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Abstract

A run is an inclusion maximal occurrence in a string (as a subinterval) of a

factor in which the period repeats at least twice. The maximal number of runs

in a string of length n has been thoroughly studied, and is known to be between

0.944n and 1.029n. The proofs are very technical. In this paper we investigate

cubic runs, in which the period repeats at least three times. We show the

upper bound on their maximal number, cubic-runs(n), in a string of length n:

cubic-runs(n) < 0.5n. The proof of linearity of cubic-runs(n) utilizes only simple

properties of Lyndon words and is considerably simpler than the corresponding

proof for general runs. For binary strings, we provide a better upper bound

cubic-runs2(n) < 0.48n which requires computer-assisted verification of a large

number of cases. We also construct an infinite sequence of words over binary

alphabet for which the lower bound is 0.41n. 1

Keywords: run in a string, Lyndon word, Fibonacci string.
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1. Introduction

Repetitions and periodicities in strings are one of the fundamental topics in

combinatorics on words [2, 14]. They are also important in other areas: lossless

compression, word representation, computational biology etc. Repetitions are

studied from different points of view: classification of words not containing rep-

etitions of a given exponent, efficient identification of factors being repetitions of

different types and, finally, computing the bounds on the number of repetitions

of a given exponent that a string may contain, which we consider in this paper.

Both the known results in the topic and a deeper description of the motivation

can be found in a survey by Crochemore et al. [5].

The concept of runs (also called maximal repetitions) has been introduced

to represent all repetitions in a string in a succinct manner. The crucial prop-

erty of runs is that their maximal number in a string of length n (denoted as

runs(n)) is O(n), see Kolpakov & Kucherov [11]. This fact is the cornerstone of

any algorithm computing all repetitions in strings of length n in O(n) time. Due

to the work of many people, much better bounds on runs(n) have been obtained.

The lower bound 0.927n was first proved by Franek & Yang [9]. Afterwards,

it was improved by Kusano et al. [13] to 0.944565n employing computer ex-

periments, and recently by Simpson [20] to 0.944575712n. On the other hand,

the first explicit upper bound 5n was settled by Rytter [17], afterwards it was

systematically improved to 3.48n by Puglisi et al. [16], 3.44n by Rytter [19],

1.6n by Crochemore & Ilie [3, 4] and 1.52n by Giraud [10]. The best known

result runs(n) ≤ 1.029n is due to Crochemore et al. [6], but it is conjectured

[11] that runs(n) < n. The maximal number of runs was also studied for special

types of strings and tight bounds were established for Fibonacci strings [11, 18]

and more generally Sturmian strings [1].

The combinatorial analysis of runs is strongly related to the problem of

estimation of the maximal number of squares in a string. In the latter problem

the gap between the upper and lower bound is much larger than for runs [5, 8].

However, a recent paper [12] by some of the authors shows that introduction
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of integer exponents larger than 2 may lead to obtaining tighter bounds for the

number of corresponding repetitions.

In this paper we introduce and study the concept of cubic runs in which the

period is at least three times shorter than the run itself. We show the following

bounds on their maximal number, cubic-runs(n), in a string of length n:

0.41n < cubic-runs(n) < 0.5n .

The upper bound is achieved by analysis of Lyndon words (i.e. words that are

primitive and minimal/maximal in the class of their cyclic equivalents) that

appear as periods of cubic runs (Section 4). In Section 6 we improve this bound

for binary words to 0.48n by examining short factors of the string.

As for the lower bound, we describe an infinite family of binary words that

contain more than 0.41n cubic runs (Section 5). The proof of this property

utilizes results obtained by analyzing the structure of cubic runs in Fibonacci

strings, described in Section 3.

2. Preliminaries

We consider words (strings) u over a finite alphabet Σ, u ∈ Σ∗; the empty word

is denoted by ε; the positions in u are numbered from 1 to |u|. By Σn we denote

the set of all words of length n from Σ∗. By uR we denote the reversed word

u. By Alph(u) we denote the set of all letters of u. For u = u1u2 . . . un, let us

denote by u[i . . j] a factor of u equal to ui . . . uj (in particular u[i] = u[i . . i]).

Words u[1 . . i] are called prefixes of u, and words u[i . . n] — suffixes of u.

We say that a positive integer q is the (shortest) period of a word u =

u1 . . . un (notation: q = per(u)) if q is the smallest positive number, such that

ui = ui+q holds for all 1 ≤ i ≤ n− q.

If u = wk (k is a non-negative integer), that is u = ww . . . w (k times), then

we say that u is the kth power of the word w. A square is the 2nd power of

some non-empty word. The primitive root of a word u, denoted root(u), is the

shortest word w such that wk = u for some positive integer k. We call a word u

primitive if root(u) = u, otherwise it is called non-primitive. We say that words
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n 3 4 5 6 7 8 9 10 11
cubic-runs2(n) 1 1 1 2 2 2 3 3 3

n 12 13 14 15 16 17 18 19 20
cubic-runs2(n) 4 4 5 5 5 6 7 7 7

n 21 22 23 24 25 26 27 28 29
cubic-runs2(n) 8 8 8 9 9 10 10 10 11

Table 1: The maximum number cubic-runs2(n) of cubic runs in a binary string of length n for
n = 3, . . . , 29. Example binary words for which the maximal number of cubic runs is attained
are shown in the following Table 2.

u and v are cyclically equivalent (or that one of them is a cyclic rotation of the

other) if u = xy and v = yx for some x, y ∈ Σ∗. It is a simple and well-known

observation, that if u and v are cyclically equivalent then |root(u)| = |root(v)|.

A run (also called a maximal repetition) in a string u is an interval [i . . j]

such that:

• the period q of the associated factor u[i . . j] satisfies 2q ≤ j − i+ 1,

• the interval cannot be extended to the left nor to the right, without vio-

lating the above property, that is, u[i− 1] 6= u[i+ q− 1] and u[j− q+1] 6=

u[j + 1], provided that the respective letters exist.

By R(u) we denote the set of runs in u.

A cubic run is a run [i . . j] for which the shortest period q satisfies 3q ≤

j − i + 1. By CR(u) we denote the set of cubic runs in u, additionally denote

cubic-runs(u) = |CR(u)|. For positive integer n, by cubic-runs(n) we denote the

maximum of cubic-runs(u) for all u ∈ Σ∗ of length n, and by cubic-runs2(n) we

denote the maximum over all such binary strings.

For simplicity, in the rest of the text we sometimes refer to runs or cubic

runs as to occurrences of corresponding factors of u.

Example. All cubic runs for an example Fibonacci word are shown in Figure 1.
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n cubic-runs2(n) u
3 1 000
6 2 000111
9 3 000111000
12 4 000100010001
14 5 00010001000111
17 6 00010001000111000
18 7 000111000111000111
21 8 000111000111000111000
24 9 000111000111000111000111
26 10 00010001000111000111000111
29 11 00010001000111000111000111000

Table 2: Lexicographically smallest binary words u ∈ {0, 1}n, for which cubic-runs(u) =
cubic-runs2(n) (see also Table 1).

3. Fibonacci Strings

Let us start by analyzing the behavior of function cubic-runs for a very common

benchmark in text algorithms, i.e. the Fibonacci strings, defined recursively as:

F0 = a, F1 = ab, Fn = Fn−1Fn−2 for n ≥ 2 .

Denote by Φn = |Fn|, the nth Fibonacci number (we assume that for n < 0,

Φn = 1) and by gn the word Fn with the last two letters removed.

Lemma 1. [15, 18] Each run in Fn is of the form Fk · Fk · gk−1 (short runs)

or Fk · Fk · Fk · gk−1 (long runs), each of the runs of period Φk.

Obviously, in Lemma 1 only runs of the form F 3
k · gk−1 are cubic runs.

Denote by #occ(u, v) the number of occurrences (as a factor) of a word u in a

word v.

Lemma 2. For every k, n ≥ 0,

#occ(F 3
k · gk−1, Fn) = #occ(F 3

k , Fn) .

Proof. Each occurrence of F 3
k within Fn must be followed by gk−1, since oth-

erwise it would form a run different from those specified in Lemma 1. �
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Lemma 3. For every k ≥ 2 and m ≥ 0,

a) #occ(F 3
k , Fm+k) = #occ(aaba, Fm),

b) #occ(aaba, Fm) = Φm−3 − 1.

Proof. Recall the Fibonacci morphism ϕ:

ϕ(a) = ab, ϕ(b) = a .

Recall that Fn = ϕn(a). The following claim provides a useful tool for the proof

of items (a) and (b).

Claim 4. Assume Fn = uvw, where u, v, w ∈ {a, b}∗, v[1] = a and either

w[1] = a or w = ε. Then there exist unique words u′, v′, w′ such that

u = ϕ(u′), v = ϕ(v′), w = ϕ(w′), Fn−1 = u′v′w′ .

And conversely, if v′ is a factor of some Fn−1 and v = ϕ(v′) then v is a factor

of Fn.

Proof. It is a straightforward consequence of the definition of ϕ and the fact

that Fn = ϕ(Fn−1). �

Now we proceed to the actual proof of the lemma.

We prove item (a) by induction on k. For k = 2 we show the following

equalities:

#occ(abaabaaba, Fm+2) = #occ(ababaa, Fm+1) = #occ(aaba, Fm) . (1)

As for the first of the equalities (1), the occurrence of F 3
2 within Fm+2 cannot

be followed by the letter a (since this would imply a larger run, contradicting

Lemma 1) and cannot be a suffix of Fm+2 (since either F4 or F5 is a suffix of

Fm+2). Thus,

#occ(abaabaaba, Fm+2) = #occ(abaabaabab, Fm+2) = #occ(ababaa, Fm+1) .
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The latter of the above equalities holds due to Claim 4, which applies here since

no occurrence of abaabaabab in Fm+2 can be followed by the letter b (bb is not

a factor of any Fibonacci string).

To prove the second equality (1), we apply a very similar approach: ababaa

is not a suffix of Fm+1 and its occurrence cannot be followed by the letter a,

since no Fibonacci string contains the factor aaa. Hence, by Claim 4,

#occ(ababaa, Fm+1) = #occ(ababaab, Fm+1) = #occ(aaba, Fm) .

Finally, the inductive step for k ≥ 3 also follows from Claim 4. Indeed, F 3
k

starts with the letter a and any of its occurrences in Fm+k is followed by the

letter a, since, by Lemma 1, it is a part of a larger run F 3
k · gk−1. Thus,

#occ(F 3
k , Fm+k) = #occ(F 3

k−1, Fm+k−1) .

The proof of item (b) goes by induction on m. For m ≤ 3 one can easily

check that #occ(aaba, Fm) = 0, and there is exactly one occurrence of aaba

in F4. The inductive step is a conclusion of the fact that for m ≥ 5 the word

Fm contains all occurrences of aaba from Fm−1 and Fm−2 and one additional

occurrence overlapping their concatenation:

. . . ab a | aba
︸ ︷︷ ︸

ab . . .

The case of 2 ∤ m.

. . . ab aab | a
︸ ︷︷ ︸

ba . . .

The case of 2 | m.

This concludes the proof of the lemma. �

Lemma 5. For n > 5, the word Fn contains (see Fig. 1):

• Φn−5 − 1 cubic runs F 3
2 · g1

• Φn−6 − 1 cubic runs F 3
3 · g2

• . . .

• Φ1 − 1 cubic runs F 3
n−4 · gn−5.
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Words F0, F1, . . . , F5 do not contain any cubic runs.

Proof. It is easy to check that words Fn for n ≤ 5 do not contain any cubic

runs. Let n > 5 and k ∈ {2, 3, . . . , n − 4}. Denote m = n − k. Combining the

formulas from Lemmas 2 and 3, we obtain that:

#occ(F 3
k · gk−1, Fn) = #occ(F 3

k · gk−1, Fm+k) = #occ(F 3
k , Fm+k) =

= #occ(aaba, Fm) = Φm−3 − 1 =

= Φn−k−3 − 1 .

�

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

Figure 1: The structure of cubic runs in the Fibonacci word F9. The cubic runs are distributed
as follows: 1 run F 3

5
· g4, 2 runs F 3

4
· g3, 4 runs F 3

3
· g2, and 7 runs F 3

2
.

We are now ready to describe the behaviour of the function cubic-runs(Fn). The

following theorem not only provides an exact formula for it, but also shows a re-

lationship between the number of cubic runs and the number of distinct cubes in

Fibonacci words. This relationship is even more elegant than the corresponding

relationship between the number of (ordinary) runs and the number of (distinct)

squares in Fibonacci words, which always differ exactly by 1, see [15, 18].

Theorem 6.

a) cubic-runs(Fn) = Φn−3 − n+ 2.
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b) limn→∞
cubic-runs(Fn)

|Fn| = 1
φ3 ≈ 0.2361, where φ = 1+

√
5

2 is the golden ratio.

c) The total number of cubic runs in Fn equals the number of distinct cubes in

Fn.

Proof. a) From Lemma 5 we obtain:

cubic-runs(Fn) =
n−5∑

i=1

(Φi − 1) = Φn−3 − 3 − (n− 5) = Φn−3 − n+ 2 .

b) It is a straightforward application of the formula from (a):

lim
n→∞

cubic-runs(Fn)

|Fn|
= lim

n→∞
Φn−3 − n+ 2

Φn

=
1

φ3
.

c) It suffices to note that the number of distinct cubes of length 3Φk+1in F
3
k+1·gk

is |gk|+1 = Φk−1, and thus the total number of distinct cubes in Fn equals:

n−5∑

k=1

(Φk − 1) = Φn−3 − n+ 2 = cubic-runs(Fn).

�

4. Upper Bound of 0.5 n

Assume that Σ is totally ordered by ≤, what induces a lexicographical order on

Σ∗, also denoted by ≤. We say that λ ∈ Σ∗ is a Lyndon word if it is primitive

and minimal or maximal in the class of words that are cyclically equivalent to

it. It is known (see [14]) that a Lyndon word has no non-trivial prefix that is

also its suffix.

Let u ∈ Σn. Let us denote by I = {p1, p2, . . . , pn−1} the set of inter-positions

in u that are located between pairs of consecutive letters of u.

Definition 7. We say that F : R(u) → subsets(I) is a handle function for the

runs in word u if the following conditions hold:

F (v1) ∩ F (v2) = ∅ for any v1 6= v2. (2)

|F (v)| ≥ 2 for any v ∈ CR(u). (3)

We say that F (v) is the set of handles of the run v.
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Clearly, if a word u ∈ Σn admits a handle function then cubic-runs(u) ≤ n−1
2 .

We define a function H : R(u) → subsets(I) as follows. Let v be a run with

period q and let w be the prefix of v of length q. Let wmin and wmax be the

minimal and maximal words (in lexicographical order) cyclically equivalent to

w. H(v) is defined as follows:

a) if wmin 6= wmax then H(v) contains all inter-positions in the middle of any

occurrence of w2
min in v, and in the middle of any occurrence of w2

max in v,

b) if wmin = wmax then H(v) contains all inter-positions within v.

Example. Let us consider a word (aabab)3aab4, see Fig. 2. It contains two

cubic runs: v1 = (aabab)3aab and v2 = b4. For v1 we have per(v1) = 5, w1 =

v1[1 . . 5] = aabab = wmin 1 and wmax 1 = babaa. For v2 we have per(v2) = 1,

w2 = v2[1] = b = wmin 2 = wmax 2.

b a b a a b a b a a b a b a a

1 1

2

aa b b b b

v

1 1

w

w

min1

max1

v1

2

Figure 2: An example of a word with two cubic runs v1 and v2. For v1 we have wmin 1 6= wmax 1

and for v2 the corresponding words are equal to b (a single-letter word). The inter-positions
belonging to the sets H(v1) and H(v2) are pointed by arrows.

Lemma 8. For any word u ∈ Σ∗, H is a handle function.

Proof. Let us start by showing two simple properties of wmin and wmax.

(P1) wmin and wmax are Lyndon words.

(P2) If wmin = wmax (case (b) of the definition of H(v)), then |wmin| = 1 and

consequently each pi ∈ H(v) is located in the middle of w2
min.
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As for the property (P1), by the definition of wmin and wmax we know that

these words are lexicographically minimal and maximal respectively, hence it

suffices to show that both words are primitive. This follows from the fact that,

due to the minimality of q, w is primitive and that wmin and wmax are cyclically

equivalent to w.

We show property (P2) by contradiction. Assume that |wmin| ≥ 2. By

property (P1), wmin = wmax is a Lyndon word. Therefore it contains at least

two distinct letters, let us say: a = wmin[1] and b = wmin[i] 6= a. If b < a (b > a)

then the cyclic rotation of wmin = wmax by i − 1 letters is lexicographically

smaller than wmin (greater than wmax) and wmin 6= wmax — a contradiction.

Hence, the above assumption is false and |wmin| = 1.

Using properties (P1) and (P2), in the following two claims we show that H

satisfies conditions (2) and (3).

Claim 9. H(v1) ∩H(v2) = ∅ for any two different runs v1 and v2 in u.

Proof. Assume, to the contrary, that pi ∈ H(v1) ∩ H(v2) is a handle of two

different runs v1 and v2. By the definition of H and properties (P1) and (P2),

pi is located in the middle of two squares of Lyndon words: w2
1 and w2

2, where

|w1| = per(v1) and |w2| = per(v2). Note that w1 6= w2, since otherwise runs v1

and v2 would be the same. Without the loss of generality, we can assume that

|w1| < |w2|. Thus the word w1 is both a prefix and a suffix of w2 (see Fig. 3),

what contradicts the fact that w2 is a Lyndon word. �

ip

w2 w2

w1 w1

Figure 3: A situation where pi is in the middle of two different squares w2

1
and w2

2
.

Claim 10. For any v ∈ CR(u), we have |H(v)| ≥ 2.
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Proof. Let v be a cubic run. Recall that 3q ≤ |v|, where q = per(v).

If wmax = wmin, then, by property (P2), |wmin| = 1 and |H(v)| = |v|−1 ≥ 2.

If wmax 6= wmin, then it suffices to note that the first occurrences of each of

the words wmin and wmax within v start no further than q positions from the

beginning of v. Of course, they start at different positions. Hence, w2
min and

w2
max are both factors of v and contribute different handles to H(v). �

wmin wmin

wmax wmax

wmin

v

.......

v

Case (a)

Case (b)

Figure 4: Illustration of the definition of H and Claim 10. The arrows in the figure point to

the elements of H(v) for cubic runs.

Thus we have showed that H satisfies both conditions of a handle function,

what concludes the proof of the lemma. �

Theorem 11 (Weak Bounds for cubic-runs).

1. cubic-runs(n) < 0.5n.

2. For infinitely many n we have: 0.4n ≤ cubic-runs(n).

Proof. The upper bound is a corollary of Lemma 8.

As for the lower bound, define:

u = 0313, v = 1323, w = 2303, xk = ( u2 03 v2 13 w2 23 )k .

12



Observe that for any k ≥ 1, the word xk contains at least 18k − 1 cubic runs.

Indeed, we have 15k cubic runs with period 1, of the form 03, 13 or 23. Moreover,

there are 3k− 1 cubic runs with period 6: 2k cubic runs of the form
(
0313

)3
or

(
1323

)3
, fully contained within each occurrence of x1 in xk = (x1)

k, and k − 1

cubic runs of the form
(
2303

)3
, overlapping the concatenations of consecutive

x1’s.

Note that for k ≥ 3, the whole word xk forms an additional cubic run.

Hence, in this case the word xk has length 45k and contains at least 18k cubic

runs. Thus:

cubic-runs(xk) ≥ 0.4 |xk| = 0.4n for k ≥ 3.

�

The lower bound can be improved in two ways: restricting strings to be over

binary alphabet and improving 0.4 to 0.41. The coefficient in the upper bound

will be also slightly improved, for the case of binary alphabet (decreased by 1
50 ).

However even such small improvements require quite technical proofs.

5. Improving the Lower Bound

In this section we show an example sequence of binary words which gives the

bound of 0.41n. For this, we use the following morphism, which was found

experimentally using a genetic algorithm:

ψ(a) = 001110, ψ(b) = 0001110 .

Recall that Fn is the n-th Fibonacci word.

Theorem 12 (Improving Lower Bound). There are infinitely many binary

strings ψ(Fn) such that
rn
ℓn

> 0.41 ,

where rn = cubic-runs(ψ(Fn)), ℓn = |ψ(Fn)|.
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n rn ℓn rn/ℓn wn

0 1 6 0.16667 02130

1 3 13 0.23077 021304130

2 5 19 0.26316 0213041303130

3 10 32 0.31250 021304130313031304130

4 17 51 0.33333 021304130313031304130313041303130

5 30 83 0.36145 . . .

6 49 134 0.36567

7 83 217 0.38249

Table 3: Characteristics of a first few elements of the sequence (wn).

Proof. Denote wn = ψ(Fn), see Table 3. We will show, that for sufficiently

large n we have rn

ℓn

> 0.41. Note that

ℓn = ℓn−1 + ℓn−2 . (4)

Additionally, we have:

wn = ψ(Fn) = ψ(Fn−1Fn−2) = ψ(Fn−1)ψ(Fn−2) = wn−1wn−2 .

Let us start the analysis of cubic runs in wn with the following corner case.

Claim 13. Each word wn contains exactly 2Φn − 1 cubic runs with period 1.

Proof. Each letter of Fn contributes two cubic runs with period 1 to wn =

ψ(Fn), except the first letter, which contributes just one such run. Each ψ(b)

contributes runs: 03 and 13. ψ(a) contributes one or two such runs, depending

on whether the considered occurrence of a is the first letter of Fn, or not. If

not, then it is either preceded by a or b. In both cases it contributes two cubic

runs (conf. ψ(aa) and ψ(ba)). Finally, recall that each Fn starts with the letter

a. �
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Now, let us define recursively a sequence:

tn = rn for n ≤ 5

tn = tn−1 + tn−2 + n− 4 for 2 | n and n ≥ 6

tn = tn−1 + tn−2 + n− 3 for 2 ∤ n and n ≥ 7 .

(5)

Claim 14. rn ≥ tn.

Proof. For each word wn we will identify tn cubic runs appearing in it. First,

we will show that the runs identified in wn−1 and wn−2 do not merge in wn =

wn−1wn−2. Hence, we obtain the recursive part (tn−1 + tn−2) of the equations

defining tn. Then, we will identify a number of new cubic runs overlapping the

concatenation wn = wn−1 · wn−2. We start the analysis by considering several

small and corner cases.

Let us first consider cubic runs with period 1. It is straightforward to check

that they are the only cubic runs in w0, w1 and w2. Thus, using Claim 13, we

obtain the values of tn = rn for n ≤ 2. Additionally, by Claim 13, for n ≥ 3

the cubic runs with period 1 from wn−1 and wn−2 do not merge and for each n

we obtain one new cubic run overlapping the concatenation wn−1 · wn−2 (due

to the first letter, a, of Fn−2).

For w3 = ψ(abaab) we obtain one additional cubic run ψ(baa)00 = (0313)303

overlapping the concatenation w2 ·w1. Note, that it is not extendable, either to

the left or to the right, therefore it does not merge with any other runs in any

wn. Thus t3 = r3 = t2 + t1 + 2 = 10.

In w4 = ψ(abaababa) we obtain one additional cubic run with period 13

overlapping the concatenation, that is: 0ψ(aababa) = (031303130)3. It cannot

be extended to the left, but we have to show that when w4 is used to build

longer words wn, the considered cubic run does not merge with any other cubic

run. Let us note that in such a case it is always followed by w3 which starts with

ψ(a). Hence, this cubic run can extend to the right, but only for 2 characters

00, and does not merge with any other cubic runs. In conclusion, t4 = r4 = 17.

Now, let us consider words wn for n ≥ 5. We have shown that cubic runs

contributed by w0, . . . , w4 used to build wn do not merge and can be counted
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separately.

A new type of cubic runs that appears in wn for n ≥ 5 are runs present in

the words Fn — each cubic run v in Fn corresponds to a cubic run ψ(v) in wn.

Due to Theorem 6, we obtain

cubic-runs(Fn) − cubic-runs(Fn−1) − cubic-runs(Fn−2) =

= Φn−3 − n+ 2 − (Φn−4 − n+ 3) − (Φn−5 − n+ 4) = n− 5

such cubic runs overlapping the concatenation of Fn−1 and Fn−2, and conse-

quently new cubic runs overlapping the concatenation of wn−1 and wn−2. Ob-

viously, these runs do not merge with the ones that were considered previously.

Moreover, they do not merge with each other. Indeed, if v is a run in Fn that

ends before the last letter of Fn then the corresponding occurrence of ψ(v) in

wn extends to the right exactly by the longest common prefix of ψ(a) and ψ(b),

that is by two letters 00 only.

We group all the remaining cases into even and odd values of n. For odd n we

have n−2 new cubic runs: n−5 from Fn, one with period 1, and two additional

cubic runs: the first one is ψ(baa)00 which we have already considered in the

case of w3 (it is not extendable to either side) and the second one is a cubic run

with period 19: ψ(babaabaab) = (031303130413)30, not extendable to the left,

but possibly extendable to the right:

. . . abaa baba | abaab
︸ ︷︷ ︸

. . .

For the latter cubic run we need to be more careful: in the special case of w5 it

is a suffix of the whole word, but for wn and n ≥ 7 it forms the same cubic run

as the following run from Fn:

. . . aab aba | abaaba
︸ ︷︷ ︸

ba . . .

Thus, t5 = r5 = 30, and tn = tn−1 + tn−2 + n− 3 for n ≥ 7, as declared in (5).

For even n we have n − 3 new cubic runs: n − 5 from Fn, one with period

1 and one, already mentioned for w4, 0ψ(aababa) with period 13. However, in
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this case we also need to consider the troublesome run ψ(babaabaab) from the

special case of w5 separately, since w5 is a suffix of wn−1 (as F5 is a suffix of

Fn−1). Indeed, this cubic run is merged with the following cubic run from Fn:

. . . ab abaabaab | a
︸ ︷︷ ︸

ba . . .

Thus, tn = tn−1 + tn−2 + n− 4, what concludes the proof of Claim 14. �

Completing the proof of Theorem 12. We prove by induction, that for

n ≥ 20, rn ≥ 0.41 · ℓn. The following inequalities:

r20
ℓ20

≥
46 348

113 031
> 0.41 ,

r21
ℓ21

≥
75 005

182 888
> 0.41 ,

are consequences (obtained by heavily using a calculator) of the formulas (4),

(5) and Claim 14. The inductive step (for n ≥ 22) follows from:

rn − 0.41 · ℓn ≥ tn − 0.41 · ℓn ≥ tn−1 + tn−2 − 0.41(ℓn−1 + ℓn−2) > 0 .

This concludes the inductive proof and also the proof of the whole theorem. �

Remark. A naive approach to obtain arbitrarily long binary words with large

number of cubic runs would be to concatenate many copies of the same word

ψ(F20). However, it would not work, since some boundary runs can be glued

together. Hence, a more advanced machinery was needed to prove Theorem 12.

6. Improving the Upper Bound in the Case of Binary Alphabet

Let u ∈ {0, 1}n. Recall that I = {p1, p2, . . . , pn−1} is the set of all inter-positions

of u. These are all candidates for handles of cubic runs from CR(u).

Recall also the definition of the handle function H. We have observed that

the maximal number of cubic runs would be obtained when there are n−1
2 cubic

runs, and H assigns to each of them exactly two handles.
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Some cubic runs can have more than two handles and some inter-positions

can be not a handle of any cubic runs. Such inter-positions are called here

free inter-positions. The key to the improvement of the upper bound is the

localizations of free inter-positions and cubic runs with more than two handles.

Denote:

Y = { 0, 01, 0001, 0111, 000111, 1, 10, 1000, 1110, 111000 } .

By an internal factor of a word w we mean any factor of w having an occurrence

which is neither a prefix nor a suffix of w. An internal factor can also have an

occurrence at the beginning or at the end of w. For example, ab is an internal

factor of ababa, but not of abab.

Let X be the set of binary words w which satisfy at least one of the proper-

ties:

(1) w has an internal factor which is a non-cubic run containing a square of a

word from Y .

(2) w has a factor which is a cube of a word in Y \ {0, 1}.

(3) w has a factor 0000 or 1111.

The words x ∈ X have several useful properties. For example, if x =

110001000101 then the center of the square 00010001 is a free inter-position

in x, since it could only be a handle of a cubic run with period 4, but the run

with period 4 containing this square is not cubic. The word 1000100010 is a

non-cubic run which is an internal factor of x.

On the other hand, if x contains a factor 000100010001 then it implies a

cubic run with 3 handles — the centers of the squares 00010001 and 10001000

(0001 is the minimal rotation and 1000 is the maximal rotation of the period of

the run).

The words in X can be checked to satisfy the following simple fact.

Observation 15. Let u ∈ {0, 1}n.
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(a) If a factor u[i . . j] contains any factor satisfying point (1) of the definition of

X then there is at least one free inter-position in u amongst pi, pi+1, . . . , pj−1.

(b) If a factor u[i . . j] contains any factor satisfying point (2) or (3) then there

are at least 3 inter-positions in u amongst pi, pi+1, . . . , pj−1 which are han-

dles of the same cubic run.

This implies directly the following fact.

Theorem 16 (Improving Upper Bound).

cubic-runs2(n) ≤ 0.48 n .

Proof. Each binary word of length 25 contains a factor from X. It has been

shown experimentally by checking all binary words of size 25.

Let u ∈ {0, 1}n. Let us partition the word u into factors of length 25:

u[1 . . 25], u[26 . . 50], . . . (possibly discarding at most 24 last letters of u). By

Observation 15, it is possible to remove one inter-position from every one of

these factors so that each cubic run in u has at least two handles in the set of

remaining inter-positions.

The total number of inter-positions in u is n− 1 and we have shown that at

least
⌊

n−1
25

⌋
of them can be removed and each cubic run will have at least two

handles among remaining inter-positions. Hence:

cubic-runs(u) ≤
1

2
·

(

n− 1 −

⌊
n− 1

25

⌋)

=

=
1

2
·

(
24 · (n− 1)

25
+
n− 1

25
−

⌊
n− 1

25

⌋)

≤

≤
1

2
·

(
24 · (n− 1)

25
+

24

25

)

= 0.48n .

This completes the proof. �
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