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Abstract. A proper factor u of a string y is a cover of y if every letter
of y is within some occurrence of u in y. The concept generalises the
notion of periods of a string. An integer array C is the minimal-cover
(resp. maximal-cover) array of y if C [i] is the minimal (resp. maximal)
length of covers of y[0 . . i], or zero if no cover exists.

In this paper, we present a constructive algorithm checking the validity of
an array as a minimal-cover or maximal-cover array of some string. When
the array is valid, the algorithm produces a string over an unbounded
alphabet whose cover array is the input array. All algorithms run in
linear time due to an interesting combinatorial property of cover arrays:
the sum of important values in a cover array is bounded by twice the
length of the string.

Introduction

The notion of periodicity in strings is well studied in many fields like com-
binatorics on words, pattern matching, data compression and automata
theory (see [11, 12]), because it is of paramount importance in several
applications, not to talk about its theoretical aspects.

The concept of quasiperiodicity is a generalisation of the notion of
periodicity, and was defined by Apostolico and Ehrenfeucht in [2]. In a
periodic repetition the occurrences of the single periods do not overlap. In
contrast, the quasiperiods of a quasiperiodic string may overlap. We call
a proper factor u of a nonempty string y a cover of y, if every letter of y is
within some occurrence of u in y. In this paper, we consider the so-called
aligned covers, where the cover u of y needs to be a border (i.e. a prefix
and a suffix) of y. The array C is called the minimal-cover (resp. maximal-
cover) array of the string y of length n, if for each i, 0 ≤ i < n, C [i] stores
either the length of the shortest (resp. longest) cover of y[0 . . i], when such
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a cover exists, or zero otherwise. In particular, we do not consider a string
to be a cover of itself.

Apostolico and Breslauer [1, 4] gave an online linear runtime algorithm
computing the minimal-cover array of a string. In their definition, a string
is a cover of itself, but it is straightforward to modify their algorithm to
accommodate our definition. Li and Smyth [10] provided an online linear
runtime algorithm for computing the maximal-cover array.

In this paper, we present a constructive algorithm checking if an in-
teger array is the minimal-cover or maximal-cover array of some string.
When the array is valid, the algorithm produces a string over an un-
bounded alphabet whose cover array is the input array. For our validity
checking algorithm, we use the aforementioned algorithms that compute
cover arrays.

All algorithms run in linear time. This is essentially due to a combi-
natorial property of cover arrays: the sum of important values in a cover
array is bounded by twice the length of the string.

The result of the paper completes the series of algorithmic charac-
terisations of data structures that store fundamental features of strings.
They concern Border arrays [6, 7], Parameterized Border arrays [9] and
Prefix arrays [5] that stores periods of all the prefixes of a string, as well
as the element of Suffix arrays [3, 8] that memorises the list of positions of
lexicographically sorted suffixes of the string. The question is not applica-
ble to complete Suffix trees or Suffix automata since the relevant string is
part of these data structures. The algorithms may be regarded as reverse
engineering processes and, beyond their obvious theoretical interest, they
are useful to test the validity of some constructions. Their linear runtime
is an important part of their quality.

The rest of the paper is structured as follows. Section 1 presents the
basic definitions used throughout the paper and the problem. In Sec-
tion 2, we prove some properties of minimal-cover arrays used later for
the design or the analysis of algorithms. In Section 3, we describe our
constructive cover array validity checking algorithms. Section 4 provides
some combinatorially interesting numerical data on minimal-cover arrays.

1 Definitions and Problems

Throughout this paper we consider a string y of length |y| = n on an
unbounded alphabet. It is represented as y[0 . . n − 1]. A string w is a
factor of y if y = uwv for two strings u and v. It is a prefix of y if u
is empty and a suffix of y if v is empty. A string u is a period of y if
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y is a prefix of uk for some positive integer k, or equivalently if y is a
prefix of uy. The period of y is the shortest period of y. A string x of
length m is a cover of y if both m < n and there exists a set of positions
P ⊆ {0, . . . , n − m} satisfying y[i . . i + m − 1] = x for all i ∈ P and
⋃

i∈P
{i, . . . , i+ m− 1} = {0, . . . , n− 1}. Note that this requires x to be a

prefix as well as a suffix of y. The minimal-cover array C of y is the array
of integers C [0 . . n− 1] for which C [i], 0 ≤ i < n, stores the length of the
shortest cover of the prefix y[0 . . i], if such a cover exists, or zero other-
wise. The maximal-cover array CM stores longest cover at each position
instead. The following table provides the minimal-cover array C and the
maximal-cover array CM of the string y = abaababaababaabaababaaba.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

y[i] a b a a b a b a a b a b a a b a a b a b a a b a

C [i] 0 0 0 0 0 3 0 3 0 5 3 7 3 9 5 3 0 5 3 0 3 9 5 3
CM[i] 0 0 0 0 0 3 0 3 0 5 6 7 8 9 10 11 0 5 6 0 8 9 10 11

We consider the following problems for an integer array A:

Problem 1 (Minimal Validity Problem). Decide if A is the minimal-cover
array of some string.

Problem 2 (Maximal Validity Problem). Decide if A is the maximal-cover
array of some string.

Problem 3 (Minimal Construction Problem). When A is a valid minimal-
cover array, exhibit a string over an unbounded alphabet whose minimal-
cover array is A.

Problem 4 (Maximal Construction Problem). When A is a valid maximal-
cover array, exhibit a string over an unbounded alphabet whose maximal-
cover array is A.

2 Properties of the Minimal-Cover Array

In this section, we assume that C is the minimal-cover array of y. Its first
element is 0, as we do not consider a string to be a cover of itself. Next
elements are 1 only for prefixes of the form ak for some letter a. We will
use the following fact in our argumentation.

Fact 1 (Transitivity) If u and v cover y and |u| < |v|, then u covers
v.

For the rest of the section we assume that n > 1 and prove several
less obvious properties of the minimal-cover array.
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Fig. 1. Case j − C [j] > i − C [i] of Lemma 2 (i′ = i − C[i] + 1, j′ = j − C[j] + 1).

Lemma 1. If 0 ≤ i < n and C [i] 6= 0, then C [C [i] − 1] = 0.

Proof. Immediate from Fact 1. ⊓⊔

Lemma 2. Let i and j be positions such that j < i, j − C [j] ≥ i− C [i],
C [i] 6= 0 and C [j] 6= 0. Furthermore let r = j− (i−C [i]+1). If i−C [i] =
j−C [j] then C [r] = 0, otherwise if i−C [i] < j−C [j], then C [r] = C [j].

Proof. First assume that i−C [i] = j−C [j]. Then C [j− (i−C [i]+1)] =
C [j − (j − C [j] + 1)] = C [C [j] − 1] = 0 according to Lemma 1. Now
assume that i − C [i] < j − C [j]. This situation is depicted in Figure 1.
The string u = y[j−C [j]+1 . . j] of length C [j] covers the string y[0 . . j].
By precondition (j < i, j − C [j] > i − C [i]) u also covers y[0 . . r], as
there exists an occurrence of u at position r − C [j] + 1. Thus we have
C [r] ≤ C [j]. The assumption C [r] < C [j] leads to a contradiction to the
minimality of C . Thus we have C [r] = C [j]. ⊓⊔

Lemma 3. Let i and j be positions such that j < i and j−C [j] < i−C [i].
Then (i− C [i])− (j −C [j]) > C [j]/2.

Proof. For ease of notation let p = C [i], q = C [j] and r = (i−p)−(j−q).
Assume the statement does not hold, i.e. r ≤ q

2 . Let u = y[0 . . r−1]. Then
due to the overlap of y[i− p + 1 . . i] and y[j − q + 1 . . j] both y[0 . . p− 1]
and y[0 . . q−1] are powers of u. Let y[0 . . q−1] = ue for some exponent e.
Observe that e = q/r ≥ q/(q/2) = 2. However y[0 . . q − 1] is also covered
by v = u1+e−⌊e⌋. As |v| < q we obtain a contradiction. ⊓⊔

Definition 1. A position j 6= 0 of C is called totally covered, if there is
a position i > j for which C [i] 6= 0 and i− C [i] + 1 ≤ j − C [j] + 1 < j.

Let Cp be obtained from C by setting C [i] = 0 for all totally covered
indices i on C . We call Cp the pruned minimal-cover array of y. The next
table shows the pruned minimal-cover array of the example string above.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

y[i] a b a a b a b a a b a b a a b a a b a b a a b a

C [i] 0 0 0 0 0 3 0 3 0 5 3 7 3 9 5 3 0 5 3 0 3 9 5 3
Cp[i] 0 0 0 0 0 3 0 0 0 0 0 0 0 9 5 0 0 0 0 0 0 9 5 3

Lemma 4. The sum of the elements of Cp does not exceed 2n.

Proof. Let Ii = {i − C [i] + 1, i − C [i] + 2, . . . i} for i = 0, . . . , n − 1 if
C [i] 6= 0 and Ii = ∅ otherwise. Let I ′i denote the lower half of Ii (if C [i]
is uneven, the middle element is included). According to Lemma 3, i 6= j
implies I ′i ∩ I ′j = ∅. Thus the relation

∑n−1
i=0 |I

′
i| ≤ n holds, which in turn

implies
∑n−1

i=0 |Ii| ≤
∑n−1

i=0 2|I ′i| ≤ 2n. ⊓⊔

The bound of Lemma 4 is asymptotically tight. For an integer k > 1,
let xk = (akbak+1b)n/(2k+3). For k = 2 and n = 23 we get:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

y[i] a a b a a a b a a b a a a b a a b a a a b a a

Cp[i] 0 0 0 0 0 0 0 0 5 0 0 0 0 7 0 5 0 0 0 0 7 0 5

It is straightforward to see that all segments of length 2k + 3 of Cp

contain the values 2k + 1 and 2k + 3, except at the beginning of the
string. Therefore the sum of elements in Cp is (4k + 4)( n

2k+3 − 1), which
tends to 2n when k (and n) goes to infinity.

3 Reverse Engineering a Cover Array

We solve the stated problems in three steps: array transformation, string
inference and validity checking.

Transforming Maximal to Minimal-Cover Arrays We first show how to
transform a maximal-cover array into a minimal-cover array in linear
time. The following algorithm Maxtomin converts the maximal-cover
array C of y to its minimal-cover array in linear time.

Maxtomin(C , n)

1 for i← 0 to n− 1 do
2 if C [i] 6= 0 and C [C [i]− 1] 6= 0 then
3 C [i]← C [C [i] − 1]

The algorithm works in the following way. Assume the for loop is executing
for some i > 0. At this time the prefix C [0 . . i− 1] of the array has been
converted to a minimal-cover array and we want to determine the value
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of C [i]. If C [i] is zero then there is no cover and we leave the value as it
is. If C [i] is not zero, then we know from Fact 1 that if there is a shorter
cover, then it covers y[0 . . C [i]− 1]. Thus we look up C [C [i]− 1] to see if
there is a shorter cover we can substitute for C [i]. As the segment before
index i is already the minimal-cover array up to this point, we know that
such a value is minimal.

String Inference In this step, we assume that the integer array C of
length n is the minimal- or maximal-cover array of at least one string.
From what we wrote above, we can assume without loss of generality that
C is a minimal-cover array.

The nonzero values in C induce an equivalence relation on the posi-
tions of every string that has the minimal-cover array C . More precisely,
if we find the value ℓ 6= 0 in position i of C , then this imposes the con-
straints

y[k] = y[i− ℓ + 1 + k]

for k = 0, . . . , ℓ − 1. We say that the positions k and i − ℓ + 1 + k are
bidirectionally linked. Let the undirected graph G(V,E) be defined by
V = {0, . . . , n− 1} and

E =
⋃

i=0,...,n−1

⋃

j=0,...C [i]−1

({(j, i − C [i] + 1 + j)}) .

Then the nonzero values in C state that the letters at positions i and j of
any word y such that C is the minimal-cover array of y need to be equal,
if i and j are connected in G. According to Lemma 2, we do not lose
connectivity between vertices of G, if we remove totally covered indices
from C , i.e. the graph induced by C has the same connected components
as the one induced by its pruned version Cp. The number of edges in the
graph induced by Cp is bounded by 2n according to Lemma 4.

The pruned minimal-cover array Cp can be obtained from the mini-
mal-cover array C using the following algorithm Prune in linear time.

Prune(C , n)

1 ℓ← 0
2 for i← n− 1 downto 0 do
3 if ℓ ≥ C [i] then
4 C [i]← 0
5 ℓ← max(0,max(ℓ,C [i]) − 1)
6 return C

A non-zero value at index i in C defines an interval [i− C [i] + 1, i]. The
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algorithm scans C from large to small indices, where the value ℓ stores the
minimal lower bound of all the intervals encountered so far. If an interval
starting at a smaller upper bound has a greater lower bound than ℓ, we
erase the corresponding value in C by setting it to zero. Thus we remove
all totally covered indices from C and obtain the pruned array Cp.

So far we know how to extract information from the non-zero val-
ues of C by computing connected components in a graph which has no
more than 2n edges. The vertices in each connected component designate
positions in any produced string which need to have equal letters. By
assigning a different letter to each of these components, we make sure
not to violate any constraints set by the zero values in C . The following
algorithm MinArrayToString produces a string y from an array A
assumed to be a pruned minimal-cover array.

MinArrayToString(A,n)

1 ⊲ Produce edges
2 for i← 0 to n− 1 do
3 E[i]← empty list

4 for i← 0 to n− 1 do
5 for j ← 0 to A[i]− 1 do
6 E[i−A[i] + 1 + j].add(j), E[j].add(i −A[i] + 1 + j)
7 ⊲ Compute connected components by Depth First Search
8 ⊲ and assign letters to output string
9 (S, ℓ)← (empty stack,−1)

10 for i← 0 to n− 1 do
11 if y[i] is undefined then
12 S.push(i)
13 ℓ← ℓ + 1
14 while not S.empty() do
15 p← S.pop()
16 y[p]← ℓ
17 for each element j of E[p] do
18 if y[j] is undefined then
19 S.push(j)
20 return y

The first two for loops produce the edges E in the graph G induced by
A, where we implement the transition relation by assigning a linear list
of outgoing edges to each vertex. The third for loop computes the con-
nected components in the graph by using depth first search and assigns
the letters to the output string. Each connected component is assigned a
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different letter. The runtime of the algorithm is linear in the number of
edges of the graph, which is bounded by 2n.

Theorem 1. The problems Minimal Construction Problem and Maximal
Construction Problem are solved in linear time by the algorithm MinAr-

rayToString and the sequence of algorithms MaxToMin and MinAr-

rayToString respectively.

Validity Checking In the third step we use the MinArrayToString

algorithm as a building block for our validity checking algorithm. Thus
we have to ensure some basic constraints so that the algorithm does not
firstly access any undefined positions in the input and secondly runs in
linear time. As a first step, we have to make sure that the algorithm will
not try to define edges for which at least one vertex number is not valid.
This check is performed by the following algorithm Precheck, which
runs in linear time.

Precheck(A,n)

1 for i← 0 to n− 1 do
2 if i−A[i] + 1 < 0 then
3 return false
4 return true

If Precheck returns true, then MinArrayToString will only gener-
ate edges from valid to valid vertices. If we are checking for validity of a
maximal-cover array, we then pass the array through the algorithm Max-

ToMin as a next step. In both cases (minimal and maximal) the next
step is to prune the array using the algorithm Prune. After this, we can
call the algorithm MinArrayToString with the so-modified array, but
it may not run in linear time, as the constraints imposed by Lemma 3
may not hold if the original input array is invalid. We avoid this situation
with the following algorithm Postcheck.

Postcheck(A,n)

1 j ← −1
2 for i← 0 to n− 1 do
3 if A[i] 6= 0 then

4 if j 6= −1 and (i−A[i]) − (j −A[j]) ≤
⌊

A[j]
2

⌋

then

5 return false
6 j ← i
7 return true

If Postcheck returns false, then the input array was invalid. Otherwise
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we can call MinArrayToString and be sure that it will run in linear
time. At this point we have obtained a string from the input array in
linear time. We know that if the input array is valid, the minimal- or
maximal- (depending on what kind of input we are given) cover array
of this string matches the input. If the input array is not valid, we can-
not obtain it by computing the minimal- or maximal-cover array from
the obtained string. Thus we can check whether an array A is a valid
maximal-cover array using the following algorithm CheckMaximal.

CheckMaximal(A,n)

1 if Precheck(A,n) = false then
2 return false
3 A←MaxToMin(A,n)
4 A← Prune(A,n)
5 if Postcheck(A,n) = false then
6 return false
7 y ←MinArrayToString(A,n)
8 if the maximal-cover array of y equals A then
9 return true

10 else return false

The algorithm CheckMinimal for checking whether an array A is a valid
minimal-cover array is obtained from CheckMaximal by removing the
call to the function MaxToMin in line 3 and checking whether the min-
imal instead of the maximal-cover array of the string y equals A in line
8.

Theorem 2. The problems Minimal Validity Problem and Maximal Va-
lidity Problem are solved by the algorithms CheckMinimal and Check-

Maximal respectively in linear time.

4 Experiments and Numerical Results

Figure 2 shows the maximal ratio of sums of elements of pruned minimal-
cover array, for all words over a two-letter alphabet, using even word
lengths 8 to 30. These ratios are known to be smaller than 2 by Lemma 4.
However, values close to this bound are not observed for small word
length.

We were able to verify the linear runtime of our algorithm in experi-
ments. The implementation for the CheckMinimal function is available
at the Website http://www.dcs.kcl.ac.uk/staff/tischler/src/recovering-0.0.0.tar.bz2,
which is set up for maintaining the source code and the documentation.
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Fig. 2. Maximal ratio of sum over pruned minimal-cover array and word length for
words over the binary alphabet of even length 8 to 30

5 Conclusion

In this paper, we have provided linear runtime algorithms for checking
the validity of minimal- and maximal-cover arrays and algorithms to infer
strings from valid minimal- and maximal-cover arrays. The linear time
inference of strings using the least possible alphabet size from cover arrays
remains an open problem.
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