
HAL Id: hal-00742048
https://hal.science/hal-00742048

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gapped Suffix Arrays: a New Index Structure for Fast
Approximate Matching

Maxime Crochemore, German Tischler

To cite this version:
Maxime Crochemore, German Tischler. Gapped Suffix Arrays: a New Index Structure for Fast Ap-
proximate Matching. SPIRE, 2010, Los Cabos, Mexico. pp.359-364, �10.1007/978-3-642-16321-0_37�.
�hal-00742048�

https://hal.science/hal-00742048
https://hal.archives-ouvertes.fr

Gapped Suffix Arrays: a New Index Structure

for Fast Approximate Matching

Maxime Crochemore1,2, German Tischler1,3

1 Dept. of Computer Science, King’s College London, London WC2R 2LS, UK
{maxime.crochemore,german.tischler}@kcl.ac.uk

2 Université Paris-Est, France
3 Newton Fellow

Abstract. Approximate searching using an index is an important ap-
plication in many fields. In this paper we introduce a new data structure
called the gapped suffix array for approximate searching in the Ham-
ming distance model. Building on the well known filtration approach for
approximate searching, the use of the gapped suffix array can improve
search speed by avoiding the merging of position lists.

1 Introduction

Pattern matching in textual data is a much studied question in Computer Sci-
ence and large parts of books on algorithms on strings and sequences are devoted
to the question (see e.g. [2]). Several types of applications require approximate
matching rather than exact matching of the patterns. This is typically the sit-
uation for motif search and inference in biological molecular sequences because
they allow some diversity without altering the basic information they carry. But
this is not by far the only domain demanding approximate matching solutions.
A main technique to deal with the question is the notion of alignment, which
admits a considerable number of variants and is parameterised by the costs of
allowed elementary operations (see e.g. [1]).

However there are actually two sub-problems depending on which are known
first, patterns to be searched for or data to be searched. They admit totally
different types of solutions. The paradigm solution for searching for approximate
occurrences of a fixed pattern under the notion of Levenshtein operations is due
to Landau and Vishkin [7], and the same authors designed a simpler version
when only mismatches are considered [6]. The second type of solution appears
when the data is to be searched for multiple patterns. It is then appropriate to
index the data for accelerating their future inspection and analysis.

Indexing for approximate searches is the problem we address in the article,
but with one important restriction: patterns are of fixed size. Moreover the pro-
posed solution accommodates only few mismatches to be feasible with reasonable
resources.

In this paper we introduce what we call the gapped Suffix Array. It is a data
structure enhancing the standard suffix array and tailored to accept searches for
patterns up to some mismatches.

2 Definitions

Let throughout this paper Σ be a finite ordered alphabet and let Σ∗ denote the
set of all finite strings over Σ. We denote the empty string by ǫ and the length
of a string u by |u|. Let y = y[0] . . . y[n − 1] denote a string of finite length
n over Σ which we call the text. We denote the factor starting at position i

and ending at position j of some string x by x[i . . j]. It is defined by x[i . . j] =
x[max(0, i)]x[max(0, i)+1] . . . x[min(j, |x|−1)] for max(0, i) ≤ min(j, |x|−1) and
x[i . . j] = ǫ otherwise. A prefix of a string x is x[0 . . i] for any position i and a
suffix of x is x[i . . |x| − 1] for any position i. A string u ∈ Σ∗ is lexicographically
smaller than a string v ∈ Σ∗ (which we denote by u < v), if u 6= v and either
u = ǫ or u 6= ǫ 6= v and u[0] < v[0] or u 6= ǫ 6= v and u[0] = u[0] and
u[1 . . |u| − 1] < v[1 . . |v| − 1]. The array SA of length n is defined by SA[r] being
the start position of the r’th lexicographically smallest non empty suffix of y,
i.e. we obtain the relation

y[SA[0] . . n− 1] < y[SA[1] . . n− 1] < . . . < y[SA[n− 1] . . n− 1] .

The array SA can be computed from the string y in linear time if |Σ| ∈ O(nc)
for some constant c (in particular for c = 0, i.e. alphabets of constant size, cf.
[2]). Let the array ISA be defined by ISA[SA[r]] = r for 0 ≤ r < n. The length of
the longest common prefix of u, v ∈ Σ∗, which we denote by is lcp(u, v), is the
largest l ≤ max(|u|, |v|) such that u[0 . . l−1] = v[0 . . l−1]. We denote the length
of the longest common prefix of the two suffixes starting at position i and j of
y by lcpy(i, j) and we define lcpr(r, q) = lcpy(SA[r], SA[q]) for 0 ≤ r, q < n. We
define the LCP array by LCP[r] = lcpr(r− 1, r) for 1 ≤ r < n and by LCP[0] = 0.
It is well known that the identity

lcpr(r, q) = min{LCP[r + 1], LCP[r + 2], . . . , LCP[q]}

holds for 0 ≤ r < q < n. The LCP array can be computed from the string y and
the array SA in linear time (cf. [2]). The pair of arrays (SA, LCP) is commonly
known as the suffix array of the string y.

For two strings u, v such that |u| = |v| = m the Hamming distance d(u, v)
of u and v is defined as the number of differences between u and v. For sake of
completeness we define d(u, v) = ∞ for strings u, v such that |u| 6= |v|.

3 Approximate String Matching

We consider approximate string matching by the well known procedure called
filtration or partitioning into exact matches (cf. [9, 8]). Let x ∈ Σ∗ be a pattern of
length m. We want to find occurrences of x in the text y with up to k mismatches
under the Hamming distance. Partitioning into exact matches works as follows.
We partition x into q > k fragments x0, . . . xq−1 ∈ Σ+. We search the lists
occurrences Xi of xi. For each of the possibilities of choosing q − k of the q

fragments, we merge the respective lists of positions using the respective position

offsets. This provides us with
(

q

q−k

)

candidate position lists. The unionX of these
merged lists is a superset of the positions of occurrences of x in y with up to
k mismatches. We obtain the list of occurrences of x in y by filtering X using
an online algorithm for testing if the candidate positions designate occurrences
with at most k mismatches.

As an example consider a pattern x we partition into three fragments x0, x1

and x2 for searching its occurrences with 1 mismatch. We have to consider three
pairs of fragments: (x0, x1), (x1, x2) and (x0, x2). The first two combinations are
easily found using an index for y. We need only search for the patterns x0x1

and x1x2. The third requires merging of lists in the conventional scheme. If we
have an index supporting searching patterns with gaps however, merging is no
longer necessary. Supporting the search of patterns with gaps is the purpose of
the gapped suffix array.

4 The Gapped Suffix Array

4.1 Definitions

We define a generalisation of the notion of lexicographical order which we call
(g0, g1)-lexicographical order, where g0, g1 ∈ N. A string u ∈ Σ∗ is (g0, g1)-
lexicographically smaller than a string v ∈ Σ∗

– if u[0 . . g0 − 1] 6= v[0 . . g0 − 1] then iff u < v

– otherwise (u[0 . . g0 − 1] = v[0 . . g0 − 1]), if min(|u|, |v|) > g0 + g1 then iff
u[0 . . g0 − 1]u[g0 + g1 . . |u| − 1] < v[0 . . g0 − 1]v[g0 + g1 . . |v| − 1]

– otherwise (u[0 . . g0 − 1] = v[0 . . g0 − 1],min(|u|, |v|) ≤ g0 + g1), iff |u| < |v|

Informally the definition means that we compare u and v ignoring the presence of
the letters in the position interval [g0, g0+ g1), where we have to take some care
about those strings which end inside the gap area. The (g0, g1)-lexicographical
order is a total order on a set of strings such that each string has a differ-
ent length. We define the (g0, g1)-gapped suffix array of y, which we denote by
(g0, g1) − gSA (or shorter gSA, if the parameters g0 and g1 are clear from the
context), as the array containing the starting positions of the non-empty suffixes
of y in (g0, g1)-lexicographically ascending order. The (g0, g1)-prefix of the string
u ∈ Σ∗, which we denote by D(g0, g1, u), is defined as u[0 . . g0−1] if |u| ≤ g0+g1
and as u[0 . . g0−1]u[g0+g1 . . |u|−1] if |u| > g0+g1. We define the (g0, g1)-gLCP
array (we use the shorter notation gLCP, if the parameters g0 and g1 are clear
from the context) for the string y based on its (g0, g1)-gSA array by

gLCP[r] = lcp(D(g0, g1, y[gSA[r − 1] . . n− 1]), D(g0, g1, y[gSA[r] . . n− 1]))

for r > 0 and gLCP[r] = 0 for r = 0.

4.2 Searching using the gapped suffix array

Assume we are given a query x of length m > g0 + g1 and we want to find all
occurrences of patterns in x[0 . . g0 − 1]Σg1x[g0 + g1 . .m − 1] in a text y using

the array (g0, g1)-gSA for y. The search method we use is analogous to the one
we would use for searching an ungapped pattern using the array SA. The only
major difference is that we suitably substitute the lexicographic order by the
(g0, g1)-lexicographic order in the binary search for the interval of gapped suffix
matching x. Thus the time required to report the occ gapped occurrences of x
in y is O((m − g1) log n + occ) if we do not use an adjoint (g0, g1)-gLCP array
and O((m− g1) + log n) if we do.

4.3 Computing the gapped suffix array

For the rest of the section assume we have fixed two natural numbers g0 and
g1 and want to compute the arrays (g0, g1)-gSA (short gSA) and (g0, g1)-gLCP
(short gLCP). We now show how to deduce the sorting in gSA in linear time
O(n) from the suffix array of y.

Let GRANK[r] be defined as the number of ranks r′ < r such that LCP[r] < g0.
GRANK contains the ranks of factors of y with length up to g0. The largest
number we can find in GRANK is n. If GRANK[ISA[i]] < GRANK[ISA[j]] for
two positions i, j, then the suffix at position i is lexicographically and (g0, g1)-
lexicographically smaller than the one at position j. Thus the order of the suffixes
between SA and gSA can only differ if GRANK[r] = GRANK[q] for two ranks r and
q. If GRANK[r] = GRANK[q], then we can determine the order of the respective
gapped suffixes in gSA by checking ISA[SA[r] + g0 + g1] and ISA[SA[q] + g0 + g1],
given that these two are defined. A problem occurs for such ranks r where
SA[r]+g0+g1 ≥ n because the obtained value is not a valid position on y and thus
ISA is not defined for it. According to the definition of the (g0, g1)-lexicographic
order, this problem can be solved by sorting along the array HRANK given by

HRANK[r] =

{

ISA[SA[r] + g0 + g1] + g0 + g1 if SA[r] + g0 + g1 < n

n− 1− SA[r] otherwise

The range of numbers found in the array HRANK is [0, n+g0+g1−1], in particular
the upper bound is O(n). We can compute a representation of the array gSA by
sorting the sequence of ranks 0, . . . , n − 1 by the pair (GRANK[r],HRANK[r]).
This can be performed efficiently in linear time using a two stage radix sort,
where we first sort by HRANK and then by GRANK. The concrete array gSA can
then be obtained from this intermediate representation by mapping each rank
on the suffix array to the respective position.

Theorem 1. Given a string y of length n and its suffix sorting SA, the gapped

suffix array (g0, g1)-gSA of y can be computed in linear time O(n).

4.4 Computing the gapped LCP array gLCP

We show how to compute the gapped LCP array gLCP from the suffix array
and the array (g0, g1) − gSA (short gSA) in linear time. We require a constant
time solution of the range minimum query (RMQ) problem after linear time

preprocessing (see e.g. [3]). We can obtain the array (g0, g1)−gLCP (short gLCP)
by setting

gLCP[r] =































LCP[r] if LCP[r] < g0
g0 if max(gSA[r] + g0 + g1, gSA[r − 1] + g0 + g1) ≥ n

g0 + l otherwise, where l = min(LCP[p] + 1, . . . , LCP[q]) for
p′ = ISA[gSA[r − 1] + g0 + g1]
q′ = ISA[gSA[r] + g0 + g1]
p = min(p′, q′) and q = max(p′, q′)

As every single step in the computation takes constant time and we have n steps,
the runtime for computing gLCP is O(n).

Theorem 2. Given a string y of length n and its suffix sorting SA, the gapped

LCP array (g0, g1)-gLCP of y can be computed in linear time O(n).

5 Representing the array gSA in reduced space

The uncompressed version of the gSA array requires n⌈log n⌉ bits. The text
however can be stored in n⌈log |Σ|⌉ bits. In applications the size of the alphabet
is fixed an small. Thus the space taken by the gSA will often be much larger
than the space required for the text. The array SA is compressible (cf. [5]).
Unfortunately, methods for compressing SA cannot be applied for compressing
the array gSA, as the compression of SA requires the sorting of the suffixes
according to the lexicographical order, which in general is not the same as the
(g0, g1)-lexicographical order.

We provide a simple method for storing the array gSA using less than n log n
bits space on average. Decoding the compressed representation of gSA will re-
quire the array SA. We limit our description to the aspects necessary for searching
using the array gSA, i.e. our description allows accessing values in gSA corre-
sponding to a provided query string. The more general case of accessing gSA for
a given rank r without knowing a corresponding string can be facilitated using
some additional succinct data structures. We omit the description for lack of
space. We assume that the query string has a length of at least g0. For shorter
strings searching on the suffix array is sufficient. This may enumerate occurrences
in a different order. However, this is not critical in most applications.

Let R[r] = {r′|HRANK[r′] = r}. Each R[r] is given as an interval of ranks.
Observe that the sequences found in SA and gSA in each such interval are per-
mutations of each other. On average we can expect each interval to have a size
of n

|Σ|g0 . Thus the permutation transforming gSA into SA can be stored using

⌈log |R[r]|⌉ bits per number for each interval r. Each interval R[r] is assigned
to a unique prefix u(r) ∈ Σ∗ of length at most g0. The left bound low(r) and
right bound up(r) of the interval R[r] can be obtained by searching u(r) on
the suffix array. Knowing low(r) and up(r) we can compute the number of bits
b(r) = ⌈log up(r)− low(r) + 1⌉ used to store the numbers in the interval. Let L
be defined by L(r) = b(R−1[r]). L can be stored and indexed for rank queries via

a wavelet tree (cf. [4]) using n⌈log⌈log n⌉⌉ + o(n log log n) bits. Let C[r] denote
the permutation mapping the portion R[r] of gSA to SA and let Ci denote the
concatenation of all C[r] such that b(r) = i. We can obtain gSA[r] for the query
v as Cb(u−1(v[0..g0−1]))[rankb(u−1(v[0..g0−1]))(r)] in time O(log log n). The size of
the data structure on average is n(log n− g0 log |Σ|) +n log log n+ o(n log log n)
bits. Using a space efficient wavelet tree data structure, the size is dominated by
the first two terms in practice.

6 Conclusion

In this paper we have presented the gapped suffix array as a new efficient data
structure for approximate matching under the Hamming distance. We obtained
the same query time as for the conventional suffix array. The gapped suffix
array can be derived in linear time from a text and its suffix sorting. Open
problems include an improved query time independent of the text size, a succinct
representation in n logΣ + o(n logΣ) space and whether the gLCP array can be
computed in linear time without using RMQ queries.

References

1. H.-J. Böckenhauer and D. Bongartz. Algorithmic Aspects of Bioinformatics.
Springer, 2007.

2. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, 2007. 392 pages.

3. J. Fischer and V. Heun. A New Succinct Representation of RMQ-Information
and Improvements in the Enhanced Suffix Array. In B. Chen, M. Paterson, and
G. Zhang, editors, ESCAPE, volume 4614 of LNCS, pages 459–470. Springer, 2007.

4. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Dis-

crete algorithms, pages 841–850, Philadelphia, PA, USA, 2003. Society for Industrial
and Applied Mathematics.

5. R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Appli-
cations to Text Indexing and String Matching. SIAM J. Comput., 35(2):378–407,
2005.

6. G. M. Landau and U. Vishkin. Efficient string matching with k mismatches. Theor.
Comput. Sci., 43:239–249, 1986.

7. G. M. Landau and U. Vishkin. Fast string matching with k differences. J. Comput.

Syst. Sci., 37(1):63–78, 1988.
8. G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,

33(1):31–88, 2001.
9. G. Navarro, R. A. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for

approximate string matching. IEEE Data Eng. Bull., 24(4):19–27, 2001.

