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Introduction

The notion of periodicity in strings is widely used in many fields, such as combinatorics on words, pattern matching, data compression and automata theory (see [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF][START_REF] Lothaire | Applied Combinatorics on Words[END_REF]). It is of paramount importance in several applications, not to talk about its theoretical aspects. The concept of quasiperiodicity is a generalization of the notion of periodicity, and was defined by Apostolico and Ehrenfeucht in [START_REF] Apostolico | Efficient detection of quasiperiodicities in strings[END_REF]. In a periodic repetition the occurrences of the period do not overlap. In contrast, the quasiperiods of a quasiperiodic string may overlap.

We consider words (strings) over a finite alphabet Σ, u ∈ Σ * ; the empty word is denoted by ε; the positions in u are numbered from 1 to |u|. By Σ n we denote the set of words of length n. By u R we denote the reverse of the string u. For u = u 1 u 2 . . . u n , let us denote by u[i . . j] a factor of u equal to u i . . . u j (in particular u[i] = u[i . . i]). Words u [1 . . i] are called prefixes of u, and words u[i . . n] are called suffixes of u. Words that are both prefixes and suffixes of u are called borders of u. By border(u) we denote the length of the longest border of u that is shorter than u. We say that a positive integer p is the (shortest) period of a word u = u 1 . . . u n (notation: p = per(u)) if p is the smallest positive number, such that u i = u i+p , for i = 1, . . . , np. It is a known fact [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF] that, for any string u, per(u) + border(u) = |u|.

We say that a string s covers the string u if every letter of u is contained in some occurrence of s as a factor of u. Then s is called a cover of u. We say that a string s is: a seed of u if s is a factor of u and u is a factor of some string w covered by s; a left seed of u if s is both a prefix and a seed of u; a right seed of u if s is both a suffix and a seed of u (equivalently, s R is a left seed of u R ). Seeds were first defined and studied by Iliopoulos, Moore and Park [START_REF] Iliopoulos | Covering a string[END_REF], who gave an O(n log n) time algorithm computing all the seeds of a given string u ∈ Σ n , in particular, the shortest seed of u.

By cover(u), seed(u), lseed(u) and rseed(u) we denote the length of the shortest: cover, seed, left seed and right seed of u, respectively. By covermax(u) and lseedmax(u) we denote the length of the longest cover and the longest left seed of u that is shorter than u, or 0 if none.

For a string u ∈ Σ n , we define its: period array P[1 Table 1. An example string together with its periodic and quasiperiodic arrays. Note that the left-seed array and the seed array are non-decreasing.

P[i] = per(u[1 . . i]), B[i] = border(u[1 . . i]), P ′ [i] = per(u[i . . n]), C[i] = cover(u[1 . . i]), C M [i] = covermax(u[1 . . i]), Seed[i] = seed(u[1 . . i]), LSeed[i] = lseed(u[1 . . i]), LSeed M [i] = lseedmax(u[1 . . i]).
The border array, suffix border array and period array can be computed in O(n) time [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF]. Apostolico and Breslauer [START_REF] Apostolico | Of periods, quasiperiods, repetitions and covers[END_REF][START_REF] Breslauer | An on-line string superprimitivity test[END_REF] gave an on-line O(n) time algorithm computing the cover array C[1 .

. n] of a string. Li and Smyth [START_REF] Li | Computing the cover array in linear time[END_REF] provided an algorithm, having the same characteristics, for computing the longest cover array C M [1 .

. n] of a given string. Note that the array C M enables computing all covers of all prefixes of the string, same property holds for the border array B.

Unfortunately, the LSeed M array does not share this property. Table 1 shows the above defined arrays for u = abaabaaabbaabaab. For example, for the prefix u[1 . . 13] the period equals 11, the border is ab, the cover is abaabaaabbaab, the left seed is abaabaaabba, the longest left seed is abaabaaabbaa, and the seed is baabaaab.

We list here several useful (though obvious) properties of covers and seeds.

Observation 1 (a) A cover of a cover of u is also a cover of u. (b) A cover of a left (right) seed of u is also a left (right) seed of u.

(c) A cover of a seed of u is also a seed of u. For example maxgap({1, 3, 8, 13, 17}) = 5. For a factor v of u, let us define Occ(v, u) as the set of starting positions of all occurrences of v in u. By first(v) and last (v) we denote min Occ(v, u) and max Occ(v, u) respectively. For the sake of simplicity, we will abuse the notation, and denote maxgap(v) = maxgap(Occ(v, u)). Notions of maxgaps and border seeds provide a useful characterization of seeds. Observation 3 Let s be a factor of u ∈ Σ * . The word s is a seed of u if and only if |s| ≥ maxgap(s) and s is a border seed of u.

(d) If u is a factor of v then seed(u) ≤ seed(v). (e) If u is a prefix of v then lseed(u) ≤ lseed(v). (f 
Several new and efficient algorithms related to seeds in strings are presented in this paper. Linear time algorithms computing left-seed array and longest left-seed array are given in Section 2. In Section 3 we show a linear time algorithm finding seed-of-a-given-length and apply it to computing the seed array of a string in O(n 2 ) time. Finally, in Section 4 we describe an alternative simple O(n log n) time computation of the shortest seed, from which we obtain an O(n log (n/m)) time algorithm checking if the shortest seed has length at least m (described in Section 5).

Computing Left-Seed Arrays

In this section we show two O(n) time algorithms for computing the left-seed array and an O(n) time algorithm for computing the longest left-seed array of a given string u ∈ Σ n . We start by a simple characterization of the length of the shortest left seed of the whole string u -see Lemma 5. In its proof we utilize the following auxiliary lemma which shows a correspondence between the shortest left seed of u and shortest covers of all prefixes of u. Lemma 4. Let s be a prefix of u, and let j be the length of the longest prefix of u covered by s. Then s is a left seed of u if and only if j ≥ per(u).

In particular, the shortest left seed s of u is the shortest cover of the corresponding prefix u[1 . . j].

Proof. (⇒) If s is a left seed of u then there exists a prefix p of s of length at least nj which is a suffix of u (see Fig. 2). We use here the fact, that u[1 . . j] is the longest prefix of u covered by s. Hence, p is a border of u, and consequently border(u) ≥ |p| ≥ nj. Thus we obtain the desired inequality j ≥ per(u). (⇐) The inequality j ≥ per(u) implies that v = u[1 . . j] is a left seed of u (see Fig. 3). Hence, by Observation 1b, the word s, which is a cover of v, is also a left seed of u.

Finally, the "in particular" part is a consequence of Observation 1, parts b and f. ⊓ ⊔ . n] be its cover array. Then: 

lseed(u) = min{C[j] : j ≥ per(u)}. (1 

⊓ ⊔

Clearly, the formula (1) provides an O(n) time algorithm for computing the shortest left seed of the whole string u. We show that, employing some algorithmic techniques, one can use this formula to compute shortest left seeds for all prefixes of u, i.e., computing the left-seed array of u, also in O(n) time.

Theorem 1. For u ∈ Σ n , its left-seed array can be computed in O(n) time.

Proof. Applying (1) to all prefixes of u, we obtain:

LSeed[i] = min{C[j] : P[i] ≤ j ≤ i}. (2) 
Recall that both the period array P[1 .

. n] and the cover array

C[1 . . n] of u can be computed in O(n) time [1, 4, 6, 8].
The minimum in the formula (2) could be computed by data structures for Range-Minimum-Queries [START_REF] Fischer | A new succinct representation of RMQ-information and improvements in the enhanced suffix array[END_REF][START_REF] Sadakane | Succinct data structures for flexible text retrieval systems[END_REF], however in this particular case we can apply a much simpler algorithm. Note that P[i -1] ≤ P[i], therefore the intervals of the form [P[i], i] behave like a sliding window, i.e., both their endpoints are nondecreasing. We use a bidirectional queue Q which stores left-minimal elements in the current interval [P[i], i] (w.r.t. the value C[j]). In other words, elements of Q are increasing and if Q during the step i contains an element j then j ∈ while

[P[i], i] and C[j] < C[j ′ ] for all j < j ′ ≤ i.
(not empty(Q)) and (C[back (Q)] ≥ C[i]) do popBack (Q); 6: pushBack (Q, i); 7: LSeed[i] := C[front (Q)]; 8: { Q stores left-minimal elements of the interval [P[i], i] } 9: return LSeed[1 . . n];
Now we proceed to an alternative algorithm computing the left-seed array, which also utilizes the criterion from Lemma 4. We start with an auxiliary algorithm ComputeR-Array. It computes an array R[1 . . n] which stores, as R[i], the length of the longest prefix of u for which u[1 . . i] is the shortest cover, 0 if none.

ALGORITHM ComputeR-Array(u) 1: C[1 . . n] := cover array of u; 2: for i := 1 to n do R[i] := 0; 3: for i := 1 to n do R[C[i]] := i; 4: return R[1 . . n];
The algorithm Alternative-ComputeLeftSeedArray computes the array LSeed from left to right. The current value of LSeed[i] is stored in the variable ls, note that this value never decreases (by Observation 1e). Equivalently, for each i we have

LSeed[i -1] ≤ LSeed[i] ≤ i.
The particular value of LSeed[i] is obtained using the necessary and sufficient condition from Lemma 4:

LSeed[i] = ls if ls is the smallest number such that |w| ≥ per(u[1 . . i]) = P[i],
where w is the longest prefix of u[1 . . i] that is covered by u[1 . . ls]. We slightly modify this condition, substituting w with the longest prefix w ′ of the very word u that is covered by u[1 . . ls]. Thus we obtain the condition R[ls] ≥ P[i] utilized in the pseudocode below. . n] can be computed in linear time [START_REF] Apostolico | Of periods, quasiperiods, repetitions and covers[END_REF][START_REF] Breslauer | An on-line string superprimitivity test[END_REF][START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF]. The array R[1 . . n] is obviously also computed in linear time.

It suffices to prove that the total number of steps of the while-loop in the algorithm Alternative-ComputeLeftSeedArray is linear in terms of n. In each step of the loop, the value of ls increases by one; this variable never decreases and it cannot exceed n. Hence, the while-loop performs at most n steps and the whole algorithm runs in O(n) time.

⊓ ⊔

Concluding this section, we describe a linear-time algorithm computing the longest left-seed array, LSeed M [1 .

. n], of the string u ∈ Σ n . The following lemma gives a simple characterization of the length of the longest left seed of the whole string u.

Lemma 6. Let u ∈ Σ n . If per(u) < n then lseedmax(u) = n -1, otherwise lseedmax(u) = 0.
Proof. First consider the case per(u) = n. We show that lseed(u) = n, consequently lseedmax(u) equals 0. Assume to the contrary that lseed(u) < n. Then, a non-empty prefix of the minimal left seed of u, say w, is a suffix of u (consider the occurrence of the left seed that covers u[n]). Hence, n -|w| is a period of u, a contradiction. Assume now that per(u) < n. Then u is a prefix of the word u[1 . .

per(u)] • u[1 . . n -1] which is covered by u[1 . . n -1]. Therefore u[1 . . n -1] is a left seed of u, lseedmax(u) ≥ n -1, consequently lseedmax(u) = n -1.
⊓ ⊔

Using Lemma 6 we obtain LSeed M [i] = i -1 or LSeed M [i] = 0 for every i, depending on whether P[i] < i or not. We obtain the following result.

Theorem 3. Longest left-seed array of u ∈ Σ n can be computed in O(n) time.

Computing Seeds of Given Length and Seed Array

In this section we show an O(n 2 ) time algorithm computing the seed array Seed[1 .

. n] of a given string u ∈ Σ n , note that a trivial approach -computing the shortest seed for every prefix of u -yields O(n 2 log n) time complexity. In our solution we utilize a subroutine: testing whether u has a seed of a given length k. The following theorem shows that this test can be performed in time.

Theorem 4. It can be checked whether a given string u ∈ Σ n has a seed of a given length k in O(n) time.

Proof. Assume we have already computed in O(n) time the suffix array SUF and the LCP array of longest common prefixes, see [START_REF] Crochemore | Algorithms on Strings[END_REF]. In the algorithm we start by dividing all factors of u of length k into groups corresponding to equal words. Every such group can be described as a maximal interval [i . . j] in the suffix array SUF, such that each of the values

LCP[i + 1], LCP[i + 2], . . . , LCP[j] is at least k.
The collection of such intervals can be constructed in O(n) time by a single traversal of the LCP and SUF arrays (lines 1-9 of Algorithm SeedsOfAGiven-Length). Moreover, using Bucket Sort, we can transform this representation into a collection of lists, each of which describes the set Occ(v, u) for some factor v of u, v ∈ Σ k (lines 10-11 of the algorithm). This can be done in linear time, provided that we use the same set of buckets in each sorting and initialize them just once. Now we process each of the lists separately, checking the conditions from Observation 3: in lines 14-18 of the algorithm we check the "maxgap" condition, and in line 19 the "border seed" condition, employing Fact 2.

Thus, having computed the arrays SUF and LCP, and the period arrays P[1 .

. n] and P ′ [1 . . n] of u, we can find all seeds of u of length k in O(n) total time.

⊓ ⊔ ALGORITHM SeedsOfAGivenLength(u, k) We compute the elements of the seed array Seed[1 .

. n] from left to right, i.e., in the order of increasing lengths of prefixes of u. Note that

Seed[i + 1] ≥ Seed[i] for any 1 ≤ i ≤ n -1, this is due to Observation 1d. If Seed[i + 1] > Seed[i]
then we increase the current length of the seed by one letter at a time, in total at most n -1 such operations are performed. Each time we query for existence of a seed of a given length using the algorithm from Theorem 4. Thus we obtain O(n 2 ) time complexity.

Theorem 5. The seed array of a string u ∈ Σ n can be computed in O(n 2 ) time.

In this section we present a new approach to shortest seeds computation based on very simple independent processing of disjoint chains in the suffix tree. It simplifies the computation of shortest seeds considerably.

Our algorithm is also based on a slightly modified version of Observation 3, formulated below as Lemma 7, which allows to relax the definition of maxgaps. We discuss an algorithmically easier version of maxgaps, called prefix maxgaps, and show that it can substitute maxgap values when looking for the shortest seed.

We start by analyzing the "border seed" condition. We introduce somewhat more abstract representation of sets of factors of u, called prefix families, and show how to find in them the shortest border seeds of u. Afterwards the key algorithm for computing prefix maxgaps is presented. Finally, both techniques are utilized to compute the shortest seed.

Let us fix the input string u ∈ Σ n . For v ∈ Σ * , by PREF (v) we denote the set of all prefixes of v and by PREF (v, k) we denote PREF (v) ∩ Σ k Σ * (limited prefix subset ).

Let F be a family of limited prefix subsets of some factors of u, we call F a prefix family. Every element PREF (v, k) ∈ F can be represented in a canonical form, by a tuple of integers: (first (v), last (v), k, |v|). Such a representation requires only constant space per element. By bseed(u, F ) we denote the shortest border seed of u contained in some element of F . Note that F = {abaa, abaab, baba, babaa}. Then bseed(u, F ) = abaa.

The proof of the following fact is present implicitly in [START_REF] Iliopoulos | Covering a string[END_REF] (type-A and type-B seeds). Theorem 6. Let u ∈ Σ n and let F be a prefix family given in a canonical form. Then bseed(u, F ) can be computed in linear time.

Alternative proof of Theorem 6.

There is an alternative algorithm for computing bseed(u, F ), based on a special version of Find-Union data structure. Recall that B[1 . . n] is the border-array of u. Denote by FirstGE(I, c) (firstgreater-equal ) a query:

FirstGE(I, c) = min{i : i ∈ I, B[i] ≥ c},
where I is a subinterval of [1 . . n]. We assume that min ∅ = +∞. A sequence of linear number of such queries, sorted according to non-decreasing values of c, can be easily answered in linear time, using an interval version of Find-Union data structure, see [START_REF] Crochemore | Extracting powers and periods in a string from its runs structure[END_REF][START_REF] Gabow | A linear-time algorithm for a special case of disjoint set union[END_REF]. The following algorithm applies the condition for border seed from Fact 2 to every element of F , with P[first(s) + |s| Computation of the shortest seeds via prefix maxgaps. Let T (u) be the suffix tree of u, recall that it can be constructed in O(n) time [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF]. By Nodes(u) we denote the set of factors of u corresponding to explicit nodes of T (u), for simplicity we identify the nodes with the strings they represent. For v ∈ Nodes(u), the set Occ(v, u) corresponds to leaf list of the node v (i.e., the set of values of leaves in the subtree rooted at v), denoted as LL(v). Note that first(v) = min LL(v) and last (v) = max LL(v), and such values can be computed for all v ∈ Nodes(u) in O(n) time. For v ∈ Nodes(u), we define the prefix maxgap of v as:

∆(v) = max{maxgap(w) : w ∈ PREF (v)}.
Equivalently, ∆(v) is the maximum of maxgap values on the path from v to the root of T (u). We introduce an auxiliary problem:

Prefix Maxgap Problem: given a word u ∈ Σ n , compute ∆(v) for all v ∈ Nodes(u).

The following lemma (an alternative formulation of Observation 3) shows that prefix maxgaps can be used instead of maxgaps in searching for seeds. This is important since computation of prefix maxgaps ∆(v) is simple, in comparison with maxgap(v) -this is due to the fact that the ∆(v) values on each path down the suffix tree T (u) are non-decreasing. Efficient computation of maxgap(v) requires using augmented height-balanced trees [START_REF] Brodal | Finding maximal quasiperiodicities in strings[END_REF] or other rather sophisticated techniques [START_REF] Berkman | The subtree max gap problem with application to parallel string covering[END_REF]. The shortest-seed algorithm in [START_REF] Iliopoulos | Covering a string[END_REF] also computes prefix maxgaps instead of maxgaps, however this observation is missing in [START_REF] Iliopoulos | Covering a string[END_REF].

Lemma 7. Let s be a factor of u ∈ Σ * and let w be the shortest element of Nodes(u) such that s ∈ PREF(w). The word s is a seed of u if and only if |s| ≥ ∆(w) and s is a border seed of u.

Proof. If s corresponds to an element of Nodes(u), then s = w. Otherwise, s corresponds to an implicit node in an edge in the suffix tree, and w is the lower end of the edge. Note that in both cases we have ∆(w) ≥ maxgap(w) = maxgap(s). By Observation 3, this implies part (⇐) of the conclusion. As for the part (⇒), it suffices to show that |s| ≥ ∆(w).

Assume, to the contrary, that |s| < ∆(w). Let v ∈ PREF (w) ∩ Nodes(u) be the word for which maxgap(v) = ∆(w), and let a, b be consecutive elements of the set Occ(v, u) for which a + maxgap(v) = b.

Let us note that no occurrence of s starts at any of the positions a+1, . . . , b-1. Moreover, none of the suffixes of the form u[i . . n], for a + 1 ≤ i ≤ b -1, is a prefix of s. Indeed, v is a prefix of s of length at most nb + 1, and such an occurrence of s (or its prefix) would imply an extra occurrence of v. Note that at most |s| ≤ ba -1 first positions in the interval [a, b] can be covered by an occurrence of s in u (at position a or earlier) or by a suffix of s which is a prefix of u. Hence, position b -1 is not covered by s at all, a contradiction.

⊓ ⊔ By Lemma 7, to complete the shortest seed algorithm it suffices to solve the Prefix Maxgap Problem (this is further clarified in the ComputeShortestSeed algorithm below). For this, we consider the following problem. By SORT (X) we denote the sorted sequence of elements of X ⊆ {1, 2, . . . , n}.

Chain Prefix Maxgap Problem

Input: a family of disjoint sets X 1 , X 2 , . . . , X k ⊆ {1, 2, . . . , n} for all i in Xj-1 do 6:

together with SORT (X 1 ∪ X 2 ∪ . . . ∪ X k ). The size of the input is m = |X i |. Output: the numbers ∆ i = max j≤i maxgap(X j ∪ X j+1 ∪ . . . ∪ X k ).
p := pred (pos[i]); q := suc(pos[i]); 7:

if (p = nil) and (q = nil) and (not marked (p)) and (not marked (q)) then 8: ∆j := max(∆j, value(q)value(p)); Then we perform the computation recursively for the hanging subtrees, previously sorting LL(T ′ ) for each hanging subtree T ′ . Such sorting operations can be performed in O(n) total time for all hanging subtrees.

At each level of recursion we need a linear amount of time, and the depth of recursion is logarithmic. Hence, the total size of invoked Chain Prefix Maxgap Problems is O(n log n).

⊓ ⊔

Now we proceed to the shortest seed computation. In the algorithm we consider all factors of u, dividing them into groups corresponding to elements of Nodes(u).

Let w ∈ Nodes(u) and let v be its parent. Let s ∈ PREF (w) be a word containing v as a proper prefix, i.e., s ∈ PREF (w, |v| + 1). By Lemma 7, the word s is a seed of u if and only if |s| ≥ ∆(w) and s is a border seed of u.

Using the previously described reductions (Theorems 6-8), we obtain the following algorithm: Observe that the workhorse of the algorithm is the chain version of the Prefix Maxgap Problem, which has a fairly simple linear time solution. The main problem is of a structural nature, we have a collection of very simple problems each computable in linear time but the total size is not linear. This identifies the bottleneck of the algorithm from the complexity point of view.

Long Seeds

Note that the most time-expensive part of the ComputeShortestSeed algorithm is the computation of prefix maxgaps, all the remaining operations are performed in O(n) time. Using this observation we can show a more efficient algorithm computing the shortest seed provided that its length m is sufficiently large. For example if m = Θ(n) then we obtain an O(n) time algorithm for the shortest seed. By Observation 1g, the longest overlap between consecutive occurrences of s in u is at most m 2 , therefore the number of occurrences of s in u is at most 2n m . Hence, searching for the shortest seed of length at least m, it suffices to consider nodes v of the suffix tree T (u) for which: |v| ≥ m and |LL(v)| ≤ 2n m . Thus, we are only interested in prefix maxgaps for nodes in several subtrees of T (u), each of which contains O(n/m) nodes. Thanks to the small size of each subtree, the algorithm ComputeShortestSeed finds all such prefix maxgaps in O(n log (n/m)) time. Please note that using this algorithm for each node we obtain a prefix maxgap only in its subtree (not necessarily in the whole tree), however Lemma 7 can be simply adjusted to such a modified definition of prefix maxgaps.

⊓ ⊔

  ) If s and s ′ are two covers of a string u, |s ′ | < |s|, then s ′ is a cover of s. (g) If s is the shortest cover or the shortest left seed or the shortest seed of a string u then per(s) > |s|/2. For a set X of positive integers, let us define the maxgap of X as: maxgap(X) = max{ba : a, b are consecutive numbers in X} or 0 if |X| ≤ 1.

Fig. 1 .

 1 Fig. 1. The word s = abaa is a border seed of u = aabaababaabaaba.

Fact 2

 2 Let s be a factor of u ∈ Σ * . The word s is a border seed of u if and only if |s| ≥ max(P [first(s) + |s| -1], P ′ [last(s)]).

Fig. 2 .

 2 Fig. 2. Illustration of part (⇒) of Lemma 4.

Fig. 3 .

 3 Fig. 3. Illustration of part (⇐) of Lemma 4.

)

  Proof. By Lemma 4, the length of the shortest left seed of u can be found among the values C[per(u)], . . . , C[n]. And conversely, for each of the values C[j] for per(u) ≤ j ≤ n, there exists a left seed of u of length C[j]. Thus lseed(u) equals the minimum of these values, which yields the formula (1).

  We obtain an O(n) time algorithm ComputeLeftSeedArray. ⊓ ⊔ ALGORITHM ComputeLeftSeedArray(u) 1: P[1 . . n] := period array of u; C[1 . . n] := cover array of u; 2: Q := emptyBidirectionalQueue; 3: for i := 1 to n do 4: while (not empty(Q)) and (front (Q) < P[i]) do popFront (Q); 5:

ALGORITHM

  Alternative-ComputeLeftSeedArray(u) 1: P[1 . . n] := period array of u; R[1 . . n] := ComputeR-Array(u); 2: LSeed[0] := 0; ls := 0; 3: for i := 1 to n do 4: { An invariant of the loop: ls = LSeed[i -1]. } 5: while R[ls] < P[i] do ls := ls + 1; 6: LSeed[i] := ls; 7: return LSeed[1 . . n]; Theorem 2. Algorithm Alternative-ComputeLeftSeedArray runs in linear time. Proof. Recall that the arrays P[1 . . n] and C[1 .

Example 1 .

 1 Let u = aabaababaabaaba be the example word from Fig. 1. Let: F = {PREF (abaab, 4), PREF (babaa, 4)} = {(2, 10, 4, 5), (6, 6, 4, 5)}.

  -1] substituted by first(s) + |s| -1 -B[first(s) + |s| -1]. We omit the details. ⊓ ⊔ ALGORITHM ComputeBorderSeed(u, F) 1: bseed := +∞; 2: for all (first (v), last (v), k, |v|) in F, in non-decreasing order of first (v) do 3: k := max(P ′ [last (v)], k); 4: I := [first (v) + k -1, first (v) + |v| -1]; 5: pos := FirstGE(I, first (v) -1); 6: bseed := min(bseed , posfirst (v) + 1); 7: return bseed ;

Theorem 7 .

 7 The Chain Prefix Maxgap Problem can be solved in O(m) time using an auxiliary array of size n.Proof. Initially we have the list L = SORT (X 1 ∪ X 2 ∪ . . . ∪ X k ). Let pred and suc denote the predecessor and successor of an element of L. The elements of L store a Boolean flag marked , initially set to false. In the algorithm we use an auxiliary array pos[1 . . n] such that pos[i] is a pointer to the element of value i in L, if there is no such element then the value of pos[i] can be arbitrary. Obviously the algorithm takes O(m) time. ⊓ ⊔ ALGORITHM ChainPrefixMaxgap(L) 1: ∆1 := maxgap(L); { naive computation } 2: for j := 2 to k do 3: ∆j := ∆j-1; 4:for all i in Xj-1 do marked (pos[i]) := true; 5:

Theorem 8 .

 8 The Prefix Maxgap Problem can be reduced to a collection of Chain Prefix Maxgap Problems of total size O(n log n).Proof. We solve a more abstract version of the Prefix Maxgap Problem. We are given an arbitrary tree T with n leaves annotated with distinct integers from the interval[1, n], and we need to compute the values ∆(v) for all v ∈ Nodes(T ), defined as follows: maxgap(v) = maxgap(LL(v)), where LL(v) is the leaf list of v, and ∆(v) is the maximum of the values maxgap on the path from v to the root of T . We start by sorting LL(root (T )), which can be done in O(n) time. Throughout the algorithm we store a global auxiliary array pos[1 . . n], required in the ChainPrefixMaxgap algorithm.Let us find a heaviest path P in T , i.e., a path from the root down to a leaf, such that all hanging subtrees are of size at most |T |/2 each. The values of ∆(v) for v ∈ P can all be computed in O(n) time, using a reduction to the Chain Prefix Maxgap Problem (see Fig.4).

Fig. 4 .

 4 Fig.4. A tree with an example heaviest path P (in bold). The values ∆(v) for v ∈ P can be computed using a reduction to the Chain Prefix Maxgap Problem with the sets X1 through X4.

ALGORITHM ComputeShortestSeed(u) 1 :

 1 Construct the suffix tree T (u) for the input string u; 2: Solve the Prefix Maxgap Problem for T (u) using the ChainPrefixMaxgap 3: algorithm -in O(n log n) total time (Theorems 7 and 8); 4: F := { PREF (w, max(|v| + 1, ∆(w))) : (v, w) is an edge in T (u) }; 5: return bseed(u, F); { Theorem 6 }

Theorem 9 .

 9 One can check if the shortest seed of a given string u has length at least m in O(n log (n/m)) time, where n = |u|. If so, a corresponding seed can be reported within the same time complexity. Proof. We show how to modify the ComputeShortestSeed algorithm. Denote by s the shortest seed of u, |s| = m.
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