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A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period.

In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3.

Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and 2 factors of exponent 7/3. These are the only factors of exponent larger than 2.

The value 7/3 introduces what we call the finite-repetition threshold of the binary alphabet. We conjecture it is 7/4 for the ternary alphabet, like its repetitive threshold.

Introduction

Repetitions in words is a basic question in Theoretical Informatics, certainly because it is related to many applications although it has first been studied by Thue at the beginning of the twentieth century [START_REF] Thue | Über unendliche Zeichenreihen[END_REF] with a pure theoretical objective. Related results apply to the design of efficient string pattern matching algorithm, to text compression methods and entropy analysis, as well as to the study of repetitions in biological molecular sequences among others.

The knowledge of the strongest constraints an infinite word can tolerate help for the design and analysis of efficient algorithms. The optimal bound on the maximal exponent of factors of the word has been studied by Thue and many other authors after him. One of the first discoveries was that an infinite binary word can avoid factors with an exponent larger than 2, called 2 + -powers. This has been extended by Dejean [START_REF] Dejean | Sur un théorème de Thue[END_REF] to the ternary alphabet and her famous conjecture on the repetitive threshold for larger alphabets has eventually been proved recently after a series of partial results by different authors (see [START_REF] Rao | Last cases of Dejean's conjecture[END_REF][START_REF] Currie | A proof of Dejean's conjecture[END_REF] and references therein).

Another constraint is considered by Fraenkel and Simpson [START_REF] Fraenkel | How many squares must a binary sequence contain?[END_REF]: their parameter to the complexity of binary infinite words is the number of squares occurring in them without any restriction on the number of occurrences. It is fairly straightforward to check that no infinite binary word can contain less than three squares and they proved that some of them contain exactly three. Two of these squares appear in the cubes 000 and 111 so that the maximum exponent is 3 in their word. In this article we produce an infinite word with few distinct squares and a smaller maximal exponent.

Fraenkel and Simpson's proof uses a pair of morphisms, one to get an infinite word by iteration, the other to produce the final translation on the binary alphabet. Their result has been proved with different pairs of morphisms by Rampersad et al. [START_REF] Rampersad | Avoiding large squares in infinite binary words[END_REF] (the first morphism is uniform), by Harju and Nowotka [START_REF] Harju | Binary words with few squares[END_REF] (the second morphism accepts any infinite square-free word), and by Badkobeh and Crochemore [START_REF] Badkobeh | An infinite binary word containing only three distinct squares[END_REF] (the simplest morphisms).

In this article we show that we can combine the two types of constraints for the binary alphabet: producing an infinite word whose maximal exponent of its factor is the smallest possible while containing the smallest number of squares. The maximal exponent is 7/3 and the number of squares is 12 to which can be added two words of exponent 7/3.

It is known from Karhumäki and Shallit [START_REF] Karhumäki | Polynomial versus exponential growth in repetitionfree binary words[END_REF] that if an infinite binary word avoids 7/3-powers it contains an infinite number of squares. Proving that it contains more than 12 squares is indeed a matter of simple computation.

Shallit [START_REF] Shallit | Simultaneous avoidance of large squares and fractional powers in infinite binary words[END_REF] has built an infinite binary word avoiding 7/3 + -powers and all squares of period at least 7. His word contains 18 squares.

Our infinite binary word avoids the same powers but contains only 12 squares, the largest having period 8. As before the proof relies on a pair of morphisms satisfying suitable properties. Both morphisms are almost uniform (up to one unit). The first morphism is weakly square-free on a 6-letter alphabet, and the second does not even correspond to a uniquely-decipherable code but admits a unique decoding on the words produced by the first. To get the morphisms, we first examined carefully the structure of long words satisfying the conditions and obtained by backtracking computation. Then, we inferred the morphisms from the regularities found in the words.

After introducing the definitions and main results in the next section, we provide a weakly square-free morphism and the infinite square-free word on 6 letters it generates in Section 3. Section 4 shows how this word is translated into an infinite binary word satisfying the constraints. In the conclusion we define the new notion of finite-repetition threshold and state a conjecture on its value for the 3-letter alphabet.

Repetitions in binary words

A word is a sequence of letters drawn from a finite alphabet. We consider the binary alphabet B = {0, 1}, the ternary alphabet A 3 = {a, b, c}, and the 6-letter alphabet A 6 = {a, b, c, d, e, f}.

A square is a word of the form uu where u is a nonempty (finite) word. A word has period p if its letters at distance p are equal. The exponent of a nonempty word is the quotient of its length over its smallest period. Thus, a square is any word with an even integer exponent.

In this article we consider infinite binary words in which a small number of squares occur.

The maximal length of a binary word containing less than three square is finite. It can be checked that it is 18, e.g. 010011000111001101 contains only 00 and 11. But, as recalled above, this length is infinite if 3 squares are allowed to appear in the word. A simple proof of it relies on two morphisms f and h 0 defined as follows. The morphism f is defined from

A * 3 to itself by    f (a) = abc, f (b) = ac, f (c) = b.
It is known that the infinite word f = f (a) ∞ it generates is square-free (see [START_REF] Lothaire | Combinatorics on Words[END_REF]Chapter 2]). The morphism h 0 is from A * 3 to B * and defined by

   h(a) = 01001110001101, h(b) = 0011, h(c) = 000111.
Then the result is a consequence of the next statement.

Theorem 1 ([1])

The infinite word h 0 = h 0 (f (a) ∞ ) contains the 3 squares 00, 11 and 1010 only. The cubes 000 and 111 are the only factors occurring in h and of exponent larger than 2.

It is impossible to avoid 2 + -powers and keep a bounded number of squares. As proved by Karhumäki and Shallit [START_REF] Karhumäki | Polynomial versus exponential growth in repetitionfree binary words[END_REF], the exponent has to go up to 7/3 to allow the property.

In the two following sections we define two morphisms and derive the properties that we need to prove the next statement.

Theorem 2 There exists an infinite binary word whose factors have an exponent at most 7/3 and that contains 12 squares, the fewest possible.

Our infinite binary word contain the 12 squares 0 2 , 1 2 , (01) 2 , (10) 2 , (001) 2 , (010) 2 , (011) 2 , (100) 2 , (101) 2 , (110) 2 , (01101001) 2 , (10010110) 2 , and the two words 0110110 and 1001001 of exponent 7/3.

Proving that it is impossible to have less than 12 squares in the previous statement results from the next table. It has been obtained by pruned backtracking sequential computation that avoids exhaustive search. It shows the maximal length of binary words whose factors have an exponent at most 7/3, for each number s of squares, 0 ≤ s ≤ 11.
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In this section we consider a specific morphism used for the proof of Theorem 2. It is called g and defined from A * 6 to itself by:

             g(a) = abac, g(b) = babd, g(c) = eabdf, g(d) = fbace, g(e) = bace, g(f) = abdf.
We prove below that the morphism is weakly square-free in the sense that g = g ∞ (a) is an infinite square-free word, that is, all its finite factors have an exponent smaller than 2. Note that however it is not square-free since for example g(cf) = eabdfabdf contains the square (abdf) 2 . This prevents from using characterisation of square-freeness of the morphism, or equivalently of the fixed points of the morphism. As far as we know only an ad hoc proof is possible.

The set of codewords g(a)'s (a ∈ A 6 ) is a prefix code and therefore a uniquely-decipherable code. Note also that any occurrence of abac in g(w), for w ∈ A * 6 , uniquely corresponds to an occurrence of a in w. The proof below relies on the fact that not all doublets and triplets (words of length 2 and 3 respectively) occur in g, as the next statements show.

Lemma 1 The set of doublets occurring in g is D = {ab, ac, ba, bd, cb, ce, da, df, ea, fb}.

Proof. Note that all letters of A 6 appear in g. Then doublets ab, ac, ba, bd, ce, df, ea, fb appear in g because they appear in the images of one letter. The images of these doublets generate two more doublets, cb and da, whose images do not create new doublets.

Lemma 2

The set of triplets in g is T = {aba, abd, acb, ace, bab, bac, bda, bdf, cba, cea, dab, dfb, eab, fba}.

Proof. Triplets appear in the images of a letter or of a doublet. Triplets found in images of one letter are: aba, abd, ace, bab, bac, bdf, eab, fba. The images of doublets occurring in g, in set D of Lemma 1, contain the extra triplets: acb, bda, cba, cea, dab, dfb.

Table 1: Gaps of abac: words between consecutive occurrences of abac in g. They are images of gaps between consecutive occurrences of a.

g(b)

= babd 4 g(cb)

= eabdfbabd 9 g(bd)

= babdfbace 9 g(ce)

= eabdfbace 9 g(bdfb) = babdfbaceabdfbabd 17

To prove that the infinite word g is square-free we first show that it contains no square with less than four occurrences of the word g(a) = abac. Then, we show it contains no square with at least four occurrences of it. The word abac is chosen because its occurrences in g correspond to g(a) only, so they are used to synchronise the parsing of the word according to the codewords g(a)'s.

Lemma 3 No square in g can contain less than four occurrences of abac.

Proof. Assume by contradiction that a square ww in g contains less than four occurrences of abac. Let x be the shortest word whose image by g contains ww.

Then x is a factor of g that belongs to the set a((A 6 \ {a}) * a) 5 . Since two consecutive occurrences of a in g are separated by a string of length at most 4 (the largest such string is indeed bdfb as a consequence of Lemma 2), the set is finite.

The square-freeness of all these factors has been checked via an elementary implementation of the test, which proves the result.

Proposition 1 No square in g can contain at least four occurrences of abac.

Proof. The proof is by contradiction: let k be the maximal integer for which g k (a) is square-free and let ww be a square occurring in g k+1 (a) and containing at least 4 occurrences of abac. Distinguishing several cases according to the words between consecutive occurrences of abac (see Table 1), we deduce that g k (a) is not square-free, the contradiction.

The square ww can be written

v 0 (abac • • • abac)u 1 v 1 (abac • • • abac)u 2
where v 0 , u 1 , v 1 , and u 2 contain no occurrence of abac. It occurs in the image of a factor of g. The central part of w starting and ending with abac is the image of a unique word U factor of g k (a) due to the code property:

g(U ) = v -1 0 wu -1 1 = v -1 1 wu -1 2 .
We split the proof in two parts according to whether abac occurs in u 1 v 1 or not.

No abac in u 1 v 1 . We consider five cases according to the value of u 1 v 1 , the gap of abac (see Table 1).

1.

u 1 v 1 = babd corresponds to g(b) only. If either u 1 or v 1 is empty, then v 0 or u 2 is g(b)
, in either case we get bU bU or U bU b that are squares. Else v 0 has a suffix d so it belongs to g(b), and again bU bU is a square in g.

2. u 1 v 1 = eabdfbabd corresponds to g(cb)
only. An occurrence of cb always belongs to g(ab) therefore U has a prefix abd and a suffix aba, and the letter after aba is c. If v 1 is empty, u 2 has a prefix eabdfbabd so it is g(cb) and again U cbU cb is a square. If v 1 is not empty then v 0 has a suffix d, suffix of g(b), therefore bU cbU c is a square.

3. u 1 v 1 = babdfbace corresponds to g(bd). The word abda is a factor of g(ba) only so U has a prefix aba and a suffix ba. If |u 1 | = 0, v 0 = babdfbace can only be g(bd) so bdU bdU is a square. Otherwise u 2 must have a prefix b; since U has a suffix ba the next letter after it is either b or c; as only g(b) is prefixed by b the letter is b so u 2 has a prefix or is a prefix of g(b), and we know that bab is always followed by d thus U bdU bd is a square.

4. u 1 v 1 = eabdfbace corresponds to g(ce) only. If u 1 is empty, v 0 is g(ce)
so ceU ceU is a square. Otherwise, u 2 has a prefix or is a prefix of g(c); the next letter after g(c) is either b or e; (see Lemma 1); if it is b the right-most U has a suffix aba but the left-most U has a suffix fba, which cannot be. Therefore the letter after c is e and U ceU ce is a square.

5

.

u 1 v 1 = babdfbaceabdfbabd. If |v 1 | > 12, v 0 has a suffix g(dfb)
and the letter before it is b, so bdfbU bdfbU is a square. If 0 < |v 1 | ≤ 12, then |u 1 | ≥ 5, so u 2 has a prefix or is a prefix of g(bd) so the next letter is either a or f. If it is a the right-most U has a suffix ba but v 0 is a suffix of or has a suffix g(b); the letter before it is either g(c) or g(f); if it is c then U has a prefix abd and bdfbabd is from the concatenation of g(c) and g(b) or g(dfb); in either case the left occurrence of U will have ea as a suffix, a contradiction since fbU bdfbU bd and U bdfbU bdfb are both squares.

An occurrence of abac in u 1 v 1 . Then the suffix of u 1 is either aba, ab or a while the respective prefix of v 1 is c, ac or bac. Note that c is followed either by b or e (Lemma 1) and that cb occurs only in the image of ab. Then if the occurrence of abac is followed by b, the occurrence of cb in v 0 is preceded by aba, and then there is a square starting 1, 2 or 3 positions before the occurrence of ww, which brings us back to the first case. Therefore, abac is followed by e.

The occurrence of abace comes from g(ac), and by Lemma 2 u 1 v 1 contains an occurrence of g(bac). So, the occurrence of abace is preceded by d, and since da occurs only in the image of ba, the occurrence of da in u 2 is followed by bac, which yields a square starting 1, 2 or 3 positions after the occurrence of ww. Again this takes us back to the first case.

In all cases we deduce the existence of a square in g k (a), which is a contradiction with the definition of k. Therefore there is no square in g containing at least four occurrences of abac.

The next corollary is a direct consequence of Lemma 3 and Proposition 1.

Corollary 1

The infinite word g is square-free, or equivalently, the morphism g is weakly square-free.

Binary translation

The second part of the proof of Theorem 2 consists in showing that the special infinite square-free word on 6 letters introduced in the previous section can be transformed into the desired binary word. This is done with a second morphism

h from A * 6 to B * defined by              h(a) = 10011, h(b) = 01100, h(c) = 01001, h(d) = 10110, h(e) = 0110, h(f) = 1001.
Note that the codewords of h do not form a prefix code, nor a suffix code, nor even a uniquely-decipherable code! We have for example g(ae) = 10011•0110 = 1001 • 10110 = g(fd). However, parsing the word h(y) when y is a factor of g is unique due to the absence of some doublets and triplets in it (see Lemmas 1 and 2). For example fd does not occur, which induces the unique parsing of 100110110 as 10011 • 0110.

Proposition 2

The infinite word h = h(g ∞ (a)) contains no factor of exponent larger than 7/3. It contains the 12 squares 0 2 , 1 2 , (01) The proof is based on the fact that occurrences of 10011 in h identify occurrences of a in g and on the unique parsing mentioned above. It proceeds by considering several cases according to the gaps between consecutive occurrences of 10011 (see Table 2), associated with gaps between consecutive occurrences of a in g, which leads to analyse paths in the graph of Figure 1.

Proof. We show that if h would contain a square not in the list it would come from a square in g, which cannot be since g is square-free (Corollary 1).

Suppose h contains the square w 2 . It is a factor of h(g k (a)), for some integer k and can be written v 0 (h(a) Table 2: Gaps between consecutive occurrences of 10011 in h.

• • • h(a))u 1 v 1 (h(a) • • • h(a))u 2 .
h(b) = 01100 5 h(cb) = 0100101100 10 h(bd) = 0110010110 10 h(ce) = 010010110 9 h(bdfb) = 0110010110100101100 19
w is the image of a unique square-free factor U of g k (a) due to the unique parsing mentioned above:

h(U ) = (h(a) • • • h(a)) = v -1 0 wu -1 1 = v -1 1 wu -1 2 .
We proceed through different cases as in the proof of Proposition 1.

No h(a) in u 1 v 1 .

1. u 1 v 1 = 01100 corresponds to h(b) only.

If |v 1 | > 1, then v 0 belongs to h(b), bU bU is a square. Else |u 1 | ≥ 4 so u 2 belongs to h(b), it cannot belong to h(e) since ae is not a factor of g, therefore U bU b is a square of g.

2. u 1 v 1 = 0110010110 corresponds to h(bd). v 0 (h(a) • • • h(a)) h(bd) (h(a) • • • h(a)) u 2
the word abda is a factor of g(ba) only, so U has a prefix abac and a suffix ba (Note that U cannot be aba since ababdaba is not a factor of g).

v 0 (h(abac) • • • h(ba)) h(bd) (h(abac) • • • h(ba)) u 2
If u 2 comes from or has a prefix h(b) then the letter after bab is always d so we have the square U bdU bd. Then u 2 is a prefix of or has a prefix h(c), the longest common prefix (LCP) of h(c) and h(b) is 01, so v 0 has a suffix 10010110, which is a suffix of h(bd) or h(ce). If v 0 comes from h(bd) then we have the square bdU bdU . So v 0 is a suffix of h(ce) The sign XX shows that the particular branch of the trie terminates because either a square occurs or the sequence is not a factor of g. The sign X on the other hand represents the termination of a particular branch as a consequence of the discontinuation of the corresponding branch in the other trie. If we continue these tries we will have: so we have the same situation as at the starting point; but U is shorter in this case, therefore if we continue this process we should have ce abac babd fbace abdf babd abac babd fbace abdf bace a but abdf bace is the image of fe that is not in D (Lemma 1).

h(ce) (h(abac) • • • h(ba)) h(bd) (h(abac) • • • h(ba)) h(c).
3. u 1 v 1 = 0100101100 corresponds to h(cb).

The word acba is a factor of g(ab) only, so U has a prefix abd and a suffix aba: v 0 (h(abd) . . . h(aba)) h(cb) (h(abd) . . . h(aba)) u 2

The word u 2 comes from or has a prefix h(c). If the letter after it is b, we have the square U cbU cb.

Otherwise u 2 comes from or has a prefix h(ce). If v 0 comes from or has a suffix h(b) then we have the square bU cbU c.

Therefore the letter before U is e preceded by c, i.e. the string before the left U is ce: Now we have the same situation as in the previous case h(g(ce)) (h(g(abac)) . . . h(g(ba))) h(g(bd)) (h(g(abac)) . . . h(g(ba))) h(g(c)).

h(ce) (h(abd) . . . h(aba)) h(cb) (h(abd) . . . h(aba)) h(ce).

u

1 v 1 = 010010110 corresponds to h(ce) only.
Before c is always ba (Lemma 2) and after e is ab (Lemma 2), so ab is a prefix of U and ba is a suffix of U :

v 0 (h(ab) . . . h(ba)) h(ce) (h(ab) . . . h(ba)) u 2 .
(i): u 2 belongs to h(cb) since we cannot have U ceU ce and the letter after c is b or e (Lemma 1):

v 0 (h(ab) . . .

h(ba)) h(ce) (h(ab) . . . h(ba)) h(cb)

The letter before bacb is a so: v 0 (h(ab) . . . h(aba)) h(ce) (h(ab) . . . h(aba)) h(cb).

NOTE: U is not aba since abaceabacb is not a factor of g k (a). Now abace is a prefix of the image of ac so U has a prefix abdf and the word before it is either ce or b; the first choice gives the square ceU ceU and the second choice: This is the same situation as the next case and we will see that after going one step back it brings us back to this case again. Now we are exactly in the same situation as at the beginning except that the length of the word X = abdf . . . a is shorter than U . Repeating this process enough times we should see that the word babd fbace abac babd abac eabdf bace abac babd aba which is the image of bdabaceaba, is not a factor of g k (a).

h(b) (h(abdf) . . . h(aba)) h(ce) (h(abdf) . . . h(aba)) h(cb).
(ii): u 2 belongs to h(b) (the LCP of h(c) and h(b) is 01) so v 0 must have a suffix 0010110, which belongs to h(bd) because if it belongs to h(ce) then ceU ceU is a square. If u 2 belongs to h(c), the LCP of h(c) and h(b) is 01 so u 0 must have a suffix 10010110100101100, therefore u 0 belongs to h(bdfb). But bdfbU bdfbU is a square and a factor of g k (a); a contradiction, so u 2 belongs to or has a prefix h(b). We have two choices here.

(i): the next word after the right occurrence of U is ba. The LCP of h(bd) and h(ba) is 10, u 0 has suffix of 110100101100, so it either belongs to h(dfb) or h(acb). The first case gives that dbfU bdbfU b is a square and a factor of g k (a), a contradiction. So u 0 belongs to h(acb): Now this is the next case so if we go back enough steps we should see that the length of U decreases and at the end we get ac babd abac eabdf babd abac eaba but this is not a factor of g k (a), a contradiction.

(ii): the word after U is bd. Now here the only possible letter after abd is a since if it is f it is a prefix of fb so we have U bdfbU bdfb, a contradiction. As the LCP of h(bdfb) and h(bda) is 01100101101001 u 0 must have a suffix 01100 so it can belong to h(ab) or h(acb).

(I):

h(ab) (h(a) . . . h(a)) h(bdfb) (h(a) . . . h(a)) h(bda).

Only using D, T and the Figure 1 we can continue building U , h(ab) (h(ace) . . . h(ba)) h(bdfb) (h(acea) . . . h(ba)) h(bda).

Continuing further we get:

h(abac eabdf babd abac . . . abac babd fbace abdf babd abac . . . abac babda).

This is the image of h(g(acb a . . . a bdfb a . . . a ba))

and we are back to the case above.

(II): h(acb) (h(a) . . . h(a)) h(bdfb) (h(a) . . . h(a)) h(bda).

Using the same method we build the word U : ac b abd . . . ba bd fb ace . . . ba bd a.

Here we cannot go further as U cannot have abd nor ace as prefixes at the same time.

An occurrence of h(a) in u 1 v 1 . Looking at Figure 1, the image of the concatenation of two connected nodes (distance 1 arrow) are the possibilities for u 1 v 1 h(a), but note that the second period of the square must start within h(a), starting point of the arrow, otherwise it is one of the cases above. If the lengths of both nodes are larger than 2 then by unique parsing we are bound to have a square in g k (a) and get a contradiction. So we have to consider only the four cases where one of the nodes is ba:

1. u 1 v 1 = h(bacb) = 01100100110100101100, so u 2 must have a prefix h(b) and u 0 a suffix of h(cb), before cb is always a, so acbU bacbU b is a square in g k (a).

2. u 1 v 1 = h(bace) = 0110010011010010110, so u 2 must have a prefix h(b) and u 0 a suffix h(ce), before ce is always a, so aceU baceU b is a square in g k (a).

3. u 1 v 1 = h(ceab) = 0100101101001101100, so u 2 must have a prefix of h(ce) and u 0 a suffix of h(b), after ce is always a, so bU ceabU cea is a square in g k (a).

4. u 1 v 1 = h(bdab) = 01100101101001101100, so using tries as before shows that after enough backward iteration we should have fbace abdf babd abac babd abac eabdf babd abac babd which contains a square.

In all cases the conclusion is that we get a square in g k (a), a contradiction with the definition of k. This completes the proof of Proposition 2.

Theorem 2 follows immediately from Proposition 2.

Conclusion

The constraint on the number of squares imposed on binary words slightly differs from the constraint considered by Shallit [START_REF] Shallit | Simultaneous avoidance of large squares and fractional powers in infinite binary words[END_REF]. The squares occurring in his word have period smaller than 7. Our word contains less squares but their maximal period is 8.

Looking at repetitions in words on larger alphabets, the subject introduces a new type of threshold, that we call the finite-repetitions threshold (FRt). For the alphabet of a letters, FRt(a) is defined as the smallest rational number for which there exists an infinite word avoiding FRt(a) + -powers and containing a finite number of r-powers, where r is Dejean's repetitive threshold. Karhumäki and Shallit results as well as ours show that FRt(2) = 7/3. Our result additionally proves that the associated minimal number of squares is 12.

Computation shows that the maximal length of (7/4) + -free ternary word with only one 7/4-repetition is 102. This leads us state the following conjecture, which has been tested up to length 20000.

Conjecture 1

The finite-repetitions threshold of 3-letter alphabet is 7 4 and the associated number of 7 4 -powers is 2.

Values for larger alphabets remain to be explored.
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