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In this paper we will show that dense n× n matrices with integer coefficients of bit
sizes 6b can be multiplied in quasi-optimal time. This shows that the exponent ωZ

for matrix multiplication over Z is equal to two. Moreover, there is hope that the
exponent can be observed in practice for a sufficiently good implementation.

Keywords: matrix multiplication, FFT, skew polynomials

A.M.S. subject classification: 15-04, 68Q25, 68W30

Erratum. Eric Schost discovered a bug in this paper: by construction, formula (7) does
not hold, since the matrix Va,n is not invertible whenever l> 2. Unfortunately, we do not
see how to repair this bug: not only Va,n is not invertible, but the rank of Va,n is actually
very small (and equal to max {q1,	 , ql}). This makes the proof collapse.

We have also tried a few other things, such as fixing a=2 and trying to take many qi
for which a is a primitive root of unity of a small order. This also does not work, since the
product of two operators in Z[X, Q]2 makes the coefficient sizes increase by n2 (and not
merely n) bits. Going until “small order n”, we must have q1 
 ql P lcm(21 − 1, 22 − 1, 	 ,
2n− 1). This lcm is of the same order as 2n

2

, but strictly smaller than 2n
2

.

1. Introduction

1.1. Main results

Let A be an effective ring, which means that there exist algorithms for performing all
ring operations. It is classical that there exist quasi-optimal algorithms for many kinds
of computations with polynomials over A. For instance, two polynomials of degrees <n
can be multiplied using MA(n) =OA(n log n log log n) operations in A [5, 17, 6, 13]. If A
admits primitive 2p-th roots of unity for any p, then we even have MA(n) =OA(n log n).
From the complexity point of view, multiplication is the central operation: good bounds
for the complexities of division, g.c.d., multipoint evaluation, etc. are known in terms of
the complexity of multiplication.

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=15-04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk= 68Q25&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W30&submit=Search


In a similar way, one may study the asymptotic complexity MMA(n) of n× n matrix
multiplication. In particular, an open problem in algebraic complexity theory is to find
the infemum ω> 2 of all exponents α such that MMA(n)=OA(n

α). The naive schoolbook
multiplication admits a complexity OA(n

3), which shows that ω6 3. The first non trivial
algorithm for matrix multiplication was given by Strassen [18], who showed that ω6 log27.
Subsequently, a series of better and better algorithms were given [16, 7, 5, 19], and the
best current known bound is ω6 2.3727. However, apart from Strassen’s exponent log2 7,
none of these theoretical exponents have been observed in practice.

One important feature of the currently known bounds is that they work uniformly for
all rings A; that is, the corresponding algorithms are all algebraic, and only make use of
the ring operations in A. Despite its elegance, this approach has two drawbacks:

• For more specific rings A, such as A = Z or A = Z/p Z, there might exist non
algebraic algorithms with a much better complexity.

• Algebraic complexity bounds do not take into account the bit sizes of coefficients.
In practice, the actual bit complexity of an operation in A usually depends on the
particular arguments.

In this paper, we will focus on the bit complexity of integer matrix multiplication. Let
MI(n, b) denote the bit complexity of multiplying two n×n matrices whose coefficients are
integers of bit sizes at most b, and let I(b)=MI(1, b). Our main result is the following:

Theorem 1. There exists a universal constant C such that for each n ∈ N, there exists
a Bn∈N such that for all b>Bn, we have

MI(n, b) 6 Cn2 log3n log logn I(b).

The dependence of the offset Bn on n involves number theoretic issues about the
existence of primes which satisfy certain properties. Under the additional assumption that
the number ΓN of Sophie Germain primes (i.e. primes p such that 2 p + 1 is also prime)
less than N behaves in the expected way (as observed in practice up to very large N ), our
main theorem can be sharpened:

Theorem 2. Assume that ΓN >CN/log2N for some constant C. Then

MI(n, b) = O(n2 log3n log logn I(b)),

where the bound is uniform in n and b, under the condition that logn=O(b).

Modulo giving in on the sharpness of the complexity bound, we will also show that the
number theoretic assumption can be removed altogether. Our main result is the following
theorem, which can be summarized as “ωZ=2”:

Theorem 3. For logn=O(b), we have

MI(n, b) = O(n2 log4n log logn I(b)).



1.2. Outline of the paper

There are three main ideas behind our algorithms. First of all, we exploit the strong
connection between matrix multiplication and multiplication of skew polynomials [9, 3, 1].
More specifically, letA[X,Q]a with a∈A denote the ring of skew polynomials such thatX
and Q commute with all elements in A, and such that QX =aXQ. Given n∈N, we also
denote A[X, Q]a,<n,<n = {L ∈A[X, Q]a: degX L < n, degQ L < n}. In section 2, we will
recall how the product of two operators in A[X, Q]a,<n,<n reduces to a finite number of
n× n matrix multiplications. In section 3, we will also study a variant of this reduction.
Assuming that a is a primitive n-th root of unity and denoting by A[X,Q]a,n the quotient
of A[X, Q]a by the relations Xn=Qn=1, we will show that multiplication in A[X, Q]a,n
is essentially equivalent to matrix multiplication.

The second main idea is to use the observation that multiplication in A[X, Q]a,<n,<n

can actually be done much faster if the multiplicative order q of a is small compared to n.
Indeed, in that case X q and Qq lie in the center of A[X, Q]a, so skew polynomials in
A[X, Q]a,<n,<n can be considered as bivariate polynomials in X q and Qq with coefficients
in A[X, Q]a,<q,<q. An analogue of this observation in the setting of differential operators
in Fp[X, ∂/∂X] was first made in [3].

In itself, the above observation does not imply the existence of a fast algorithm for
matrix multiplication, because the problem of multiplying two n × n matrices can not
directly be reduced to the multiplication problem in A[X, Q]a,<n,<n, when a has small
order. The third idea (see section 4) is to force such a reduction by using multi-modular
techniques.

More precisely, we slightly increase n (if necessary) so that n = q1 
 ql for small
numbers q1, 	 , ql which are pairwise coprime. We also pick numbers p1, 	 , pl (again as
small as possible), such that p1,	 , pl, q1,	 , ql are pairwise coprime and qi P φ(pi) for each i.
This latter condition ensures the existence of a primitive qi-th root of unity ai in Z/piZ,
whence the existence of a primitive n-th root of unity a in Z/mZ with m= p1
 pl. Now
the problem of n×n matrix multiplication over Z/mZ first reduces to the multiplication
problem in Z/m Z[X, Q]a,n. We next reduce this problem to l multiplication problems
in the rings Z/piZ[X, Q]ai,n. Since the ai have small orders qi in the rings Z/piZ, these
latter problems can be solved fast. We finally reconstruct the actual product using Chinese
remaindering.

Altogether this proves the existence of a fast matrix product in (Z/mZ)n×n, which can
be further lifted into a fast matrix product in (Z/mkZ)n×n for any k, whence into a fast
matrix product in Zn×n. In order to gain a control over the offset Bn≈ log2m in theorem 1,
it is important to construct “nice” sequences p1,	 , pl, q1,	 , ql, for which p1
 pl remains
small as a function of n. This topic will be discussed in section 5. In practice, there is no
real problem, because prime numbers abound. In theory however, proving the existence
of small p1, 	 , pl, q1, 	 , ql with all required properties relies on non trivial theorems
from number theory. We will first prove the existence of a quite sharp complexity bound
(theorem 2) under the plausible hypothesis that there are many Sophie Germain prime
numbers. We will also prove the existence of a somewhat less sharp bound which holds in
general (theorem 3).

2. Skew polynomial and matrix products

2.1. Skew polynomials and their matrices

Let A be a ring. Given a constant a∈A, we will denote by A[X,Q]a the ring of operators

L =
∑

i,j

Li,jX
iQj , (1)



where X and Q commute with all elements in A, and

QX = aXQ.

An operator L of the form (1) naturally acts on A[X] using

L(Xk) =
∑

i,j

Li,j a
jkX i+k. (2)

Given k, n, r∈N, we denote

A[X]<k = {P ∈A[X]: degP <k}

A[X, Q]a,<n,<r = {L∈A[X, Q]a:degXL<n,degQL<r}.

Any operator L ∈ A[X, Q]a,<n,<r induces a linear mapping of A[X]<k into A[X]<k+n,
and the matrix of this mapping with respect to the canonical bases (1,X ,	 ,Xk+n−1) and
(1,X ,	 , Xk−1) will be denoted by

ML,k+n,k =







L(1)0 
 L(Xk−1)0� �
L(1)k+n−1 
 L(Xk−1)k+n−1





.

In view of (2), we have

ML = Twn,k(ΛL,n,rVa,r,k), (3)

where

ΛL,n,r =





L0,0 
 L0,r−1� �
Ln−1,0 
 Ln−1,r−1



 Va,r,k =











1 1 
 1

1 a 
 ak−1� � �
1 ar−1 
 a(k−1)(r−1)











,

and where Twn,k twists matrices as follows:

Twn,k







c0,0 
 c0,k−1� �
cn−1,0 
 cn−1,k−1





 =















c0,0� 

cn−1,0 c0,k−1
 �

cn−1,k−1















2.2. Multiplying skew polynomials

Given two operators K,L∈A[X, Q]a,<n,<n, we have

MKL,4n,2n = MK,4n,3nML,3n,2n.

Under the assumption that the multiplicative order of a in A is at least 2 n, the matrix
Va,2n,2n is invertible. In that case, we may therefore multiply K and L using

ΛKL,2n,2n = Tw2n,2n
−1 (Twn,3n(ΛK,n,nVn,3n)Twn,2n(ΛL,n,nVa,n,2n))Va,2n,2n

−1 . (4)



Assuming that A is an effective ring (i.e. we have algorithms for performing the ring
operations), let us analyze the complexity of this algorithm in terms of the number of
required operations in A.

We first observe that the operation of multiplying a vector by the matrix Va,r,k with
k> r corresponds to multipoint evaluation of a polynomial of degree <k on the geometric
sequence 1, a, 	 , ar−1. It is known [2] that this operation can be performed in time
OA(MA(r) k/r), where MA(r) denotes the cost of multiplying two polynomials in A[X]<r.
Similarly, the operation of multiplying a vector by the matrix Va,r,r

−1 corresponds to multi-
point interpolation of a polynomial of degree <r on the geometric sequence 1, a,	 , ar−1.
Again, this operation can be performed in time OA(MA(r)) [2]. Clearly, the twisting
operations can be performed in linear time.

Denoting by MMA(n) the cost of multiplying two n × n matrices in An×n, and by
SMA,a(n) the cost of multiplying two skew polynomials in A[X,Q]a,<n,<n, we thus obtain:

Lemma 4. With the above notations, and under the assumption that a has order at
least 2n, we have

SMA,a(n) = OA(MMA(n)+MA(n)n).

We may view (4) as an evaluation-interpolation strategy, written symbolically as

KL = Eval2n,2n
−1 (Evaln,3n(K)Evaln,2n(L)).

The evaluation and interpolation steps require OA(MA(n) n) operations, whereas the inner
product requires OA(MMA(n)) operations.

2.3. The case when the order of a is comparable to n

Let us now show how to generalize the lemma from the previous section to the case when
the order of a is a constant times smaller than 2 n. More precisely, let k be a fixed constant,
and assume that a has order at least r=2 ⌈n/k⌉.

As a preliminary, let us first consider an operator L∈A[X, Q]a,<s,<s with s ∈N and
an integer p∈N. Then there exists a unique operator L′∈A[X, Q]a,<s,<s with

QpL = L′Qp,

and the coefficients of L′ may be computed using O(s2) operations in A using the formula

Li,j
′ = aipLi,j.

Similarly, there exist unique operators L′′, L′′′, L′′′′ ∈A[X, Q]a,<s,<s with LQp= Qp L′′,
X pL=L′′′Xp and LXp=XpL′′′′, whose coefficients can be computed efficiently.

Now consider two operators K,L∈A[X, Q]a,<n,<n. We may decompose them

K =
∑

06i,j<k

X irK[i,j]Q
jr

L =
∑

06i,j<k

X irL[i,j]Q
jr,



with K[i,j], L[i,j] ∈ A[X, Q]a,<r,<r. By what precedes, it takes O(r2 k2) operations to
compute operators K[i,j]

′ and L[i,j]
′ with

K =
∑

06i,j<k

X irQjrK[i,j]
′

L =
∑

06i,j<k

L[i,j]
′ X irQjr.

Using lemma 4, we may compute the k4 products P[i,j ,i′,j ′]
′ = K[i,j]

′ L[i′,j ′]
′ in time

OA((MMA(r) + MA(r) r) k
4). Again using our preliminary, it takes O(k4 r2) opera-

tions to compute all operators P[i,j ,i′,j ′] with

X irQjrP[i,j ,i′,j ′]
′ X i′rQj ′r = X(i+i′)rP[i,j ,i′,j ′]Q

(j+j ′)r.

Adding up the various complexity bounds, we have proved:

Lemma 5. With the above notations, and under the assumption that a has order at
least 2 ⌈n/k⌉, we have

SMA,a(n) = OA(MMA(n) k
2+MA(n)n).

We may still view the present algorithm as a generalized evaluation-interpolation
strategy, written symbolically as

KL = Eval2n,2n;k
−1 (Evaln,3n;k(K)Evaln,2n;k(L)). (5)

This time, the evaluation and interpolation steps requireOA

(

MA

( n

k

) n

k
k2
)

=OA(MA(n) n)

operations (the evaluated structures being the evaluations in the previous sense of the
operators K[i,j]

′ and L[i′,j ′]
′ ), whereas the inner product requires OA

(

MMA

( n

k

)

k4
)

=

OA(MMA(n) k
2) operations.

2.4. The case when a has a small order

The case when the order q of a is small with respect to n is actually even more favourable
from the complexity point of view. Indeed, in this case, both X q and Qq lie in the center
of A[X, Q]a. Setting r= ⌈n/q⌉ and

S = A[X, Q]a,<q,<q,

we may thus rewrite any operator L ∈ A[X, Q]a,<n,<n as a polynomial in S[X q, Qq]
of degrees <r in both X q and Qq. Moreover, the evaluation-interpolation mappings for
operators L∈S extend to S[X q, Qq] in a coefficientwise manner:

Evaln1,n2;k

(

∑

i,j

Li,jX
iqQjq

)

=
∑

i,j

Evaln1,n2;k(Li,j)X
iqQjq.

In our specific case, we may take k = 3 and n1, n2 ∈ {1, 2, 3} r. Given two operator
polynomials K,L∈S[X q, Qq], we may thus multiply them using

KL = Eval2q,2q;3
−1 (Evalq,3q;3(K)Evalq,2q;3(L)).



It takes a time

OA(MA(q) q (n/q)
2) = OA

(

MA(q)
q

n2
)

= OA(MA(n)n)

to compute the evaluations and interpolation in this formula. The inner multiplication
Evalq,3q;3(K)Evalq,2q;3(L) really consists of 81 multiplications of polynomials with O(q)×
O(q) matrix coefficients. Using a fast algorithm for polynomial multiplication, this can be
done in time

OA(MMA(q)MA(n/q)n/q) = OA

(

MMA(q)

q2
MA(n)n

)

.

Putting everything together, this proves:

Lemma 6. With the above notations, and assuming that a has order q < 2n, we have

SMA,a(n) = OA

(

MMA(q)

q2
MA(n)n

)

.

Remark 7. When exploiting the fact that L∈A[X,Q]a,<n,<r actually maps A[X]<l into
A[X]<l+n−1 for any l, it is actually possible to take k = 2 instead of k = 3, so that the
inner multiplication step amounts to only 16 polynomial matrix products instead of 81.

3. Cyclic skew operators and matrix multiplication

3.1. Cyclic skew polynomials and their matrices

Consider the ring A[X, Q]a from section 2.1 and assume that n ∈N is such that an = 1.
In that case, we may define the quotient operator algebra

A[X, Q]a,n = A[X, Q]a/(X
n− 1, Qn− 1).

Any operator L ∈A[X, Q]a,n naturally acts on the space A[X]n=A[X]/(Xn − 1), so we
may again consider its matrix

ML =







L(1)0 
 L(Xn−1)0� �
L(1)n−1 
 L(Xn−1)n−1







with respect to the canonical basis 1,	 , Xn−1. This time, we have

ML = Rotn(ΛLVa,n), (6)

where

ΛL =





L0,0 
 L0,n−1� �
Ln−1,0 
 Ln−1,n−1



 Va,n =











1 1 
 1

1 a 
 an−1� � �
1 an−1 
 a(n−1)2











,



and where Rotn rotates the coefficients of a matrix as follows:

Rotn





c0,0 
 c0,n−1� �
cn−1,0 
 cn−1,n−1



 =















c0,0 cn−1,1 
 c1,n−1

c1,0 c0,1 
 cn−2,n−2

c1,1 
 cn−1,n−2 cn−2,n−1

cn−2,0 
 c0,n−2 cn−1,n−1

cn−1,0 cn−2,1 
 c1,n−2 c0,n−1















If a has order n and n is invertible in A, then Va,n is an FFT matrix of order n, whose
inverse is given by /1 nVa−1,n. We may thus compute ΛL as a function of ML using

ΛL =
1

n
Rotn

−1(ML)Va−1,n. (7)

3.2. The fundamental equivalence

Assume now that A is an effective ring. Assume still that a has order n and that n is
invertible in A. Given K,L∈A[X, Q]a,n, we may then compute KL using

KL =
1

n
Rot−1(Rot(ΛKVa,n)Rot(ΛLVa,n))Va−1,n. (8)

Indeed, for monomial operators K and L of the form X iQj, it is easily checked that

MKL = MKML,

and this identity extends to the general case by bilinearity. In the formula (8), the matrix
multiplications by Va,n and Va−1,n can be done using n FFTs of length n. Inversely, given
two n by n matrices M, N ∈An×n, we may reduce the computation of their product to
the multiplication of two operators in A[X, Q]a,n:

MN =
1

n2
Rot((Rot−1(M)Va−1,n) (Rot

−1(N)Va−1,n)Va,n).

Denoting by MMA(n) the cost of a matrix product in An×n and by CMA(n) the cost of
multiplication in A[X, Q]a,n, we thus obtain the following equivalence:

Lemma 8. With the above notations, we have

CMA(n) = MMA(n)+OA(MA(n)n)

MMA(n) = CMA(n)+OA(MA(n)n).

4. Fast multiplication through modular reduction

4.1. The main algorithm

Let p1,	 , pl, q1,	 , ql be numbers which are pairwise coprime, and such that

qi P φ(pi) (9)

for all i, where φ stands for Euler’s totient function. We will call the sequence p1, 	 , pl,
q1,	 , ql a reductor sequence. Let ai be a primitive qi-th root of unity in Z/piZ for each i
(such roots exist because of the assumption (9)). In practice, we will usually take p1,	 , pl,
q1,	 , ql to be prime powers. If the pi are primes, then (9) reduces to qi P pi− 1.



Setting m= p1
 pl and n= q1
 ql, there exists an a ∈Z/mZ with amod pi= ai for
each i. Since the qi are pairwise coprime, this element a is a primitive n-th root of unity in
Z/mZ. Since the pi and qj are also pairwise coprime, the number n is invertible in Z/mZ.

Now consider the operator algebra (Z/mZ)[X, Q]a,n. The modular reductions

(Z/mZ)[X, Q]a,n �πi

Z/piZ[X, Q]ai,n

imodm � imod pi
X � X

Q � Q

are well-defined ring homomorphisms and we have the Chinese remaindering isomorphism

(Z/mZ)[X, Q]a,n�π=π1×
×πl

Fp1[X, Q]a1,n×
 ×Fpl[X, Q]al,n

L � (π1(L),	 , πl(L)).
Given two operators K,L∈ (Z/mZ)[X, Q]a,n, we now compute their product using

KL = π−1(π(K)π(L)).

Let us analyze the complexity of this method in terms of the number of required operations
in A=Z/mZ. In order to simplify our analysis, we will not exploit the fact that operations
in Z/pi Z are usually easier than operations inA. We will rather use the facts that elements
in Z/piZ can be represented by elements in A and that the ring operations in Z/piZ can
be “mimicked” by the corresponding operations in A.

Theorem 9. Under the above assumptions, we have

CMA(n) = OA

([

MMA(q1)

q1
2

+
 +
MMA(ql)

ql
2

]

MA(n)n

)

= OA((q1+
 + ql)n
2 logn log logn).

Remark. Of course, we understand the complexity bounds OA(T ) as follows: there exists
a universal constant K such that for any pi, qi and ai which satisfy our assumptions, we
have a multiplication algorithm of complexity 6KT .

Proof. The computation of π(K) and π(L) requires n2 reductions modulo pi for each i,
which can be performed in time O(n2 l). In fact, using our representation of elements
in Z/piZ, these reductions are really no-operations.

The inner product π(K) π(L) comes down to the computation of the product
πi(K) πi(L) for each i. By lemma 6, this product πi(K) πi(L) can be computed in time
OA((MMA(qi)/qi

2) MA(n) n). Indeed, we may multiply πi(K) and πi(L) as operators
in (Z/pi Z)[X, Q]a,<n,<n (i.e. forgetting about the relations Xn = Qn = 1), which yields
a product in (Z/piZ)[X, Q]a,<2n,<2n, and then substitute Xn=Qn=1.

The final reconstruction of KL from π(K) π(L) corresponds to the reconstruction of n2

coefficients in Z/mZ from their reductions modulo the pi. Each individual reconstruction
can be done in time OA(l log l)=OA(l logn)=OA(lMA(n)/n) using binary splitting.

Adding up the various complexities, we obtain the result. The extra simplifications of
the main bound occur by using the crude boundMMA(q)=OA(q

3) and the classical bound
MA(n)=OA(n logn log logn). �



4.2. Application to matrix multiplication

The combination of theorem 9 and lemma 8 immediately implies the existence of an efficient
algorithm for n×nmatrix multiplication. Of course, this also implies an efficient algorithm
for n′×n′ matrix multiplication for any n′6n, using zero padding.

Corollary 10. Under the above assumptions, we have

MMA(n
′) = OA

([

MMA(q1)

q1
2 +
 +

MMA(ql)

ql
2

]

MA(n
′)n′

)

OA((q1+
 + ql) (n
′)2 logn′ log logn′),

for any n′6n.

As a next point, we notice that the numbers p1
t ,	 , plt, q1,	 , ql are still pairwise coprime,

and (9) implies

qi P φ(pi
t) = pi

t−1 φ(pi).

Moreover, the primitive qi-th roots of unity ai in Z/piZ can be Newton-Hensel lifted into
primitive qi-th roots of unity âi in Z/pi

t
Z using O(l log t) operations in Z/pi

t
Z. With the

numbers p1,	 , pl, q1,	 , ql and the roots a1,	 , al as our only prior knowledge, this means
that corollary 10 extends to the case when A is replaced by Z/mtZ.

Now let I(b) denote the bit complexity of multiplying two integers in Z<b = {i ∈ Z:

2 |i|< 2b}, and let MI(n, b) denote the bit complexity of multiplying two matrices in Z<b
n×n.

Taking t such that mt>n 4b, we thus obtain:

Corollary 11. With the above notations, we have

MI(n′, b) = O((q1+
 + ql) (n
′)2 logn′ log logn′ I(b))

for any n′6n.

Assume now that we are given an arbitrary number n ∈N. We may take q1, 	 , ql to
be the sequence of the first l prime numbers, where l is minimal with q1 
 ql > n. Since
n>q1 
 ql−1> (l−1)!, we must have l=O(logn/loglogn). Now the prime number theorem
also implies that ql=O(l log l)=O(logn), whence

q1+
 + ql = O(l logn) = O(log2n)

For fixed q1,	 , ql, Dirichlet’s theorem also implies the existence of suitable prime numbers
p1,	 , pl which satisfy our assumptions. We thus conclude:

Theorem 12. There exists a universal constant C such that for each n ∈N, there exists
a Bn∈N such that for all b>Bn, we have

MI(n, b) 6 Cn2 log3n log logn I(b).

5. Computation of reductor sequences

5.1. Optimal reductor sequences for practical purposes

Assume now that we want to optimize corollary 11 for practical purposes. For a given value



of n, we then have to minimize the sum q1+
 + ql under the side conditions that the qi
are pairwise coprime and q1
 ql>n. We have performed an exhaustive computation up to
n=10000, and for a few other large values of n. The results are displayed in tables 1 and 2.

In the statement of theorem 12, it is still somewhat unsatisfactory that we have no
control over the dependence of the offset Bn on n. In order to keep the offset Bn as small
as possible, we have to find sequences p1, 	 , pl, q1, 	 , ql such that q1 + 
 + ql is small,
but p1
 pl also does not grow too fast. For fixed values of q1,	 , ql, we have searched for
corresponding values of p1,	 , pl which minimize the product p1
 pl. The results are again
displayed in tables 1 and 2. Of course, non optimal sequences q1,	 , ql might give rise to
sequences p1,	 , pl for which the product p1
 pl is even lower.

n Best q1,	 , ql q1+
 + ql Best p1,	 , pl p1
 pl
2 2 2 3 3

3 3 3 7 7

4 4 4 5 5

5 2, 3 5 5, 7 35
7 2, 5 7 3, 11 33
11 3, 4 7 7, 5 35
13 3, 5 8 7, 11 77
16 4, 5 9 13, 11 143
21 2, 3, 5 10 7, 13, 11 1001
31 2, 3, 7 12 5, 13, 29 1885
43 3, 4, 5 12 7, 13, 11 1001
61 2, 5, 7 14 3, 11, 29 957
71 3, 4, 7 14 13, 5, 29 1885
85 3, 5, 7 15 13, 11, 29 4147
106 3, 5, 8 16 47, 11, 17 1309
121 4, 5, 7 16 13, 11, 29 4147
141 2, 3, 5, 7 17 17, 13, 11, 29 70499
211 3, 4, 5, 7 19 13, 17, 11, 29 70499
421 2, 3, 7, 11 23 5, 13, 29, 23 43355
463 2, 5, 7, 9 23 13, 11, 29, 19 78793
631 3, 4, 5, 11 23 7, 13, 31, 23 64883
661 3, 5, 7, 8 23 13, 11, 29, 17 70499
841 3, 4, 7, 11 25 13, 5, 29, 23 43355
925 4, 5, 7, 9 25 13, 11, 29, 19 78793
1261 3, 5, 8, 11 27 7, 31, 17, 23 84847
1321 4, 5, 7, 11 27 13, 31, 29, 23 268801
1541 2, 3, 5, 7, 11 28 17, 13, 31, 29, 23 4569617
2311 5, 7, 8, 9 29 11, 29, 17, 19 103037
2521 2, 3, 5, 7, 13 30 17, 19, 11, 29, 53 5460961
2731 3, 4, 5, 7, 11 30 13, 17, 31, 29, 23 4569617
4621 3, 4, 5, 7, 13 32 19, 17, 11, 29, 53 5460961
5461 2, 5, 7, 9, 11 34 13, 31, 29, 19, 23 5107219
6931 3, 5, 7, 8, 11 34 13, 31, 29, 17, 23 4569617
9241 3, 5, 7, 8, 13 36 19, 11, 29, 17, 53 5460961

Table 1. For each n> 2, one example of a sequence of pairwise coprime numbers q1,	 , ql, which
minimizes q1+
 + ql under the side condition q1 
 ql>n. On ranges between two successive values
of n in the table, we may keep using the same best sequence as the latest smaller value of n in the
table. For each fixed sequence q1,	 , ql we also displayed a corresponding sequence p1,	 , pl which
minimizes the product p1
 pl.



n Best q1,	 , ql q1+
 + ql Best p1,	 , pl p1
 pl
10 2, 5 7 3, 11 33
20 4, 5 9 13, 11 143
50 3, 4, 5 12 7, 13, 11 1001
100 3, 5, 7 15 13, 11, 29 4147
200 2, 3, 5, 7 17 17, 13, 11, 29 70499
500 2, 5, 7, 9 23 13, 11, 29, 19 78793
1000 4, 5, 7, 9 25 13, 11, 29, 19 78793
2000 2, 3, 5, 7, 11 28 17, 13, 31, 29, 23 4569617
5000 3, 4, 5, 7, 13 32 19, 17, 11, 29, 53 5460961
10000 3, 5, 7, 8, 13 36 19, 11, 29, 17, 53 5460961
20000 4, 5, 7, 11, 13 40 17, 31, 29, 23, 53 18629977
50000 3, 4, 5, 7, 11, 13 43 19, 17, 31, 29, 23, 53 353969563
100000 3, 5, 7, 8, 11, 13 47 19, 31, 29, 17, 23, 53 353969563
200000 4, 5, 7, 9, 11, 17 53 13, 31, 29, 19, 23, 103 526043557
500000 2, 3, 5, 7, 11, 13, 17 58 19, 37, 31, 29, 23, 53, 103 79351647329
1000000 3, 4, 5, 7, 11, 13, 17 60 19, 37, 31, 29, 23, 53, 103 79351647329
2000000 3, 5, 7, 8, 11, 13, 17 64 19, 31, 29, 41, 23, 53, 103 87930203797
5000000 5, 7, 8, 9, 11, 13, 17 70 31, 29, 41, 19, 23, 53, 103 87930203797
10000000 5, 7, 8, 9, 13, 17, 19 78 11, 29, 41, 37, 53, 103, 191 504571510487
20000000 2, 5, 7, 9, 11, 13, 17, 19 83 31, 41, 29, 37, 23, 53, 103, 191 32705407907021
50000000 4, 5, 7, 9, 11, 13, 17, 19 85 41, 31, 29, 37, 23, 53, 103, 191 32705407907021
100000000 5, 7, 8, 9, 11, 13, 17, 19 89 31, 29, 41, 37, 23, 53, 103, 191 32705407907021

Table 2. A table similar to table 1, but only for some selected values of n. Experimentally
speaking, we notice that the bound p1
 pl6 4n2 is always satisfied.

5.2. Theoretical complexity bounds modulo a conjecture

One attractive approach to show the theoretical existence of good reductor sequences
p1,	 , pl, q1, 	 , ql is to only consider sequences of odd prime numbers with pi = 2 qi + 1
for each i. Prime numbers qi of this type are called Sophie Germain primes and a famous
conjecture in number theory states that there are infinitely many such primes. A quantative
version of this conjecture due to Hardy and Littlewood states that the number ΓN of Sophie
Germain primes smaller than a given number N is asymptotic to

ΓN ∼ C2
N

log2N

where C2 is the “twin prime constant”, approximately 0.660161. Although this conjecture
has not been proved, it is supported by numeric evidence up till N =1012 (see [4] for a nice
survey on this kind of topic).

Proposition 13. Assume that ΓN>CN/log2N for some constant C. Then there exists a
constant K such that for every n>2, there exist Sophie Germain primes q1,	 , ql such that
q1,	 , ql and p1= 2 q1+1,	 , pl= 2 ql+ 1 are pairwise distinct, and such that q1
 ql> n,

q1+
 + ql6K log2n and p1
 pl6K 3ln logn log logn=n1+o(1).

Proof. Let γ1, γ2, 	 be the sequence of Sophie Germain primes in increasing order and
ψ(N)=CN/log2N . From the bound ΓN > ψ(N ), it follows that

γN 6 ⌈ψinv(N )⌉ ∼
1

C
N log2N.

Indeed, assume for contradiction that γN > ⌈ψinv(N )⌉ and let N ′ = ⌈ψinv(N )⌉. Then
ΓN ′6N − 1<N . But ΓN ′> ψ(N ′)= ψ(⌈ψinv(N )⌉)> ψ(ψinv(N))=N .



Let us first prove the proposition except for the condition on p1 
 pl. Let l ≍ log n/
log logn be minimal such that l!>n. Whatever we take for the values of q1,	 , ql, this will
ensure that q1
 ql>n. In fact, we can always take q1,	 , ql in the set {γ1,	 , γ2l}: just keep
taking elements qi in this set, while removing both qi and 2 qi+1 from it. It follows that

q1+
 + ql 6 γ1+
 + γ2l

6 2 l γ2l

= O(
1

C
(2 l)2 log2 (2 l))

= O(log2n).

This proves the proposition except for the last condition.
Now let ℓ6 l be minimal such that q1
 qℓ>n. Then the sequence q1,	 , qℓ still satisfies

the same conditions as before. Moreover,

p1
 pℓ 6 3ℓ q1
 qℓ

6 3ℓn qℓ

6 3ℓnγ2l

= O(3ℓn logn log logn).

This completes the proof of our proposition. �

Theorem 14. Assume that ΓN >CN/log2N for some constant C. Then

MI(n, b) = O(n2 log3n log logn I(b)),

where the bound is uniform in n and b, under the condition that logn=O(b).

Proof. For a given value n∈N, let p1,	 , pl, q1,	 , ql be a reductor sequence as constructed
in the above proposition. On the one hand, we have q1+
 + ql=O(log2n). On the other
hand, we may use corollary 10 in order to compute an n×nmatrix product with coefficients
of bit sizes 6b as soon as the coefficients of the product fit in log m bits (or more bits,
by using a power of m instead). If log n=O(b), then our construction also ensures that
logm= log (p1
 pl)=O(logn)=O(b). Modulo using a power of m if necessary, this means
that we may take logm≍ b. The theorem now follows from corollary 10. �

5.3. An unconditional uniform complexity bound

Let us now show that we can actually remove the conjectural hypothesis on ΓN altogether
from theorem 14, although we have to give in slightly on the sharpness of the estimate
for MI(n, b). We will need the following effective version of Dirichlet’s theorem due to
Linnik [14, 15]:

Theorem 15. Given two numbers a, d∈N \ {0} with a<d and gcd (a, d)= 1, let

p(a, d) = min {a+nd:n∈N, a+nd prime}.

Then there exist positive constants c and L such that

p(a, d) 6 c dL,

for all a and d of the above kind.

It has been shown by Heath-Brown [8] that we may actually take L= 11/2.



Lemma 16. There exists a constant c with the following property: for every n > 2, there
exists a reductor sequence p1,	 , pl, q1,	 , ql such that

n 6 q1
 ql 6 c n log2n
p1
 pl 6 c n6

q1+
 + ql 6 c log3n.

Proof. We compute the sequences q1, 	 , ql and p1, 	 , pl as a function of n using the
following algorithm:

1. Let l7 0 and F07 ∅.

2. If q1
 ql>n, then return p1,	 , pl, q1,	 , ql.
3. Let ql+1=min {q: q prime, q > ql, q � Fl}.

4. Let pl+1= p(1, ql+1)=min {p: p prime, ql+1 P p− 1}.

5. Let Fl+17 Fl∪{pl}∪ {q: q prime, q > ql+1, q P pl+1− 1}.

6. Set l7 l+1 and go to step 2.

In this algorithm, Fl stands for the set of “forbidden prime numbers” after stage l. We claim
that the way we construct these sets ensures that pl+1, ql+1 � {p1, 	 , pl, q1,	 , ql}. Since
q1, q2,	 is increasing by construction, and Fl⊇{p1,	 , pl}, we clearly have ql+1� {p1,	 , pl,
q1, 	 , ql}. Assume for contradiction that pl+1 = pi for some i, so that ql+1 � Fi. By
construction,

Fi ⊇ {q: q prime, q > qi, q P pi− 1}.

Hence, for all primes q > qi with q � Fi, we have q Q pi− 1. In particular, ql+1 Q pi− 1. By
construction, we also have ql+1 P pl+1− 1, whence ql+1 P pi − 1. This contradiction proves
our claim.

By Heath-Brown’s theorem, there exists a c1 for which pi 6 c1 qi
11/2 for all i. In

particular, the set {pi}∪{q: q prime, q > qi, q P pi− 1} contains at most c27 log2 c1+ 13/2
elements for all i. Consequently, Fi contains at most i c2 elements, for all i. In other words,
for every i ∈ N, there exists a j 6 (i c2)

2 for which qi is the j-th prime number. By the
prime number theorem, it follows that there exists a constant c3 such that

qi 6 c3 i
2 log i,

for all i ∈ N. On the other hand, we must have qi > i, so the minimal l for which
q1 
 ql > n satisfies l = O(log n/log log n). In particular, it follows that ql = O(log2 n)
and q1 
 ql = O(n log2 n). Using Heath-Brown’s theorem a second time, it follows that
p1
 pl=O(n6).

Let us finally estimate the sum q1+
 + ql. On the one hand, we have already observed
that l=O(log n/log log n). On the other hand, we recall that q1,	 , ql is increasing, with
ql6 c3 l

2 log l. Consequently, q1+
 + ql=O(l3 log l)=O(log3n). This completes the proof
of our lemma. �

We are now in a position to make the complexity bound in theorem 12 uniform in b.

Theorem 17. For logn=O(b), we have

MI(n, b) 6 O(n2 log4n log logn I(b)).

Proof. Similar to the proof of theorem 14. �



Remark 18. Please recall that, given two integer matrices whose coefficients have bit
sizes 6b, the coefficients of their product have bit sizes 62 b + log2 b (and this bound is
sharp). This makes the condition logn=O(b) in the theorem quite natural.

6. Conclusion

We have given a fast algorithm for matrix multiplication over the integers. Although the
algorithm is not algebraic, it does imply the existence of fast multiplication algorithms
over several other rings, such as finite fields, rings p-adic numbers, the rationals, floating
point numbers (modulo preconditioning), etc. A more detailed discussion of such general-
izations is planned for an upcoming paper, but the ideas are similar to those at the end of
section 5 in [12].

Another interesting question is whether the quasi-optimal complexity can be observed
in practice. This might actually be feasible for large but still realistic sizes n>1000. How-
ever, this will require an implementation in which all subalgorithms are highly optimized
and further improved so as to gain constant or logarithmic factors wherever possible. Let
us briefly mention a few ideas in this direction:

• In section 2.4, instead of viewing elements of A[X, Q]a as polynomials in X q

and Qq, we might also view them as skew polynomials in B[X, Q]a,<q,<q, where
B=A[X q, Qq]. This is especially attractive if there exists a fast evaluation-
interpolation scheme [11, sections 2.1–2.3] for univariate polynomials over A of
degrees <n/q.

• The existence of a fast evaluation-interpolation scheme as above can be forced
by taking the pi in section 4 not too small, so as to guarantee the existence of
geometric progressions of size n/qi modulo pi, and then use [2]. Although this may
be problematic if the coefficients of our original matrices are small, this should not
be a problem as soon as these coefficients get larger.

• Yet another strategy for fast evaluation-interpolation is to pick the pi in 2eN+1 for
some exponent e with 2e>n. In that case, we guarantee the existence of primitive
2e-th roots of unity modulo each pi, and we may use evaluation-interpolation on
TFT-points [10].

• In the proof of theorem 9, it is a pity that we have to consider operators in the
algebraA[X,Q]a,<n,<n and not remain in a “cyclic algebra” all the way along. When
using an evaluation-interpolation scheme for polynomials in X q and Qq, it should
be possible to consider operators in the algebra A[X,Q]a quotiented by relations of
the form X q− ξ and Qq− χ. For the X-variable, this extension should work nicely
and give rise to “homothetic rotations”

Rotn,ξ





c0,0 
 c0,n−1� �
cn−1,0 
 cn−1,n−1



 =















c0,0 ξ cn−1,1 
 ξ c1,n−1

c1,0 c0,1 
 ξ cn−2,n−2

c1,1 
 ξ cn−1,n−2 ξ cn−2,n−1

cn−2,0 
 ξ c0,n−2 ξ cn−1,n−1

cn−1,0 cn−2,1 
 c1,n−2 c0,n−1















.

The Q-variable requires more care. Maybe one can do something by considering
both quotients by Qq− χ and by Qq+ χ.

• In our complexity bounds, we have not fully taken advantage of the fact that oper-
ations in Z/piZ are faster than operations in Z/mZ. It should be possible to gain
a logarithmic factor by performing a more detailed analysis. In a similar way, using
a sharper bound for MI(n, b) could lead to further improvements.



From a more theoretical point of view, we also used the simple bound

MMA(q1)

q1
2

+
 +
MMA(ql)

ql
2

6 q1+
 + ql

in many of our complexity estimates. Of course, using the new algorithm, these bounds can
actually be improved so as to remove one factor OA(log n) from the final bounds (up to
multiplication by iterated logarithms of n). However, we do not think that such improved
bounds are realistic from a practical point of view.
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