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Abstract. Linear time optimal parsing algorithms are very rare in the dictionary based branch of the
data compression theory. The most recent is the Flexible Parsing algorithm of Mathias and Shainalp that
works when the dictionary is prefix closed and the encoding of dictionary pointers has a constant cost. We
present the Dictionary-Symbolwise Flexible Parsing algorithm that is optimal for prefix-closed dictionaries
and any symbolwise compressor under some natural hypothesis. In the case of LZ78-alike algorithms with
variable costs and any, linear as usual, symbolwise compressor it can be implemented in linear time. In the
case of LZ77-alike dictionaries and any symbolwise compressor it can be implemented in O(n log(n)) time.
We further present some experimental results that show the effectiveness of the dictionary-symbolwise
approach.

1 Introduction

In [19] Mathias and Shainalp gave a linear time optimal parsing algorithm in the case of dictio-
nary compression where the dictionary is prefix closed and the cost of encoding dictionary pointer is
constant. They called their parsing algorithm Flexible Parsing. The basic idea of one-step-lookahead
parsing that is at the base of flexible parsing was firstly used to our best knowledge in [7] in the case
of dictionary compression where the dictionary is prefix closed and the cost of encoding dictionary
pointer is constant and the dictionary is static. A first intuition, not fully exploited, that this idea
could be successful used in the case of dynamic dictionaries was given in [8] and also in [12], where it
was called parsing MTPL (maximum two-phrase-length parsing).

Optimal parsing algorithms are rare and linear time optimal parsing results are rather rare. We can
only also cite the fact that greedy parsing is optimal and linear for LZ77 alike dictionaries and constant
cost dictionary pointers (cf. [22]) and its generalization to suffix closed dictionaries and constant cost
dictionary pointers (cf. [2]) later used also in [12].

In this paper we consider the case of a free mixture of a dictionary compressor and a symbolwise
compressor and we extend, in some sense, the result of Mathias and Shainalp. We have indeed an
optimal parsing algorithm in the case of dictionary-symbolwise compression where the dictionary is
prefix closed and the cost of encoding dictionary pointer is variable and the symbolwise is any classical
one that works in linear time. Our algorithm works under the assumption that a special graph that
will be described in next section is well defined. Even in the case where this condition is not satisfied it
is possible to use the same method to obtain almost optimal parses. In particular, when the dictionary
is LZ78-alike our algorithm can be implemented in linear time and when the dictionary is LZ77-alike
our algorithm can be implemented in time O(n log(n)).

The study of free mixtures of two compressor is quite involved and it represents a new theoretical
challenge. Free mixture have been implicitly or explicitly using for a long time in many fast and
effective compressors such as gzip (cf. [6]), PkZip (cf. [11]) and Rolz algorithms (cf. [16]). For a quick
look to compression performance on texts see Mahony challenge’s page (cf. [15]).

In our case, using a simple static Huffman coding as symbolwise compressor we improved the
compression ratio of the Flexible Parsing of 6%− 4% on texts such as prefixes of English Wikipedia
data base with a negligible slow down in compressing and decompressing time. The slow down comes



from the fact that we have to add to the dictionary compression and decompression time the Huffman
coding and decoding time. The same experimental result holds in general when the dictionary is
LZ78-alike. Indeed a dictionary-symbolwise compressor when the dictionary is LZ78-alike and the
symbolwise is a simple Huffman coding with optimal parsing has a compression ratio that is is more
or less 5% better than the compression ratio of a pure pure LZ78-alike dictionary compressor that
uses an optimal parsing. In general smaller is the file greater is the gain. The 5% refers to text sizes
of around 20 megabytes. Moreover, preliminary results show that using more powerful but still fast
symbolwise compressor, such as an arithmetic encoder of order 1, there is a further 10% gain in
compression ratio.

When the dictionary is, instead, LZ77-alike the gain in compression when we use a dictionary-
symbolwise compressor with optimal parsing and Huffman coding with respect to a pure dictionary
compressor with optimal parsing reduces down to more or less 3%. The compression ratio seems to be
sensibly better than in the case of LZ78-alike dictionaries when we use, in both cases, unbounded dic-
tionaries. The distance, however, between the compression ratio of dictionary-symbolwise compressors
that use LZ78-alike dictionaries and the ones that use LZ77-alike dictionaries is much smaller, follow-
ing our preliminary results, when we use an arithmetic encoder of order 1 instead than an Huffman
encoding.

We have experimental evidence that many of the most relevant commercial compressors use, fol-
lowing our definition, optimal parsing in the dictionary-symbolwise case where the dictionary is LZ77-
alike. The method described in this paper therefore has as a consequence the possibility of optimizing
the trade-off between some of the main parameters used for evaluating commercial compressors, such
as compression ratio, decompression time, compression time and so on.

So, why linear time optimal parsing algorithms are rather rare? Classically (cf. [21]), for static
dictionaries it is possible to associate to any dictionary algorithm A and to any text T a weighted graph
GA,T such that there is a bijection between optimal parsings and minimal paths in this graph. The
extension of this approach to dynamical dictionaries has been firstly studied, to our best knowledge, in
[20] and it has also been later used in [5]. More details will be given in next sections. The graph GA,T

is a Directed Acyclic Graph and it is possible to find a minimal path in linear time with respect to
the size of it (cf. [3]). Unfortunately the size of the graph can be quadratic in the size of the text and
this approach was not recommended in [21], because it is too time consuming. From a philosophical
point of view, the graph GA,T represents a mathematical modeling of the optimal parsing problem.
Thus, finding an optimal parsing in linear time corresponds to discovering a strategy for using only a
subgraph of linear size.

Indeed, in order to get over the quadratic worst case problem, there are many different approaches
and many papers deal with optimal parsing in dictionary compressions. For instance the reader can
see [1, 2, 5, 7, 9, 10, 12, 13, 17, 19, 22, 24]. Among them, we stress [5] where it is shown that a minimal
path can be obtained by using a subgraph of GA,T of size O(n log(n)), in the LZ77 case under some
natural assumptions on the cost function, by exploiting the discreteness of the cost functions.

In this paper we use a similar strategy, i.e. we consider static or dynamical dictionaries, following
the approach of [20] and we discover a “small” subgraph of GA,T that is linear in the size of the text for
LZ78-alike dictionaries and O(n log(n)) for LZ77-alike dictionaries. This “small” subgraph is such that
any minimal path in it is also a minimal path in GA,T . Our algorithm has therefore two advantages
with respect to the classical Flexible Parsing. First, it can handle variable cost of dictionary pointers.
This fact allows to extend the range of application of Flexible Parsing to almost all LZ78-alike known
algorithms of our extension. Secondly, our Dictionary-Symbolwise Flexible Parsing implemented in the
case of LZ77 dictionary gives as particular case when the symbolwise is not in use, a result that is similar
to the one presented in [5] that has O(n log(n)) complexity, using a completely different and simpler
subgraph and a simpler data structure. Last but not least our algorithm allows to couple classical
LZ-alike algorithms with several symbolwise algorithms to obtain dictionary-symbolwise algorithms
that achieve better compression with prove of optimality.
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In Section 2 we recall some literature notions about dictionary and dictionary-symbolwise com-
pression algorithms and we define the graph GA,T . In Section 3 we formalize the definition of optimal
algorithm and optimal parsing and extend them to the dictionary-symbolwise domain. In Section 4 we
present the Dictionary-Symbolwise Flexible Parsing, a parsing algorithm that extends in some sense
the Flexible Parsing (cf. [19]). We prove its optimality by showing that it corresponds to a shortest
path in the full graph, and in Section 5 we describe some data structures that can be used for our
algorithm in the two main cases of LZ78-alike and LZ77-alike dictionaries together the time analysis.
In Section 6 we state a theoretical result that shows that dictionary-symbolwise compressors can be
asymptotically better than dictionary-alone compressors when the dictionary is LZ78 based or when
it is LZ77 based. In Section 7 we present some experimental results that show the effectiveness of the
dictionary-symbolwise approach. Finally, Section 8 reports our conclusions.

2 Preliminaries

In [1] it is possible to find a survey on Dictionary methods and Symbolwise methods and a description
of deep relationships among them (see also [23, 4]).

A dictionary compression algorithm, as noticed in [1], can be fully described by:

1. The dictionary description, i.e. a static collection of phrases or a complete algorithmic description
on how the dynamic dictionary is built and updated.

2. The encoding of dictionary pointers in the compressed data.
3. The parsing method, i.e. the algorithm that splits the uncompressed data in dictionary phrases.

We notice that any of the above 3 specifics can all depend on each other, i.e. they can be mutually
interdependent.

It is possible to associate a directed weighted graph GA,T = (V,E,L) to any compression algorithm
A, any text T = a1a2a3 · · · an and any cost function C : E → R

+ in the following way.
The set of vertices is V = {0, 1, . . . , n}, where vertex i corresponds to ai, i.e. the i-th character in

the text T , for 1 ≤ i ≤ n and vertex 0 correspond to the position at the beginning of the text, before
any characters. The empty word ǫ is associated to vertex 0 that is also called the origin of the graph.

The set of directed edges is E = {(p, q) ⊂ (V × V ) | p < q and ∃ w = T [p + 1 : q] ∈ Dp}, where
T [p+1 : q] = ap+1ap+2 · · · aq and Dp is the dictionary relative to the processing step p-th, i.e. the step
in which the algorithm either has processed the input text up to character ap, for 0 < p, or it has to
begin, for p = 0. For each edge (p, q) in E, we say that (p, q) is associated to the dictionary phrase
w = T [p + 1 : q] = ap+1 · · · aq ∈ Dp. In the case of static dictionary Di is constant along the algorithm
steps, i.e. Di = Dj,∀i, j = 0 · · · n.

L is the set of edge labels Lp,q for every edge (p, q) ∈ E, where the label Lp,q is defined as the cost
of the edge (p, q) when the dictionary Dp is in use, i.e. Lp,q = C((p, q)). Practically speaking, the cost
of an edge is usually set to be the length in bits of its representation in the output, i.e. the selected
cost function associate to each edge a cost equal to the length of the encoded dictionary pointer that
points out to the phrase in the dictionary that the edge is associated to. Let us notice that the cost of
encoding pointers should be a total function, in order to have Lp,q always defined for each edge of the
graph. There are cases where the cost function is a partial function, i.e. Lp,q is not defined for some p
and q, and GA,T in such cases is not defined. In this case, one can assign special values, for instance
+∞, to labels of edges for which cost function is undefined in order to build an usable graph. When
Lp,q is always defined for each edge of the graph we say that GA,T is well defined. Graph GA,T is not
allways well defined and we refer to [20] for further discussions on this subject.

Let us remember that the cost function can depend on the parsing if the encoding of dictionary
pointers does. For example dictionary pointers could be encoded with Huffman code, as gzip does,
and two pointers to the same phrase could have different costs at different time.

Given a compression algorithm A, we call cost of the encoded text the sum of all the edges labels
in the path from 0 to n relative to the parsing of the algorithm.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 (ab)
2 (c) 2 (c) 2 (c)

8 (ab)
2 (c) 2 (c)

12 (bcb)

12 (abc) 8 (ca) 14 (cbb) 12 (bcb) 14 (cbb)

Fig. 1. Graph GA,T for the text T = abccacbbabbcbcbb, for the dictionary algorithm A with static dictionary D =
{ab, cbb, ca, bcb, abc, c} and the cost function C as defined in the graph. The dictionary phrase associated to an edge is
reported near the edge label within parenthesis.

Let a scheme of dictionary algorithms be a set of algorithms that share the first two specifics,
i.e. (1) the dictionary description and (2) the encoding of dictionary pointers. A scheme does not
necessarily contain all algorithms sharing the first two specifics. A parsing algorithm univocally identify
a dictionary compression algorithm within a scheme, whenever it belongs to the scheme. Let us notice
that the word scheme has been used by other authors with other related meaning.

The theory of Dictionary-Symbolwise compression algorithms started in [20] improve and generalize
previous results stated for dictionary algorithms and allows to obtain new ones. In what follow, we
recall the fundamental notions of the Dictionary-Symbolwise theory.

A dictionary-symbolwise algorithm uses both dictionary and symbolwise compression. Such com-
pressors parse the text as a free mixture of dictionary phrases and literal characters, which are sub-
stituted by the corresponding pointers or literal codes, respectively. Therefore, the description of a
dictionary-symbolwise algorithm should also include the so called flag information, that is the tech-
nique used to distinguish the actual compression method (dictionary or symbolwise) used for each
segment or factor of the parsed text. Often, as in the case of LZSS (cf. [22]), an extra bit is added
either to each pointer or encoded character to distinguish between them. Encoded information flag
can require less (or more) space than one bit.

For instance, a dictionary-symbolwise compression algorithm with a fixed dictionary D = {ab, cbb,
ca, bcb, abc} and the static symbolwise codeword assignment [a = 1, b = 2, c = 3] could compress
the text abccacbbabbcbcbb as Fd1Fs3Fd3Fd2Fd1Fd4Fd2, where Fd is the information flag for dictionary
pointers and Fs is the information flag for the symbolwise code.

More formally, a parsing of a text T in a dictionary-symbolwise algorithm is a pair (parse , F l)
where parse is a sequence (u1, · · · , us) of words such that T = u1 · · · us and where Fl is a boolean
function that, for i = 1, . . . , s indicates whether the word ui has to be coded as a dictionary pointer
or as a symbol. See Table 1 for an example of dictionary-symbolwise compression.

A dictionary-symbolwise compression algorithm is specified by:

1. The dictionary description.

2. The encoding of dictionary pointers.
3. The symbolwise encoding method.
4. The encoding of the flag information.

5. The parsing method.

We can naturally extend the definition of the graph associated to an algorithm for the dictionary-
symbolwise case. Given a dictionary-symbolwise algorithm A, a text T and a cost function C defined

Input ab c ca cbb ab bcb cbb

Output Fd1 Fs3 Fd3 Fd2 Fd1 Fd4 Fd2

Table 1. Example of compression for the text abccacbbabbcbcbb by a simple Dyctionary-Symbolwise algorithm that use
D = {ab, cbb, ca, bcb, abc} as static dictionary, the identity as dictionary encoding and the mapping [a = 1, b = 2, c = 3]
as symbolwise encoding.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 (ab)
8 (ab)

12 (bcb)12 (abc)
8 (ca) 14 (cbb) 12 (bcb) 14 (cbb)

5 (a) 4 (b) 5 (c) 3 (c) 4 (a) 3 (c) 5 (b) 5 (b) 4 (a) 5 (b) 4 (b) 6 (c) 3 (b) 4 (c) 5 (b) 4 (b)

Fig. 2. Graph GA,T for the text T = abccacbbabbcbcbb, for the dictionary-symbolwise algorithm A with static dictionary
D = {ab, cbb, ca, bcb, abc, c} and cost function C as defined in the graph. The dictionary phrase or the symbol associated
to an edge is reported near the edge label within parenthesis.

on edges, the graph GA,T = (V,E,L) is defined as follows. The vertexes set is V = {0 · · · n}, with
n = |T |. The set of directed edges E = Ed

⋃
Es, where Ed = {(p, q) ⊂ (V × V ) | p < q − 1, and ∃w =

T [p+1 : q] ∈ Dp} is the set of dictionary edges and Es = {(q−1, q) | 0 < q ≤ n} is the set of symbolwise
edges. L is the set of edge labels Lp,q for every edge (p, q) ∈ E, where the label Lp,q = C((p, q)). Let
us notice that the cost function C hereby used has to include the cost of the flag information to
each edge, i.e. either C(p, q) is equal to 〈 the cost of the encoding of Fd〉 + 〈 the cost of the encoded
dictionary phrase w ∈ Dp associated to the edge (p, q)〉 if (p, q) ∈ Ed or C(p, q) is equal to ( the cost of
encoded Fs)+ ( the cost of the encoded symbol aq) if (p, q) ∈ Es. Moreover, since Ed does not contain
edges of length one by definition, GA,T = (V,E,L) is not a multigraph. Since this graph approach can
be extended to multigraph, with a overhead of formalism, one can relax the p < q − 1 constrain in
the definition of Ed to p ≤ q − 1. All the results we will state in this paper, naturally extend to the
multigraph case.

We call dictionary-symbolwise scheme a set of algorithms having in common the same first four
specifics (i.e. they differ one each other for just the parsing methods). A scheme does not need to
contain all algorithms having the same first four specifics. We notice that any of the specifics from
1 to 5 above can depend on all others, i.e. they can be mutually interdependent. Fixed a dictionary-
symbolwise scheme, whenever the specifics of the parsing method are given, exactly one algorithm is
completely described. Notice that the word scheme has been used by other authors with other related
meaning. For us the meaning is rigorous.

3 On Optimality

In this section we recall some background notions for the reader to understand the algorithms given in
the rest of the paper. However, we assume that the reader is familiar with LZ alike dictionary encoding
and with some simple statistical encodings such as the Huffman encoding.

Definition 1. Fixed a dictionary description, a cost function C and a text T , a dictionary (dictionary-
symbolwise) algorithm is optimal within a set of algorithms if the cost of the encoded text is minimal
with respect to all others algorithms in the same set. The parsing of an optimal algorithm is called
optimal within the same set.

When the length in bit of the encoded dictionary pointers is used as cost function, the previous def-
inition of optimality is equivalent to the classical well known definition of bit-optimality for dictionary
algorithm.

Notice that the above definition of optimality strictly depends on the text T and on a set of
algorithms. A parsing can be optimal for a text and not for another one. Clearly, we are mainly
interested on parsings that are optimal either for all texts over an alphabet or for classes of texts.
Whenever it is not explicitly written, from now on when we talk about optimal parsing we mean
optimal parsing for all texts. About the set of algorithm it make sense to find sets as large as possible.

Classically, there is a bijective correspondence between parsings and paths in GA,T from vertex 0
to vertex n, where optimal parses correspond to minimal paths and vice-versa. We say that a parse
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(resp. path) induces a path (resp. parse) to denote this correspondence. This correspondence was
firstly stated in [21] only in the case of sets of algorithms sharing the same static dictionary and where
the encoding of pointers has constant cost. For example, in Figure 1 we have that the path along
vertexes (0, 2, 3, 5, 8, 10, 13, 16) is minimal and it correspond to the optimal parsing of the text for the
scheme represented by the graph. While the path along vertexes (0, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16) is
the shortest path for the graph in Figure 2. Authors of [20] were the firsts to formally extend the
Shortest Path approach to dynamically changing dictionaries and variable costs.

Since graph GA,T are DAGs (Directed Acyclic Graph) that are naturally topologically ordered,
classical shortest path algorithms linear in the size of the graph are known. Unfortunately the size of
the graph can be quadratic in the size of the text and this approach was not recommended in [21]
because it is too time consuming. In the case of LZ78 alike algorithms it is not difficult to show that
the size of this graph can be O(n

3

2 ), where n is the size of the text.

In order to get over the quadratic (or the O(n
3

2 )) worst case problem, there are many different
approaches to limit the size of the graph, as already pointed out in the introductive section.

Linear time optimal parsing solution are known for some particular cases. Indeed, under the con-
stant cost assumption, it is proved in [2] the optimality of the greedy parsing for suffix-closed static
dictionary. In [18, 19, 17] Flexible Parsing is described and it is given a linear time implementation. It
is proved that Flexible Parsing is optimal within the set of all algorithms that have the same dictionary
of LZW with constant-cost pointers encoding and some experimental results are also described.

The theory of Dictionary-Symbolwise compression algorithms started in [20] improve and generalize
previous results stated for dictionary algorithms and allows to obtain new ones.

Let us give the following definition on same class of schemes:

Definition 2. A scheme S has the Schuegraf property if, for any text T and for any pair of algorithms
A,A′ ∈ S, the graph GA,T = GA′,T with GA,T well defined.

This property of schemes is called property of Schuegraf in honor to the first of the authors in [21].
In this case we define GS,T = GA,T as the graph of (any algorithm of) the scheme. There is a bijective
correspondence between optimal parsings and shortest paths in GS,T from vertex 0 to vertex n.

Definition 3. Let us consider an algorithm A and a text T and suppose that graph GA,T is well
defined. We say that A is dictionary optimal (with respect to T ) if its parsing induces a shortest path
in GA,T from the origin to vertex n, with n = |T |. In this case we say that its parsing is dictionary
optimal.

Let A be an algorithm such that for any text T the graph GA,T is well defined. We want to associate
to it a scheme SCA in the following way. Let S be the set of all algorithms A such that for any text
T GA,T exists (i.e. it is well defined). Let B and C two algorithms in S. We say that B and C are
equivalent or B ≡ C if for any text T GB,T = GC,T . We define the scheme SCA to be the equivalence
class that has A as a representative. It is easy to prove that SCA has the Schuegraf property.

We can connect the definition of dictionary optimal parsing with the previous definition of SCA

to obtain the next proposition, that says, roughly speaking, that dictionary optimality implies scheme
(or global) optimality within the scheme SCA.

Proposition 1. Let us consider an algorithm A such that for any text T the graph GA,T is well
defined. Suppose further that for a text T the parsing of A is dictionary optimal. Then the parsing of
A of the text T is (globally) optimal within the scheme SCA.

We have simple examples where a parsing of a text is dictionary optimal and the corresponding
algorithm belongs to a scheme that has not the Schuegraf property and it is not (globally) opti-
mal within the same scheme. For pure dictionary scheme having the Schuegraf Property we mean a
dictionary-symbolwise scheme having the Schuegraf Property where all algorithms in the scheme are
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pure dictionary. We have to be a bit careful using this terminology. Indeed, LZ78, LZW, LZ77 and
related algorithms often parse the text with a dictionary pointer and then add a symbol, i.e. the parse
phrase is composed by a dictionary pointer and a symbol. In these cases all edges of GA,T denote
parse phrases coupled to the corresponding symbol. Edges are labeled by the cost of the dictionary
pointer plus the cost of the symbol. We consider these cases included in the class of “pure dictionary”
algorithms and schemes.

It is possible to obtain a new statement of the main result concerning flexible parsing revisited in
our formalism as follows. The proof is omitted since it is implicitly contained in [19, 17]. It holds for all
dictionary algorithms, under the assumptions that the dictionary is at any moment prefix closed and
that the cost of encoding pointers is constant. The reader can refer to [19, 17] for further notations
and definitions.

Theorem 1. Flexible Parsing is dictionary optimal.

4 Dictionary-Symbolwise Flexible Parsing Algorithm

In this section we extend the notion of flexible parsing to the dictionary-symbolwise case and we prove
that it is still optimal within any scheme having the Schuegraf Property. We assume here that the
dictionary must be at any moment prefix closed. The algorithm is quite different from the original
Flexible Parsing but it has some analogies with it and, in the case of LZ78-alike dictionaries, it makes
use of one of the main data structures used for the original flexible parsing in order to be implemented
in linear time.

Concerning the costs of encoding pointers, we recall that costs can vary but that they assume
positive values and that they include the cost of flag information.

Concerning the symbolwise compressor, the costs of symbols must be positive, including the flag
information cost. They can vary depending on the position of the character in the text and on the
symbol itself.

We suppose further that a text T of length n is fixed and that we are considering the graph GA,T ,
where A is a dictionary-symbolwise algorithm, and GA,T is well defined under our assumption. We
denote by d the function that represent the distance of the vertexes of GA,T from the origin of the
graph. Such a distance d(i) is classically defined as the minimal cost of all possible weighted paths from
the origin to the vertex i, where d(0) = 0. This distance obviously depends on the cost function. We say
that cost function C is prefix-non-decreasing at any moment if for any u, v ∈ Dp phrases associated to
edges (p, i), (p, q), with p < i < q, that implies that u is prefix of v, one has that C((p, i)) ≤ C((p, q)).

Lemma 1. Let A be a dictionary-symbolwise algorithm such that for any text T the graph GA,T is
well defined. If the dictionary is always (at any moment) prefix-closed and if the cost function is always
(at any moment) prefix-non-decreasing then the function d is non-decreasing monotone.

Proof. It is sufficient to prove that for any i, 0 ≤ i < n one has that d(i) ≤ d(i + 1). Let j ≤ i be a
vertex such that (j, i+1) is an edge of the graph and d(i+1) = d(j)+C((j, i+1)). If j is equal to i then
d(i+1) = d(i)+C((i, i+1)) and the thesis follows. If j is smaller than i then, since the dictionary Dj is
prefix closed, (j, i) is still an edge in Dj and d(i) ≤ d(j)+C((j, i)) ≤ d(j)+C((j, i+1)) = d(i+1) and
the thesis follows. The last inequality in previous equation depend on the fact that the cost function
is prefix-non-decreasing.

In what follows in this paper we suppose that the graph GA,T is well defined.

Let us call vertex j a predecessor of vertex i ⇐⇒ ∃(j, i) ∈ E such that d(i) = d(j)+C((j, i)). Let
us define pre(i) to be the smallest of the predecessors of vertex i, 0 < i ≤ n, that is pre(i) = min{j |
d(i) = d(j)+C((j, i))}. In other words pre(i) is the smallest vertex j that contributes to the definition
of d(i). Clearly pre(i) has distance smaller than d(i). Moreover the function pre is not necessarily
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injective. For instance, a vertex can be a predecessor either “via” a dictionary edge or “via” a symbol
edge.

It is also possible to extend previous definition to pointers having a cost smaller than or equal to
a fixed c.

Definition 4. For any cost c we define prec(i) = min{j | d(i) = d(j) + C((j, i)) and C((j, i)) ≤ c}. If
none of the predecessor j of i is such that C((j, i)) ≤ c then prec(i) is undefined.

If all costs of the pointers are smaller than or equal to c then for any i one has obviously that
prec(i) is equal to pre(i).

Analogously to the notation of [17], we want to define two boolean operations Weighted-Extend
and Weighted-Exist.

Definition 5. Given an edge (i, j) in GA,T and its associated phrase w, a cost value c and a character
’a’, the operation Weighted-Extend((i, j), a, c) finds out whether the word wa is a phrase in Di having
cost smaller than or equal to c.

More formally, let (i, j) be such that w = T [i + 1 : j] ∈ Di and, then, (i, j) is in GA,T . Weighted-
Extend((i, j), a, c) = “yes” ⇐⇒ wa = T [i + 1 : j + 1] ∈ Di and C((i, j + 1)) ≤ c, where C is the cost
function associated to the algorithm A. Otherwise Weighted-Extend((i, j), a, c) = “no”.

Definition 6. Given 0 < i, j ≤ n and a cost value c, the operation Weighted-Exist(i, j, c) finds out
whether or not the phrase w = T [i + 1 : j] is in Di and the cost of the corresponding edge (i, j) is
smaller than or equal to c.

Let us notice that doing successfully a Weighted-Extend operation on ((i, j), a, c) means that
wa ∈ Di is the weighted extension of w and the encoding of (i, j + 1) has cost less or equal to c.
Similarly, doing a Weighted-Exist operation on (i, j, c) means that an edge (i, j) exist in GA,T having
cost less or equal to c.

Let Ec be the subset of all edges of the graph having cost smaller than or equal to c.

Definition 7. Let us also define, for any cost c the set Mc ⊆ Ec to be the set of c-supermaximal
edges, where (i, j) ∈Mc ⇐⇒ (i, j) ∈ Ec and ∀p, q ∈ V , with p < i and j < q, the arcs (p, j), (i, q) are
not in Ec. For any (i, j) ∈Mc let us call i a c-starting point and j a c-ending point.

Proposition 2. Suppose that (i, j) and (i′, j′) are in Mc. One has that i < i′ if and only if j < j′.

Proof. Suppose that i < i′ and that j ≥ j′. By the fact that the dictionary Di is prefix closed we have
that (i, j′) is still in Di and therefore it is an edge of GA,T . By the prefix-non-decreasing property of
function C we have that C((i, j′)) ≤ C((i, j)) = c, i.e. (i, j′) ∈ Ec. This contradicts the fact that (i′, j′)
is in Mc and this proves that if i < i′ then j < j′. Conversely suppose that j < j′ and that i ≥ i′. If
i > i′ by previous part of the proof we must have that j > j′ that is a contradiction. Therefore i = i′.
Hence (i, j) and (i, j′) both belongs to Mc and they have both cost smaller than or equal to c. This
contradicts the fact that (i, j) is in Mc and this proves that if j < j′ then i < i′.

By previous proposition, if (i, j) ∈Mc we can think j as function of i and conversely. Therefore it
is possible to represent Mc by using an array Mc[j] such that if (i, j) is in Mc then Mc[j] = i otherwise
Mc[j] = Nil. Moreover the non-Nil values of this array are strictly increasing. The positions j having
value different from Nil are the ending positions.

We want now describe a simple algorithm that outputs all c-supermaximal edges scanning the text
left-to-right. We call it Find Supermaximal(c). It uses the operations Weighted-Extend and Weighted-
Exist. The algorithm starts with i = 0, j = 1 and w = a1.The word w is indeed implicitely defined by
the arc (i, j) and therefore it will not appear explicitely in the algorithm. At each step j is increased
by one and w is set to w concatenated to T [j]. The algorithm executes a series of Weighted-Extend
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until this operation give a positive answer or the end of the text is reached. After a negative answer
of Weighted-Extend, the algorithm does a series of Weighted-Exist increasing i by one until a positive
answer.

The algorithm is stated more formally in the following pseudo code.

Find Supermaximal (c)
01. i← 0, j ← 1
02. WHILE j < n
03. DO
04. WHILE Weighted-Extend((i, j), aj+1 , c) = “yes” AND j < n
05. DO
06. j ← j + 1
07. INSERT (i, j) in Mc, j ← j + 1
08. DO
09. i← i + 1
10. WHILE Weighted-Exist(i, j, c) = “no” AND i < j

We notice that when exiting from cycle of lines 4 − 6, the cost of the edge (i, j) could still be
strictly smaller than c. The function INSERT simply insert the edge (i, j) in the dynamical set Mc. If
we represent Mc by an array as described after Proposition 2, function INSERT sets Mc[j] equal to i.
Array Mc[j] was initialized by setting all its entries to Nil.

Proposition 3. Above algorithm correctly computes Mc

Proof. First of all let us prove that if (̂i, ĵ) is inserted by the algorithm in Mc then (̂i, ĵ) is c-
supermaximal. First of all, since C((̂i, ĵ)) ≤ c then the first part of the definition is verified.
Since Weighted-Extend((̂i, ĵ), aĵ+1

, c) = “no” then (̂i, ĵ + 1) /∈ Ec. Since Di is prefix closed and the

function cost C is prefix-non decreasing ∀q ∈ V with ĵ < q the arc (̂i, q) is not in Ec for otherwise
(̂i, ĵ + 1) would be in Ec.

It remains to prove that ∀p ∈ V with p < î the arc (p, ĵ) is not in Ec.

Suppose by contradiction that there exists one such arc (p, ĵ) in Ec.

If p = 1, since D1 is prefix closed and the function cost is prefix-non-decreasing then variable j
must reach a value greater than or equal to ĵ + 1 after the first round of Weighted-Extend and no
further operations can lead to INSERT the arc (̂i, ĵ). This leads to a contradiction.

If p > 1 then p has been reached by the variable i after a round of Weighted-Exist operations
described in lines 8− 10. Let jp be the corresponding value that the variable j assumes when i = p. If
jp > ĵ then no further operations can lead to INSERT the arc (̂i, ĵ). A contradiction. If jp ≤ ĵ, since
(p, ĵ) in Ec and the dictionary Dp is prefix closed and the function cost is prefix-non-decreasing we
have that for any j with jp ≤ j ≤ ĵ the arc (p, j) ∈ Ec. Therefore when variable i reaches p it must
start a round of Weighted-Extend until j assume a value greater than or equal to ĵ + 1. Even in this
case no further operations can lead to INSERT the arc (̂i, ĵ). This leads to a contradiction. Therefore
if (̂i, ĵ) is inserted by the algorithm in Mc then (̂i, ĵ) is c-supermaximal.

We have now to prove that if (̂i, ĵ) is c-supermaximal then it is inserted by the algorithm in Mc.

Suppose that variable i never assumes the value î. The algorithm ends when variable j is equal
to n. Let in be the value of variable i just before that j becomes n. Since variable j increases only in
line 6 after that the operation Weighted-Extend outputs “yes”, we know that (in, n) ∈ Ec. Since The
dictionary Din is prefix closed and ĵ ≤ n and since the function cost is prefix-non-decreasing then
(in, ĵ) ∈ Ec. Since variable i ranged from 1 up to in then in < î and this contradicts the fact that (̂i, ĵ)
is c-supermaximal.

Therefore at a certain moment variable i is assuming the value î. Let ĵi be the value of variable
j in that moment. Variable i increases only during a round of operations Weighted-Exist. Before this
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round there must have been a round of operations Weighted-Extend. Let us consider the last one of
this round. Variable i is assuming the value i′ < î and, before increasing the variable j we know that
(i′, ĵi − 1) is in Ec.

If, at this point, ĵi > ĵ then ĵi−1 ≥ ĵ. Since the dictionary Di′ is prefix closed and since the function

cost is prefix-non-decreasing, (i′, ĵ) ∈ Ec. This contradicts the fact that (̂i, ĵ) is c-supermaximal. Hence
ĵi ≤ ĵ.

Since (̂i, ĵ) is in Ec, again since the dictionary Dî is prefix closed and since the function cost is

prefix-non-decreasing, for all j, ĵi ≤ j ≤ ĵ we have that (̂i, j) ∈ Ec. Therefore when variable i reaches

î it starts a sequence of Weighted-Extend and the variable j reaches the value ĵ. It and cannot go
further for otherwise (̂i, ĵ) would not be c-supermaximal. Therefore (̂i, ĵ) is inserted in Mc.

Proposition 4. For any edge (i, j) ∈ Ec there exists a c-supermaximal edge (̂i, ĵ) containing it, e.g.
such that î ≤ i and j ≤ ĵ.

Proof. We build (̂i, ĵ) in algorithmic fashion. The algorithm is described in what follows in an informal
but rigorous way. If edge (i, j) is not c-supermaximal then we proceed with a round of Weighted-
Extend((i, j), aj+1, c) analogously as described in algorithm Find Supermaximal and increase j of
one unit until Weighted-Extend outputs “no”. Let j1 be last value of j for which Weighted-Extend
output “yes”. Clearly (i, j1) ∈ Ec and (i, j) 6= (i, j1). If (i, j1) is not c-supermaximal the only possibility
is that there exists at least one i1 < i such that (i1, j1) ∈ Ec. At this point we keep iterating previous
two steps starting from (i1, j1) instead of (i, j) and we stops whenever we get a c-supermaximal edge,
that we call (̂i, ĵ).

By previous proposition for any node v ∈ GA,T if there exists a node i < v such that C((i, v)) = c
and d(v) = d(i) + c then there exists a c-supermaximal edge (̂i, ĵ) containing (i, v) and such that ĵ
is the closest arrival point greater that v. Let us call this c-supermaximal edge (̂iv , ĵv). We use îv in
next proposition.

Proposition 5. Suppose that v ∈ GA,T is such that there exists a previous node i such that C((i, v)) =
c and d(v) = d(i) + c. Then îv is a predecessor of v, e.g. d(v) = d(̂iv) + C((̂iv , v)) and, moreover,
d(̂iv) = d(i) and C((̂iv, v)) = c.

Proof. Since (̂iv , ĵv) contains (i, v) and the dictionary at position îv is prefix close then (̂iv , v) is an
edge of GA,T . Since (̂iv, ĵv) has cost smaller than or equal to c then, by the suffix-non-decreasing
property, also (̂iv, v) has cost smaller than or equal to c. Since the distance d is non-decreasing we
know that d(̂iv) ≤ d(i). By very definition of the distance d we know that d(v) ≤ d(̂iv) + C((̂iv, v)).

Putting all together we have that d(v) ≤ d(̂iv)+C((̂iv , v)) ≤ d(i)+c = d(v). Hence the inequalities
in previous equation must be equalities and, further, d(̂iv) = d(i) and C((̂iv , v)) = c.

Corollary 1. For any vertex v, the edge (̂iv , v) is the last edge of a path of minimal cost from the
origin to vertex v.

Proof. Any edge x in GA,T that is such that d(v) = d(x) + C((x, v)) is the last edge of a path of
minimal cost from the origin to vertex v.

In what follows we describe a graph G′
A,T that is a subgraph of GA,T that is such that for any

node v ∈ GA,T there exists a minimal path from the origin to v in G′
A,T that is also a minimal

path from the origin to v in GA,T . The proof of this property, that will be stated in the subsequent
proposition, is a consequence of Proposition 5 and Corollary 1.

We describe the building of G′
A,T in an algorithmic way. Even if we do not give the pseudocode,

algorithm Build G′
A,T is described in a rigorous way and it makes use, as a part of it, of algorithm

Find Supermaximal.
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The set of nodes of G′
A,T is the same of GA,T . First of all we insert all symbolwise edges of GA,T

in G′
A,T . Let now C be the set of all possible costs that any dictionary edge has. This set can be build

starting from GA,T but in all known meaningful situations the set C is usually well known and can be
ordered and stored in an array in a time that is linear in the size of the text.

For any c ∈ C we use algorithm Find Supermaximal to obtain the array Mc[j]. For any c-
supermaximal edge (i, j), we add in G′

A,T all edges of the form (i, x) where x varies from j down to
(and not including) the previous arrival position j′ if this position is greater than i+1 otherwise down
to i + 2. More formally, for any j such that Mc[j] 6= Nil let j′ be the greatest number smaller than j
such that Mc[j] 6= Nil. For any x, such that max(j′, i + 2) ≤ x ≤ j, add (i, x) to G′

A,T together with
its label. This concludes the construction of G′

A,T .
Since (i, j) and the dictionary Di is prefix closed then all previous arcs of the form (i, x) are also

arcs of GA,T and, therefore, G′
A,T is a subgraph of GA,T .

Proposition 6. For any node v ∈ GA,T there exists a minimal path from the origin to v in G′
A,T

that is also a minimal path from the origin to v in GA,T .

Proof. The proof is by induction on v. If v is the origin there is nothing to prove. Suppose now that
v is greater than the origin and let (i, v) the last edge of a minimal path in GA,T from the origin to
v. By inductive hypothesis there exists a minimal path P from the origin to i in G′

A,T that is also
a minimal path from the origin to i in GA,T . Since (i, v) is a symbolwise arc then it is also in G′

A,T

and the concatenation of above minimal path P with (i, v) is a minimal path from the origin to v in
G′

A,T that is also a minimal path from the origin to v in GA,T .
Suppose now that (i, v) is a dictionary arc and that its cost is c.
Since it is the last edge of a minimal path we have that d(v) = d(i) + c. By Proposition 5 d(v) =

d(̂iv) + C((̂iv , v)) and, moreover, d(̂iv) = d(i) and C((̂iv , v)) = c.
By Corollary 1, the edge (̂iv , v)) is the last edge of a path of minimal cost from the origin to vertex

v. By inductive hypothesis there exists a minimal path P from the origin to îv in G′
A,T that is also

a minimal path from the origin to i in GA,T . Since (̂iv , v)) has been added by construction in G′
A,T

, the concatenation of above minimal path P with (̂iv , v)) is a minimal path from the origin to v in
G′

A,T that is also a minimal path from the origin to v in GA,T .

We can now finally describe the Dictionary-symbolwise flexible parsing.

The Dictionary-symbolwise flexible parsing firstly uses algorithm Build G′
A,T and then uses the

classical Single Source Shortest Path algorithm to recover a minimal path from the origin to
the end of graph GA,T . The correctness of above algorithm is stated in the following theorem and it
follows from above description and from Proposition 6

Theorem 2. Dictionary-symbolwise flexible parsing is dictionary optimal.

With respect to the original Flexible Parsing algorithm we gain the fact that it can works with
variable costs of pointers and that it is extended to the dictionary-symbolwise case. But we loose the
fact that the original one was “on-line”. A minimal path has to be recovered, starting from the end of
the graph backward. But this is an intrinsic problem that cannot be eliminated. Even if the dictionary
edges have just one possible cost, in the dictionary-symbolwise case it is possible that any minimal
path for a text T is totally different from any minimal path for the text Ta, that is the previous
text T concatenated to the symbol ’a’. Even if the cost of pointers is constant. The same can happen
when we have a “pure dictionary” case with variable costs of dictionary pointers. In both cases for
this reason, there cannot exists “on-line” optimal parsing algorithms, and, indeed, flexible parsing fails
being optimal in the pure dictionary case when costs are variable.

On the other hand our algorithm is suitable when the text is cut in several blocks and, therefore,
in practice there is not the need to process the whole text but it suffices to end the current block in
order to have the optimal parsing (relative to that block). As another alternative, one can keep track
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of just one minimal path all along the text and can use some standard tricks to arrange it if it does
not reach the text end, i.e. the wished target node. In the last cases one get a suboptimal solution
that is a path with a cost extremely close to the minimal path.

5 Data Structures and Time Analysis

In this subsection we analyze Dictionary-symbolwise flexible parsing in both LZ78 and LZ77 alike
algorithms.

Concerning LZ78 alike algorithms, the dictionary is prefix closed and it is usually implemented by
using a technique that is usually referred as LZW implementation. We do not enter in details of this
technique. We just recall that the cost of pointers increases by one unit whenever the dictionary size
is “close” to a power of 2. The moment when the cost of pointers increases is clear to both encoder
and decoder. In our dictionary-symbolwise setting, we suppose that the flag information for dictionary
edges is constant. We assume therefore that it takes O(1) time to determine the cost of all dictionary
edges outgoing node i.

The maximal cost that a pointer can assume is smaller than log2(n) where n is the text-size.
Therefore the set C of all possible costs of dictionary edges has logarithmic size and it is cheap to
calculate.

In [17] it is used a data structure, called trie-reverse pair, that is able to perform the operation of
Extend and Contract in O(1) time.

Since at any position we can calculate in O(1) time the cost of outgoing edges, we can use the same
data structure to perform our operations of Weighted-Extend and of Weighted-Exist in constant time.
In order to perform a Weighted-Extend we simply use the Extend on the same non-weight parameters
and, if the answer is “yes” we perform a further check in O(1) time on the cost. In order to perform a
Weighted-Exist we simply use the contract on the same non-weight parameters and, if the answer is
“yes” we perform a further check in O(1) time on the cost.

For any cost c finding Mc and the corresponding arcs in order to build G′
A,T takes then linear

time. Therefore, at a first look, performing the algorithm Build G′
A,T would take O(n log(n)). But,

since there is only one cost active at any position then if c < c′ then Mc ⊆ Mc′ as stated in the
following proposition.

Proposition 7. Suppose that for any i the cost of all dictionary pointers in Di is a constant ci and
that for any i, 0 ≤ i < n one has that ci ≤ ci+1.

If c < c′ then Mc ⊆Mc′ .

Proof. We have to prove that for any (i, j) ∈Mc then (i, j) ∈Mc′ . Clearly if (i, j) ∈Mc then its cost is
smaller than or equal to c < c′. It remains to prove that (i, j) is c′-supermaximal, e.g. that ∀p, q ∈ V ,
with p < i and j < q, the arcs (p, j), (i, q) are not in Ec′ . Since (i, j) ∈Mc and since the cost of (i, j)
is by hypothesis equal to ci, we have that ci ≤ c. If arc (p, j) is in Ec′ then its cost is cp ≤ ci ≤ c and
therefore it is also in Ec contradicting the c-supermaximality of (i, j). If arc (i, q) is in Ec′ then its
cost is ci ≤ c and therefore it is also in Ec contradicting the c-supermaximality of (i, j).

Definition 8. We say that a cost function C is LZW-alike if for any i the cost of all dictionary
pointers in Di is a constant ci and that for any i, 0 ≤ i < n one has that ci ≤ ci+1.

At this point, in order to build G′
A,T it suffices to build Mc where c is the greatest possible cost.

Indeed it is useless checking for the cost and one can just use the standard operation Extend and
Contract. Those operation can be implemented in O(1) time using the trie reverse trie data structure
for LZ78 standard dictionary or for the LZW dictionary or for the FPA dictionary (cf. [17]). Indeed
we call a dictionary LZ78-alike if the operations Extend and Contract can be implemented in O(1)
time using the trie reverse trie data structure.
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We notice that previous definition of LZ78-alikeness can be relaxed by asking that the operations
Extend and Contract can be implemented in O(1) amortized time using any data structure, including
obviously the time used for building such data structure.

The overall time for building G′
A,T is therefore linear, as well as its size. The Single Source

Shortest Path over G′
A,T , that is a DAG topologically ordered, takes linear time.

In conclusion we have proved the following theorem.

Theorem 3. Suppose that we have a dictionary-symbolwise scheme, where the dictionary is LZ78-
alike and the cost function is LZW-alike. The symbolwise compressor is supposed to be, as usual, linear
time. Using the trie-reverse pair data structure, Dictionary-Symbolwise flexible parsing is linear.

Concerning LZ77, in [5] it has been given, with a similar shortest path approach, an optimal
parsing algorithm under some assumptions on the cost function. Our prefix-non-decreasing assumption
is weaker than their assumptions in the sense that it is a consequence of their assumptions (cf. [5,
Fact 4]). The maximal cost that a pointer can have under their assumption is still O(log(n)) where
n is the size of the text. It seems that it is possible to use the data structure used in [5] to perform,
for any cost, Weighted-Extend and Weighted-Exist in amortized O(1) time. Then the overall time for
the Dictionary-symbolwise flexible parsing when the dictionary is LZ77 alike would be O(n log(n)),
extending their result to the dictionary-symbolwise case. The subgraph G′

A,T of GA,T is totally
different from the one used in [5].

Indeed, quite recently, we discovered a simpler data structure that allows us to perform, for any
cost, Weighted-Extend and Weighted-Exist in amortized O(1) time. This data structure is built by
using in a clever way O(log(n)) suffix trees and it will be described in the journal version of this paper.

6 Dictionary-Symbolwise Can Have Better Ratio

In this section we prove that there exists a family of strings such that the ratio between the compressed
version of the strings obtained by using an optimal LZ78 parsing (with constant cost encoding of point-
ers) and the compressed version of the strings obtained by using an optimal dictionary-symbolwise
parsing is unbounded. The dictionary, in the dictionary-symbolwise compressor is still the LZ78 dictio-
nary, while the symbolwise is a simple Last Longest Match Predictor that will be described later. We
want to notice here that similar results were proved in [19] between flexible parsing and the classical
LZ78 and in [5] between a compressor that uses optimal parsing over a LZ77 dictionary and the stan-
dard LZ77 compressor (cf. also [14]). Last but not least we notice that in this example, analogously
as done in [19], we use an unbounded alphabet just to make the example clearer. An analogous result
can be obtained with a binary alphabet with a more complex example.

Let us define a Dictionary-Symbolwise compressor that uses LZ78 as dictionary method, the Last
Longest Match Predictor as symbolwise method, Run Length Encoder to represent the flag informa-
tion and one optimal parsing method. Let us call it OptDS-LZ78. We could have used a PPM* as
symbolwise compressor but Last Longest Match Predictor fits our purposes and it is simple to ana-
lyze. Last Longest Match Predictor is just a simple symbolwise compression method that uses the last
longest seen match to predict next char.

The symbolwise searches, for any position k of the text, the closest longest block of consecutive
letters up to position k− 1 that is equal to a suffix ending in position k. This compressor predicts the
(k + 1)-th character of the text to be the character that follows the block. It writes a symbol ’y’ (that
is supposed not to be in the text) if this is the case. Otherwise it uses an escape character ’n’ (that
is supposed not to be in the text) and then writes down the correct character plainly. A temporary
output alphabet has therefore two characters more than the characters in the text. This temporary
output will be subsequently encoded by a run-length encoder. This method is like the Yes?No version
of Symbol Ranking by P. Fenwick.
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Let us consider a string S that is the concatenation of all the prefixes of 1..k in increasing order.
Let consider the string T ′ that is the concatenation of the first

√
k suffixes of 2..k, i.e. T ′ = 2..k · 3..k ·

. . . ·
√

k..k and a string T = S · T ′. We use S to build a dictionary formed by just the string 1..k and
its prefixes and no more. We assume that both the dictionary and the symbolwise methods work the
same up to the end of the S string, so they produce an output that is very similar in terms of space.
It is not difficult to prove that an optimal LZ78 compressor would produce on T a parse having cost
at least O(k + k log(k)) = O(k log(k)) while the optimal dictionary-symbolwise compressor (under the
constant cost assumption on encoding pointers) has a cost that is O(k +

√
k log(k)) = O(k).

A similar result can be stated and proved also in the case of LZ77 dictionary.

7 Experimental Results

We present some experimental results on LZ78 alike dictionaries that show the effectiveness of this
approach. We did some experiments focused on the gain of an optimal dictionary-symbolwise over an
optimal pure dictionary methods, using our flexible version of a LZ78 dictionary-symbolwise compres-
sor, where the dictionary size (number of phrases) is 224, the symbolwise compressor is an Huffman
coding over all symbols and the parse is optimal. We mean that the cost of a symbol is set to be the
cost in bits that a static Huffman coding over the whole text assigns to it. We further used an Huffman
coding on the flag information by considering 8 consecutive flag information as a character. In order
to see the gain over a pure dictionary method, we forced the parsing not to use symbolwise arcs.
Therefore, what we call “the pure dictionary method” is essentially the Flexible Parsing of Mathias
and Shainalp.

We tested our compressors over some prefixes of the English wikipedia that are widely used as
dataset for benchmark, (cf. [15]). The prefix of length 108 symbols is called ENWIK8. Over ENWIK8
the gain of our dictionary-symbolwise with respect to the pure dictionary method was close to 5%.

We observed a similar gain for other prefixes of English wikipedia, slowly decreasing as the size of
the prefix was increasing.

From a formal point of view, for the compression algorithm used by us we cannot build the weighted
graph GA,T , i.e. the cost of arcs cannot be given “a priori”. Nevertheless, in practice we assigned a
presumed cost to each arc and we worked as in the case of a compressor that is such that for any text
the weighted graph GA,T exists. So, we cannot say that the obtained parse is optimal, but we believe
that it is very close to the optimal one. Actually our compressed version of ENWIK8 is less than 90%
of the corresponding version compressed by gzip with the option −9. Next table shows the percentage
of our compressed version w.r.t. gzip-9 ones.

The results described in [17] do not use LZ78 but the LZW with a dictionary of size 216 and the
FPA algorithm with a dictionary of size 216 and 224. This last seems to behave better than LZW and
of our LZ78 optimal pure dictionary. Our results are then not directly comparable but they seem to
be compatible. Some percentile can be lost or gained by the ability of the programmer. Our program
is just a working prototype and its purpose is to compare the gain obtained when an simple Huffman
is coupled with a LZ78 with respect to a pure LZ78, both with an optimal parsing. The reader can
make other comparisons with other standard compressors such as Bzip2 by using the URL in [15] and
gzip -9 as a benchmark.

As further improvement, we gained few percentile points by using a dynamic Huffman coding on
the symbols chosen by the parse. We decided to make more “rounds” of compression by assigning the

input file size 2MB 4MB 8MB 16MB 32MB 64MB 100MB

pure dictionary 112.97% 109.29% 104.41% 100.88% 98.68% 95.92% 94.28%
dict-symbolwise 107.43% 103.97% 99.37% 96.04% 94.07% 91.51% 89.98%

Table 2. Compression evaluation against gzip − 9.
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value corresponding to the last distribution to the next round of compression. We noticed an extremely
fast stabilization of the values, i.e. just after 3 or at most 4 rounds. We noticed further that different
starting distributions could lead to different, even if close, stabilized or stationary distributions, that,
in turn, lead to different compressed outputs of similar but not equal size.

As a preliminary result, we observed a much higher gain of a further 10% when the Huffman coding
was replaced by an order-1 arithmetical coding. In this case we have just evaluated the cost of the
chosen parsing because we have not yet the working compression - decompression program.

Concerning LZ77 dictionary-symbolwise we have implemented a generalisation to larger dictionary
size of gzip, that we call Lgzip (Large gzip). When the dictionary size is smaller that or equal to 32
Kb we obtain files that are .gz compliant, i.e. they can be decompressed by usual decompressors.
Our compression ratios are almost equal (usually few bytes more indeed) than the equivalent files
compressed by deflate64 with maximal compression parameters. These files have by far a much better
compression ratio than the one obtained by gzip with the option -9. The library deflate64 is included
in the widely used 7zip program.

When we enlarge the dictionary size we obtain similar compression ratio of other commercial
compression programs.

When we deal with files of size of 20 megas the advantage of using a symbolwise coupled with a
LZ77 dictionary reduces down to a 2− 3%, less than the 5% of the LZ78 case.

The compression ratio in the LZ77+Huffman case is better than the one in the LZ78+Huffman case.
The distance seems to reduce when instead of an Huffmann coding it is used an order-1 arithmetical
coding.

We plan to continue these experiments since this direction seems to be very promising. As fur-
ther experimental work we plan to check our algorithm by using as dictionary some version of FPA
algorithm and, eventually, a Rolz compressor.

8 Conclusions

In this paper we present some advancement on dictionary-symbolwise theory. We describe the Dictionary-
Symbolwise Flexible Parsing, a parsing algorithm that extends in non obvious way the Flexible Pars-
ing (cf. [19]) to variable and unbounded costs and to the dictionary-symbolwise algorithm domain.
We prove its optimality for prefix-closed dynamic dictionaries under some reasonable assumption.
Dictionary-Symbolwise Flexible Parsing is linear for LZ78 alike dictionaries and even if it is not able
to run online it allow to easily make a block programming implementation and a near to optimal online
implementation, too. In the case of LZ77 alike dictionary and under lighter constrains on cost function,
we have reobtained the O(n log(n)) complexity as authors of [5] recently did and we use a completely
different and simpler subgraph and a simpler data structure. We proved that dictionary-symbolwise
compressors can be asymptotically better than optimal pure dictionary compression algorithms in
compression ratio terms, with LZ78 based dictionary and the same can be proved for LZ77 based
dictionary.

Finally, we easily obtained experimentally a 5% enhancement in compression ratio with respect
of the pure dictionary compressor building the dictionary-symbolwise LZ78-Huffman compressor. We
plan to extend our experimentation on LZ alike dictionary algorithms and many other symbolwise
algorithms, since this direction seems to be very promising.
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