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On the Maximal Sum of Exponents of Runs in a String

A run is an inclusion maximal occurrence in a string (as a subinterval) of a repetition v with a period p such that 2p ≤ |v|. The exponent of a run is defined as |v|/p and is ≥ 2. We show new bounds on the maximal sum of exponents of runs in a string of length n. Our upper bound of 4.1 n is better than the best previously known proven bound of 5.6 n by Crochemore & Ilie (2008). The lower bound of 2.035 n, obtained using a family of binary words, contradicts the conjecture of Kolpakov & Kucherov (1999) that the maximal sum of exponents of runs in a string of length n is smaller than 2n.

Introduction

Repetitions and periodicities in strings are one of the fundamental topics in combinatorics on words [START_REF] Berstel | Combinatorics on words: a tutorial[END_REF][START_REF] Lothaire | Combinatorics on Words[END_REF]. They are also important in other areas: lossless compression, word representation, computational biology, etc. In this paper we consider bounds on the sum of exponents of repetitions that a string of a given length may contain. In general, repetitions are studied also from other points of view, like: the classification of words (both finite and infinite) not containing repetitions of a given exponent, efficient identification of factors being repetitions of different types and computing the bounds on the number of various types of repetitions occurring in a string. The known results in the topic and a deeper description of the motivation can be found in a survey by Crochemore et al. [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF].

The concept of runs (also called maximal repetitions) has been introduced to represent all repetitions in a string in a succinct manner. The crucial property of runs is that their maximal number in a string of length n (denoted as Kolpakov & Kucherov [10]. This fact is the cornerstone of any algorithm computing all repetitions in strings of length n in O(n) time. Due to the work of many people, much better bounds on ρ(n) have been obtained. The lower bound 0.927 n was first proved by Franek & Yang [START_REF] Franek | An asymptotic lower bound for the maximal number of runs in a string[END_REF]. Afterwards, it was improved by Kusano et al. [START_REF] Kusano | New lower bounds for the maximum number of runs in a string[END_REF] to 0.944565 n employing computer experiments, and very recently by Simpson [START_REF] Simpson | Modified Padovan words and the maximum number of runs in a word[END_REF] to 0.944575712 n. On the other hand, the first explicit upper bound 5 n was settled by Rytter [START_REF] Rytter | The number of runs in a string: Improved analysis of the linear upper bound[END_REF], afterwards it was systematically improved to 3.48 n by Puglisi et al. [START_REF] Puglisi | How many runs can a string contain?[END_REF], 3.44 n by Rytter [START_REF] Rytter | The number of runs in a string[END_REF], 1.6 n by Crochemore & Ilie [2, 3] and 1.52 n by Giraud [START_REF] Giraud | Not so many runs in strings[END_REF]. The best known result ρ(n) ≤ 1.029 n is due to Crochemore et al. [START_REF] Crochemore | Towards a solution to the "runs" conjecture[END_REF], but it is conjectured [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF] that ρ(n) < n. Some results are known also for repetitions of exponent higher than 2. For instance, the maximal number of cubic runs (maximal repetitions with exponent at least 3) in a string of length n (denoted ρ cubic (n)) is known to be between 0.406 n and 0.5 n, see Crochemore et al. [START_REF] Crochemore | On the maximal number of cubic runs in a string[END_REF].

ρ(n)) is O(n), see
A stronger property of runs is that the maximal sum of their exponents in a string of length n (notation: σ(n)) is linear in terms of n, see Kolpakov & Kucherov [START_REF] Kolpakov | On the sum of exponents of maximal repetitions in a word[END_REF]. It has applications to the analysis of various algorithms, such as computing branching tandem repeats: the linearity of the sum of exponents solves a conjecture of [START_REF] Gusfield | Simple and flexible detection of contiguous repeats using a suffix tree (preliminary version)[END_REF] concerning the linearity of the number of maximal tandem repeats and implies that all can be found in linear time. For other applications, we refer to [START_REF] Kolpakov | On the sum of exponents of maximal repetitions in a word[END_REF]. The proof that σ(n) < cn in Kolpakov and Kucherov's paper [START_REF] Kolpakov | On the sum of exponents of maximal repetitions in a word[END_REF] is very complex and does not provide any particular value for the constant c. A bound can be derived from the proof of Rytter [START_REF] Rytter | The number of runs in a string: Improved analysis of the linear upper bound[END_REF] but he mentioned only that the bound that he obtains is "unsatisfactory" (it seems to be 25 n). The first explicit bound 5.6 n for σ(n) was provided by Crochemore and Ilie [START_REF] Crochemore | Maximal repetitions in strings[END_REF], who claim that it could be improved to 2.9 n employing computer experiments. As for the lower bound on σ(n), no exact values were previously known and it was conjectured [START_REF] Kolpakov | On maximal repetitions in words[END_REF][START_REF] Kolpakov | On the sum of exponents of maximal repetitions in a word[END_REF] that σ(n) < 2n.

In this paper we provide an upper bound of 4.1 n on the maximal sum of exponents of runs in a string of length n and also a stronger upper bound of 2.5 n for the maximal sum of exponents of cubic runs in a string of length n. As for the lower bound, we bring down the conjecture σ(n) < 2n by providing an infinite family of binary strings for which the sum of exponents of runs is greater than 2.035 n.

Preliminaries

We consider words (strings) u over a finite alphabet Σ, u ∈ Σ * ; the empty word is denoted by ε; the positions in u are numbered from 1 to |u|. For u = u 1 u 2 . . . u m , let us denote by u[i . . j] a factor of u equal to u i . . . u j (in particular

u[i] = u[i . . i]). Words u[1 .
. i] are called prefixes of u, and words u[i . . |u|] suffixes of u.

We say that an integer p is the (shortest) period of a word u = u 1 . . . u m (notation: p = per(u)) if p is the smallest positive integer such that u i = u i+p holds for all 1 ≤ i ≤ mp. We say that words u and v are cyclically equivalent (or that one of them is a cyclic rotation of the other) if u = xy and v = yx for some x, y ∈ Σ * .

A run (also called a maximal repetition) in a string u is an interval [i .

. j] such that:

the period p of the associated factor u[i . . j] satisfies 2p ≤ ji + 1, -the interval cannot be extended to the right nor to the left, without violating the above property, that is,

u[i -1] = u[i + p -1] and u[j -p + 1] = u[j + 1].
A cubic run is a run [i . . j] for which the shortest period p satisfies 3p ≤ ji + 1.

For simplicity, in the rest of the text we sometimes refer to runs and cubic runs as to occurrences of the corresponding factors of u. The (fractional) exponent of a run is defined as (ji + 1)/p. For a given word u ∈ Σ * , we introduce the following notation:

ρ(u) and ρ cubic (u) are the numbers of runs and cubic runs in u resp.

σ(u) and σ cubic (u) are the sums of exponents of runs and cubic runs in u resp.

For a non-negative integer n, we use the same notations ρ(n), ρ cubic (n), σ(n) and σ cubic (n) to denote the maximal value of the respective function for a word of length n.

3 Lower bound for σ(n)

Tables 1 and 2 list the sums of exponents of runs for several words of two known families that contain very large number of runs: the words x i defined by Franek and Yang [START_REF] Franek | An asymptotic lower bound for the maximal number of runs in a string[END_REF] (giving the lower bound ρ(n) ≥ 0.927 n, conjectured for some time to be optimal) and the modified Padovan words y i defined by Simpson [START_REF] Simpson | Modified Padovan words and the maximum number of runs in a word[END_REF] (giving the best known lower bound ρ(n) ≥ 0.944575712 n). These values have been computed experimentally. They suggest that for the families of words x i and y i the maximal sum of exponents could be less than 2n. We show, however, a lower bound for σ(n) that is greater than 2n.

Theorem 1. There are infinitely many binary strings w such that σ(w) |w| > 2.035.

Proof. Let us define two morphisms φ : {a, b, c} → {a, b, c} and ψ : {a, b, c} → {0, 1} as follows:

φ(a) = baaba, φ(b) = ca, φ(c) = bca ψ(a) = 01011, ψ(b) = ψ(c) = 01001011
We define w i = ψ(φ i (a)). Table 3 4 Upper bounds for σ(n) and σ cubic (n)

In this section we utilize the concept of handles of runs as defined in [START_REF] Crochemore | On the maximal number of cubic runs in a string[END_REF]. The original definition refers only to cubic runs, but here we extend it also to ordinary runs. Let u ∈ Σ * be a word of length n. Let us denote by P = {p 1 , p 2 , . . . , p n-1 } the set of inter-positions in u that are located between pairs of consecutive letters of u. We define a function H assigning to each run v in u a set of some interpositions within v (called later on handles) -H is a mapping from the set of runs occurring in u to the set 2 P of subsets of P . Let v be a run with period p and let w be the prefix of v of length p. Let w min and w max be the minimal and maximal words (in lexicographical order) cyclically equivalent to w. H(v) is defined as follows: a) if w min = w max then H(v) contains all inter-positions within v, b) if w min = w max then H(v) contains inter-positions between consecutive occurrences of w min in v and between consecutive occurrences of w max in v.

Note that H(v) can be empty for a non-cubic-run v. Proofs of the following properties of handles of runs can be found in [START_REF] Crochemore | On the maximal number of cubic runs in a string[END_REF]:

1. Case (a) in the definition of H(v) implies that |w min | = 1.

2. H(v 1 ) ∩ H(v 2 ) = ∅ for any two distinct runs v 1 and v 2 in u.

To prove the upper bound for σ(n), we need to state an additional property of handles of runs. Let R(u) be the set of all runs in a word u, and let R 1 (u) and R ≥2 (u) be the sets of runs with period 1 and at least 2 respectively.

Lemma 1. If v ∈ R 1 (u) then σ(v) = |H(v)| + 1. If v ∈ R ≥2 (u) then ⌈σ(v)⌉ ≤ |H(v)| 2 + 3.
Proof. For the case of v ∈ R 1 (u), the proof is straightforward from the definition of handles. In the opposite case, it is sufficient to note that both words w k min and w k max for k = ⌊σ(v)⌋ -1 are factors of v, and thus

|H(v)| ≥ 2 • (⌊σ(v)⌋ -2).

⊓ ⊔

Now we are ready to prove the upper bound for σ(n). In the proof we use the bound ρ(n) ≤ 1.029 n on the number of runs from [START_REF] Crochemore | Towards a solution to the "runs" conjecture[END_REF].

Theorem 2. The sum of the exponents of runs in a string of length n is less than 4.1 n.

Proof. Let u be a word of length n. Using Lemma 1, we obtain: 

v∈R(u) σ(v) = v∈R1(u) σ(v) + v∈R ≥2 (u) σ(v) ≤ v∈R1(u) (|H(v)| + 1) + v∈R ≥2 (u) |H(v)| 2 + 3 = v∈R1(u) |H(v)| + |R 1 (u)| + v∈R ≥2 (u) |H(v)| 2 + 3 • |R ≥2 (u)| ≤ 3 • |R(u)| + A + B/2, (1) 

⊓ ⊔

A similar approach for cubic runs, this time using the bound of 0.5 n for ρ cubic (n) from [START_REF] Crochemore | On the maximal number of cubic runs in a string[END_REF], enables us to immediately provide a stronger upper bound for the function σ cubic (n).

Theorem 3. The sum of the exponents of cubic runs in a string of length n is less than 2.5 n.

Proof. Let u be a word of length n. Using same inequalities as in the proof of Theorem 2, we obtain:

v∈R cubic (u) σ(v) < 3 • |R cubic (u)| + n ≤ 3 • ρ cubic (n) + n ≤ 3 • 0.5 n + n = 2.5 n,
where R cubic (u) denotes the set of all cubic runs of u.

⊓ ⊔
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 11 Fig.1. An example of a word with two highlighted runs v1 and v2. For v1 we have w min1 = w max1 and for v2 the corresponding words are equal to b (a one-letter word). The inter-positions belonging to the sets H(v1) and H(v2) are pointed by arrows

  where A = v∈R1(u) |H(v)| and B = v∈R ≥2 (u) |H(v)|. Due to the disjointness of handles of runs (the second property of handles), A + B < n, and thus, A + B/2 < n. Combining this with (1), we obtain:v∈R(u) σ(v) < 3 • |R(u)| + n ≤ 3 • ρ(n) + n ≤ 3 • 1.029 n + n < 4.1 n.

Table 1 .

 1 Number of runs and sum of exponents of runs in Franek & Yang's [7] words xi.

	shows the sums of exponents of runs in words
	w i , computed experimentally.	
	Clearly, for any word w = (w 8 ) k , k ≥ 1, we have
	σ(w) |w|	> 2.035.
		⊓ ⊔

Table 2 .

 2 Number of runs and sum of exponents of runs in Simpson's[START_REF] Simpson | Modified Padovan words and the maximum number of runs in a word[END_REF] modified Padovan words yi.

	i	|wi|	σ(wi) σ(wi)/|wi|
	1	31	47.10	1.5194
	2	119	222.26	1.8677
	3	461	911.68	1.9776
	4	1751	3533.34	2.0179
	5	6647	13498.20	2.0307
	6	25205	51264.37	2.0339
	7	95567	194470.30	2.0349
	8	362327	737393.11	2.0352
	9 1373693	2795792.39	2.0352
	10 5208071 10599765.15	2.0353

Table 3 .

 3 Sums of exponents of runs in words wi.