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A run is an inclusion maximal occurrence in a string (as a subinterval) of a factor in which the period repeats at least twice. The maximal number of runs in a string of length n has been thoroughly studied, and is known to be between 0.944 n and 1.029 n. The proofs are very technical. In this paper we investigate cubic runs, in which the period repeats at least three times. We show the upper bound on their maximal number, cubic-runs(n), in a string of length n: cubic-runs(n) < 0.5 n. The proof of linearity of cubic-runs(n) utilizes only simple properties of Lyndon words and is considerably simpler than the corresponding proof for general runs. For binary strings, we provide a better upper bound cubic-runs 2 (n) < 0.48 n which requires computer-assisted verification of a large number of cases. We also construct an infinite sequence of words over binary alphabet for which the lower bound is 0.41 n.

Introduction

Repetitions and periodicities in strings are one of the fundamental topics in combinatorics on words [START_REF] Berstel | Combinatorics on words: a tutorial[END_REF][START_REF] Lothaire | Combinatorics on Words[END_REF]. They are also important in other areas: lossless compression, word representation, computational biology etc. Repetitions are studied from different points of view: classification of words not containing repetitions of a given exponent, efficient identification of factors being repetitions of different types and, finally, computing the bounds on the number of repetitions of a given exponent that a string may contain, which we consider in this paper.

Both the known results in the topic and a deeper description of the motivation can be found in a survey by Crochemore et al. [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF].

The concept of runs (also called maximal repetitions) has been introduced to represent all repetitions in a string in a succinct manner. The crucial property of runs is that their maximal number in a string of length n (denoted as Kolpakov & Kucherov [11]. This fact is the cornerstone of any algorithm computing all repetitions in strings of length n in O(n) time. Due to the work of many people, much better bounds on runs(n) have been obtained.

runs(n)) is O(n), see
The lower bound 0.927 n was first proved by Franek & Yang [START_REF] Franek | An asymptotic lower bound for the maximal number of runs in a string[END_REF]. Afterwards, it was improved by Kusano et al. [START_REF] Kusano | New lower bounds for the maximum number of runs in a string[END_REF] to 0.944565 n employing computer experiments, and recently by Simpson [START_REF] Simpson | Modified Padovan words and the maximum number of runs in a word[END_REF] to 0.944575712 n. On the other hand, the first explicit upper bound 5 n was settled by Rytter [START_REF] Rytter | The number of runs in a string: Improved analysis of the linear upper bound[END_REF], afterwards it was systematically improved to 3.48 n by Puglisi et al. [START_REF] Puglisi | How many runs can a string contain?[END_REF], 3.44 n by Rytter [START_REF] Rytter | The number of runs in a string[END_REF],

1.6 n by Crochemore & Ilie [START_REF] Crochemore | Analysis of maximal repetitions in strings[END_REF][START_REF] Crochemore | Maximal repetitions in strings[END_REF] and 1.52 n by Giraud [START_REF] Giraud | Not so many runs in strings[END_REF]. The best known result runs(n) ≤ 1.029 n is due to Crochemore et al. [START_REF] Crochemore | Towards a solution to the "runs" conjecture[END_REF], but it is conjectured [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF] that runs(n) < n. The maximal number of runs was also studied for special types of strings and tight bounds were established for Fibonacci strings [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF][START_REF] Rytter | The structure of subword graphs and suffix trees in Fibonacci words[END_REF] and more generally Sturmian strings [START_REF] Baturo | The number of runs in Sturmian words[END_REF].

The combinatorial analysis of runs is strongly related to the problem of estimation of the maximal number of squares in a string. In the latter problem the gap between the upper and lower bound is much larger than for runs [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF][START_REF] Crochemore | Squares, cubes, and time-space efficient string searching[END_REF].

However, a recent paper [START_REF] Kubica | On the maximal number of cubic subwords in a string[END_REF] by some of the authors shows that introduction of integer exponents larger than 2 may lead to obtaining tighter bounds for the number of corresponding repetitions.

In this paper we introduce and study the concept of cubic runs in which the period is at least three times shorter than the run itself. We show the following bounds on their maximal number, cubic-runs(n), in a string of length n:

0.41 n < cubic-runs(n) < 0.5 n .
The upper bound is achieved by analysis of Lyndon words (i.e. words that are primitive and minimal/maximal in the class of their cyclic equivalents) that appear as periods of cubic runs (Section 4). In Section 6 we improve this bound for binary words to 0.48 n by examining short factors of the string.

As for the lower bound, we describe an infinite family of binary words that contain more than 0.41 n cubic runs (Section 5). The proof of this property utilizes results obtained by analyzing the structure of cubic runs in Fibonacci strings, described in Section 3.

Preliminaries

We consider words (strings) u over a finite alphabet Σ, u ∈ Σ * ; the empty word is denoted by ε; the positions in u are numbered from 1 to |u|. By Σ n we denote the set of all words of length n from Σ * . By u R we denote the reversed word u. By Alph(u) we denote the set of all letters of u. For u = u 1 u 2 . . . u n , let us denote by u[i . . j] a factor of u equal to u i . . . u j (in particular u

[i] = u[i . . i]).
Words u[1 . . i] are called prefixes of u, and words u[i . . n] -suffixes of u.

We say that a positive integer q is the (shortest) period of a word u = u 1 . . . u n (notation: q = per(u)) if q is the smallest positive number, such that

u i = u i+q holds for all 1 ≤ i ≤ n -q. If u = w k (k is a non-negative integer), that is u = ww . . . w (k times), then
we say that u is the k th power of the word w. A square is the 2 nd power of some non-empty word. The primitive root of a word u, denoted root(u), is the shortest word w such that w k = u for some positive integer k. We call a word u primitive if root(u) = u, otherwise it is called non-primitive. We say that words A run (also called a maximal repetition) in a string u is an interval [i .

. j] such that:

• the period q of the associated factor u[i . . j] satisfies 2q ≤ ji + 1,

• the interval cannot be extended to the left nor to the right, without violating the above property, that is, u[i -1] = u[i + q -1] and u[jq + 1] = u[j + 1], provided that the respective letters exist.

By R(u) we denote the set of runs in u.

A cubic run is a run [i . . j] for which the shortest period q satisfies 3q ≤ ji + 1. By CR(u) we denote the set of cubic runs in u, additionally denote cubic-runs(u) = |CR(u)|. For positive integer n, by cubic-runs(n) we denote the maximum of cubic-runs(u) for all u ∈ Σ * of length n, and by cubic-runs 2 (n) we denote the maximum over all such binary strings.

For simplicity, in the rest of the text we sometimes refer to runs or cubic runs as to occurrences of corresponding factors of u.

Example. All cubic runs for an example Fibonacci word are shown in Figure 1. 

n cubic-runs 2 (n) u 3 

Fibonacci Strings

Let us start by analyzing the behavior of function cubic-runs for a very common benchmark in text algorithms, i.e. the Fibonacci strings, defined recursively as:

F 0 = a, F 1 = ab, F n = F n-1 F n-2 for n ≥ 2 .
Denote by Φ n = |F n |, the n th Fibonacci number (we assume that for n < 0, Φ n = 1) and by g n the word F n with the last two letters removed.

Lemma 1. [START_REF] Mignosi | Repetitions in the Fibonacci infinite word[END_REF][START_REF] Rytter | The structure of subword graphs and suffix trees in Fibonacci words[END_REF] Each run in F n is of the form

F k • F k • g k-1 (short runs) or F k • F k • F k • g k-1 (long runs), each of the runs of period Φ k .
Obviously, in Lemma 1 only runs of the form F 3 k • g k-1 are cubic runs.

Denote by #occ(u, v) the number of occurrences (as a factor) of a word u in a word v.

Lemma 2. For every k, n ≥ 0, #occ(F 3 k • g k-1 , F n ) = #occ(F 3 k , F n ) .
Proof. Each occurrence of F 3 k within F n must be followed by g k-1 , since otherwise it would form a run different from those specified in Lemma 1.

Lemma 3. For every k ≥ 2 and m ≥ 0, a) #occ(F 3 k , F m+k ) = #occ(aaba, F m ), b) #occ(aaba, F m ) = Φ m-3 -1.
Proof. Recall the Fibonacci morphism ϕ:

ϕ(a) = ab, ϕ(b) = a .
Recall that F n = ϕ n (a). The following claim provides a useful tool for the proof of items (a) and (b).

Claim 4. Assume F n = uvw, where u, v, w ∈ {a, b} * , v[1] = a and either w[1] = a or w = ε. Then there exist unique words u ′ , v ′ , w ′ such that u = ϕ(u ′ ), v = ϕ(v ′ ), w = ϕ(w ′ ), F n-1 = u ′ v ′ w ′ . And conversely, if v ′ is a factor of some F n-1 and v = ϕ(v ′ ) then v is a factor of F n .
Proof. It is a straightforward consequence of the definition of ϕ and the fact that F n = ϕ(F n-1 ).

Now we proceed to the actual proof of the lemma.

We prove item (a) by induction on k. For k = 2 we show the following equalities:

#occ(abaabaaba, F m+2 ) = #occ(ababaa, F m+1 ) = #occ(aaba, F m ) . (1)
As for the first of the equalities (1), the occurrence of F 3 2 within F m+2 cannot be followed by the letter a (since this would imply a larger run, contradicting Lemma 1) and cannot be a suffix of F m+2 (since either F 4 or F 5 is a suffix of

F m+2 ). Thus, #occ(abaabaaba, F m+2 ) = #occ(abaabaabab, F m+2 ) = #occ(ababaa, F m+1 ) .
The latter of the above equalities holds due to Claim 4, which applies here since no occurrence of abaabaabab in F m+2 can be followed by the letter b (bb is not a factor of any Fibonacci string).

To prove the second equality (1), we apply a very similar approach: ababaa is not a suffix of F m+1 and its occurrence cannot be followed by the letter a, since no Fibonacci string contains the factor aaa. Hence, by Claim 4,

#occ(ababaa, F m+1 ) = #occ(ababaab, F m+1 ) = #occ(aaba, F m ) .
Finally, the inductive step for k ≥ 3 also follows from Claim 4. Indeed, F 3 k starts with the letter a and any of its occurrences in F m+k is followed by the letter a, since, by Lemma 1, it is a part of a larger run This concludes the proof of the lemma.

F 3 k • g k-1 . Thus, #occ(F 3 k , F m+k ) = #occ(F 3 k-1 , F m+k-1 ) .
Lemma 5. For n > 5, the word F n contains (see Fig. 1):

• Φ n-5 -1 cubic runs F 3 2 • g 1 • Φ n-6 -1 cubic runs F 3 3 • g 2 • . . . • Φ 1 -1 cubic runs F 3 n-4 • g n-5 .
Words F 0 , F 1 , . . . , F 5 do not contain any cubic runs.

Proof. It is easy to check that words F n for n ≤ 5 do not contain any cubic runs. Let n > 5 and k ∈ {2, 3, . . . , n -4}. Denote m = nk. Combining the formulas from Lemmas 2 and 3, we obtain that: We are now ready to describe the behaviour of the function cubic-runs(F n ). The following theorem not only provides an exact formula for it, but also shows a relationship between the number of cubic runs and the number of distinct cubes in Fibonacci words. This relationship is even more elegant than the corresponding relationship between the number of (ordinary) runs and the number of (distinct) squares in Fibonacci words, which always differ exactly by 1, see [START_REF] Mignosi | Repetitions in the Fibonacci infinite word[END_REF][START_REF] Rytter | The structure of subword graphs and suffix trees in Fibonacci words[END_REF].

#occ(F 3 k • g k-1 , F n ) = #occ(F 3 k • g k-1 , F m+k ) = #occ(F 3 k , F m+k ) = = #occ(aaba, F m ) = Φ m-3 -1 = = Φ n-k-3 -1 .
Theorem 6. a) cubic-runs(F n ) = Φ n-3 -n + 2. b) lim n→∞ cubic-runs(Fn) |Fn| = 1 φ 3 ≈ 0.2361, where φ = 1+ √ 5 2
is the golden ratio.

c) The total number of cubic runs in F n equals the number of distinct cubes in

F n .
Proof. a) From Lemma 5 we obtain:

cubic-runs(F n ) = n-5 i=1 (Φ i -1) = Φ n-3 -3 -(n -5) = Φ n-3 -n + 2 .
b) It is a straightforward application of the formula from (a):

lim n→∞ cubic-runs(F n ) |F n | = lim n→∞ Φ n-3 -n + 2 Φ n = 1 φ 3 .
c) It suffices to note that the number of distinct cubes of length 3Φ k+1 in

F 3 k+1 •g k is |g k | + 1 = Φ k -1,
and thus the total number of distinct cubes in F n equals:

n-5 k=1 (Φ k -1) = Φ n-3 -n + 2 = cubic-runs(F n ).

Upper Bound of 0.5 n

Assume that Σ is totally ordered by ≤, what induces a lexicographical order on Σ * , also denoted by ≤. We say that λ ∈ Σ * is a Lyndon word if it is primitive and minimal or maximal in the class of words that are cyclically equivalent to it. It is known (see [START_REF] Lothaire | Combinatorics on Words[END_REF]) that a Lyndon word has no non-trivial prefix that is also its suffix.

Let u ∈ Σ n . Let us denote by I = {p 1 , p 2 , . . . , p n-1 } the set of inter-positions in u that are located between pairs of consecutive letters of u. Definition 7. We say that F : R(u) → subsets(I) is a handle function for the runs in word u if the following conditions hold:

F (v 1 ) ∩ F (v 2 ) = ∅ for any v 1 = v 2 .
(2)

|F (v)| ≥ 2 for any v ∈ CR(u). (3) 
We say that F (v) is the set of handles of the run v.

Clearly, if a word u ∈ Σ n admits a handle function then cubic-runs(u) ≤ n-1 2 .

We define a function H : R(u) → subsets(I) as follows. Let v be a run with period q and let w be the prefix of v of length q. Let w min and w max be the As for the property (P1), by the definition of w min and w max we know that these words are lexicographically minimal and maximal respectively, hence it suffices to show that both words are primitive. This follows from the fact that, due to the minimality of q, w is primitive and that w min and w max are cyclically equivalent to w.

w 2 = v 2 [1] = b = w min 2 = w max 2 .
We show property (P2) by contradiction. Assume that |w min | ≥ 2. By property (P1), w min = w max is a Lyndon word. Therefore it contains at least two distinct letters, let us say: a = w min [START_REF] Baturo | The number of runs in Sturmian words[END_REF] and b = w min

[i] = a. If b < a (b > a)
then the cyclic rotation of w min = w max by i -1 letters is lexicographically smaller than w min (greater than w max ) and w min = w max -a contradiction.

Hence, the above assumption is false and

|w min | = 1.
Using properties (P1) and (P2), in the following two claims we show that H satisfies conditions ( 2) and (3). and v 2 would be the same. Without the loss of generality, we can assume that |w 1 | < |w 2 |. Thus the word w 1 is both a prefix and a suffix of w 2 (see Fig. 3), what contradicts the fact that w 2 is a Lyndon word. Proof. Let v be a cubic run. Recall that 3q ≤ |v|, where q = per(v).

If w max = w min , then, by property (P2),

|w min | = 1 and |H(v)| = |v| -1 ≥ 2.
If w max = w min , then it suffices to note that the first occurrences of each of the words w min and w max within v start no further than q positions from the beginning of v. Of course, they start at different positions. Hence, w 2 min and w 2 max are both factors of v and contribute different handles to H(v). Thus we have showed that H satisfies both conditions of a handle function, what concludes the proof of the lemma.

Theorem 11 (Weak Bounds for cubic-runs).

1. cubic-runs(n) < 0.5 n.

2.

For infinitely many n we have: 0.4 n ≤ cubic-runs(n).

Proof. The upper bound is a corollary of Lemma 8.

As for the lower bound, define:

u = 0 3 1 3 , v = 1 3 2 3 , w = 2 3 0 3 , x k = ( u 2 0 3 v 2 1 3 w 2 2 3 ) k .
Observe that for any k ≥ 1, the word x k contains at least 18k -1 cubic runs.

Indeed, we have 15k cubic runs with period 1, of the form 0 3 , 1 3 or 2 3 . Moreover, there are 3k -1 cubic runs with period 6: 2k cubic runs of the form 0 3 1 3 3 or 1 3 2 3 3 , fully contained within each occurrence of x 1 in x k = (x 1 ) k , and k -1 cubic runs of the form 2 3 0 3 3 , overlapping the concatenations of consecutive

x 1 's.
Note that for k ≥ 3, the whole word x k forms an additional cubic run.

Hence, in this case the word x k has length 45k and contains at least 18k cubic runs. Thus:

cubic-runs(x k ) ≥ 0.4 |x k | = 0.4n for k ≥ 3.
The lower bound can be improved in two ways: restricting strings to be over binary alphabet and improving 0.4 to 0.41. The coefficient in the upper bound will be also slightly improved, for the case of binary alphabet (decreased by 1 50 ). However even such small improvements require quite technical proofs.

Improving the Lower Bound

In this section we show an example sequence of binary words which gives the bound of 0.41 n. For this, we use the following morphism, which was found experimentally using a genetic algorithm:

ψ(a) = 001110, ψ(b) = 0001110 .
Recall that F n is the n-th Fibonacci word.

Theorem 12 (Improving Lower Bound

). There are infinitely many binary Proof. Denote w n = ψ(F n ), see Table 3. We will show, that for sufficiently large n we have rn ℓn > 0.41. Note that

strings ψ(F n ) such that r n ℓ n > 0.41 , where r n = cubic-runs(ψ(F n )), ℓ n = |ψ(F n )|. n r n ℓ n r n /ℓ n w n 0 1 6 0.16667 0 2 1 3 0 1 3 13 0.23077 0 2 1 3 0 4 1 3 0 2 5 19 0.26316 0 2 1 3 0 4 1 3 0 3 1 3 0 3 10 32 0.31250 0 2 1 3 0 4 1 3 0 3 1 3 0 3 1 3 0 4 1 3 0 4 17 51 0.33333 0 2 1 3 0 4 1 3 0 3 1 3 0 3 1 3 0 4 1 3 0 3 1 3 0 4 1 3 0 3 1
ℓ n = ℓ n-1 + ℓ n-2 . (4) 
Additionally, we have:

w n = ψ(F n ) = ψ(F n-1 F n-2 ) = ψ(F n-1 )ψ(F n-2 ) = w n-1 w n-2 .
Let us start the analysis of cubic runs in w n with the following corner case.

Claim 13. Each word w n contains exactly 2Φ n -1 cubic runs with period 1.

Proof. Each letter of F n contributes two cubic runs with period 1 to w n = ψ(F n ), except the first letter, which contributes just one such run. Each ψ(b) contributes runs: 0 3 and 1 3 . ψ(a) contributes one or two such runs, depending on whether the considered occurrence of a is the first letter of F n , or not. If not, then it is either preceded by a or b. In both cases it contributes two cubic runs (conf. ψ(aa) and ψ(ba)). Finally, recall that each F n starts with the letter a.

Now, let us define recursively a sequence:

t n = r n for n ≤ 5 t n = t n-1 + t n-2 + n -4 for 2 | n and n ≥ 6 t n = t n-1 + t n-2 + n -3 for 2 ∤ n and n ≥ 7 . (5) 
Claim 14. r n ≥ t n .

Proof. For each word w n we will identify t n cubic runs appearing in it. First, we will show that the runs identified in w n-1 and w n-2 do not merge in w n = w n-1 w n-2 . Hence, we obtain the recursive part (t n-1 + t n-2 ) of the equations defining t n . Then, we will identify a number of new cubic runs overlapping the concatenation w n = w n-1 • w n-2 . We start the analysis by considering several small and corner cases.

Let us first consider cubic runs with period 1. It is straightforward to check that they are the only cubic runs in w 0 , w 1 and w 2 . Thus, using Claim 13, we obtain the values of t n = r n for n ≤ 2. Additionally, by Claim 13, for n ≥ 3 the cubic runs with period 1 from w n-1 and w n-2 do not merge and for each n we obtain one new cubic run overlapping the concatenation w n-1 • w n-2 (due to the first letter, a, of F n-2 ).

For w 3 = ψ(abaab) we obtain one additional cubic run ψ(baa)00 = (0 3 1 3 ) 3 0 3 overlapping the concatenation w 2 • w 1 . Note, that it is not extendable, either to the left or to the right, therefore it does not merge with any other runs in any

w n . Thus t 3 = r 3 = t 2 + t 1 + 2 = 10.
In w 4 = ψ(abaababa) we obtain one additional cubic run with period 13 overlapping the concatenation, that is: 0ψ(aababa) = (0 3 1 3 0 3 1 3 0) 3 . It cannot be extended to the left, but we have to show that when w 4 is used to build longer words w n , the considered cubic run does not merge with any other cubic run. Let us note that in such a case it is always followed by w 3 which starts with ψ(a). Hence, this cubic run can extend to the right, but only for 2 characters 00, and does not merge with any other cubic runs. In conclusion, t 4 = r 4 = 17.

Now, let us consider words w n for n ≥ 5. We have shown that cubic runs contributed by w 0 , . . . , w 4 used to build w n do not merge and can be counted separately.

A new type of cubic runs that appears in w n for n ≥ 5 are runs present in the words F n -each cubic run v in F n corresponds to a cubic run ψ(v) in w n .

Due to Theorem 6, we obtain

cubic-runs(F n ) -cubic-runs(F n-1 ) -cubic-runs(F n-2 ) = = Φ n-3 -n + 2 -(Φ n-4 -n + 3) -(Φ n-5 -n + 4) = n -5
such cubic runs overlapping the concatenation of F n-1 and F n-2 , and consequently new cubic runs overlapping the concatenation of w n-1 and w n-2 . Obviously, these runs do not merge with the ones that were considered previously.

Moreover, they do not merge with each other. Indeed, if v is a run in F n that ends before the last letter of F n then the corresponding occurrence of ψ(v) in w n extends to the right exactly by the longest common prefix of ψ(a) and ψ(b), that is by two letters 00 only.

We group all the remaining cases into even and odd values of n. For odd n we have n -2 new cubic runs: n -5 from F n , one with period 1, and two additional cubic runs: the first one is ψ(baa)00 which we have already considered in the case of w 3 (it is not extendable to either side) and the second one is a cubic run with period 19: ψ(babaabaab) = (0 3 1 3 0 3 1 3 0 4 1 3 ) 3 0, not extendable to the left, but possibly extendable to the right:

. . . abaa baba | abaab . . .

For the latter cubic run we need to be more careful: in the special case of w 5 it is a suffix of the whole word, but for w n and n ≥ 7 it forms the same cubic run as the following run from F n :

. . . aab aba | abaaba ba . . . Thus, t 5 = r 5 = 30, and t n = t n-1 + t n-2 + n -3 for n ≥ 7, as declared in [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF].

For even n we have n -3 new cubic runs: n -5 from F n , one with period 1 and one, already mentioned for w 4 , 0ψ(aababa) with period 13. However, in this case we also need to consider the troublesome run ψ(babaabaab) from the special case of w 5 separately, since w 5 is a suffix of w n-1 (as F 5 is a suffix of F n-1 ). Indeed, this cubic run is merged with the following cubic run from F n :

. . . ab abaabaab | a ba . . . 

Thus, t n = t n-1 + t n-2 + n -4,
r n -0.41 • ℓ n ≥ t n -0.41 • ℓ n ≥ t n-1 + t n-2 -0.41(ℓ n-1 + ℓ n-2 ) > 0 .
This concludes the inductive proof and also the proof of the whole theorem.

Remark. A naive approach to obtain arbitrarily long binary words with large number of cubic runs would be to concatenate many copies of the same word ψ(F 20 ). However, it would not work, since some boundary runs can be glued together. Hence, a more advanced machinery was needed to prove Theorem 12.

Improving the Upper Bound in the Case of Binary Alphabet

Let u ∈ {0, 1} n . Recall that I = {p 1 , p 2 , . . . , p n-1 } is the set of all inter-positions of u. These are all candidates for handles of cubic runs from CR(u).

Recall also the definition of the handle function H. We have observed that the maximal number of cubic runs would be obtained when there are n-1 2 cubic runs, and H assigns to each of them exactly two handles. Some cubic runs can have more than two handles and some inter-positions can be not a handle of any cubic runs. Such inter-positions are called here free inter-positions. The key to the improvement of the upper bound is the localizations of free inter-positions and cubic runs with more than two handles.

Denote:

Y = { 0, 01, 0001, 0111, 000111, 1, 10, 1000, 1110, 111000 } .

By an internal factor of a word w we mean any factor of w having an occurrence which is neither a prefix nor a suffix of w. An internal factor can also have an occurrence at the beginning or at the end of w. For example, ab is an internal factor of ababa, but not of abab.

Let X be the set of binary words w which satisfy at least one of the properties:

(1) w has an internal factor which is a non-cubic run containing a square of a word from Y .

(2) w has a factor which is a cube of a word in Y \ {0, 1}.

(3) w has a factor 0000 or 1111.

The words x ∈ X have several useful properties. For example, if x = 110001000101 then the center of the square 00010001 is a free inter-position in x, since it could only be a handle of a cubic run with period 4, but the run with period 4 containing this square is not cubic. The word 1000100010 is a non-cubic run which is an internal factor of x.

On the other hand, if x contains a factor 000100010001 then it implies a cubic run with 3 handles -the centers of the squares 00010001 and 10001000 (0001 is the minimal rotation and 1000 is the maximal rotation of the period of the run).

The words in X can be checked to satisfy the following simple fact. This completes the proof.

  The proof of item (b) goes by induction on m. For m ≤ 3 one can easily check that #occ(aaba, F m ) = 0, and there is exactly one occurrence of aaba in F 4 . The inductive step is a conclusion of the fact that for m ≥ 5 the word F m contains all occurrences of aaba from F m-1 and F m-2 and one additional occurrence overlapping their concatenation: . . . ab a | aba ab . . . The case of 2 ∤ m. . . . ab aab | a ba . . . The case of 2 | m.
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 1 Figure 1: The structure of cubic runs in the Fibonacci word F 9 . The cubic runs are distributed as follows: 1 run F 3 5 • g 4 , 2 runs F 3 4 • g 3 , 4 runs F 3 3 • g 2 , and 7 runs F 3 2 .
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 128 Figure 2: An example of a word with two cubic runs v 1 and v 2 . For v 1 we have w min 1 = w max 1 and for v 2 the corresponding words are equal to b (a single-letter word). The inter-positions belonging to the sets H(v 1 ) and H(v 2 ) are pointed by arrows.

Claim 9 .

 9 H(v 1 ) ∩ H(v 2 ) = ∅ for any two different runs v 1 and v 2 in u. Proof. Assume, to the contrary, that p i ∈ H(v 1 ) ∩ H(v 2 ) is a handle of two different runs v 1 and v 2 . By the definition of H and properties (P1) and (P2), p i is located in the middle of two squares of Lyndon words: w 2 1 and w 2 2 , where |w 1 | = per(v 1 ) and |w 2 | = per(v 2 ). Note that w 1 = w 2 , since otherwise runs v 1

Figure 3 : 2 1 and w 2 2 . 10 .

 32210 Figure 3: A situation where p i is in the middle of two different squares w 2 1 and w 2 2 .

Figure 4 :

 4 Figure 4: Illustration of the definition of H and Claim 10. The arrows in the figure point to the elements of H(v) for cubic runs.

Observation 15 .

 15 Let u ∈ {0, 1} n . (a) If a factor u[i . . j] contains any factor satisfying point (1) of the definition of X then there is at least one free inter-position in u amongst p i , p i+1 , . . . , p j-1 . (b) If a factor u[i . . j] contains any factor satisfying point (2) or (3) then there are at least 3 inter-positions in u amongst p i , p i+1 , . . . , p j-1 which are handles of the same cubic run.This implies directly the following fact.Theorem 16 (Improving Upper Bound).

2 • n - 1 -

 21 cubic-runs 2 (n) ≤ 0.48 n . Proof. Each binary word of length 25 contains a factor from X. It has been shown experimentally by checking all binary words of size 25. Let u ∈ {0, 1} n . Let us partition the word u into factors of length 25: u[1 . . 25], u[26 . . 50], . . . (possibly discarding at most 24 last letters of u). By Observation 15, it is possible to remove one inter-position from every one of these factors so that each cubic run in u has at least two handles in the set of remaining inter-positions. The total number of inter-positions in u is n -1 and we have shown that at least n-1 25 of them can be removed and each cubic run will have at least two handles among remaining inter-positions. Hence: cubic-runs(u) ≤ 1

Table 1 :

 1 The maximum number cubic-runs 2 (n) of cubic runs in a binary string of length n for n = 3, . . . , 29. Example binary words for which the maximal number of cubic runs is attained are shown in the following Table2. u and v are cyclically equivalent (or that one of them is a cyclic rotation of the other) if u = xy and v = yx for some x, y ∈ Σ * . It is a simple and well-known observation, that if u and v are cyclically equivalent then |root(u)| = |root(v)|.

Table 2 :

 2 Lexicographically smallest binary words u ∈ {0, 1} n , for which cubic-runs(u) = cubic-runs 2 (n) (see also Table1).

		1	000
	6	2	000111
	9	3	000111000
	12	4	000100010001
	14	5	00010001000111
	17	6	00010001000111000
	18	7	000111000111000111
	21	8	000111000111000111000
	24	9	000111000111000111000111
	26	10	00010001000111000111000111
	29	11	00010001000111000111000111000

Table 3 :

 3 Characteristics of a first few elements of the sequence (wn).

  what concludes the proof of Claim 14.Completing the proof of Theorem 12. We prove by induction, that for n ≥ 20, r n ≥ 0.41 • ℓ n . The following inequalities:

	r 20 ℓ 20	≥	46 348 113 031	> 0.41 ,
	r 21 ℓ 21	≥	75 005 182 888	> 0.41 ,

are consequences (obtained by heavily using a calculator) of the formulas (4), (

5

) and Claim 14. The inductive step (for n ≥ 22) follows from: