enables us to focus on the direct effects of parking fees

without having to worry about selection into groups. Charged and uncharged

drivers share the same queue at the bottleneck.

Let the departures of uncharged drivers take place during Su withConv (Su) =

[bu0 , b
u
1 ] and similarly let departures for charged drivers take place during Sc with

Conv (Sc) = [bc0, b
c
1] .9 Let b0 = min (bu0 , b

c
0), and b1 = max (bu1 , b

c
1) . The follow-

ing theorem establishes some properties of Nash equilibrium.

Theorem 3 Consider a parking fee satisfying the assumptions (3-6) of Theorem

1. Then, in Nash equilibrium, capacity is fully utilized during [b0, b1] and b1 =

b0 +N/ψ. Uncharged drivers depart within the interval [b0, b∗] with b∗ < b1.

The theorem shows that uncharged drivers depart within the period when there

9Conv (·) denotes the convex hull; the convex hull of a set on the real line is an interval.
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is congestion and schedule delay utility v is largest. Some of the charged drivers

are induced to travel later and they all achieve lower utility.

Let Nu and Nc be given. We may then ask what is the optimal charge. Us-

ing Theorem 2 and the preceding discussion, the optimal charge that charges Nc

drivers satisfies v (bu0) = v
(
bu0 + Nu

ψ

)
and π (t) = −v′ (t) for t > bu0 + Nu

ψ
≡ bu1 ≡

bc0. Departures of charged drivers take place from bc0 to bc1 = bc0 + Nc/ψ. We have

∆ = P (bc1)− P (bc0) = v (bc1)− v (bc0) . In case ∆ is larger than its optimal value

from Theorem 2, then there can be an early period with zero charge for charged

drivers such that the optimum outcome is obtained. If on the other hand, the num-

ber of drivers that can be charged is less than the optimal number, then the optimal

charge under this restriction is the one just described.

9 Early bird specials

Early bird specials are common in cities around the world (Victoria Transport

Policy Institute, 2012) and they are targeted at commuters. Early bird specials

provide all day parking at a discounted price for all-day parkers who arrive at a

parking lot by a certain time such as 8 am. This section presents an analysis of how

early bird specials can be used to reduce traffic congestion and improve welfare.

An early bird special is given by (Neb, aeb, Peb) , where the discounted price Peb

is available to the first Neb drivers that arrive prior to aeb. This definition does not

require the constraints given by Neb and aeb to be binding and so it incorporates

the cases where either Neb and aeb is large, such that it is only the number of early

birds or the latest arrival time of early birds that is constrained. Denote by [e0, e1]

the interval during which the early birds travel.
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Drivers who do not receive the early bird special, we label regular drivers and

we carry forward all previous notation to them: regular drivers pay the regular

parking fee π, they travel during [b0, b1] and b∗ is the time after t∗ where v (b0) =

v (b∗) . The following theorem characterizes welfare optimum under a parking

fee combined with an early bird special. The welfare measure is again the sum

of driver utility and parking fee revenues, which is simply the scheduling utility

achieved.

Theorem 4 Under the socially optimal combination of a regular parking fee π

with an early bird special (Neb, aeb, Peb), capacity is fully utilized throughout a

period of length N/ψ, where b0 = e0 + Neb/ψ and b1 = e0 + N/ψ. The time-

varying parking fee is

π (t) =


0, t ∈ [b0, b∗]

−v′ (t) t ∈ ]b∗, b1] .

There is queueing during [b0, b∗] and no queue during [b∗, b1] . Departures begin

later than in unregulated equilibrium such that v (e0) > v (b1). The early bird

charge lies between the total parking fees paid by the first and last regular drivers

P (b1) < Peb < P (b0) .

Figure 5 illustrates the social optimum for the general case. Evaluating the

first order conditions for social optimum for the combination of a time-varying

parking fee with an early bird special in the case of linear scheduling preferences

as discussed in section 7 leads to e0 = −γ
2
β+2γ

(β+γ)2
N
ψ

and b0 = γ
β+2γ

e0, such that

b0 − e0 = 1
2

γ
β+γ

N
ψ

and the optimal share of early birds out of all drivers is 1
2

γ
β+γ

.

With γ/β in the range [2, 4] , this share lies in the range [0.33, 0.40] and it is always
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Figure 5: Social optimum with early bird special

smaller than 1/2.

10 The evening commute

The analysis so far has concerned the morning commute, but with minor modi-

fications it applies to the evening commute as well. This section will show that

most conclusions carry more or less directly over from the morning to the evening

commute.

Recall first that the analysis of the morning commute ignored any interaction

with the evening commute, which could occur, e.g., through the duration of the

period at work. This simplification greatly facilitates analysis and will be retained

in the analysis of the evening commute.

Our general specification of scheduling preferences treats the departure time

and the arrival time symmetrically, so it is not specific to the morning commute,
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and applies equally well to the evening. We may consider scheduling preferences

that are specific to the evening commute with t∗ now being the preferred time of

instantaneous transfer from work to home.

The treatment of congestion can also be exactly the same in the two commutes.

Hence the evening no-policy equilibrium and the optimal time-varying toll exactly

parallel those of the morning.

The difference is in the effect of a parking fee paid at the origin of the trip

rather than at the destination. The parking fee is charged at the work place. Hence

it creates an incentive to reduce the time spent at the workplace. This is equally

true in both commutes. In the morning, the parking fee decreases with later de-

parture (from home), while in the evening the parking fee increases with later

departure (from work). This reversal has the effect of reversing the order of the

two distinct intervals under the socially optimal parking fee. Recall that in the

morning social optimum, there is first an interval of queueing, where the parking

fee rate is zero, this is followed by an interval where the parking fee rate is −v′

and where there is no queue. In the evening social optimum, the evening parking

fee rate is first equal to v′ during an interval and this maintains the departure rate

from work at the bottleneck capacity such that a queue does not arise. Later, in

the evening, the parking fee rate is zero and a queueing interval occurs.

Early birds or drivers with private parking are not affected, they have no in-

centive to depart early and will depart during the period when the parking fee rate

is zero. Thus the conclusions for the morning commute regarding drivers with

private parking carry over to these cases.
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11 Morning and evening commutes integrated

This section considers the morning and the evening commutes simultaneously and

shows that interaction between commutes can imply that a parking fee can be de-

signed to remove queueing completely. The parking fee is still restricted to be

positive at any time so a parking fee in the morning can only reduce queueing in

the morning but not remove it; similarly a parking fee in the evening can only re-

duce queueing in the evening. But it is possible to exploit interaction between the

two commutes that occurs through the length of the time spent at work. Then the

morning parking fee affects not only the morning commute but also the evening

commute through the length of the working day; similarly a parking fee during

the evening commute will affect the morning commute. Somewhat surprisingly,

queueing can then be removed in both commutes simultaneously.

Consider drivers who commute to and from work. In the morning they pass

through a bottleneck with capacity ψm, in the evening they pass through a bot-

tleneck with capacity ψe and the two capacities may be different. The departure

time from home in the morning is denoted tm, departures begin at time cm and

cumulative departures in the morning are denoted Rm. Capacity will always be

fully utilized during the commute such that cm+ Rm(tm)
ψm

is the arrival time at work.

The evening commute from home to work is denoted similarly with subscripts e.

We impose more structure on utility than we have before in this paper. In

particular we assume that utility is separable in utility achieved at home at rate hm

prior to departure, utility achieved at home at rate he after returning home in the

evening and utility achieved associated with the duration at work Γ.10 Define then

10This assumes that workers can decide how much time to spend at work on any given day. An
alternative would be to assume a fixed duration at work. This would however have the implication
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the money-metric utility function

u (tm, te) =
∫ tm

0
hm (s) ds+

∫ 0

ce+
Re(te)
ψe

he (s) ds

+Γ

(
te − cm −

Rm (tm)

ψm

)
−
∫ te

cm+
Rm(tm)
ψm

π (s) ds.

If it were the case that Γ′′ = 0, then the utility function would be additively

separable into a part depending only on tm and another part depending only on te.

In this case the morning and evening commutes could be analysed separately and

we would be back in the situation from previous sections. So we require that Γ >

0,Γ′ > 0,Γ′′ < 0. Moreover, utility rates hm, he satisfy hm, he > 0, h′m < 0 < h′e.

In order to guarantee existence of equilbrium it is sufficient (but not necessary)

to assume that there is a point in time where hm (t) = he (t) < Γ′ (0) and that

hm, he,Γ
′ all range from 0 to∞. Parking is charged at the positive time-varying

rate π (·) during the time spent at work.

It is clear from the previous analysis and for the same reasons as before that

there are two commuting intervals in equilibrium, that capacity is fully utilized

during these intervals if the parking fee is not too high, and that in each commute

the queue is exactly gone at the time of the last departure. We assume that utility is

such that the commuting intervals do not overlap. The equilibrium departure rates

can be found from the first order conditions for utility maximization. The next

lemma establishes that drivers pass the bottleneck in the same sequence in the two

commutes. The lemma also states some inequalities that hold in equilibrium since

that the departure rate from work would be the same as the arrival rate at work, and this is at most
a constant ψm. Then if ψm < ψe there would never be queue in the evening or if ψm > ψe there
would be an increasing queue at all departure times from work where capacity ψm is utilized. Both
implications seem strange.
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the first driver in either commute will not prefer to depart earlier and that the last

driver in either commute will not prefer to depart later, these are clearly necessary

conditions for equilibrium to occur.

Lemma 1 Drivers depart in the same sequence in the two commutes. There is a

range of equilibria, determined by initial departure times cm and ce. The following

inequalities hold in equilibrium:

hm (cm) ≥ Γ′ (ce − cm)− π (cm) (8)

hm

(
cm +

N

ψm

)
≤ Γ′

(
ce +

N

ψe
− cm −

N

ψm

)
− π

(
cm +

N

ψm

)
(9)

he (ce) ≤ Γ′ (ce − cm)− π (ce) (10)

he

(
ce +

N

ψe

)
≥ Γ′

(
ce +

N

ψe
− cm −

N

ψm

)
− π

(
ce +

N

ψe

)
. (11)

The equilibrium with equality in (8) and (11) is Pareto dominant.

The lemma shows that a range of equilibria are possible. In the absence of

queueing, the first driver would prefer to depart later from home. Likewise the

last traveler would like to leave earlier from work if there were no queue. All

drivers achieve the same utility in equilibrium. Therefore welfare is maximal if the

equilibrium is the one with equality in (8) and (11). The next theorem establishes

that it is possible to construct a parking fee that implements the Pareto dominant

equilibrium such that there is no queueing in either commute.

Theorem 5 Let times cm and ce > cm +N/ψm be given and define the function

f (tm) =
ψm
ψe

(tm − cm) + ce, tm ∈ [cm, cm +N/ψm] . (12)
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Assume that cm, ce satisfy the following conditions:

hm (cm) = Γ′ (ce − cm) (13)

he

(
ce +

N

ψe

)
= Γ′

(
ce +

N

ψe
− cm −

N

ψm

)
(14)

max {hm (t) , he (f (t))} ≤ Γ′ (f (t)− t) , t ∈ [cm, cm +N/ψm] . (15)

The following parking fee removes queueing completely and implements the unique

Pareto optimal equilibrium:

π (t) =


Γ′ (f (t)− t)− hm (t) cm ≤ t < cm +N/ψm

Γ′ (t− f−1 (t))− he (t) ce ≤ t < ce +N/ψe

0 otherwise.

The parking fee of the theorem implements a situation where the first commute

takes place during [cm, cm +N/ψm] with departures at the capacity rate ψm. The

definition (12) ensures that if drivers depart at the capacity rate ψm during the

first commute, then they depart at the capacity rate ψe during [ce, ce +N/ψe] .

Conditions (13-15) ensure that the parking fee rate is always positive and that

π (cm) = π (ce +N/ψe) = 0. The equilibrium conditions in Lemma 1 are all

satisfied with equality.

Compared to a situation with no parking fee and first departures still at cm and

ce, the welfare gain from the parking fee of the theorem is total parking fee pay-

ment during the two commutes. The parking fee during [cm, ce +N/ψe] when all

are at work is set to zero in the theorem but can be larger provided the equilibrium

conditions are not affected. The parking fee revenue during this period does then

not affect behavior (as we assume fixed demand) and does hence not contribute to
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any change in welfare.

12 Conclusion

This paper has analyzed the potential efficiency gains that may be realised through

retiming of commuting trips due to a time-varying parking fee charged at a pos-

itive rate at the workplace. At the social optimum, the commute to work is di-

vided into two distinct intervals by the optimal parking fee. During the first inter-

val, parking is free and there is queueing. During the second interval, parking is

charged at a time-varying rate such that there is no queue while capacity remains

fully utilized. The sequence of these two periods is reversed from the morning

to the evening commute. Parking fees create an incentive to reduce the length of

time spent at work.

With private parking, a group of drivers cannot be charged for parking. It turns

out not to matter for equilibrium departure time outcomes for the optimal charge,

provided the drivers who cannot be charged are few enough to fit within the con-

gested part of the commute. It is thus possible to exempt a group of drivers from

paying the parking fee without sacrificing the welfare gains that can be achieved.

Early bird specials may be designed to increase efficiency even further.

The analysis up to this point has treated the morning and evening commutes

separately. During either commute, a parking fee can reduce congestion but not

remove it. When there is interaction between the commutes through the duration

of time spent at work then it is possible to affect the evening commute through

a parking fee during the morning and vice versa. The paper has exhibited a case

where it is then possible to utilize the interaction to remove congestion completely
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during both commutes through a parking fee.

It is an essential characteristic of parking fees considered in the paper that the

total parking fee payment is decreasing as a function of the arrival time at work

in the morning and increasing as a function of the departure time from work in

the evening. This restriction leads to results that differ from the case of a time-

varying toll. If it were possible to charge for parking at a negative rate, then any

time-varying toll could be replicated and the well-known analysis of such a toll

could be applied.

It is straightforward to extend the results of this paper to the case of elastic

demand. A way to proceed is to let aggregate demand depend on the average

utility obtained in equilibrium. The optimal toll can then be obtained by fixing

P (b1), which amounts to adding a fixed component to the parking fee. If P (b1) =

−Nv′ (b1) ∂b1
∂N

then the marginal benefit of adding a car equals the marginal cost.

In this way the model can be extended to deal with externalities including e.g.

congestion cruising for a limited number of parking spaces and other congestion

externalities.

The current analysis has focused on the interaction of a time-varying parking

fee rate with congestion dynamics. We focus on the timing of parking and thus

complement the earlier contributions discussed in the introduction that, simply

put, consider where and for how long to park. Future research could seek to

integrate these perspectives in a unified analysis. It would also be natural to seek

to allow for heterogenous drivers, as has been done for the bottleneck model by

Lindsey (2004) and recently van den Berg and Verhoef (2011).11

11With the dynamic bottleneck model, METROPOLIS, implemented for large networks, such
complications could be envisaged. This will allow to test the robustness of our predictions for
large scale networks (see de Palma et al., 1997).
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A Proofs

Proof of Theorem 2. The first part of the theorem has already been established. It

remains to determine the welfare maximizing value of ∆. Compute the derivative

of W as

W ′ (∆) = ψ (b′∗ − b′0) v (b0) + ψ (b∗ − b0) v′ (b0) b′0 + ψ (v (b1) b′1 − v (b∗) b
′
∗) .

Use that v (b0) = v (b∗) , b
′
1 = b′0, and ∆ = v (b0)−v (b1) to reduce this expression

to

W ′ (∆) = [(b∗ − b0) v′ (b0)−∆]ψb′0,

and note that this is zero if and only if ∆ = (b∗ − b0) v′ (b0) . Next use that 1 =

v′ (b0) b′0 − v′ (b1) b′1 and b′1 = b′0 to find that b′0 = (v′ (b0)− v′ (b1))−1 > 0. Note

that

W ′ (0) = [(b∗ − b0) v′ (b0)]ψb′0 > 0

and that

W ′ (∆∗) = −∆∗ψb′0 < 0,

since b0 = b∗ at ∆ = ∆∗. Then there is at least one value of ∆ between 0 and

∆∗ with W ′ (∆) = 0. Evaluate next the second derivative of W at a point with

W ′ (∆) = 0 :

W ′′ (∆) = [(b′∗ − b′0) v′ (b0) + (b∗ − b0) v′′ (b0) b′0 − 1]ψb′0

+ [(b∗ − b0) v′ (b0)−∆]ψb′′0

= [(b′∗ − b′0) v′ (b0) + (b∗ − b0) v′′ (b0) b′0 − 1]ψb′0
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=

[
v′ (b0)− v′ (b∗)

v′ (b∗)
v′ (b0) b′0 + (b∗ − b0) v′′ (b0) b′0 − 1

]
ψb′0,

where the last equality follows upon noting that v′(b0)b′0 = v′(b∗)b
′
∗. This is

negative if and only if

v′ (b0)− v′ (b∗)
v′ (b∗)

v′ (b0) b′0 + (b∗ − b0) v′′ (b0) b′0 < 1.

But this inequality holds since v′ (b∗) < 0 and v is concave. Thus W ′ (∆) = 0

implies that W ′′ (∆) < 0 and hence that W is quasiconcave on the interval [0,∆∗]

such that W has a unique maximum there. It is straightforward to verify that this

maximum is global.

Proof of Theorem 3. Given the assumptions of Theorem 1, all departures

will take place within the interval [b0, b1] in Nash equilibrium. Now, v (b0) =

u
(
b0,

R(b0)
ψ

+ b0

)
> u

(
b1,

R(b1)
ψ

+ b0

)
= v (b1) , where the inequality follows

since the last driver pays a strictly smaller parking fee than the first but achieves

the same utility. Moreover, Uu ≡ u
(
t, R(t)

ψ
+ b0

)
, t ∈ Su is constant, which re-

quires that there is queue almost always during Su. Equilibrium similarly requires

that U c ≡ u
(
t, R(t)

ψ
+ b0

)
− P (t), t ∈ Sc is constant. Thus u

(
t, R(t)

ψ
+ b0

)
is

strictly decreasing on points of Sc where π (t) > 0. These conditions imply that

all uncharged drivers obtain utility v (b0) . Therefore they must all depart in the in-

terval [b0, b∗] , where b∗ is defined by the equation v (b0) = v (b∗) , which implies

that b∗ < b1 by quasiconcavity of v.

Proof of Proposition 1. Given ∆ = P (b0) − P (b1) , with 0 < ∆ < v (t∗) −
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v (a0) = N
ψ

βγ
β+γ

and P (b1) = 0, it is straightforward to find that

b0 =
∆− γN

ψ

β + γ
, b∗ = −β

γ

∆− γN
ψ

β + γ
, b1 =

∆ + βN
ψ

β + γ
.

Then the welfare given ∆ is

W (∆) = Nv (b0)− ψ (b1 − b∗) ∆/2

= Nβ
∆− γN

ψ

β + γ
− ψ

∆ + βN
ψ

β + γ
+
β

γ

∆− γN
ψ

β + γ

 ∆

2

=
1

β + γ

(
−βγN

2

ψ
+ β∆N − ψβ + γ

γ

∆2

2

)
.

This is maximal when

∆ =
βγ

β + γ

N

ψ
.

In this case

b0 =
−γ2

(β + γ)2

N

ψ
, b∗ =

βγ

(β + γ)2

N

ψ
, b1 =

β2 + 2βγ

(β + γ)2

N

ψ
.

The optimal time-varying toll leads to a welfare gain of N2

ψ
βγ

2(β+γ)
.

Proof of Theorem 4. Clearly, early birds depart before other drivers during

[e0, e1] where e1 < t∗. They pay the same price for parking and will therefore

queue, departing at the rate ρeb (t) > ψ,with Reb (e1) = Neb and the last arrival

time being e0 + Neb
ψ
. For other drivers, it is optimal that they are charged according

to a fee as in section 6 where there is first an interval [b0, b∗] of arrival times where

the parking fee rate is zero, there is queueing and v (b0) = v (b∗), next there is

an interval [b∗, b1] of arrival times with no queueing and a parking fee rate that is
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π (t) = −v′ (t) . We recall that b0 ≤ t∗ ≤ b∗ < b1. It is also clear that capacity

should be fully utilized during the commute. This requires that the last arrival

time of the early birds is the same as the first arrival time of the ordinary drivers

e0 + Neb
ψ

= b0. All drivers pass the bottleneck during [e0, b1] , so b1 = e0 + N/ψ.

Thus the timing of departures is determined by e0 and b0. The difference between

the parking fees Peb and P is then also determined since all drivers achieve the

same utility in equilibrium.

Welfare is

W = ψ · (b0 − e0) v (e0) + ψ · (b∗ − b0) v (b0) + ψ
∫ b1

b∗
v (t) dt,

which is composed ofψ·(b0 − e0) early birds achieving scheduling utility v (e0) , ψ·

(b∗ − b0) ordinary drivers achieving scheduling utility v (b0) and the remaining

ψ · (b1 − b0) achieving scheduling utility v (t) . The timing of departures is chosen

through e0 and b0 to optimize welfare with first order conditions (when b0 < t∗ <

b∗)

v (e0) = (b0 − e0) v′ (e0) + v (b1) ,

v (e0) = v (b0)− (b∗ − b0) v′ (b0) .

Now v′ (e0) , v′ (b0) > 0 such that v (b1) < v (e0) < v (b0) . Utilities are equal in

equilibrium so P (b1) < Peb < P (b0).

A corner solution arises when b0 = t∗ = b∗. In that case only e0 may vary and
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has first order condition

v (e0) = (t∗ − e0) v′ (e0) + v (b1) ,

implying that again v (b1) < v (e0) < v (b0) .

Proof of Lemma 1. The first order condition for the choice of departure time in

the morning, given the departure time in the evening, is

0 =
∂u (tm, te)

∂tm
= hm (tm)−

(
Γ′
(
te − cm −

Rm (tm)

ψm

)
− π

(
cm +

Rm (tm)

ψm

))
ρm (tm)

ψm
.

Observe that any tm can only solve the first order condition for one value of

t2. The function te (tm) thus defined then is single-valued. By the Berge maxi-

mum theorem (Aliprantis and Border, 2006), te has compact graph and hence te is

continuous. We take for granted that it is continuously differentiable. The second

order condition requires that

∂2u (tm, te)

∂t2m
≤ 0.

Differentiating the first order condition with respect to tm leads to

0 =
∂2u (tm, te)

∂t2m
− Γ′′

(
te − cm −

Rm (tm)

ψm

)
∂te
∂tm

and hence ∂te
∂tm
≥ 0. It is possible to have ∂te

∂tm
= 0 at points, but ∂te

∂tm
= 0 cannot

hold on any interval. If it did, then there would be a mass departure in the evening,

which is ruled out in equilibrium (if a mass departure should occur, then it is

always strictly utility increasing to postpone departure until immediately after the
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mass departure). This shows that ∂te
∂tm

> 0 almost everywhere.

The inequalities characterize equilibrium since they imply that the first driver

in either commute will not prefer to depart earlier and that the last driver in either

commute will not prefer to depart later. Equality of utility holds due to queueing.

With equality in (8) and (11), the first driver would not have incentive to postpone

departure if there were no queue.

Proof of Theorem 5. Let Rm (tm) = ψm (tm − cm) in the first commute and

Re (te) = ψe (te − ce) in the second. Then there is no queueing while capacity is

fully utilized. Utility for a driver with departure times tm and te is then

u (tm, te) =
∫ tm

0
hm (s) ds+

∫ 0

te
he (s) ds+ Γ (te − tm)−

∫ te

tm
π (s) ds.

Consider a driver departing at time tm ∈ [cm, cm +N/ψm] . Then the first or-

der condition for the choice of the second departure time has only one solution,

namely at te = f (tm) by the definition of π.Moreover, the second order condition

is satisfied,

∂2u (tm, t)

∂t2

∣∣∣∣∣
t=te

= −h′ (te) + Γ′′ (te − tm)

(
1− 1

f ′ (tm)

)
− π′ (te)

= −h′ (te) + Γ′′ (te − tm)−
(

Γ′′
(
te − f−1 (te)

)(
1− 1

f ′ (tm)

)
− h′ (te)

)

=
Γ′′ (te − tm)

f ′ (tm)
< 0.

With the optimal choice of departure time from work, te = f (tm) , utility is
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constant over the interval tm ∈ [cm, cm +N/ψm], since

∂u (tm, f (tm))

∂tm
= hm (tm)−Γ′ (te − tm)+π (tm)+(−he (te) + Γ′ (te − tm)− π (te)) f

′ (tm) = 0,

by the definition of π. Then the departure rates Rm, Re defined above do in fact

lead to equilibrium.

The equilibrium conditions in Lemma 1 are satisfied by construction of π.

Conditions (8) and (11) are satisfied with equality, indicating that the Pareto dom-

inant equilibrium is implemented.

40


	1 Introduction
	2 Model formulation
	3 No policy equilibrium
	4 The optimal time-varying toll at the bottleneck
	5 Parking fee equilibrium
	6 Optimal parking fee
	7 Linear specification
	8 Private parking
	9 Early bird specials
	10 The evening commute
	11 Morning and evening commutes integrated
	12 Conclusion
	A Proofs

