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The exponent of a word is the ratio of its length over its smallest period. The repetitive threshold r(a) of an a-letter alphabet is the smallest rational number for which there exists an infinite word whose finite factors have exponent at most r(a). This notion was introduced in 1972 by Dejean who gave the exact values of r(a) for every alphabet size a as it has been eventually proved in 2009.

The finite-repetition threshold for an a-letter alphabet refines the above notion. It is the smallest rational number FRt(a) for which there exists an infinite word whose finite factors have exponent at most FRt(a) and that contains a finite number of factors with exponent r(a). It is known from Shallit (2008) that FRt(2) = 7/3.

With each finite-repetition threshold is associated the smallest number of r(a)-exponent factors that can be found in the corresponding infinite word. It has been proved by Badkobeh and Crochemore (2010) that this number is 12 for infinite binary words whose maximal exponent is 7/3.

We show that FRt(3) = r(3) = 7/4 and that the bound is achieved with an infinite word containing only two 7/4-exponent words, the smallest number.

Based on deep experiments we conjecture that FRt(4) = r(4) = 7/5. The question remains open for alphabets with more than four letters.

Introduction

The article deals with repetitions in strings and their avoidability. The question is grounded on the notion of the exponent of a word: it is the ratio of its length over its smallest period. A word of exponent e is also called an e-power.

An infinite word is said to avoid e-powers or to be e-power free if the exponents of its finite factors are smaller than e.

The repetitive threshold r(a) of an a-letter alphabet is the smallest rational number for which there exists an infinite word whose finite factors have exponent at most r(a). The word is said to be r(a) +power free. It is known from Thue [START_REF] Thue | Über unendliche Zeichenreihen[END_REF] that r(2) = 2. Indeed, the notion was introduced in 1972 by Dejean [START_REF] Franc ¸oise Dejean | Sur un Théorème de Thue[END_REF] who proved that r(3) = 7/4 and gave the exact values of r(a) for every alphabet size a > 3. Her conjecture was eventually proved in 2009 after partial proofs given by several authors (see [START_REF] Rao | Last cases of Dejean's conjecture[END_REF][START_REF] James | A proof of Dejean's conjecture[END_REF] and references therein).

A generalised version of the repetitive threshold is by Ilie et al. [START_REF] Ilie | A generalization of repetition threshold[END_REF]. The authors introduce the notion of (β , p)-freeness: a word is (β , p)-free if it contains no factor that is a (β ′ , p ′ )-repetition (i.e. a word of period p ′ and exponent β ′ ) for β ′ ≥ β and p ′ ≥ p; it is (β + , p)-free if β ′ > β instead. Their generalized repetition threshold R(a, p) defined for an a-letter alphabet as the real number α for which either (a) there exists an (α + , p)-free infinite word and all (α, p)-free words are finite, (b) or there exists an (α, p)-free infinite word and for all ε > 0, (α -ε, p)-free words are finite.

where p is the minimum avoided period. The proof of boundary of this threshold for all alphabet sizes is presented in [START_REF] Ilie | A generalization of repetition threshold[END_REF], and R(k, 1) is essentially Dejean's repetition threshold.

For infinite words whose maximal exponent of factors is bounded, it is legitimate to ask whether they can contain only a finite number of r(a)-powers. This is an extra constraint on the word. When such words exist, it is as legitimate to exhibit the minimal number of r(a)-powers they can contain, which adds another measure of the word complexity. The first result of this type is by Fraenkel and Simpson [START_REF] Aviezri | How Many Squares Must a Binary Sequence Contain?[END_REF] for the binary alphabet. They showed that an infinite binary word can contain only 3 squares, not less. Two simple proofs of the result are by Harju and Nowotka [START_REF] Harju | Binary Words with Few Squares[END_REF] and the present authors [START_REF] Badkobeh | An infinite binary word containing only three distinct squares Submitted[END_REF].

The above consideration leads to the notion of finite-repetition threshold associated with an a-letter alphabet. It is the smallest rational number, noted FRt(a), for which there exists an infinite word whose finite factors have exponent at most FRt(a) and that contains a finite number of r(a)-powers. It is known from Shallit [START_REF] Shallit | Simultaneous avoidance of large squares and fractional powers in infinite binary words[END_REF] that FRt(2) = 7/3 (see also [START_REF] Rampersad | Avoiding large squares in infinite binary words[END_REF]). The present authors [START_REF] Badkobeh | Fewest repetitions in infinite binary words[END_REF] proved that the associated minimal number of squares is 12 if the infinite word contains two 7/3-powers. Badkobeh [START_REF] Badkobeh | Fewest repetitions vs maximal-exponent powers in infinite binary words[END_REF] even refined the results by showing the number is 8 if the infinite word admits two 5/2-powers, extending the result of Fraenkel and Simpson [START_REF] Aviezri | How Many Squares Must a Binary Sequence Contain?[END_REF] recalled above for which it is 3 if two cubes are allowed.

In this article, we consider the finite-repetition threshold of the ternary alphabet. We show that FRt(3) = r(3) = 7/4. We provide a direct proof of the result and another proof based on a previous result on word morphisms by Ochem [START_REF] Ochem | A generator of morphisms for infinite words[END_REF].

The experiments reported in the conclusion show that the finite-repetition threshold of the 4-letter alphabet FRt( 4) is likely to be r(4) = 7/5, which we conjecture. The hypothetical property FRt(a) = r(a) (for a > 2) would be equivalent to say that infinite words whose maximal exponent of factors is Dejean's repetition threshold can be constrained to containing a finite number of factors with that exponent.

Repetitions in ternary words

Let A be a finite alphabet. A word w in A * of length |w| = n is a sequence of letters w[0]w [START_REF] Badkobeh | Fewest repetitions vs maximal-exponent powers in infinite binary words[END_REF] 

. . . w[n - 1] also noted w[0 . . n -1].
The period of w is the smallest positive integer period(w) = p for which w[i] = w[i + p] whenever both sides of the equality are defined. The exponent of w is the rational ratio |w|/period(w). Thus, the exponent of a word is a rational number that is at least 1. For example, a square is a nonempty word with an even integer exponent and 1020102 of exponent 7/4 can be written (1020) 7/4 . A word of exponent e is also called an e-power.

An infinite word is a function from the natural number to the alphabet A. An infinite word is said to avoid e-powers (resp. e + -powers) if the exponents of its finite factors are smaller than e (resp. not more than e). In this case we also say that the word is e-power free (resp. e + -power free).

The repetitive threshold r(a) of an a-letter alphabet is the smallest rational number for which there exists an infinite word whose finite factors have exponent at most r(a). The word is then r(a) + -power free.

The finite-repetition threshold for the alphabet of a letters is defined as the smallest rational number FRt(a) for which there exists an infinite word that both avoids FRt(a) + -powers and contains a finite number of r-powers, where r is Dejean's repetitive threshold.

The above notion is inspired by the following results of Karhumäki and Shallit. [START_REF] Shallit | Simultaneous avoidance of large squares and fractional powers in infinite binary words[END_REF] Theorem 1 (Karhumäki and Shallit [START_REF] Karhumäki | Polynomial versus exponential growth in repetition-free binary words[END_REF]) For all t ≥ 1, there are no infinite binary words that simultaneously avoid all squares yy with |y| ≥ t and 7/3-powers.

Theorem 2 (Shallit [13])

There is an infinite binary word that simultaneously avoids all squares yy with |y| ≥ 7 and 7/3 + -powers.

When an infinite binary word avoids 7/3 + -powers and contains a finite number of squares it is natural to ask more on these few squares. The previous theorem shows that their period can be bounded by 7. The next result goes slightly beyond by showing that their number is at least 12. But the two properties cannot be satisfied simultaneously.

Theorem 3 (Crochemore and Badkobeh [START_REF] Badkobeh | Fewest repetitions in infinite binary words[END_REF]) The smallest number of squares occurring in a 7/3-power free infinite binary word is 12.

Showing that no infinite word satisfying the conditions can contain less squares is done by mere computation. The second part is done by producing an infinite word satisfying the condition and containing exactly 12 squares. Following Shallit's hierarchy of infinite binary words in [START_REF] Shallit | Simultaneous avoidance of large squares and fractional powers in infinite binary words[END_REF], the previous result was refined by Badkobeh [START_REF] Badkobeh | Fewest repetitions vs maximal-exponent powers in infinite binary words[END_REF] The main result of the present article is the following theorem.

Theorem 4

The finite-repetition threshold of the 3-letter alphabet is its Dejean's repetition threshold, that is, 7/4. The smallest number of 7/4-powers occurring in a 7/4 + -power free infinite ternary word is 2.

On the alphabet {0, 1, 2}, the two unavoidable 7/4-powers occurring in the word below are, up to a permutation of letters, (0121) 7/4 = 0121012 and (2010) 7/4 = 2010201.

Computation shows that the longest ternary words with only one 7/4-power are 102 letters long. However we may think of having a larger threshold as in the binary case. But even if we increase the threshold to e < 2, the maximal length of words stays at 102 with only one e-power.

If we relax further the maximal exponent condition, it can be shown that there exists an infinite ternary word in which occur only one square, namely 00 up to a permutation of letters, and no e-power with 7/4 ≤ e < 2.

Since the repetition threshold for a 3-letter alphabet is 7/4, to prove this ratio is also its finiterepetition threshold it is sufficient to show (contrary to the binary case) that there exists a 7/4 + -free infinite ternary word with finitely many 7/4-powers. To do it, we use the fact that the repetition threshold of 4-letter alphabets is 7/5 and provide a translation morphism from 4 letters to 3 letters with suitable conditions.

Finite-Repetition threshold for infinite ternary words

We consider the morphism g from {a, b, c, d} * to {0, 1, 2} * defined by:

                                       g(a) = 0102101202102010210121020120210120102120121020120210121 0212010210121020102120121020120210121020102101202102012 10212010210121020120210120102120121020102101210212, g(b) = 0102101202102010210121020120210120102120121020120210121 0201021012021020121021201021012102010212012102012021012 10212010210121020120210120102120121020102101210212, g(c) = 0102101202102010210121020120210120102120121020102101202 1020121021201021012102010212012102012021012102010210120 21020102120121020120210120102120121020102101210212, g(d) = 0102101202102010210121020120210120102120121020102101202 1020102120121020120210121020102101202102012102120102101 21020102120121020120210120102120121020102101210212.
The morphism is uniform with codeword length 160. Another presentation of the morphism g is:

       g(a) = uv02120121020120210121020102101202102012102120102101yz, g(b) = uv21021201021012102010212012102012021012102010210120yz, g(c) = uw01021012021020121021201021012102010212012102012021xz, g(d) = uw12010210121020102120121020120210121020102101202102xz,
where u, v, w, x, y and z are:

u = 01021012021020102101210201202101201021201210201, v = 2021012102, w = 0210120210201, x = 2102010212, y = 0121021201021, z = 0121020120210120102120121020102101210212.
The word u is the longest common prefix of the codewords, |u| = 47, and z is their longest common suffix, |z| = 40. Theorem 4 is a direct consequence of the next proposition.

Proposition 1

The morphism g translates any infinite 7/5 + -free word on the alphabet {a, b, c, d} into a 7/4 + -free ternary word containing only two 7/4-powers, the fewest possible.

We present two proofs of Proposition 1. The first one is a direct proof that involves the longest common prefix and the longest common suffix of the codewords to derive a contradiction from the existence of any 7/4-power other than 0121012 and 2010201 in the image by g of a 7/5 + -free word. The second proof is derived from a lemma on morphisms stated by Ochem in [START_REF] Ochem | A generator of morphisms for infinite words[END_REF].

Direct proof of Proposition 1

Let us assume that g(s) contains a non-extensible repetition, excluding the two 7/4-powers 0121012 and 2010201, with exponent at least 7/4. The repetition can be written pq where |p| is its period. Then |pq|/|p| ≥ 7/4. A simple computation verifies that no image of a 7/5 + -free word with length at most 3 contains the repetition. Therefore the repetition is long and occurs in the image by g of a word of length at least 4.

We consider two cases.

• Case |p| ≤ |q|. The word pq is of the form

pq = u 1 • • • v 1 u 1 • • • v 1 • • •
where u 1 v 1 is codeword. Indeed it starts with the square pp of the form

u 1 g(s ′ )v 1 u 1 g(s ′ )v 1
where s ′ ∈ {a, b, c, d} * . Note that s ′ cannot be the empty word because pq would occur in the image of a triplet. Let α ∈ {a, b, c, d} be such that g(α) = v 1 u 1 . Therefore s ′ αs ′ is a factor of s. The letter occurring before s ′ in s and the letter occurring after it must differ from α to avoid the squares αs ′ αs ′ or s ′ αs ′ α since s is 7/5 + -power free). Then u 1 is not longer than the longest common prefix between two different codewords, that is,

|u 1 | ≤ |uw| = 60. Symmetrically, v 1 is not longer than the longest common suffix of two different codewords, that is, |v 1 | ≤ |yz| = 53. But then |v 1 u 1 | ≤ 113
and cannot be a complete codeword, a contradiction.

• Case |p| > |q|. The word pq is of the form

pq = u 1 • • • v 1 • • • u 1 • • • v 1
More precisely a 0 pqb 1 is of the form where g(s ′′ ) = v 1 q -1 pu 1 because the morphism is synchronizing (no codeword occurs in the concatenation of two codewords). Therefore g(s ′ )g(s ′′ )g(s ′ ) is a factor of g(s) thus s ′ s ′′ s ′ is a factor of s and since s is 7/5 

a 0 u 1 g(s ′ )v 1 a 1 • • • b 0 u 1 g(s ′ )v 1 b 1 where s ′ ∈ {a, b, c, d} * , a 0 , a 1 , b 0 , b 1 ∈ {0, 1,
(s ′ )| ≤ 2|g(s ′′ )| (1) 
because the morphism g is uniform.

Furthermore pq = u 1 g(s ′ )g(s ′′ )g(s ′ )v 1 and p = u 1 g(s ′ )g(s ′′ )u 1 -1 so its exponent satisfies

|u 1 g(s ′ )g(s ′′ )g(s ′ )v 1 | |g(s ′ )g(s ′′ )| ≥ 7 4
which rewrites as

|g(s ′ )| + 4|u 1 v 1 | ≥ 3|g(s ′′ )| (2) 
Using Equations 1 and 2 we get

9|g(s ′ )| ≤ 6|g(s ′′ )| ≤ 2(|g(s ′ )| + 4|u 1 v 1 |)
and then

|g(s ′ )| ≤ 8 7 |u 1 v 1 |.
But since |u 1 v 1 | ≤ 113 as in the first case, this implies that s ′ is empty. Therefore the repetition pq is a factor of the image of a triplet, a contradiction.

This completes the direct proof of Proposition 1.

Proof based on Ochem's result

Here we split the proof in two parts: first we show that g(s) is 7/4 + -free, second we show the only 7/4-powers are the ones mentioned above. The proof depends on the following result. In the statement, Σ s (resp. Σ e ) is an alphabet with s (resp. e) letters; and the morphism h :

Σ * s → Σ * e is synchronizing if for any a, b, c ∈ Σ s and v, w ∈ Σ * e , h(ab) = vh(c)w implies either v = ε and a = c or w = ε and b = c. Lemma 1 (Ochem [10]) Let α, β ∈ Q, 1 < α < β < 2, and p ∈ N * . Let h : Σ * s → Σ *
e be a synchronizing q-uniform morphism (with q ≥ 1). If h(w) is (β + , p)-free for every α + -free word w such that |w| < max{ 2β

β -α , 2(q-1)(2β -1)

q(β -1)
}, then h(t) is (β + , p)-free for every (finite or infinite) α + -free word t.

To apply the lemma to the morphism g above, we have α = 7/5 and q = 160. We choose β = 17/10 and p = 5. Then we can show that the morphism is (17/10 + , 5)-free if g(w) is (17/10 + , 5)-power free for all words w for which |w| < max{ 2β βα , 2(q -1)(2β -1) q(β -1) }, which implies |w| < 12. This set is finite and a simple computation can verify the claim. Since every (7/4 + , 5)-power is also a (17/10 + , 5)-power then we can claim the morphism is (7/4 + , 5)power free.

So the only possible 7/4-powers with period less that 5 are: (0121) 7/4 , (0212) 7/4 , (1020) 7/4 , (1202) 7/4 , (2010) 7/4 , and (2101) 7/4 . Any of those strings must be either a factor of a codeword or a factor of the image of a doublet. We immediately conclude the words (1020) 7/4 and (2101) 7/4 are the only factors of g(s).

This concludes the whole proof of Theorem 4.

Repetitions for larger alphabets

Experiments show that a word on a 4-letter alphabet for which the maximal exponent of factors is 7/5 and that contains at most one 7/5-power has maximal length 230. However if the constraint on the number of 7/5-powers is relaxed to 2 the length grows to at least 100000. This experiment intrigued us to study the string further and to state the following conjecture.

Conjecture 1

The finite-repetition threshold of 4-letter alphabets is 7/5 and their exist an infinite 7/5 +power free word containing only two 7/5-powers. The two 7/5-powers are (0231203213) Note the above words have period 10, the smallest possible period, since there is no 7/5-power with period 5 that is 7/5 + -free.

The experiments are done with a mere backtracking technique to generate the suitable words. It implements efficient algorithms for testing the properties.

  2} and a 0 = b 0 and a 1 = b 1 , because pq is inextensible. It rewrites as a 0 u 1 g(s ′ )g(s ′′ )g(s ′ )v 1 b 1

7 5 and (1230213203) 7 5

 77 up to a permutation of the letters.

  according to the next table.

	Maximal Allowed number Smallest number
	exponent e	of e-powers	of squares
	7/3	2	12
		1	14
	5/2	2	8
		1	11
	3	2	3
		1	4

Acknowledgments

We warmly thank Pascal Ochem for pointing his powerful result on word morphisms and for profitable discussions.