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Abstract Image retrieval and categorization may need to consider several types of
visual features and spatial information between them (e.g., different point of views
of an image). This paper presents a novel approach that exploits an extension of the
language modeling approach from information retrieval to the problem of graph-
based image retrieval and categorization. Such versatile graph model is needed to
represent the multiple points of views of images. A language model is defined on such
graphs to handle a fast graph matching. We present the experiments achieved with
several instances of the proposed model on two collections of images: one composed
of 3,849 touristic images and another composed of 3,633 images captured by a mobile
robot. Experimental results show that using visual graph model (VGM) improves the
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accuracies of the results of the standard language model (LM) and outperforms the
Support Vector Machine (SVM) method.

Keywords Graph theory · Information retrieval · Language model ·
Scene Recognition · Robot localization

1 Introduction

Still image understanding and retrieval for computers are about combining multiple
points of views. A broader perspective for multimedia document indexing and
retrieval is given by R. Datta et al. in [4]:

“The future lies in harnessing as many channels of information as possible,

and fusing them in smart, practical ways to solve real problems. Principled

approaches to fusion, particularly probabilistic ones, can also help provide

performance guarantees which in turn convert to quality standards for public-

domain systems.”

This reflexion also holds in the specific context of image documents. The points
of views of images rely on different regions extracted, different features generated
and different ways to integrate these aspects in order to annotate or retrieve images
based on their visual similarity. Let us present a short overview of the diversity of
approaches encountered in the image annotation and retrieval domain. Image anno-
tation and retrieval may use predefined segmentation in blocks [3], or try to consider
segmentation techniques based on color/texture [6] or regions of interest like the
well-known work of D. Lowe [13]. The feature considered are mostly represented
using histograms of features (colors, textures or shapes) or of bag-of-word (BOW)

proposed initially in [25]. Other approach may consider spatial relationships between
regions as in [27]. When considering more complex representations, approaches may
use graph representations like in [18].

Despite the fact that selecting relevant regions and extracting good features are
per se very difficult tasks, we believe that the way we represent different points of
views of the image (like several segmentations and/or several features for instance)
also has a great impact on image annotation and image retrieval. Our interest in this
paper is twofold. First, we focus on a representation of image content, more precisely
graph-based representation, which is able to represent different points of views
(namely several visual representations and spatial relationships between regions).
Second, we define a language model on such graphs that tackles the problem of
retrieval and classification of images. Considering a graph to represent the features
intends to preserve the diversity of content when needed. In fact, such graphs are
versatile, because they can handle early fusion-like approaches when considering
several representations in an integrated matching process as well as late fusion-
like approaches when considering matching on specific sub-graphs before fusion.
The interest of considering language models for such graphs lies in the fact that it
benefits from this successful research field of information retrieval since the end of
the 90s and in particular the seminal work of Ponte and Croft in [24]. Such language
models are well-defined theoretically, and also have shown interesting experimental
results as synthesized in [16]. Therefore, our main focus in this paper is to propose an



extension of language models [21] in the context of graph-based representation for
image content.

1.1 Related works

We consider here first the integration of relationships during the processing and/or
the representation of images. When focusing on still images, the obvious kinds
of relations are spatial relationships between image regions. For instance, image
descriptions expressed by 2D-strings used in the Visualseek system [27] reflect the
sequences of object occurrences along one or several reading directions. In this case
an integration of visual feature of regions and spatial relationships is achieved. Re-
trieval on 2D-strings is complex: substring matching is a costly operation. However,
heuristics to speed up the process do exist, as described in [2], which allows reduce
the processing time by a factor of 10. Several works have considered visual features
and relationships between image regions integrated into probabilistic models, e.g.,
through the use of 2D HMMs [11], through the use of normalized configuration
vectors in [23], or graphical generative models and overlapping relationships in [8],
but these works do not consider the relations during the retrieval process. Relation-
ships between the elements of an image may also be expressed explicitly through
naming conventions, as in [19] where the relations are used for indexing. Other
attempts have integrated relationships in graphs like [17] for indexing and retrieval.
Nevertheless, considering the explicit relationships may generate complex graphs
representations, an the retrieval process is likely to suffer from the complexity
of the graph matching [18]. One of our aims here is to be able to represent the
different points of views of images using graphs, without suffering from the burden
of computationally expensive matching procedures.

Language models for information retrieval exist since the end of the 90s [24]. In
these generative models, the relevance status value of one document d for a query q

is estimated using the probability P(q|d) of document d to generate query q. In [24]
the language model was based on a multiple Bernoulli distribution. Nevertheless, the
predominant modeling assumption is now centered on multinomial distribution [28].
Such models can use unigram (terms taken one by one) or n-grams (sequences of
n terms) [28]. However, these models lack an easy extension to integrate explicit
relationships between terms. A core issue in language model is to estimate the
probability when terms are absent in the documents due to the data sparseness. This
may cause an inaccurate estimation of the overall probability (a.k.a. zero probability
problems). To overcome this probability estimation problem, different smoothing
methods [32] (such as Jelinek–Mercer, Dirichlet, etc.) have been proposed to adjust
the maximum likelihood estimator of the language modeling. We will detail this
technique in Section 3 using the Jelinek–Mercer smoothing technique.

Simple language models have been used for image indexing and retrieval [10]
without incorporating relationships between image regions. Some works applied
language models for image annotation incorporated bigrams [31] and trigrams [7]
model, where these n-grams are built from spatially connected regions. Tirilly et al.
in [29] proposed to generate “sentences” built from projecting visual words on one
given axis (according to the idea similar to the 2D-strings described above), in a way
to generate from unigram to 4-grams language models on these visual “sentences”.
In this case, the spatial relationships are the precedence along the projection axis.



Fig. 1 System architecture of the graph-based model for scene retrieval/annotation

Named relationships with generative models have been used in [1] for image scenes,
but the complexity of the learning of scene is prohibitive and experiments were
achieved on small image sets.

Another work [14] has proposed to extend language models with relationships but
focusing on texts. These approaches consider features and relationships, but do not
consider several points of views according to several features extracted. Our work
concentrates on modeling visual graphs composed of several types of concepts (i.e.,
visual words) and named relationships, which correspond to a different point of view
of the images.

1.2 Our approach

We present in this paper the system architecture that consists of three main steps
(see Fig. 1). The first step is to extract a set of visual concepts from each image
feature considered, such as color, edge histogram or local features. The second step
represents each image as a graph generated by a set of weighted concepts and a set
of weighted relations. The third step is related to the fact that we want to retrieve
relevant images to a given query. Therefore, we extend the work in [21, 22] by taking
into account the different types of image representations and spatial relations during
matching by computing likelihood of two graphs using a language model framework.

The contributions of this work are twofold. First, we present an unified graph-
based framework for image representation which allows us to integrate different
types of visual concepts and different spatial relations among them. Second, we
extensively study the extension of language model for graph matching which allows
a more reliable matching based on a well studied theory of information retrieval.
The experimental results, performed on STOIC-101 and RobotVision ’09 image
collections, confirm the effectiveness of our visual graph model.

1.3 Outline of the paper

The remainder of this paper is structured as follows. We first present the visual graph
model used to describe the image content in Section 2. Then, Section 3 discusses the
matching of a trained graph given a query graph. Section 4 details our experimental
results on two image collections. More precisely, the experiments focused on a
relation between different types of concepts. Finally, we conclude the paper with
a discussion in Section 5.



2 Visual graph modeling

2.1 Image modeling

Inspired by the bag-of-word model in [9], images are modeled as a set of visual

concept (or concept in short) coming from different visual features. Our goal is to
automatically induce, from a given image, a graph that represents the image content.
Such a graph will contain concepts directly associated with the elements present in
the image, as well as spatial relations which express how concepts are related in the
image. To do so, our procedure is based on four main steps:

1. Identify regions within the image that will form the basic blocks for concept
identification.

2. Index each region with a predefined set of visual features.

3. Cluster all the regions found in the collection into K classes, each class repre-
senting one concept.

4. Finally, extract relations between concepts.

As described before, several segmentation approaches already existed in the
literature [26]. For the first step, we focus on three segmentation methods to define
an image region: sampling pixel, grid partitioning and keypoint detection. The
second step aims at representing each region as set of feature vectors for clustering
purposes. We consider here several visual features (i.e., several points of views)
extracted from one image region. For the pixel sampling method, each region is
represented by its central pixel. The HSV color value of this pixel can be used as
visual feature to represent images. We choose to focus on the HSV color space
because of its robustness against illumination changes. In the case of grid partition, in
our experiments, visual features extracted from the patches are color histograms and
edge descriptors [30]. For the keypoint extraction, SIFT descriptors [13] are extracted
within a given radius around the keypoint. The dimensionality for each feature is
summarized in Table 1.

Next step consists of building visual concept vocabulary for each type of image
representation (i.e., for each type of visual feature f ) as follows: (1) Unsupervised
learning with k-means clustering groups similar feature vectors into the same cluster
(each cluster corresponds to a visual concept c). Clustering transforms the continuous
feature space into a discrete number of clusters. (2) Image is then represented by
the number of occurrences for each concept in this image. Each type of image
representation for a specific visual feature corresponds to a concept C f .

Once these visual concepts are defined and characterized independently, the last
step is to integrate the relationships between them. Existing work has proposed the
use of topological relations between regions or between points in a 2D space [5].

Table 1 Visual features used
for each type of image
representation

Region type Features Dimensions

Pixel (H,S,V) value 3

Patch HSV histogram 64

Patch Edge histogram 80

(5 scales × 16 orientations)

Keypoint SIFT descriptor 128



Fig. 2 Example of spatial relations extracted from image. a Scene of a bridge, b visual concept
extraction, c relations left_of and top_of extracted from concepts

Based on this work, we will define the relationships between segmented regions.
Figure 2 gives an example of spatial relations between visual concepts used in our
experiment with STOIC collection. Relation sets lef t_of and top_of are extracted
from the two connected concepts. These relations help to capture the spatial co-
occurrence information of two visual concepts. For example, instances of the concept
“sky” are usually on the top_of instances of the concept “tree”, while instances of
concept “tree” is more frequently on the lef t_of instances of concept “bridge”. If
the number of training image is large enough, the graph framework will capture the
statistical consistency for this type of relation.

At the end of this procedure, we obtain a set of visual concepts C f and a set
of predefined relations E for each type of concept and relation. Each concept is
associated with a weight that represents its number of occurrences in the image.
Similarly, each relation is also given a weight corresponds to the number of times
this relation has occured in the image. We will denote the weighted concepts set
by WC f and the weighted relations set by W E. As we may have several image
representations (or point of views) and different kind of spatial relationships between
them, in the end, we denote a set of weighted concept sets as SI

WC f
=

⋃
f WCI

f and a

set of weighted relation sets as SI
W E =

⋃
W EI for an image I.

Note that we tend to choose different types of visual features (i.e., color, edge,
SIFT) which are visually independent [26] from each other to represent image con-
tent. Therefore, concept sets WC f are disjoint (e.g., WCcolor

⋃
WCedge

⋃
WCsift =

∅). From this observation, we could make an independent assumption based on the
set of weighted concept set SI

WC f
. The similar assumption is also applied for weighted

relation sets SI
W E.

2.2 Graph definition

Given a set of weighted concept sets SI
WC f

and a set of weighted relation sets SI
W E,

the visual graph representing an image I is defined by:

GI =< SI
WC f

, SI
W E >

where each concept c of concept set WCI
f corresponds to a visual concept used to

represent the image according to the feature f associated to it. The weight of concept



captures the number of times of this concept appears in the image. Denoting C f

a set of concepts for one feature over the whole collection, WCI
f is a set of pairs

(c, #(c, I))

WCI
f = {(c, #(c, I))|c ∈ C f }

where c is an element of C f and #(c, I) is the number of times c occurs in the
document image I.

Any labeled relation between any pair of concepts (c, c′) ∈ C f × C f ′ is represented
by a triple ((c, c′), l, #(c, c′, l, I)), where l is an element of L, the set of possible labels
for the relation, and #(c, c′, l, I) is the number of times c and c′ are related with label
l in image I. W EI is then defined as:

W EI = {((c, c′), l, #(c, c′, l, I))|(c, c′) ∈ C f × C f ′ , l ∈ L}

If a pair of concepts (c, c′) come from the same concept set (i.e., C f = C f ′ ), we
refer this relation as intra-relation. Otherwise, we refer it as inter-relation.

Figure 3 shows an example of our graph constructed from an image of a bridge
scene. This example corresponds to a visual graph containing one visual concept set
(Ccolor) and two intra-relation sets (Elef t_of and Etop_of ). Each node corresponds to
a concept and the number of time it occurs in the image. For example, concept c1
appeared two times in the image and is denoted by (c1,#2) in the figure. Likewise,
the relation between a couple of concepts is also captured by the directed arcs in this
graph. Here, the blue arcs express the relation lef t_of and the green arcs express
the relation top_of of two connected concepts. For example, concept c1 is related to
concept c2 with the relation top_of two times and is related to itself by the relation
lef t_of two times. It is denoted by (c1, c2, top_of , #2) and (c1, c1, lef t_of , #2).

Fig. 3 Example of a visual graph extracted from an image. Concepts are represented by nodes and
spatial relations are expressed by directed arcs. Nodes and links are weighted by the number of times
they appear in the image



Finally, this representation of graph will be used for the graph matching in the next
step.

3 Language model for graph matching

Based on the language model defined over the graph proposed in [15], we present in
this paper an extension that handles set of concept sets and set of relation sets. The

probability for a query image graph GIq =< S
Iq

WC f
, S

Iq
W E > to be generated from one

document image graph GId can be written as:

P(GIq|GId) = P(S
Iq

WC f
|GId) × P(S

Iq
W E|SIq

WC f
, GId) (1)

where P(S
Iq

WC f
|GId) is the probability of generating set of concept sets of the query

graph from the document graph, and P(S
Iq
W E|SIq

WC f
, GId) is the probability of gener-

ating set of relation sets of the query graph from the document graph.

3.1 Concept set generation

For generating the probability of query concept sets from the document model
P(S

q

WC f
|Gd), we assume a concept set independence hypothesis (see our explanation

in Section 2.1). The probability can thus be written as:

P(S
Iq

WC f
|GId) =

∏

WC f
Iq∈S

Iq
WC f

P(WC f
Iq|GId) (2)

Assuming concept independence, which is standard in information retrieval, the
number of occurrences of the concepts (i.e., the weights considered previously) are
integrated through the use of a multinomial model. We compute P(WC f

Iq|GId) as
follows:

P(WC f
Iq|GId) ∝

∏

c∈C f

P(c|GId)#(c,Iq) (3)

where #(c, Iq) denotes the number of times concept c occurs in the image query
graph. This contribution corresponds to the concept probability as proposed in [15].
Similar to the previous work, the quantity P(c|GId) is estimated through maximum
likelihood using Jelinek–Mercer smoothing:

P(c|GId) = (1 − λc)
#(c, Id)

#(∗, Id)
+ λc

#(c, D)

#(∗, D)
(4)

where λc is the smoothing parameter for each concept set C f . The quantity #(c, Id)

represents the number of times c occurs in the document image Id and #(∗, Id) is
equal to

∑
c #(c, Id). The quantities #(c, D) and #(∗, D) are similar, but defined over

the whole collection D (i.e., over the union of all images in the collection).



3.2 Relation set generation

Assuming the relation set independence, as shown in previous section, we follow
a similar process for generating the probability of the relation sets from document
image graph, this leads to:

P(S
Iq
W E|SIq

WC f
, GId) =

∏

W
Iq
E ∈S

Iq
W E

P(W
Iq
E |SIq

WC f
, GId) (5)

For the probability of generating query relation from the document, we assume
that a relation depends only on the two linked sets. Assuming that the relations are
independent and following a multinomial model, we compute:

P(W
Iq
E |SIq

WC f
, GId) ∝

∏

(c,c′,l)∈C f ×C f ′ ×L

P(L(c, c′) = l|WC
Iq

f , WC
Iq

f ′ , GId)#(c,c′,l,Iq)

where c ∈ C f , c′ ∈ C f ′ and L(c, c′) are variables which values in L and which reflect
the possible relation labels between c and c′, in this relation set. As before, the pa-

rameters of the model P(L(c, c′) = l|WC
Iq

f , WC
Iq

f ′ , GId) are estimated by maximum
likelihood with Jelinek–Mercer smoothing, giving:

P(L(c, c′) = l|WC
Iq

f , WC
Iq

f ′ , GId) = (1 − λl)
#(c, c′, l, Id)

#(c, c′, ∗, Id)
+ λl

#(c, c′, l, D)

#(c, c′, ∗, D)
(6)

where λl is the smoothing parameter for each relation set E. The quantity
#(c, c′, l, Id) represents the number of times concepts c and c′ are linked with label
l in the document image Id, and #(c, c′, ∗, Id) is equal to

∑
l∈L #(c, c′, l, Id). By

convention, when one of the two concepts does not appear in the image d, we set:

#(c, c′, l, Id)

#(c, c′, ∗, Id)
= 0

Again, the quantities #(c, c′, l, D) and #(c, c′, ∗, D) are counted in a similar way but
computed on the whole collection D (i.e., over the union of all the graphs from all
the documents in the collection).

This graph model is a generalization of the model defined in [21] which cor-
responds to the special case where only one concept set and one relation set are
used. In some special cases, our model corresponds to the standard language model
(LM) used in [15, 20] where relations are not considered (i.e., documents and queries
correspond to multiple bag-of-words model) .

In a more practical way, as done in [20], we compute the relevance status value
(RSV) of a document image Id for query image Iq in the log-probability domain.
Such domain, in the context of multinomial distributions, leads to the same ranking
as the probability computed for GId and GIq. For image categorization, a query
image Iq is then classified to a class of closest document image Id that estimated as
follows:

class(Iq) = class(arg max
Id∈D

RSV(GIq|GId)) (7)



4 Experiments

First, we describe the collections used to carry out our experimentation. Then, we
present the results obtained with our model based on this collection. Our objective is
to demonstrate that the visual graph model, as presented in previous section, is well
adapted in representing image content. Furthermore, the integration of relationships
to the graph helps to improve the image representation using only visual concepts.
Finally, we give some discussions on our experimental results.

4.1 Scene recognition

4.1.1 STOIC-101 collection

The Singapore Tourist Object Identification Collection (STOIC) is a collection of
3,849 images containing 101 popular tourist landmarks (mainly outdoor). These
images were taken, mostly with consumer digital cameras in a manner typical of a
casual tourist, from three distances and four angles in natural light, with a mix of
occlusions and cluttered background to ensure a minimum of 16 images per scene
(see Fig. 4). Images in the collection are affected by different weather patterns
and different image capturing styles. For experimental purposes, the STOIC-101
collection has been divided into a training set containing 3,189 images (82.8% of
the collection) and a test set containing 660 images (17.15% of the collection).
The average number of images per class for training is 31.7, and 6.53 for testing,

Fig. 4 Images of STOIC-101
collection are taken from
different angles, viewpoints
and weather conditions



Table 2 Summary of
experiments on STOIC-101
collection

Training by (I) Training by (S)

Query by (I)
√ √

Query by (S)
√ √

respectively. In the test set, the minimum number of images per class is 1, and the
maximum is 21.

The main application of STOIC collection is for mobile image search. A user can
upload an image taken with a hand-phone and post it as a query to the system. On
the server-side, the images from the 101 scenes of the STOIC collection are matched
against the user query. The server-side of this search engine architecture is two-tiers:
(a) the query processing server takes a query image as input and generates a query
graph file and (b) the language model server receives the query graph and computes
the matching function based on graphs built from training images. Finally, textual
information related to the matched scenes will be sent back to the user.

As a user can take one or several images of the same scene and query the system
accordingly, we have considered several usage scenarios. Table 2 summarizes these
different scenarios (a scene (S) corresponds to a group of images and a single image
(I)). Note that some images in the collection have been rotated into the correct
orientation (for both portrait and landscape layouts).

4.1.2 Proposed models

Several studies on the STOIC collection have shown that color plays a dominant
role, and should be preferred to other visual features such as edge or texture [12].
Furthermore, color histogram can be easily and efficiently extracted. For these
reasons, we rely only on HSV color features in our experiments. In order to assess
the validity of our methodology, we followed different ways to divide each image
into regions and we retained:

1. A division of medium grain, where blocks of 10 × 10 pixels are used, the center
pixel being considered as a representative for the region. We refer to this division
as mg.

2. A patch division where the image is divided into 5 × 5 regions of equal size. We
refer to this division as gg.

For mg divisions, we used the (H, S, V) values as a feature vector for each pixel.
Similary, each patch in gg division is quantized by a HSV histogram (4 bins/channel)
that yields a 64-dimension vector for each region. We then clustered the HSV feature
vectors of all regions into k = 500 classes with k-means clustering algorithm. This
results in a hard assignment of each region to one concept. The set of weighted
concepts, WC, is then obtained by counting how many times a given concept occurs
in the image. The choice of k = 500 is motivated by the fact that we want a certain
granularity in the number of concepts used to represent an image. With too few
concepts, one is likely to miss important differences between images, whereas too
many concepts will tend to make similar images look different. We will refer to the
indexing obtained in this way as mg-LM and gg-LM, respectively for “division mg

with automatically induced concepts” and “division gg with automatically induced
concepts”.



In addition, for the methods mg-LM and gg-LM, we extracted the spatial relations
between concepts as mentioned previously: left_of and top_of, and counted how
many times two given concepts are related through a particular relation in order
to obtain the weights for our relations. This last step provides a complete graph
representation for images. We will refer to these two complete methods as mg-VGM

and gg-VGM. To summarize, we have constructed four models based on the visual
concept sets and the relation sets:

1. mg-LM=< {WCmg},∅ >, that used only mg division concepts.
2. mg-VGM=< {WCmg}, {WElef t_of , WEtop_of }, that used mg division concepts and

two intra-relation sets left_of and top_of.
3. gg-LM=< {WCgg},∅ >, that used only gg concepts.
4. gg-VGM=< {WCgg}, {WElef t_of , WEtop_of }, that used gg concepts and two intra-

relation sets left_of and top_of.

Last but not least, to classify query images in the 101 scenes, we used the language
model for visual graphs presented in (7). When there is no relation, as in the cases of
mg-LM and gg-LM, the term P(S

q
W E|Sq

WC, Gd) = 1 so that only concepts are taken
into account to compare images.

4.1.3 Results

The performance of the different methods was evaluated using the accuracy, per
image and per scene. They are defined as the ratio of correctly classified images or
scenes. More precisely:

Image accuracy =
T Pi

Ni

, Scene accuracy =
T Ps

Ns

where T Pi and T Ps represent the number of images and the number of scenes
(respectively) correctly classified. Ni is the total number of test images (i.e., 660
images), and Ns the total number of scenes (i.e., 101 locations).

Table 3 shows the results we obtained when using automatically induced (through
clustering) concepts. As one can see, automatically inducing concepts with a medium
grain division of the image yields the best results (the difference with the patch
division for the S–I scenario being marginal). Overall, the mg division outperforms
the gg division in most of the cases. Especially in the S–S scenario, the mg models
obtained the best performance. One possible reason is that in mg division the number
of concepts is far more than the one in the gg division.

This being said, there is a difference between the I–S and S–I scenarios: The
system is queried with more information in the I–S scenario than in the S–I scenario.
This difference results in a performance which is, for all methods, worse for the S–I

Table 3 Impact of spatial relations on the performance (best results are in bold, relative improve-
ment over the method without relations is in parentheses)

Training Query mg-LM mg-VGM gg-LM gg-VGM

I I 0.789 0.794 (+0.6%) 0.484 0.551 (+13.8%)

I S 0.822 1.00 (+21.6%) 0.465 0.762 (+63.8%)

S I 0.529 0.594 (+12.3%) 0.478 0.603 (+26.1%)

S S 1.00 1.00 0.891 0.920 (+3.2%)



scenario than for the other ones. We conjecture that this is why the results obtained
for the mg-VGM method on S–I are not as good as the ones for I–I. There seems to
be a plateau for this scenario around 0.6, a hypothesis we want to explore in future
work.

We finally assessed the usefulness of spatial relationships by comparing the results
obtained with the different methods that include or not such relations. These results
are displayed in Table 3. As one can note, except for the S–S scenario with the mg

division, the use of spatial relations always improves the accuracy of the classifier.
This justifies the framework we developed in Section 3 of language model for visual
graphs including automatically induced concepts and spatial relations among them.

4.2 Mobile robot localization

4.2.1 The RobotVision’09 collection

The image collection came from the RobotVision’09 competition1 task (part of
ImageCLEF campaign) aiming to address the problem of topological localization
of a mobile robot using only visual information. The difficulty of this task is that
the robot has to recognize the correct room in different illumination conditions and
adapt as objects, new furniture, etc. are added over the time.

The RobotVision collection contains a sequence of 1,034 images for training and a
sequence of 909 images for validation. Training and validation sets (see Fig. 5) were
captured within an indoor laboratory environment consists of five rooms across a
span of 6 months. Then, the official test has been carried out on a list of 1,690 images
(recorded 20 months later). The collection comprises five annotated rooms (corridor-
CR, printer area-PA, kitchen-KT, one-person office-BO, two-persons office-EO)
and an unknown room from test set.

4.2.2 Proposed models

The system we used for the RobotVision competition was composed of two
processes: a recognition step and a post-processing step. However, we describe and
evaluate here only the recognition step, in such a way to assess the impact of the
model proposed. The robot was trained with a sequence of images taken in the night
condition. Then, we used a validation set captured in sunny condition to estimate the
system parameters. The different concept sets and relation sets were extracted from
the collection of images as follows:

1. Each image was divided into 5 × 5 patches. We extracted for each patch a
HSV color histogram and an edge histogram as in Section 2.1. Then, the visual
vocabulary of 500 visual concepts was constructed by using k-means clustering
algorithm. From this vocabulary, we built the weighted concept set WCpatch.

2. Similar to the previous step except that the visual features were extracted from
the local keypoints. To be more precise, we detected scale invariant keypoints
using SIFT detector [13] for each images. Local features were then used to create
the weighted concept set WCsift.

1http://imageclef.org/2009/robot



Fig. 5 Example images from RobotVision’09 collection: a training set in night condition, b validation
set in sunny condition, c test set in unknown condition, d the local area map

3. Using the two previous features we defined an inter-relation set {inside} between
patch concepts and SIFT concepts, denoted as WEinside, if one key-point is located
inside the area of a corresponding patch.

Similar to above, we referred to the model without relation as LM (simply the
production of probability generated by different concept sets) and the graph model
with the spatial relation as VGM (with the contributing of relation probability to
graph model). Based on this definition, we have implemented several graphs to
measure the performance of our proposed model:

1. LMP =< {WCpatch},∅ >, that used only patch concepts.

2. LMS =< {WCsift},∅ >, that used only SIFT feature concepts.

3. LMS.P =< {WCsift, WCpatch},∅ >, that used both patch and SIFT feature
concepts.

4. VGMS→P =< {WCsift, WCpatch}, {WEinside} >, that used patch concepts, SIFT fea-
ture concepts and the inside relations between them.

Figure 6 gives an example of the graph extracted from the concept sets and
relation sets defined above. In fact, the first three models were estimated following
the equation presented in Section 3.1. The fourth model is the fusion graph combined
with spatial relation. Its probability was computed according to the equation defined
in Section 3.2.



Fig. 6 Graph model constructed for RobotVision includes two type of image representation and one
type of relation

4.2.3 Results

The evaluation measured the differences between the actual room id and the one
classified by the systems. The following rules were used when calculating the official
score for a test sequence: +1.0 points for each correctly classified image; −0.5 points

for each misclassified image. So, higher score means higher accuracy.
Table 4 describes the results in terms of score value for each model. As expected,

the two basic models LMP and LMS gave a good score for the validation set.
However, the model LMP did not perform well on the test set due to the introduction
of new room and new arrangement of interior furniture. The simple fusion model
LMS.P underperformed the best results of LMP and LMS. However, this result
was more robust in the sense that it leveraged on the spurious effects of each
visual feature (i.e., LMS.P outperformed the averaged result of LMP and LMS in
both cases). Moreover, the introduction of inside relations to the completed graph
VGMS→P boosted its results respectively by 39.5 and 40.1% comparing to the fusion
graph LMS.P for both validation set and test set. This fact confirmed that the
integration of relations played a significant role to improve the results. In addition,
it showed that the link between object details and its global presentation provides a
better abstraction for image content.

We present in detail the classification accuracies for each class (represented by its
room id) as categorized by our algorithms in Table 5. For each class, the accuracy is
computed by the number of correctly labeled images divided by the total number of
images belonging to this class. Here, we only consider the classification accuracies of
five rooms as we did not treat the unknown room in the test sequence at this step.
Due to the paper constrains, the reader may refer to [20] for more infomation on the
post-processing step of the results.

Generally, the graph model for SIFT concepts LMS performs better than the
graph model for patch concepts LMP. This leads us to a conclusion that the details of
object are important clues for scene recognition. In addition, the simple fusion model
LMS.P tried to leverage the effect on both model LMS and LMP and improved

Table 4 Results of different graph models

Graph model LMP LMS LMS.P VGMS→P

Validation set 345 285 334.5 466.5 (+39.5%)

Test set 80.5 263 209.5 293.5 (+40.1%)



Table 5 Classification accuracies of graph models for each room

BO CR EO KT PA Mean

Validation set

LMP 0.257 0.779 0.524 0.450 0.434 0.489

LMS 0.354 0.658 0.581 0.426 0.402 0.484

LMS.P 0.398 0.679 0.613 0.519 0.426 0.527

VGMS→P 0.416 0.829 0.702 0.550 0.492 0.598

Test set

LMP 0.163 0.701 0.385 0.236 0.279 0.353

LMS 0.331 0.721 0.478 0.509 0.348 0.477

LMS.P 0.206 0.756 0.484 0.410 0.286 0.428

VGMS→P 0.369 0.736 0.540 0.516 0.344 0.501

the results only in the case of two-person office (EO). All four models gave good
accuracies for the corridor (CR) regardless of brutal changes in light conditions. We
also noted that the number of training images for corridor (CR) was the highest
(483/1,034 images) comparing to other classes. It suggests that the higher the number
of image samples, the more robust the performance is.

Overall, the fusion graph combined with spatial relations VGMS→P gave better
accuracies in the major cases except in the case of corridor (CR) for test set.
However, the difference was not significant comparing to other models (only 2% less
than the LMS.P graph model). Furthermore, the mean accuracy of model VGMS→P

achieved on the test set and the validation set were the best of four models, with
more than 7% better than the simple fusion model VGMS.P. This result confirms
again the strength of spatial relationships contributed in our graph model.

4.3 Disscussions

4.3.1 Cross validation optimization with STOIC collection

The results presented above are optimized a posteriori, i.e., we exhaustively tested
the parameters on the test set to get the best configuration. This approach overesti-
mates the proposed algorithms, by giving an upper bound of the evaluation results
and not a correct estimation. In a way to estimate more precisely the results, we
optimized the smoothing parameters on a validation set for the mg-LM method,
because this approach gives the best results. To achieve this optimization, a three-
fold cross validation was performed. Once the parameters were optimized for each

Table 6 Comparison of the results mg-LM-val on three-fold cross validation, and percentage of
difference in accuracy compared to the a posteriori optimization model mg-LM

Training Query mg-LM mg-LM-val Diff (%)

Avg Std-dev

I I 0.789 0.784 5.8 × 10−3 −0.68

I S 0.822 0.785 5.8 × 10−3 −4.46

S I 0.529 0.529 0.0 0

S S 1.00 0.990 1.7 × 10−2 −0.01



Table 7 Comparison of the results mg-VGM-val on three-fold cross validation, and percentage of
difference in accuracy compared to the a posteriori optimization model mg-VGM

Training Query mg-VGM mg-VGM-val Diff (%)

Avg Std-dev

I I 0.794 0.788 6.4 × 10−3 −2.64

I S 1.00 0.939 5.3 × 10−2 −6.07

S I 0.594 0.594 0.0 0

S S 1.00 0.990 1.7 × 10−2 −0.01

of the three training/validation sets, we processed the test set using the whole training
set. Table 6 shows the average (Avg) and standard deviation (Std-dev) of the three
results obtained. The last column of Table 6 exhibits the difference in percentage
for the evaluation measurement between the three-fold results and the a posteriori

optimization.
As shown by Table 6, the results obtained by the cross validation and by a

posteriori optimization are very similar. If we focus on the results of the I–I, S–I and
S–S configurations, the differences are smaller than 1%, and for the configuration I–
S the three-fold results are 4.46% lower. So, the optimization used on the validation
sets provides satisfying results for a medium grain and for automatically defined
visual concepts. We also tested three-fold cross validation with relationships, as
presented in Table 7. Here again the results with the cross validations are very close
to the a posteriori optimized results: the S–I and S–S results are almost equal.

Another conclusion drawn from Tables 6 and 7 is that, with a cross validation
procedure, the usage of relationships still outperforms the results without relation-
ships: +0.5% for the case I–I, +19.6% for I–S, and +12.3% for S–I. For the case S–S
no improvement is achieved, which is also consistent with the a posteriori optimized
results.

4.3.2 Comparing to SVM method

In order to assess the validity of our methods, we have compared the results with the
state-of-the-art method in image categorization such as SVM classification method
(implemented thanks to the libsvm2). We applied the same visual features used
for graph model in our experiment. The input vector in SVM classifier is the early
fusion of the multiple bag-of-word models. Then, each image class was trained with
a corresponding SVM classifier using radial basis function (RBF). To optimize the
kernel parametters, we train SVM classifiers with three-fold cross validation on the
training set. Finally, these classifiers are used to classify the new query image.

Similar to above, we refer to the model with only the contribution of concept as
LM and model with the spatial relation as VGM. For STOIC collection, we choose
the mg division as a comparison model. Likewise for RobotVision collection, we
choose the model LMS.P as LM and VGMS→P as VGM.

2http://www.csie.ntu.edu.tw/cjlin/libsvm/



Table 8 Results on categorizing STOIC-101 and RobotVision’09 collections comparing to SVM
method

#class SVM LM VGM

STOIC-101 101 0.744 0.789 (+6.0%) 0.794 (+6.3%)

RobotVision’09

Validation 5 0.535 0.579 (+8.2%) 0.675 (+26.2%)

Test 6 0.439 0.416 (−5.2%) 0.449 (+22.8%)

Table 8 summarizes the results obtained from both collection STOIC-101 and
RobotVision’09. We can see that in all cases our VGMs outperform other methods.
More precisely, with the integration of spatial relation into VGM helps improving the
accuracy of classical approaches of LM by at least 2.5%. Especially with the Robot-
Vision collection, VGMs increase roughly the accuracies of 22.8–26.2% comparing to
SVM respectively for both test and validation set. Lastly, the VGMs retain medium
to large improvements over the standard LMs in both image collections as confirmed
in previous section.

4.3.3 Implementation

The system is implemented in C/C++ with the LTI-Lib3 and compiled on a Linux
platform. Image indexing and querying are performed on a 3.0 GHz quad-core
computer with 8.0 Gb of memory. Training step takes about 2 h for the whole
training images set from extracting visual features, clustering the concepts and
modeling trained graphs. For the query step, it takes about 0.22 s on average (or
5 images/second) for computing the likelihood of graph query with all the graphs
stored in database. However, the computation is highly parallelizable given graph
models are stored and are processed independently. It shows that the graph matching
step is very reliable for image matching comparing to classical graph matching
algorithm.

5 Conclusion

We have introduced in this paper a graph-based model for representing image
content. This graph captured the spatial relations among visual concepts associated
with extracted regions of images. Theorically, our model fits within the language
modeling approach for information retrieval, and extends previous proposals based
on graph representation. On a more practical aspect, the consideration of regions
and associated concepts allows us to gain generality in the description of images,
a generality which may be beneficial when the usage of the system slightly differs
from its training environment. This is likely to happen with image collections that, for
example, use one or several images to represent a scene. On the other hand, querying

3http://ltilib.sourceforge.net/



a specific location with a group of images is very promising in future application
(such as mobile localization) that allows higher accuracy rate with less computational
effort comparing to video sequence. In addition, as demonstrated in the case of
RobotVision, the way of combining of different image representations/features in
the graph framework is more versatile comparing to other fusion approaches.

On the experimental side, we have conducted the test on two image collections
(STOIC-101 and RobotVision’09). The experiments aim at assessing the validity of
our approach in certain aspects. In particular, we showed that integrating spatial
relations to represent images led to a significant improvement in the results. The
model we have proposed is able to adequately match images and sets of images
represented by graphs. As we conjectured, being able to abstract from a low level
description allows robustness with respect to the usage scenarios. We also discussed
on optimimizing the smoothing parameters of the language model with the cross
validation technique based on training image set. We also demonstrated that our
graph models outperformed the current state-of-the-art SVM method for image
classification.

To summarize, the major contributions of our approach are: (1) a well-founded
graph model for image indexing and retrieval, (2) with a smooth integration of spatial
relations and visual concepts in the framework and (3) with a simpler and more
effective graph matching process based on the language model.

In the future, many aspects can be considered to extend our graph model. First
of all, as the language model is coming from textual domain, we could combine
the graph representation of image with the graph representation of the annotated
text as done in ImageCLEF photographic retrieval track. In our case, this could be
integrated smoothly as they shared the same probabilistic framework. There is also
the need to study different visual concepts and their spatial relations. This should
be adapted following a specific image context or towards a typical scenario of image
retrieval. Moreover, experiment on a large collection of images (such as ImageCLEF
or VOC collection) could be interesting to test the scalability of our method. Last but
not least, we also wish to investigate different possible couplings of the low level and
high level representations, with the hope to come up with a single representation that
could be used in a general case.
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