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Abstract We study the way the unitary evolution of spin 1/2 particules can
be represented in a counterfactual definiteness setting. More precisely, by repre-
senting the state of such a particule by a triplet of values corresponding to the
supposedly pre-existing outcomes of some measurements (those corresponding
to the three Pauli matrices), we analyse the evolution of our representation when
some unitary gates (namely, the Hadamard gate, the π/2 phase shifter and the
controlled-not) are applied. Then, we describe in terms of triplets the creation
of an EPR pair and discuss the possibility of having this representation comply
with the predictions of quantum mechanics. Finally, we show that this is not
possible unless one of the assumptions used to build our model is dropped.

1 Introduction

Starting with the seminal article of Einstein, Podolsky and Rosen [Einstein et al., 1935],
many efforts have been done in attempting to complement the orthodox formu-
lation of quantum mechanics with some supplemental data, called hidden vari-

ables, in order to provide a mechanism that could explain the way measurement
outcomes are obtained without renouncing to fundamental physical assumptions
such as those of locality or determinism.

A first central result in this domain is provided by Bell’s inequalities [Bell, 1964]
(reprinted in [Bell, 1987]) which states that one cannot obtain any local hidden
variables theory complying with quantum mechanics prediction. This inher-
ently probabilistic result has giving birth to several variants, including non-
probabilistic ones [Clauser et al., 1969, Greenberger et al., 1990].

Another important impossibility result, the Kochen-Specker theorem [Bell, 1966,
Kochen and Specker, 1967, Mermin, 1993, Brunet, 2007] is usually interpreted
as forbidding non-contextual measurements.

All of these results rely on a form of realism, called counterfactual defi-

niteness (or CFD), which, quoting [Gröblacher et al., 2007] (emphasis by the
author), “requires that an individual binary measurement outcome A for
a polarization measurement along direction ~a (that is, whether a single photon
is transmitted or absorbed by a polarizer set at a specific angle) is predeter-

mined by some set of hidden-variables λ, and a three-dimensional vector ~u,
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as well as by some set of other possibly non-local parameters µ (for example, mea-
surement settings in space-like separated regions) - that is, A = A(λ, ~u,~a, µ).”

In this article, we study the possibility of a hidden-variable model for rep-
resenting and manipulating spin 1

2
quantum particles (which will hereafter be

called qubits) from the dynamics point of view. Our representation will be based
on the use of three components, representing the outcomes (thus assumed to
exist beforehand) of observables corresponding to the three Pauli matrices. We
explore the way some quantum gates, namely the Hadamard gate, the π

2
-phase

shifter and the controlled-not gate, can be expressed in this formalism. Then,
we use the obtained representations to formalize the creation of a Bell state.
Finally, we specify a set of assumptions which were used to justify our construc-
tions, and show that the representation we have provided cannot comply with
quantum mechanics predictions, unless one of these assumption is dropped.

2 Representing States with Triplets

Given a qubit, we consider the observables defined by the three Pauli matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i

i 0

)

and σz =

(

1 0
0 −1

)

.

Each of those observables has eigenvalues +1 and −1, with eigenvectors respec-
tively:

|X+〉= 1√
2

(

1
1

)

|X−〉= 1√
2

(

1
−1

)

for σx,

|Y+〉= 1√
2

(

1
i

)

|Y−〉= 1√
2

(

1
−i

)

for σy , and

|Z+〉=
(

1
0

)

|Z−〉=
(

0
1

)

for σz .

Following the counterfactual definiteness assumption, we will assume that
any measurement outcome is precisely defined by some pre-existing property of
the particle, independent of the measurement. Thus, given a qubit Q, there
exists three numbers x, y and z belonging to {−1,+1} such that measuring Q

with observable σx (resp. σy, σz) would yield outcome x (resp. y, z). Using this
assumption, we will represent the state of any qubit as a triplet of such values
of the form [x, y, z].

For instance, a qubit in state |Y−〉 would yield −1 if measured with σy and
thus will be represented by a triplet of the form [x, −1, z] where x and z left as
variables, representing definite yet possibly unknown values. Similarly, a qubit
in state |Z+〉 will be represented by a triplet of the form [x, y, +1].

On occasions, we might write underscores “ ” for some components if they
play no role in a given situation. Of course, this does not mean that those values
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are undefined. For instance, write [x, , ] means that we only deal with the
value correspond to observable σx.

Before going any further, we remark that our notation does not make any
explicit reference to parameters upon which measurement outcomes may de-
pend. Instead, we only discuss the mere possibility of having a counterfactual
definiteness-based theory complying with quantum mechanics predictions: we
do not focus on the way these hidden variables are embodied, but rather on the
way they behave dynamically.

3 Representing Operators

We now turn to the study of the way three common quantum gates can be
represented in terms of triplets. Since triplets represent outcomes of observables
σx, σy and σz, this means that we have to focus on the images of eigenvectors
of those observables. By defining

B = {|X+〉, |X−〉, |Y+〉, |Y−〉, |Z+〉, |Z−〉} ,

we shall then focus on elements of B (or tensor products of elements of B) which
are mapped to elements of B up to a phase factor (or, again, to tensor products
of such elements).

3.1 Hadamard

Let us first study the Hadamard operator, defined as:

H =

(

1 1
1 −1

)

Considering elements of B, we have, up to a phase factor:

H |X+〉 = |Z+〉 H |X−〉 = |Z−〉
H |Y+〉 = |Y−〉 H |Y−〉 = |Y+〉
H |Z+〉 = |X+〉 H |Z−〉 = |X−〉

Those equalities can be translated as mapping some values of a representation
triplet to others. For instance, the first equality can be expressed as:

H : [+1, , ] 7→ [ , , +1]

We can express all the previous equalities in a similar way way:

H :































[+1, , ] 7→ [ , , +1]
[−1, , ] 7→ [ , , −1]
[ , +1, ] 7→ [ , −1, ]
[ , −1, ] 7→ [ , +1, ]
[ , , +1] 7→ [+1, , ]
[ , , −1] 7→ [−1, , ]
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Let us now study the way these mappings lead to a function-like represen-
tation of the Hadamard operator acting on triplets. Consider, for instance, a
triplet [x, y, z] representing a qubit and let [x′, y′, z′] represent the same qubit,
but after having been applied the Hadamard operator. EqualityH |X+〉 = |Z+〉
translates as:

x = +1 ⇒ z′ = +1.

Similarly, equality H |X−〉 = |Z−〉 leads to:
x = −1 ⇒ z′ = −1.

But considering the contraposition of the first implication, one gets:

z′ 6= +1 ⇒ x 6= +1.

Since both x and z′ belong to {−1,+1}, this is equivalent to:
z′ = −1 ⇒ x = −1.

This means that we actually have an equivalence:

x = −1 ⇐⇒ z′ = −1.

Considering the first implication and the contraposition of the second, we also
deduce that x = +1 ⇐⇒ z′ = +1. In other words, one has z′ = x. Similarly,
one has y′ = −y and x′ = z. Thus, it is possible to represent the action of the
Hadamard operator in terms of triplets as the following function:

h : [x, y, z] 7→ [z, −y, x]

Such a function will be called a faithful functional representation of the Hada-
mard gate. Here, faithful means that its definition is entirely based on the
direct translation of equalities such as H |Z+〉 = |X+〉 in terms on triplets. The
adjective functional means that we have obtained sufficiently many relations so
that the resulting triplet does entirely depend on the argument triplet, i.e. there
is a functional type of relation between the argument and the result triplets.

3.2 Phase Shifter

Let us now consider the π

2
-phase shifter:

Pπ

2
=

(

1 0
0 i

)

Up to phase factors, one has:

Pπ

2
|X+〉 = |Y+〉 Pπ

2
|X−〉 = |Y−〉

Pπ

2
|Y+〉 = |X−〉 Pπ

2
|Y−〉 = |X+〉

Pπ

2
|Z+〉 = |Z+〉 Pπ

2
|Z−〉 = |Z−〉

By proceeding as before, one finds that the π

2
-phase shifter has the following

faithful functional representation:

pπ

2
: [x, y, z] 7→ [−y, x, z]
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3.3 Controlled-Not

Finally, we focus on the representation of the action of the controlled-not oper-
ator in terms of triplets. This operator is defined by the following matrix:

CNot =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

Contrary to the previous operators, a tensor product of elements of B might not
be mapped to such a tensor product. For instance:

|Y+, Y+〉 = 1

2









1
i

i

−1









is mapped to CNot |Y+, Y+〉 = 1

2









1
i

−1
i









The resulting vector cannot be expressed as a tensor product of two two-dimensional
vectors, and hence does not belong to B⊗2 =

{

u⊗ v
∣

∣ (u, v) ∈ B2
}

.

An exhaustive list of mapping from B⊗2 to itself (again, up to a phase
factor) is:

CNot |Z+, Y+〉 = |Z+, Y+〉 CNot |Z+, Y−〉 = |Z+, Y−〉
CNot |Z+, Z+〉 = |Z+, Z+〉 CNot |Z+, Z−〉 = |Z+, Z−〉
CNot |Z−, Y+〉 = |Z−, Y−〉 CNot |Z−, Y−〉 = |Z−, Y+〉
CNot |Z−, Z+〉 = |Z−, Z−〉 CNot |Z−, Z−〉 = |Z−, Z+〉
CNot |Z+, X+〉 = |Z+, X+〉 CNot |Z+, X−〉 = |Z+, X−〉
CNot |Z−, X+〉 = |Z−, X+〉 CNot |Z−, X−〉 = |Z−, X−〉
CNot |X+, X+〉= |X+, X+〉 CNot |X+, X−〉= |X−, X−〉
CNot |X−, X+〉= |X−, X+〉 CNot |X−, X−〉= |X+, X−〉
CNot |Y+, X+〉 = |Y+, X+〉 CNot |Y+, X−〉 = |Y−, X−〉
CNot |Y−, X+〉 = |Y−, X+〉 CNot |Y−, X−〉 = |Y+, X−〉

Several remarks can be made concerning those equalities:

1. The Z-component of the first qubit and the X-component of the second
qubit are left unchanged. Functionally, this can be written as:

cnot ([ , , z1] , [x2, , ]) 7→ ([ , , z1] , [x2, , ]) .

2. The Z-component of the first qubit determines the change of the Y - and
Z-components of the second qubit:

cnot ([ , , z1] , [ , y2, z2]) 7→ ([ , , z1] , [ , z1y2, z1z2]) .

3. Similarly, the X-component of the second qubit determines the change of
the X- and Y -components of the first one:

cnot ([x1, y1, ] , [x2, , ]) 7→ ([x1x2, y1x2, ] , [x2, , ]) .
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By merging these relations, it is clear that X-, Y - and Z-components of each
qubit after applying the controlled-not operator are completely determined by
the components before the operator was applied. Hence, the controlled-not
operator also has a faithful functional representation in terms of triplets:

cnot : ([x1, y1, z1] , [x2, y2, z2]) 7→ ([x1x2, y1x2, z1] , [x2, z1y2, z1z2]) .

With the previous study, we have obtained a faithful functional represen-
tation of three operators: the Hadamard gate, the π

2
-phase shifter and the

controlled-not. Those operators are sufficient to describe the production an
EPR pair.

In the next section, we will study the way the production of such a pair can
be represented in terms of triplets. Then, we will show that our model is in
contradiction with quantum mechanics predictions and will attempt to provide
some interpretational elements about this contradiction.

4 The Production of an EPR Pair

An EPR pair, composed of two maximally entangled qubits, is defined by Bell
state |Ψ−〉:

|Ψ−〉 = 1√
2
(|01〉 − |10〉)

Such a state can be obtained using the following quantum circuit:

A: |1〉

B: |1〉

H

⊕

|Ψ−〉

This circuit involves two qubits, called A and B. We will represent their
states by a pair of two triplets ([x1, y1, z1] , [x2, y2, z2]) where [x1, y1, z1] (resp.
[x2, y2, z2]) corresponds to A (resp. B). The previous circuit translates in terms
of triplet the following way:

1. The initial qubits are represented by triplet of the form [ , , −1], that
is z1 = z2 = −1. The initial system can thus be written as:

([x1, y1, −1] , [x2, y2, −1])

with x1, x2, y1 and y2 belonging to {−1, 1}.
2. After applying the Hadamard gate to A, one obtains:

([−1, −y1, x1] , [x2, y2, −1])

3. Finally, the application of the controlled-not leads to:

([−x2, −y1x2, x1] , [x2, x1y2, −x1]) .

By construction, the obtained pair of triplets is the general form for representing
the |Ψ−〉 state in terms of triplets.
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5 Contradiction

Quantum mechanics predicts that if the spin of each qubit of a |Ψ−〉 Bell state
pair is measured along the same direction, opposite outcomes are to be obtained.
In terms of triplets, this means that the values of a given component in the
previous pair of triplets must be opposite.

It is clearly the case for the X-components (where we have −x2 and x2) and
the Z-components (where we have x1 and −x1).

Let us now focus on the Y -components. The corresponding value of the first
qubit is of the form −y1x2 while that of the second qubit is x1y2. In order to
agree with quantum mechanics, one must have:

y1x2 = x1y2

By multiplying both side of this equality by x1x2, since x1
2 = x2

2 = 1, one gets:

x1y1 = x2y2

Each side of this equality describes the same quantity for each qubit. If we call
that quantity the XY-product of a qubit, we have:

Claim 1. Any pair of |Z−〉-state qubits used to produce a |Ψ−〉 Bell state must

have equal XY-products.

Now, we turn to the way the π

2
-phase shifter acts on triplets. We recall that

it is represented by function pπ

2
: [x, y, z] 7→ [y, −x, z]. Applying it to a qubit

in state |Z−〉, one gets:

Claim 2. The application of a π

2
-phase shifter to a qubit in state |Z−〉 yields

a qubit, also in state |Z−〉, with opposite XY-product.

The combination of those two claims leads to a contradiction, as illustrated
by the following experimental setup:

Experiment 1. This experiment is composed of three steps, and is described

as performed by Alice:

Step 1. Alice creates two qubits A and B, both in state |Z−〉;

Step 2. Then, she chooses whether she applies a π

2
-phase shifter to qubit A;

Step 3. Finally, she produces a |Ψ−〉 state with A and B using the previous

circuit.

Suppose that Alice has chosen not to apply the phase shifter. Following
Claim 1, at the beginning of Step 3., qubits A and B must have equal XY-
products. This means that already at the end of Step 1., both qubits have equal
XY-products.
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Now, suppose instead that Alice has chosen to apply the phase shifter. Then
again, at the beginning of Step 3., qubits A and B must have equal XY-products.
But, because of the application of the phase shifter, at the end of Step 1., both
qubits must this time have opposite XY-products.

But since Step 1. happens before Alice has chosen whether she would apply
the phase shifter, both conditions (whether XY-products are equal or opposite)
should hold simultaneously, which is not possible, hence the announced contra-
diction.

6 Main Result

Now that our contradiction has been presented, we study more precisely the
assumptions which have led to it. The first one has already been specified:

CFD (Counterfactual Definiteness) Any measurement outcome is precisely de-
fined by some pre-existing property of the particle, independent of the
measurement.

This has allowed us to define the triplet representation of a qubit.

The next step has been to define what we have called faithful functional repre-

sentations of some quantum operators. For instance, considering the Hadamard
gate, equalities like H |X−〉 = |Z−〉 or H |Y+〉 = |Y−〉 were translated in terms
of triplets:

[−1, , ] 7→ [ , , −1] [ , +1, ] 7→ [ , −1, ]

Then merging all the obtained relations, we have obtained our functional repre-
sentation:

h : [x, y, z] 7→ [z, −y, x]

But this “merging” operation can be regarded as doubtful, since while a single
relation like [−1, , ] 7→ [ , , −1] is the direct translation of a testable and
falsifiable quantum fact, we lose this testability if we consider the three triplet
values at once. This means that we have made another assumption, which we
propose to express as:

MAD (Measurement-Agnostic Dynamics) The modification of any value of a
triplet, when applying an unitary operator, is independent of the fact that
this value has been measured or, more generally, that it can be known
with absolute certainty without interacting with the particle.

This assumption makes our construction of functional representations valid, be-
cause, writing h([x, y, z]) = [x′, y′, z′], equality H |X−〉 = |Z−〉 translates as:

x = −1 ⇒ z′ = −1

and that implication is considered as valid in every situation.
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Finally, during Step 2. of the described preparation, where Alice could choose
whether a phase shifter is applied, we implicitly used a final assumption, that of
free will, a notion has gained much attention lately [Conway and Kochen, 2006,
Conway and Kochen, 2009, Goldstein et al., 2010, ’t Hooft, 2007]. For the present
article, what we mean by free will is that it is possible to be in a situation where
the choice of applying the phase shifter can be made independently of the qubits’
states. More precisely, in our presentation of the contradiction, where we have
stated that the situation at Step 1. happened before Alice had chosen whether
she would apply the phase shifter, what should be understood is that both ele-
ments should (or, at least, could) be independent from one another. In a setting
where locality holds, it is sufficient to have the preparation of the entangled par-
ticles on the one hand, and the choice regarding the application of the phase
shifter on the other hand be done in two space-like separated regions. Formally,
we express this requirement as:

FW (Free-Will) There exists two triplets T1 = [x1, y1, −1] and T2 = [x2, y2, −1]
such that it is possible to use two qubits, described by T1 and T2 respec-
tively, in the previous experiment and such that both possibilities regard-
ing the phase shifter (that is, whether it is applied or not) may occur.

These assumptions suffice to express and justify our definition of triplets
and of functional representations, together with the construction of the previous
contradiction. We thus have proved the following result.

Theorem 1. No physical theory verifying CFD, MAD and FW can reproduce

all the predictions of Quantum Mechanics.

7 Discussion

Let us first focus on free will. In our discussion, this assumption only reflects
the fact that the choice of applying the phase-shifter can be made independently
of the qubits used to make the EPR pair. More specifically, it assumes that the
following two alternatives are independent from one another: on the one hand
whether the XY -product of the qubits involved in the EPR pair are equal, and
on the other hand whether the phase-shifter is applied.

This type of assumption is central in science: we suppose the existence of a
priori distinct and independent entities in such a way that if two such indepen-
dent entities interact, correlations between measurable quantities of those two
entities should only be a consequence of the interaction.

Suppose otherwise. In that case, with the further assumption that CFD and
MAD both hold, it would not be possible to have any independence between
the equality of the XY -products and the potential application of the phase-
shifter. On the contrary, there would always be a correlation so as to make
Claim 1 apparently true. But such an always-existing correlation would be all
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the more surprising, considering that quantum mechanics appears to be funda-
mentally random regarding measurement outcomes (and hence triplet values in
our setting).

Thus, if there really existed such connections making us believe that mea-
surement outcomes are actually random while make Claim 1 apparently true,
this would lead to the necessary abandonment of some important elements of the
scientific method: we would have the false impression that there exists indepen-
dent entities, while being tricked into not being able to falsify this impression.
As a consequence, while we cannot prove that our free will assumption actually
holds, we have to believe it does if we are to carry on with any scientific activity.

Now, suppose that FW actually holds (which we consider, from our previous
discussion, as a necessity) and let’s turn toCFD andMAD. Since ourMAD as-
sumption needs counterfactual definiteness as a premise, dropping CFD would
imply to drop MAD also.

But what would it mean to drop MAD alone? To answer this, let us first
recall that what has led us to consider this assumption was the necessity for the
unitary evolution of triplet values (or, more generally, of possibly hidden yet
measurable values in a hidden variables context) to be independent of whether
a value has been measured or, more generally, is knowable. What we mean by
this is that a given value can be deduced from earlier measurement outcomes.
For instance, if, after a measurement, a qubit is known to be in state |0〉, then
its Z-value is knowable: it is possible to know with certainty the outcome of
a measurement yielding its Z-value. Now, if an Hadamard gate is applied to
this qubit, its X value becomes knowable while its Z value is now longer so.
Similarly, given an EPR-pair in state |Ψ−〉 made of particles A and B, if A is
measured, yielding its Z-value, then the Z-value of particle B becomes knowable.
But if the measurement of particle A occurs in a situation where the outcome
cannot be transmitted (the laboratory may explode, or be caught in a black
hole), would it still be true that the Z-value of particle B is knowable?

Thus, if the MAD assumption were to be dropped, one would need to
provide a general and rigorous definition of this notion of knowability, and the
previous examples show that this might not be an easy task. Of course, this
follows directly from the fact that the notion of knowability is closely related
to that of measurement, and theses examples only illustrate the fact that the
latter remains extremely difficult to grasp. Yet, an important motivation for the
hidden variables program is avoid some difficultes inherent to this notion, and
the dropping of the MAD assumption would imply the necessity to actually
tackle those difficulties rather than ignoring them.

Finally, suppose (still in the situation where theMAD assumption is dropped)
that it is possible to devise a satisfactory definition of knowability (and thus,
probably, of measurement). In that case, the unitary evolution of measurement
values would depend on whether they are knowable. But then, in order to built a
counterfactual definiteness theory providing strictly more results that standard
quantum mechanics – which would a priori amout to providing results about
un-knowable values – one would need to devise the unitary behavior of mea-
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surement values even in the case where they are un-knowable. This means that
instead of eluding some difficulties inherent to the notion of measurement, the
elaboration of a CFD theory would result in tackling those difficulties, together
with some additional ones.

In conclusion, we consider that FW is a necessary assumption for any sci-
entific theory. Now, in order to keep CFD, one should drop the MAD as-
sumption, which would imply the necessity of defining precisely the notion of
knowability (which is the core of the MAD assumption). Moreover, even if this
were achieved, the obtention of an interesting CFD theory (insofar as it would
make strictly more predictions that standard quantum mechanics) remains sub-
ordinated to the getting of results about the unitary evolution of unknowable
quantities. To that respect, while one cannot prove that the impossibility of ob-
taining a counterfactual definiteness theory compatible with the predictions of
quantum mechanics, we strongly believe that, due to the necessary dropping of
the MAD assumption, the expected benefits of obtaining such a theory should
be greatly lowered.
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