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Abstract

Branching Processes in Random Environment (BPREs) (Zn : n ≥ 0) are the generalization

of Galton-Watson processes where in each generation the reproduction law is picked randomly

in an i.i.d. manner. In the supercritical regime, the process survives with a positive probability

and grows exponentially on the non-extinction event. We focus on rare events when the process

takes positive values but lower than expected.

More precisely, we are interested in the lower large deviations of Z, which means the asymptotic

behavior of the probability {1 ≤ Zn ≤ exp(nθ)} as n → ∞. We provide an expression of the

rate of decrease of this probability, under some moment assumptions, which yields the rate

function. This result generalizes the lower large deviation theorem of Bansaye and Berestycki

(2009) by considering processes where P(Z1 = 0|Z0 = 1) > 0 and also much weaker moment

assumptions.
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Key words and phrases. supercritical branching processes in random environment, large deviations,

phase transitions

1 Introduction

Branching processes in random environment (BPREs), which have been introduced in [26, 2],

are a discrete time and discrete size model in population dynamics. The model describes the

development of a population of individuals which are exposed to a (random) environment. The

environment influences the reproductive success of each individual in a generation. More formally,

we can describe a BPRE as a two-stage experiment:

In each generation, an offspring distribution is picked at random and, given all offspring distribu-

tions (the environment), all individuals reproduce independently.

Special properties of the model like the problems of rare events and large deviations have been

studied recently [22, 7, 10, 23, 8, 18]. In the Galton Watson case, large deviations problems are

studied from a long time [1, 3] and fine results have been obtained, see [14, 15, 24, 25].
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Let us now define the branching process Z in random environment. For this, let ∆ be the space of

all probability measures on N0 = {0, 1, 2, . . .} (the set of possible offspring distributions) and let Q

be a random variable taking values in ∆. By

mq =
∑
k≥0

k q({k}) ,

we denote the mean number of offsprings of q ∈ ∆. Throughout the paper, we will shorten q({·})
to q(·). An infinite sequence E = (Q1, Q2, . . .) of independent, identically distributed (i.i.d.) copies

of Q is called a random environment.

The process (Zn : n ≥ 0) with values in N0 is called a branching process in the random environment

E if Z0 is independent of E and it satisfies

L
(
Zn
∣∣ E , Z0, . . . , Zn−1

)
= Q∗Zn−1

n a.s. (1.1)

for every n ≥ 0, where q∗z is the z-fold convolution of the measure q.

As it turns out, probability generating functions (p.g.f.) are an important tool in the analysis of

BPRE. Thus let

fn(s) :=

∞∑
k=0

skQn(k), (s ∈ [0, 1])

be the probability generating function of the (random) offspring distribution Qn. By f , we denote

the generating function of Q. Throughout the paper, we denote the conditioning on Qn indifferently

by E[·|Qn] and E[·|fn]. Also for the associated random environment we write both E = (f1, f2, ...)

and E = (Q1, Q2, ...). In this notation, (1.1) can be written as

E
[
sZn |E , Z0, . . . , Zn−1

]
= fn(s)Zn−1 a.s. (0 ≤ s ≤ 1).

Another important tool in the analysis of BPRE is the random walk associated with the

environment (Sn : n ∈ N0). It determines many important properties, e.g. the asymptotics of

the survival probability. (Sn : n ∈ N0) is defined by

S0 = 0, Sn − Sn−1 = Xn (n ≥ 1),

where

Xn := logmQn = log f ′n(1)

are i.i.d. copies of the logarithm of the mean number of offsprings X := log(mQ) = log(f ′(1)).

The branching property then immediately yields

E[Zn|Q1, . . . , Qn, Z0 = 1] = eSn a.s. (1.2)

The characterization of BPRE going back to [2] is classical:

In the subcritical case (E[X] < 0), the population becomes extinct a.s. at an exponential rate.

The same result is true in the critical case (E[X] = 0) (excluding the degenerated case when

P1(Z1 = 1) = 1), but the rate of decrease of the survival probability is no longer exponential.

If E[X] > 0, the process survives with positive probability under quite general assumptions on

the offspring distributions (see [26]) and is called supercritical. Then E[Z1 log+(Z1)/f ′1(1)] < ∞
ensures that the martingale e−SnZn has a positive finite limit on the non-extinction event:

lim
n→∞

e−SnZn = W, P(W > 0) = P(∀n ∈ N : Zn > 0) > 0.
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The large deviations are related to the speed of convergence of exp(−Sn)Zn to W and the tail of

W . This latter is directly linked to the existence of moments and harmonic moments of W . In

the Galton Watson case, we refer to [1] and [25]. For BPRE, Hambly [17] gives the tail of W in 0,

whereas Huang & Liu [18, 19] obtain other various results in this direction.

We establish here an expression of the lower rate function for the large deviations of the BPRE,

i.e. we specify the exponential rate of decrease of P(1 ≤ Zn ≤ eθn) for 0 < θ < E[X]. In the Galton

Watson case, lower large deviations have been finely studied and the asymptotic probabilities are

well-known, see e.g. [14, 15, 24]. In the case of a random environment, the rate function has been

established in [7] when any individual leaves at least one offspring, i.e. P(Z1 = 0) = 0. This result

is extended here to the situation where P(Z1 = 0) > 0 and the moment assumptions are relaxed.

We add that for the problem of upper large deviations, the rate function has been established

in [10, 8] and finer asymptotic results in the case of geometric offspring distributions can be

found in [22, 23]. Thus large deviations for BPRE become well understood, even if much work

remains to get finer asymptotic results, deal with weaker assumptions or consider the Böttcher

case (P(Z1 ≥ 2) = 1).

2 Preliminaries

In the whole paper, we assume that E[X] > 0, i.e. the process is supercritical. Moreover, we are

working in the whole paper under the following assumption.

Assumption 1. There exists an s > 0 such that E[e−sX ] <∞.

This assumption ensures that a proper rate function Λ of the random walk (Sn : n ∈ N)

Λ(θ) := sup
λ≤0

{
λθ − log(E[exp(λX)])

}
(2.1)

exists. We note that the supremum is taken over λ ≤ 0 and not over all λ ∈ R. As we are only

interested in lower deviations here, this definition is more convenient as it implies Λ(θ) = 0 for

all θ ≥ E[X]. We briefly recall some well-known facts about the rate function Λ which are useful

here (see [11] for a classical reference on the matter). Define φ(λ) = logE[exp(λX)], Dφ = {λ :

φ(λ) < ∞} and let Doφ be the interior of the set Dφ. Then the map x 7→ Λ(x) is strictly convex

and infinitely often differentiable in the interior of the set {θ ∈ R : θ = φ′(λ) for some λ ∈ Doφ}.
Let θ = φ′(λθ) for some λθ ∈ Doφ. It then also holds that

Λ′(θ) = λθ .

Moreover for every θ ≤ E(X)

lim
n→∞

− 1
n logP(Sn ≤ θn) = Λ(θ). (2.2)

In the following, we will denote

P(·|Z0 = z) = Pz(·)

and write P(·) when the initial population size is not relevant or can be taken equal to one.

To state the results, we will use the probability of staying positive but bounded which is treated

in [9]. Let us define

I :=
{
j ≥ 1 : P(Q(j) > 0, Q(0) > 0) > 0

}
3



and introduce the set Cl({z}) of integers that can be reached from z ∈ I, i.e.

Cl({z}) :=
{
k ≥ 1 : ∃n ≥ 0 with Pz(Zn = k) > 0

}
.

In the same way, we introduce the set Cl(I) of integers which can be reached from I by the process

Z. More precisely,

Cl(I) :=
{
k ≥ 1 : ∃n ≥ 0 and j ∈ I with Pj(Zn = k) > 0

}
.

We have

Proposition 2.1. (i) If P1(Z1 = 0) = 0 and P1(Z1 = 1) > 0, then for all k and j ∈ Cl({k}),

lim
n→∞

1
n logPk(Zn = j) = log(E(Q(1)k)).

(ii) If E[X] > 0 and P(Z1 = 0) > 0 then the following limits exist, coincide for all k, j ∈ Cl(I)

and belong to [0,∞),

% := lim
n→∞

1
n logPk(Zn = j)

Note that E[X] > 0 implies that P(Z1 = 1) < 1. The case (i) can be proved directly for j = k by

observing that then {Zn = k} = {Z0 = Z1 = . . . = Zn = k} so Pk(Zn = k) = E(Q(1)k). For the

general case j ∈ Cl({k}), the proof can be adapted from Lemma 7 in [7].

The case (ii) is proved in [9], Theorem 2.1. In [9], some general conditions are stated which ensure

% > 0 and % ≤ Λ(0). It also gives a (non explicit) expression of % in terms of the successive

differentiation of the p.g.f. fi.

In the Galton Watson case, f is constant, for every i ≥ 0, fi = f a.s. Then, we recover the classical

result [4] :

% = − log f ′(pe), pe := inf{s ∈ [0, 1] : f(s) = s}.

Moreover, in the linear fractional case we have an explicit expression of %. We recall that a

probability generating function of a random variable R is linear fractional (LF) if there exist

positive real numbers m and b such that

f(s) = 1− 1− s
m−1 + bm−2(1− s)/2

,

where m = f ′(1) and b = f ′′(1). Then, we know from [9] that under some conditions, which will

be stated in the next section,

% =

{
− logE

[
e−X

]
, if E[Xe−X ] ≥ 0

Λ(0) , else
. (2.3)

3 Lower large deviations

We introduce the following new rate function defined for θ, x ≥ 0 and any nonnegative function H

χ(θ, x,H) = inf
t∈[0,1]

{
tx+ (1− t)H(θ/(1− t))

}
,

with the convention 0 · ∞ = 0.
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3.1 Main results

To state the large deviation principle, we recall the definition of % and Λ from the previous section

and we need the following moment assumption:

Assumption 2. For every λ > 0,

E
[( f ′(1)

1− f(0)

)λ ]
<∞.

Note that P(f(0) = 1) = P(Q(0) = 1) > 0 would imply P(X = −∞) > 0 which is excluded in the

supercritical case.

We also denote kn
subexp−→ ∞ when kn →∞ but kn/ exp(θn)→ 0 for every θ > 0, as n→∞.

Theorem 3.1. Under Assumptions 1 & 2 and E[Z1 log+(Z1)/f ′1(1)] <∞ and E[| log(1−f1(0))|] <
∞, the following assertions hold for every θ ∈

(
0,E[X]

]
.

(i) If P1(Z1 = 0) > 0, then for every i ∈ Cl(I)

lim
n→∞

1
n logPi(1 ≤ Zn ≤ eθn) = −χ(θ, %,Λ).

Moreover, kn
subexp−→ ∞ ensures that limn→∞

1
n logPi(1 ≤ Zn ≤ kn) = −%.

(ii) If P1(Z1 = 0) = 0, then for every i ≥ 1,

lim
n→∞

1
n logPi(1 ≤ Zn ≤ eθn) = −χ(θ,− logE[Q(1)i],Λ).

Moreover, kn
subexp−→ ∞ ensures that limn→∞

1
n logPi(1 ≤ Zn ≤ kn) = logE[Q(1)i].

First, we note that (ii) generalizes Theorem 1 in [7], which required that both the mean and

the variance of the reproduction laws were bounded (uniformly with respect to the environment).

Moreover, (i) provides an expression of the rate function in the more challenging case which allows

extinction (P1(Z1 = 0) > 0). We now try to extend this result and get rid of Assumption 2, before

discussing its interpretation and applying it to the linear fractional case. So we now consider

Assumption 3. We assume that S is non-lattice, i.e. for every r > 0, P(X ∈ rZ) < 1. Moreover,

we assume that there exists a constant 0 < d <∞ such that,

MQ ≤ d · [mQ + (mQ)2] a.s.,

where Mq =
∑
k≥0 k

2q(k) is the second moment of the probability measure q.

This condition is equivalent to the fact that f ′′(1)/(f ′(1) + f ′(1)2) is bounded a.s.

This assumption does not require that E[f ′(1)λ] < ∞ for every λ > 0, contrarily to Assumption

2. But it implies that the standardized second moment of the offspring distributions is a.s. finite.

It is e.g. fulfilled for geometric offspring distributions (see [10]). We focus here on the case when

subcritical environments may occur with positive probability, which implies in particular that

P1(Z1 = 0) > 0.

Theorem 3.2. Under Assumption 1 and P(X < 0) > 0, for any sequence kn
subexp−→ ∞ and

i ∈ Cl(I), we have

lim
n→∞

1
n logPi(1 ≤ Zn ≤ kn) = −%.

Under the additional Assumption 3 and E[Z1 log+(Z1)] <∞, for every θ ∈
(
0,E[X]

]
,

lim sup
n→∞

1
n logPi(1 ≤ Zn ≤ eθn) = −χ(θ, %,Λ).
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The proof of the upper-bound of this result is very different from that of the previous theorem. It

is deferred to Section 4.3. Let us now comment the large deviations results obtained by the two

previous theorems.

Figure 1: χ and Λ in the case θ? > 0.

We note that Λ (and thus χ) is a convex function which is continuous from below and thus has

at most one discontinuity. If % < Λ(0), there is a phase transition of second order (i.e. there is a

discontinuity of the second derivative of χ). In particular, it occurs if Λ(0) > − logE[Q(1)] since

we know from [9] that % ≤ − logE[Q(1)]. In contrast to the upper deviations [10, 8], there is no

general description of this phase transition. It seems to heavily depend on the fine structure of the

offspring distributions. In the linear fractional case, we are able to describe the phase transition

more in detail (see forthcoming Corollary 3.3).

We also mention the following representation of the rate function, whose proof follows exactly

Lemma 4 in [8] and is left to the reader. We let 0 ≤ θ∗ ≤ E[X] be such that

%− Λ(θ∗)

θ∗
= inf

0≤θ≤E[X]

%− Λ(θ)

θ

Then,

χ(θ, %,Λ) =

{
ρ
(
1− θ

θ∗

)
+ θ

θ∗Λ(θ∗) if θ < θ∗

Λ(θ) if θ ≥ θ∗
.
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We recall that % is known in the LF case from (2.3), and we derive the following result, which is

proved in Section 4.5.

Corollary 3.3. We assume that f is a.s. linear fractional. Under Assumptions 1 & 2 or Assump-

tions 1 & 3, we have for all θ ∈
(
0,E[X]

]
,

lim
n→∞

1
n logP1(1 ≤ Zn ≤ eθn) = χ(θ, %,Λ) = min

{
− θ − logE

[
e−X

]
,Λ(θ)

}
.

More explicitly, θ∗ = E
[
X exp(−X)

]
/E[exp(−X)].

If θ < θ∗, then χ(θ, %,Λ) = −θ − logE
[
e−X

]
, otherwise χ(θ, %,Λ) = Λ(θ).

We note that if the offspring-distributions are geometric, Assumption 3 is automatically fulfilled

(see [10]). Moreover, except for the degenerated case P(Z1 = 0) = 1, we have P(Z1 = 1) > 0 in the

linear fractional case. Note that the non-lattice assumption made in Assumption 3 can be dropped

since one can directly proved in the LF case that % ≤ Λ(0). Finally, starting from k ≥ 1 individuals,

the result holds if % is replaced by %k, where %k = % if P1(Z1 = 0) > 0 and %k = − log(E(Q(1)k))

if P1(Z1 = 0) = 0.

3.2 Interpretation

Figure 2: Most probable path for the event {1 ≤ Zn ≤ eθn} with 0 < θ < θ?.

Let us explain the rate function χ and describe the large deviation event {1 ≤ Zn ≤ eθn} for some

0 < θ < E[X] and n large. This corresponds to observing a population in generation n which is

much smaller than expected, but still alive. A possible path that led to this event looks as follows

(see Figure 2).

During a first period, until generation btnc (0 ≤ t ≤ 1), the population stays small but alive,

despite the fact that the process is supercritical. The probability of such an event is exponentially
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small and of order exp(−%bntc+ o(n)). Later, the population grows in a supercritical environment

but less favorable than the typical one, i.e. {Sn−Sbntc ≤ θn}. This atypical environment sequence

has also exponentially small probability, of order exp(−Λ(θ/(1−t))bn(1−t)c+o(n)). The probabil-

ity of the large deviation event then results from maximizing the product of these two probabilities.

More precisely, we may follow [7] to check that the infimum of χ is reached at a unique point tθ

by convexity arguments. Thus

χ(θ) = tθ%+ (1− tθ)Λ(θ/(1− tθ)), tθ ∈ [0, 1− θ/E[X]]

and we can define the function fθ : [0, 1] 7→ R+ for each θ < E[X] as follows

fθ(t) :=

{
0, if t < tθ
θ

1−tθ (t− tθ), if t ≥ tθ.

Then, conditionally on {1 ≤ Zn ≤ exp(nθ)}, the process (log(Z[tn])/n : t ∈ [0, 1]) converges in

finite dimensional distributions to the function (fθ(t) : t ∈ [0, 1]).

From the point of view of theoretical ecology, these results shed light on the environmental and

demographical stochasticity of the model. More precisely, randomness in a BPRE comes both from

the random evolution of the environment (environmental stochasticity) and the random reproduc-

tion of each individual (demographical stochasticity). Thus a rare event {1 ≤ Zn ≤ exp(nθ)} for

n large and θ < E[X] may be due to a rare sequence of environments (less favorable than usual

since Zn ≤ exp(nθ), but not bad enough to provoke extinction) and/or to unsual reproductions of

individuals. Our results show that it is a non-trivial combination of both.

In a first period [0, tθ], the population just survives thanks to a combination of environmental and

demographical stochasticity (we call this period survival period). If P(Z1 = 0) = 0, we know that

the population remains constant. Thus the typical environment f is biased by P1(Z1 = 1|f) = f ′(0)

and the number of offspring is forced to be 1 for (almost) all individuals. If P(Z1 = 0) > 0 and

% < Λ(0), e.g. in the LF case, again it is a combination of the demographical and environmental

stochasticity. If P(Z1 = 0) > 0 and % = Λ(0), the time of the survival period is reduced to 0 :

tθ = 0.

In a second period [tθ, 1], the population grows exponentially but at a lesser rate than usual. This

is only due to the environmental stochasticity : the typical environment f is not biased by the

mean offspring number f ′(1).

3.3 Application to Kimmel’s model : cell division with parasite infection

As an illustration and a motivation we deal with the following branching model for cell division

with parasite infection. It is described and studied in [5, 6]. In each generation, the cells give birth

to two daughter cells and the cell population is the binary tree. The model takes into account

unequal sharing of parasites in the two daughter cells, following experiments made in Tamara’s

Laboratory in Hopital Necker (Paris).

More explicitly, we assume that the parasites reproduce following a Galton-Watson process with

reproduction law (pk : k ≥ 0). We consider a random variable P ∈ (0, 1) a.s. and, for convenience,

we assume that its distribution is symmetric with respect to 1/2 : P
d
= 1 − P . This random
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parameter gives the binomial repartition of the parasites in each daughter cell. It is picked in an

i.i.d manner for each cell. Thus, conditionally on the fact that the cells contain k parasites when

it divides and conditionally on this parameter being equal to p, the number of parasites inherited

by the first daughter cell follows a binomial distribution with parameters (k, p), whereas the other

parasites go in the other daughter cell. In other words, each parasite is picked independently into

the first daughter cell with probability p.

The number of cells in generation n is 2n. Then, a simple computation proves that the number of

cells Nn[a, b] in generation n whose number of parasites is between a and b satisfies

E
[
Nn[a, b]

]
= 2nP(Zn ∈ [a, b]),

where Zn is a BPRE whose environment is given by the random variable (r.v.) P :

P1(Z1 = i | P = p) =

∞∑
k≥i

pkp
i(1− p)k−i.

As a consequence of the previous Theorems, we can derive the mean behavior of the number of

cells infected by a positive number of parasites which is smaller than usual:

1

n
logE

[
Nn[1, exp(nθ)]

]
= log(2)− χ(θ, %,Λ) θ < E(X),

where Λ is the Fenchel Legendre transform of the r.v.

X := log(
∑
k≥0

kpk) + log(P )

and % is inherited from Proposition 2.1. (i) when p0 > 0. In particular, let us assume that (pk)k≥0

is a linear fractional offspring distribution, i.e. there exist a ∈ [0, 1] and q ∈ [0, 1) such that

p0 = a, pk = (1− a)(1− q)qk(k ≥ 1).

Then

P1(Z1 = i | P = p) =

∞∑
k≥i

aqkpi(1− p)k−i =
a

1− (1− p)q
(qp)i,

i.e. the offspring distribution for the branching process Z is also a.s. linear fractional. Thus we can

apply Corollary 3.3 and % can be calculated explicitly from the distribution of P . Furthermore,

solving χ(θ, %,Λ) > log 2 yields the set of θ such that we observe cells infected by a positive number

but less than exp(nθ) parasites (for large times).

4 Proof of lower large deviations

First, we focus on the lower bound, which is easier and can be made under general assumptions

(satisfied in both Theorems 3.1 and 3.2). We split then the proof of the upper bounds in two parts,

working with Assumption 2 in the first one, and then with P(X < 0) > 0 and Assumption 3 in the

second. Finally, we prove the theorems combining these results.

4.1 Proof of the lower bound for Theorems 3.1 and 3.2

First we note that, if the associated random walk has exceptional values, the same is true for

the branching process Z. The estimation Zn ≈ E[Zn |E ] = exp(Sn) a.s. gives a lower bound
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in the following way. If E[Z1 log+(Z1)] < ∞, we know from [2] that the limit of the martingale

Zn exp(−Sn) is non-degenerated. Then a direct generalization of [7, Proposition 1] ensures that

lim inf
n→∞

1
n logPj(1 ≤ Zn ≤ eθn|Sn ≤ (θ + ε)n) = 0,

for all j ≥ 1 and ε > 0. It relies on the same change of measure as in the proof of [7, Proposition

1]:

P̃(Q ∈ dq) :=
m(q)λc

E
[
m(Q)λc

]P(Q ∈ dp),

where λc is the argmax of λ→ λc− ϕ(λ):

sup
λ≤0
{λc− ϕ(λ)} = λcc− ϕ(λc).

As Λ is non-increasing, continuous from below and convex and thus a right-continuous function,

Λ(θ + ε)→ Λ(θ) as ε→ 0. Then, for every 0 < θ < E[X] such that Λ(θ) <∞, we have

lim inf
n→∞

1
n logPj(1 ≤ Zn ≤ eθn|Sn ≤ θn) = 0. (4.1)

Now we can prove the following result

Lemma 4.1. Let z ≥ 1. We assume that E[Z1 log+(Z1)] <∞ and that

%z = − lim
n→∞

1
n logPz(1 ≤ Zn ≤ b)

exists and does not depend on b large enough. Then for every θ ∈
(
0,E[X]

]
, we have

lim inf
n→∞

1
n logPz(1 ≤ Zn ≤ eθn) ≥ −χ(θ, %z,Λ).

Proof. We decompose the probability following a time t ∈ [0, 1) when the process goes beyond b.

Using the large deviations principle satisfied by the random walk S, we have for every ε > 0 and

n large enough

Pz(1 ≤ Zn ≤ eθn)

≥ Pz(1 ≤ Zbtnc ≤ b) min
1≤k≤b

Pk(1 ≤ Zb(1−t)nc ≤ eθn;Sb(1−t)nc ≤ eθn)

≥ Pz(1 ≤ Zbtnc ≤ b)e
−Λ

(
θ

1−t

)
n(1−t)+εn

min
1≤k≤b

Pk
(

1 ≤ Zb(1−t)nc ≤ e
θ

1−t n(1−t)
∣∣∣Sn ≤ e θ

1−t n(1−t)
)
.

Note that the above inequality is trivially fulfilled if Λ(θ) =∞. The definition of %z and (4.1) yield

with b large enough and for every ε > 0

lim inf
n→∞

1
n logPz(1 ≤ Zn ≤ eθn) ≥ − inf

t∈[0,1)

{
t%z + (1− t)Λ

(
θ/(1− t)

)
+ ε
}
.

Adding that Pz(1 ≤ Zn ≤ eθn) ≥ Pz(1 ≤ Zn ≤ b) for n large enough, we can take the latter

infimum of [0, 1], again with the convention 0 · ∞ = 0. Taking the limit ε→ 0 yields the expected

lower bound −χ(θ, %z,Λ).

4.2 Proof of the upper bound for Theorem 3.1 (i) and (ii)

The next lemma ensures that a large population typically grows as its expectation and thus follows

the random walk of the environment S. The start of the proof of this proposition is in the same vein

as [7], but the situation is much more involved since P1(Z1 = 0) may be positive, f ′(1) may not be

bounded a.s. and the variance of the reproduction laws may be infinite with positive probability.
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Lemma 4.2. Under Assumption 2, for every ε > 0 and for every a > 0, there exist constants

c, b ≥ 1 such that for every n ∈ N

sup
z≥b

Pz(Zn ≤ eSn−nε;Z1 ≥ b, ..., Zn ≥ b) ≤ c e−an.

Proof. Let us introduce the ratio of the successive sizes of the population

Ri := Zi/Zi−1, i ∈ {1, . . . , n}.

Recalling that log f ′i(1) = Xi, we can rewrite

eSn−nε

Zn
= Z−1

0

n∏
i=1

f ′i(1)

eεRi
.

Then for every λ > 0, we can use the classical Markov inequality P(Y ≥ 1) ≤ E[Y λ] for any

nonnegative random variable Y and get for every z ≥ b

Pz(Zn ≤ eSn−nε;Z1 ≥ b, ..., Zn ≥ b)

≤ b−λE
[ n∏
i=1

(f ′i(1)/(eεRi))
λ;Z1 ≥ b, ..., Zn ≥ b

]
= b−λE

[ n∏
i=1

(eεRi/f
′
i(1))−λ;Z1 ≥ b, ..., Zn ≥ b

]
.

Now we introduce the following random variable

Mλ(b, g) := sup
k≥b

E
[(
eε
∑k
i=1N

g
i

kg′(1)

)−λ
;

k∑
i=1

Ng
i > 0

]
where Ng

i are i.i.d., integer valued random variables with (fixed) p.g.f. g. By the branching

property, we may write a.s.

Mλ(b, fi) = sup
k≥b

E
[(
eε Zi+1

Zif ′i(1)

)−λ
;Zi+1 > 0

∣∣∣ fi, Zi = k
]

= sup
k≥b

E
[(
eε Ri+1

f ′i(1)

)−λ
;Zi+1 > 0

∣∣∣ fi, Zi = k
]
.

hen, by conditioning on the successive sizes of the population, we obtain

Pb(Zn ≤ eSn−nε;Z1 ≥ b, ..., Zn ≥ b)

≤ b−λE
[ n−1∏
i=1

(
eεRi
f ′i(1)

)−λ
E
[(

eεRn
f ′n(1)

)−λ
;Zn ≥ b | fn, Zn−1

]
;Z1 ≥ b, ..., Zn−1 ≥ b

]

≤ b−λE
[ n∏
i=1

Mλ(b, fi)
]

= b−λE
[
Mλ(b, f)

]n
.

We now want to prove that for every α ∈ (0, 1), there exist λ, b > 0 such that E[Mλ(b, f)] ≤ α.

Let g be fixed and deterministic. The idea is that for every g,
∑k
i=1N

g
i /k → g′(1) a.s. as k →∞

by the law of large numbers. We will be able to derive that

E
[(
eε
∑k
i=1N

g
i

kg′(1)

)−λ
;

k∑
i=1

Ng
i > 0

]
→ e−λε,

11



as k → ∞ and Mλ(b, f) → e−λε a.s. as b goes to infinity. Under suitable conditions, we are then

able to prove that E[Mλ(b, f)] → e−λε. Finally, considering λ > 0 such that e−λε < e−a and b

large enough gives us the result.

Let us now present the details of the proof. First we fix a p.g.f. g such that g(0) < 1 and

E[Ng
1 ] = g′(1) <∞. Then the law of large numbers ensures

Yk :=
(
eε
∑k
i=1N

g
i

kg′(1)

)−λ k→∞−→ e−λε P – a.s.

Moreover
∑k
i=1N

g
i is stochastically larger than a random variable B(k, g) with binomial distribu-

tion of parameters (k, 1− g(0)). Applying the classical large deviations upper bound for Bernoulli

random variables (see e.g. [11, 12]) yields for x ≥ 0

P
(
Yk ≥ x;

k∑
i=1

Ng
i > 0

)
≤ P

(
B(k, g) ≤ k x−1/λg′(1)e−ε

)
≤ exp

(
− k ψg(x−1/λg′(1)e−ε)

)
,

where the function ψg(z) is zero if z ≥ 1 − g(0) and positive for 0 ≤ z < 1 − g(0). It is specified

by the Fenchel Legendre transform of a Bernoulli distribution, i.e. for 0 ≤ z ≤ 1− g(0),

ψg(z) = z log
(

z
1−g(0)

)
+ (1− z) log

(
1−z
g(0)

)
.

Moreover {
∑k
i=1N

g
i > 0} ⊂ {Yk ≤ kλd} with d = (g′(1)e−ε)λ. Thus

E
[
Yk1lYk≥x;

k∑
i=1

Ng
i > 0

]
≤ dkλP

(
Yk ≥ x;

k∑
i=1

Ng
i > 0

)
≤ dkλ exp

(
− kψg(x−1/λg′(1)e−ε)

)
.

Let us choose x large enough such that ψg(x
−1/λg′(1)e−ε) > 0. Then letting k → ∞, the right-

hand side of the above equation converges to 0. Moreover, we can apply the bounded convergence

theorem to Yk1lYk≤x,
∑k
i=1N

g
i >0 to get

lim sup
k→∞

E
[
Yk;

k∑
i=1

Ng
i > 0

]
= E

[
lim sup
k→∞

(
Yk1lYk≤x,

∑k
i=1N

g
i >0

)]
≤ e−λε.

Recalling that Mλ(b, g) decreases with respect to b, we get for every g

lim
b→∞

Mλ(b, g) ≤ e−λε .

Second, we apply the bounded convergence theorem again and finish the proof by integrating

the previous result with respect to the environment. To check that

E[Mλ(1, f)] <∞,

we define for any p.g.f. g with g(0) < 1 and g′(1) <∞ the real numbers

xg :=

(
e−ε

2g′(1)

1− g(0)

)λ
, yg := (ke−εg′(1))λ.

For k large enough, we have xg < yg. We also note that x ≥ xg implies that x−1/λg′(1)e−ε ≤
(1− g(0))/2. Moreover,

∑k
i=1N

g
i > 0 implies Yk ≤ yg, and thus

E
[
Yk;

k∑
i=1

Ng
i > 0

]
=

∫ yg

0

P
(
Yk ≥ x;

k∑
i=1

Ng
i > 0

)
dx

≤ xg +

∫ dkλ

xg

exp
(
− kψg(x−1/λg′(1)e−ε)

)
dx

≤ xg + dkλ exp
(
− kψg

( 1−g(0)
2

))
.

12



Now we maximize the right-hand side with respect to k ≥ 1. Using that for all α > 0, x ≥ 0,

xλe−αx ≤ (λ/α)λe−λ and recalling that d = (g′(1)e−ε)λ, we get

Mλ(1, g) = sup
k≥1

E
[
Yk;

k∑
i=1

Ng
i > 0

]
≤ xg + (e−εg′(1))λλλe−λψg

( 1−g(0)
2

)−λ
. (4.2)

Finally, we observe that ψg(z) is a nonnegative convex function which reaches 0 in 1− g(0). Thus

0 ≤ x ≤ y ≤ 1− g(0) implies ψg(x) ≥ (x− y)ψ′g(y) and in particular

ψg
( 1−g(0)

2

)
≥ − 1−g(0)

4 ψ′g
( 1−g(0)

4

)
.

As ψ′g(z) = log( zg(0)
(1−z)(1−g(0))

)
and log(1− x) ≤ x for x > 0, we get that

ψg
( 1−g(0)

2

)
≥ − 1−g(0)

4 log
(
1− 3

3+g(0)

)
≥ 3

4

1− g(0)

3 + g(0)
≥ 3(1− g(0))

16
. (4.3)

Combining the inequalities (4.2) and (4.3) yields

Mλ(1, f) ≤ a(ε, λ)

(
f ′(1)

1− f(0)

)λ
a.s.,

where a(ε, λ) is a finite positive constant, only depending on ε and λ. Thus Assumption 2 ensures

that E[Mλ(1, f)] < ∞. Adding that Mλ(b, f) ≤ Mλ(1, f) a.s. for b ≥ 1, we apply the bounded

convergence theorem to obtain

lim
b→∞

E
[
Mλ(b, f)

]
= E

[
lim
b→∞

Mλ(b, f)
]
≤ e−λε.

Then, choosing b large enough,

E
[
Mλ(b, f)

]
≤ 2e−λε.

Letting λ such that 2e−λε ≤ e−a ends up the proof.

Lemma 4.3. Let z ≥ 1 and assume that

%z = − lim
n→∞

1
n logPz(1 ≤ Zn ≤ b)

exists and does not depend on b large enough. Then, under Assumption 2, for every θ ∈
(
0,E[X]

]
,

lim sup
n→∞

1
n logPz

(
1 ≤ Zn ≤ exp(nθ)

)
≤ −χ(θ, %z,Λ).

Proof. We define the last moment when the process is below b before time n :

σb = inf{i < n : Zi+1 ≥ b, · · · , Zn ≥ b}, (inf ∅ =∞).

13



Let θ > 0. Then summing over i leads to

Pz(1 ≤ Zn ≤ eθn)

≤
n−1∑
i=0

Pk(1 ≤ Zn ≤ eθn, σb = i) + P(1 ≤ Zn ≤ b)

≤
n−1∑
i=0

Pz(1 ≤ Zi ≤ b) sup
j≥b

Pj(1 ≤ Zn−i−1 ≤ eθn, Z1 ≥ b, ..., Zn−i−1 ≥ b) + P(1 ≤ Zn ≤ b)

≤ P(1 ≤ Zn ≤ b) +

n−1∑
i=0

Pz(1 ≤ Zi ≤ b)
[
P(Sn−i−1 ≤ θn+ nε)

+ sup
j≥b

Pj(Zn−i−1 ≤ eθn, Sn−i−1 > θn+ nε, Z1 ≥ b, ..., Zn−i−1 ≥ b)
]

≤ n sup
t∈[0,1]

{
Pz(1 ≤ Zbntc ≤ b)

[
P(Sn−bntc−1 ≤ θn+ nε)

+ sup
j≥b

Pj(Zn−bntc−1 ≤ eθn, Sn−bntc−1 > θn+ nε, Z1 ≥ b, ..., Zn−bntc−1 ≥ b)
]}
.

As the limit and the supremum can be exchanged, we get that

lim sup
n→∞

1
n logPz(1 ≤ Zn ≤ eθn) ≤

sup
t∈[0,1]

{
lim sup
n→∞

1
n logPz(1 ≤ Zbntc ≤ b) + lim sup

n→∞
1
n log

[
P(Sn−bntc−1 ≤ θn+ nε)

+ sup
j≥b

Pj(Zn−bntc−1 ≤ eθn, Sn−bntc−1 > θn+ nε, Z1 ≥ b, ..., Zn−bntc−1 ≥ b)
]}
.

For the first summand in the supremum, by assumption, we have for every t ∈ [0, 1],

lim
n→∞

1
n logPz(1 ≤ Zbtnc ≤ b) = −t%z.

For the first probability in the second summand, we use the classical large deviation inequality for

the random walk S (see (2.2)) to get for every t ∈ [0, 1] that for θ ∈
(
0,E[X]

]
and ε > 0 small

enough

lim sup
n→∞

1
n logP(Sb(1−t)nc ≤ θn+ nε) = −(1− t)Λ

(
θ+ε
1−t
)
.

with the convention 0·∞ = 0. For the last probability, we apply Lemma 4.2, which prevents a large

population form deviating from the random environment. More precisely, for every ε > 0, we can

choose b large enough such that supj≥b Pj(Zn−i−1 ≤ eθn, Sn−i−1 ≥ θn+nε, Z1 ≥ b, ..., Zn−i−1 ≥ b)
decreases faster than exp(−%z[n− i− 1]) as n goes to infinity. Thus, for b large enough and every

t ∈ [0, 1],

lim sup
n→∞

1
n log sup

j≥b
Pj(Zn(1−t) ≤ eθn, Sn(1−t) > θn+ nε, Z1 ≥ b, ..., Zn(1−t) ≥ b) ≤ −%z(1− t).

Combining these upper bounds yields

lim sup
n→∞

1
n logPz

(
1 ≤ Zn ≤ exp(nθ)

)
≤ −min

{
inf

t∈[0,1)

{
t%z + (1− t)Λ

(
θ+ε
1−t
)}

; %z
}

Letting ε→ 0, by right-continuity of Λ, the right-hand side goes to

inf
t∈[0,1]

{
t%z + (1− t)Λ

(
θ

1−t
)}

= χ(θ, %z,Λ),

with the convention 0 · ∞ = 0. It completes the proof.

14



4.3 Proof of the upper bound for Theorem 3.2

We assume here that subcritical environments occur with a positive probability. First, we consider

the probability of having less than exponentially many individuals in generation n and prove that

the decrease of this probability is still given by %. We derive the upper bound of the second part

of the theorem using Assumption 3.1 and an additional lemma.

Lemma 4.4. If P(X < 0) > 0, then for every z ∈ Cl(I),

% = lim
n→∞

1
n logPz(Zn = z) = lim

θ→0
lim inf
n→∞

1
n logPz(1 ≤ Zn ≤ eθn)

= lim
θ→0

lim sup
n→∞

1
n logPz(1 ≤ Zn ≤ eθn) .

Proof. The first identity is given by Proposition 2.1 (ii) and we focus on the second one. We

observe that Pz(1 ≤ Zn ≤ eθn) decreases as θ decreases. As for every θ > 0, Pz(Zn = z) ≤ Pz(1 ≤
Zn ≤ eθn) for n large enough, we have

% = lim
n→∞

1
n logPz(Zn = z) ≤ lim

θ→0
lim inf
n→∞

1
n logPz(1 ≤ Zn ≤ eθn).

Let us prove the converse inequality. First, we observe that mq < 1 − ε implies q(0) > ε. Using

that P(mQ < 1) > 0 by assumption and z ∈ I, we choose ε > 0 and j1 ≥ 1 such that the sets

A := {q ∈ ∆ : q(0) > ε, q(z) > ε}, B := {q ∈ ∆ : mq < 1− ε, q(j1) > ε}

satisfy

P(Q1 ∈ A) > 0, P(Q1 ∈ B) > 0, B ⊂ {q ∈ ∆ : q(0) > ε, q(z) > ε}.

By Markov property, for every θ > 0,

Pz(Zn+b θεnc
= z) ≥

beθnc∑
k=1

Pz(Zn = k)Pk(Zb θεnc
= z)

≥ Pz(1 ≤ Zn ≤ eθn) min
1≤k≤eθn

Pk(Zb θεnc
= z)

≥ Pz(1 ≤ Zn ≤ eθn) min
1≤k≤eθn

E
[
Pk(Zb θεnc

= z|E);Q1, . . . , Qb θεnc−1 ∈ B, Qb θεnc ∈ A
]

≥ Pz(1 ≤ Zn ≤ eθn)×

min
1≤k≤eθn

E
[
Pk−1(Zb θεnc−1 = 0|E)P1(Zb θεnc

= z|E);Q1, . . . , Qb θεnc
∈ B, Qb θεnc ∈ A

]
. (4.4)

Using again the Markov property and the definition of B and A, we estimate a.s.

P1(Zb θεnc
= z|Q1, . . . , Qb θεnc−1 ∈ B, Qb θεnc ∈ A)

≥ P1(Z1 = j1|Q1 ∈ B) · Pj1(Z1 = j1|Q1 ∈ B)b
θ
εnc−2 · Pj1(Z1 = z|Q1 ∈ A)

≥ ε · εj1(b θεnc−2) · εj1 = εj1(b θεnc−1)+1 .

Using the classical estimates P1(Zn > 0|E) ≤ exp(Ln) a.s., where

Ln := min
0≤k≤n

Sk, (4.5)

and log(1− x) ≤ −x, x ∈ [0, 1) yields for every k, n ∈ N

Pk(Zb θεnc
= 0|Q1 ∈ B, . . . , Qn ∈ B) ≥

(
1− eb θεnc log(1−ε))k ≥ (1− e−b θεncε)k a.s.
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Inserting the two last inequalities into (4.4), we get that

Pz(Zn+b θεnc
= z)Pz(1 ≤ Zn ≤ eθn)−1

≥ min
1≤k≤eθn

{(
1− e−εb θεn−1c)kεj1(b θεnc−1)+1P(Q1 ∈ B, . . . , Qb θεnc−1 ∈ B, Qb θεnc ∈ A)

}
≥ (1− e−θn+o(1))e

θn

εj1(b θεnc−1)+1P(Q ∈ B)b
θ
εnc−1P(Q ∈ A).

Taking the logarithm and using the fact that (1− 1/x)x is increasing for x ≥ 1 and bounded

(1 + θ/ε)% = lim
n→∞

1
n logPz(Zn+b θεnc

= z)

≥ lim sup
n→∞

1
n logPz(1 ≤ Zn ≤ eθn) + j1θ

ε log ε+ θ
ε logP(Q ∈ B) . (4.6)

Thus, letting θ → 0,

% ≥ lim
θ→0

lim sup
n→∞

1
n logPz(1 ≤ Zn ≤ eθn),

which gives the expected converse inequality.

Lemma 4.5. Under Assumption 3, for every b > 0, n ∈ N and r ∈ (0, 1), it holds that

Pb(Zn ≤ r eSn |E) ≤
(
1− (1− r)2eLn/(n+ 2)

)b
a.s.

Proof. Note that E[Zn(Zn − 1)|E ] = f ′′0,n(1) a.s. Let us now check briefly that the result of

Proposition 1 in [10] still holds, which means that we can replace Assumption 2 in [10] by our

Assumption 3. From f0,n = f0,n−1 ◦ fn, by chain rule for differentiation f ′0,n(1) = f ′0,n−1(1)f ′n(1)

and f ′′0,n(1) = f ′′0,n−1(1)f ′n(1)2 + f ′0,n−1(1)f ′′n (1), we get that

f ′′0,n(1)

f ′0,n(1)2
=

f ′′0,n−1(1)

f ′0,n−1(1)2
+

f ′′n (1)

f ′0,n−1(1)f ′n(1)2
.

Using Assumption 3 yields

f ′′n (1)

f ′0,n−1(1)f ′n(1)2
≤ d(e−Sn−1 + e−Sn).

By iterating this inequality, we have a.s.

E[Zn(Zn − 1)|Π]

E[Zn|Π]2
=

f ′′0,n(1)

f ′0,n(1)2
≤ 2d

n∑
k=0

e−Sk a.s.

Finally we get for every n ∈ N,

E1[Zn(Zn − 1)|E ] ≤ 2de2Sn

n∑
k=0

e−Sk ≤ 2d (n+ 1)eSneSn−Ln a.s.

Combining this inequality with an inequality due to Paley and Zygmund, which ensures that

for any [0,∞) valued random variable ξ such that 0 < E[ξ] < ∞ and 0 < r < 1, we have

P(ξ > rE[ξ]) ≥ (1− r)2E[ξ]2/E[ξ2] (see Lemma 4.1 in [20]). Then a.s.,

P1(Zn ≥ r eSn |E) ≥ (1− r)2E1[Zn|E ]2

E1[Z2
n|E ]

≥ (1− r)2 e2Sn

(n+ 1)eSneSn−Ln + eSn
=

(1− r)2

n+ 2
eLn .
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Given E and starting with Z0 = b, b-many subtrees are developing independently. Each has the

above probability of being larger than reSn . Thus

Pb(Zn ≤ r eSn |E) ≤ P(Zn ≤ r eSn |E)b

≤
(
1− (1− r)2 eLn

n+2

)b
a.s.,

which is the claim of the lemma.

Lemma 4.6. If P(X < 0) > 0 and Assumption 3 holds, then for all z ∈ Cl(I), θ ∈
(
0,E[X]

]
,

lim sup
n→∞

1
n logPz(1 ≤ Zn ≤ exp(nθ)) ≤ −χ(θ, %,Λ).

Proof. Let z ∈ Cl(I). For the proof of the upper bound, we will decompose the probability at the

first moment when there are at least n3-many individuals for the rest of time. For this, let

σn := inf{1 ≤ i ≤ n : Zj ≥ n3, j = i, . . . , n}, (inf ∅ := n)

and

τn := inf
{

0 ≤ i ≤ n : Si ≤ min{S0, S1, . . . , Sn}
}
.

Let us fix 0 < θ < E[X]. Then by Markov property,

Pz(1 ≤ Zn ≤ eθ) =

n∑
i=1

Pz(σn = i, 1 ≤ Zn ≤ eθn)

≤
n∑
i=1

Pz(1 ≤ Zi−1 < n3) max
k≥n3

Pk(1 ≤ Zn−i ≤ eθn, ∀1 ≤ j ≤ n− i : Zj ≥ n3)

=

n∑
i=1

Pz(1 ≤ Zi−1 < n3)

n−i∑
j=0

max
k≥n3

Pk(1 ≤ Zn−i ≤ eθn; τn−i = j, ∀1 ≤ j ≤ n− i : Zj ≥ n3)

≤
n∑
i=1

Pz(1 ≤ Zi−1 < n3)

n−i∑
j=0

P(τj = j) max
k≥n3

Pk(1 ≤ Zn−i−j ≤ eθn;Ln−i−j ≥ 0). (4.7)

Next, we treat the different probabilities separately. First, by Lemma 4.4 for all t, s ∈ (0, 1) with

s+ t ≤ 1, we have

lim sup
n→∞

1
n logP(1 ≤ Zb(1−t−s)nc−1 ≤ n3) = −(1− t− s)ρ.

As to the second probability, as P(τn = n) ≤ P(Sn ≤ 0),

lim
n→∞

1
n logP(τbsnc = bsnc) ≤ −sΛ(0).

Next, for every ε > 0,

min
k≥n3

Pk(1 ≤ Zbtnc ≤ eθn;Lbtnc ≥ 0)

≤ min
k≥n3

E
[
Pk(1 ≤ Zbtnc ≤ eθn|E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
+ P

(
Sbtnc ≤ (θ + ε)n

)
.

Using Lemma 4.5, for n large enough,

max
k≥n3

E
[
Pk(1 ≤ Zbtnc ≤ eθn|E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
≤ max
k≥n3

E
[
Pk(1 ≤ Zn ≤ e−εneSbtnc |E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
≤ max
k≥n3

(
1− (1− e−εn)2 1

btnc+2

)kP(Lbtnc ≥ 0, Sbtnc ≥ (θ + ε)n
)

≤
(
1− (1− 1

2 )2 1
btnc+2

)n3

.
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Then, for every t > 0,

lim sup
n→∞

1
n log max

k≥n3
E
[
Pk(1 ≤ Zbtnc ≤ eθn|E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
≤ lim sup

n→∞
n2 log

(
1− 1

4
1

btnc+2

)
= −∞.

Finally, recall that

lim
n→∞

1
n logP

(
Sbtnc ≤ (θ + ε)n

)
= −tΛ

(
(θ + ε)/t

)
.

Applying all this in (4.7) and letting ε→ 0 yields the upper bound, i.e.

lim sup
n→∞

1
n logP(1 ≤ Zn ≤ enθ) ≤ − inf

s,t∈[0,1];s+t≤1

{
(1− s− t)ρ+ sΛ(0) + tΛ((θ + ε)/t)

}
= − inf

t∈[0,1]
{(1− t)ρ+ tΛ(θ/t+)} = χ(θ, %, λ).

In the last step, we used that Proposition 2 in [9] guarantees Λ(0) ≥ ρ under Assumption 3,

together with Λ(0) ≥ Λ(x) for every x ≥ 0 and right-continuity of Λ.

4.4 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1 (i). Let z ≥ 1. The second part of Proposition 2.1 ensures that for b large

enough,

% = − lim
n→∞

1
n logPz(1 ≤ Zn ≤ b).

Then, under Assumption 2, Lemmas 4.1 and 4.3 yield

lim
n→∞

1
n logP(1 ≤ Zn ≤ enθ) = −χ(θ, %,Λ).

The right-continuity of χ(θ, %,Λ) proves the last part of the result.

Proof of Theorem 3.1 (ii). We recall from Proposition 2.1. (i) that for every b ≥ z

lim
n→∞

1
n logPz(1 ≤ Zn ≤ b) = logE[Q(1)z].

Then, under Assumption 2 and E[Z1 log+(Z1)] <∞, Lemmas 4.1 and 4.3 yield

lim
n→∞

1
n logPz(1 ≤ Zn ≤ enθ) = −χ

(
θ,− logE[Q(1)z],Λ

)
.

The right-continuity of χ(θ, %,Λ) proves the last part of the result.

Proof of Theorem 3.2. The first part is a direct consequence of Lemma 4.4.

As we assume P(X < 0) > 0, we can use again the second part of Proposition 2.1, which ensures

that for b large enough,

% = − lim
n→∞

1
n logPz(1 ≤ Zn ≤ b).

Then, under Assumption 3 and E[Z1 log+(Z1)] <∞, we can combine Lemmas 4.1 and 4.6 to get

lim
n→∞

1
n logPz(1 ≤ Zn ≤ enθ) = −χ(θ, %,Λ)

for every z ≥ 1. It completes the proof.
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4.5 The linear fractional case

In this section, we restrict ourselves to the case of offspring distributions with generating function

of linear fractional form, i.e.

f(s) = 1− 1− s
m−1 + b m−2(1− s)/2

,

where m = f ′(1) and b = f ′′(1).

Proof of Corollary 3.3. Recall that s → E[esX ] is the moment generating function of X, which

is a convex function. The result of the corollary is trivial if ρ = Λ(0). Thus, using (2.3), we

can focus on the case ρ = E[e−X ] and 0 < E[Xe−X ] < ∞. Then E[e−X ] < ∞ and we have

% = − logE[e−X ] ≤ sups<0{− logE[esX ]} = Λ(0). Note that Λ(0) =∞ is possible.

Let us recall some details of Legendre transforms. It is well-known (see e.g. [12]) that

vθ(s) := −θs− logE
[
e−sX

]
is a convex function. The conditions E[e−X ] <∞ and 0 < E[Xe−X ] <∞ imply by the dominated

convergence theorem that v above is differentiable in s = 1 and

v′θ(1) := −θ − E
[
Xe−X

]
/E
[
e−X

]
.

Thus by definition of θ∗, the derivative of v′θ∗ vanishes for s = 1, i.e. v∗θ takes its minimum in

s = 1. Thus,

Λ(θ∗) := −θ∗ − logE
[
e−X

]
<∞

and by the theory of Legendre transforms, the tangent t on the graph of Λ in θ∗ is described by

t(θ) := −θ − logE
[
e−X

]
.

As Λ is convex and decreasing for θ < E[X], we have Λ(θ) ≥ t(θ) for θ < θ∗. This proves the

representation in Corollary 3.3.
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