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Spectral multipliers for wave operators

Introduction

This article treats spectral multiplier problems. A classical example is Mihlin's theorem [START_REF] Mikhlin | Fourier integrals and multiple singular integrals[END_REF] telling that for a function f : (0, ∞) → C the corresponding Fourier multiplier

L p (R d ) → L p (R d ), g → F -1 [ĝf (| • | 2 )] is bounded for any 1 < p < ∞ provided that (1.1) sup t>0 t k |f (k) (t)| < ∞ (k = 0, 1, . . . , α)
where α > d/2. There are many generalisations of this result in the literature (see [START_REF] Duong | Plancherel-type estimates and sharp spectral multipliers[END_REF] and the many references therein) associating to a function f a spectral multiplier f (A) acting on some Banach space X, mostly X = L p (Ω) for some 1 < p < ∞. In the classical case this becomes A = -∆, X = L p (R d ). Also the above condition (1.1) is refined to a norm f M α with a real parameter α > 0 and associated Banach algebra M α (definition in Section 2). A Banach space valued treatise of this issue can be found in [START_REF] Kriegler | Spectral multipliers, R-bounded homomorphisms, and analytic diffusion semigroups[END_REF][START_REF] Kriegler | Paley-Littlewood Decomposition for sectorial operators and Interpolation Spaces[END_REF].

In this article a refinement of the spectral multiplier problem is regarded. The motivation is that for some cases, a certain wave spectral multiplier admits an estimate which is better than what gives Mihlin's result. Namely, let f α (λ) = (1 + λ) -α e itλ . We write in short t = 1 + |t| and a b for ∃ c : a ≤ cb. Then f α satisfies for any ǫ ∈ (0, α), f α M α-ǫ t α , which gives then estimates of the spectral multiplier f α (A) on L p for α > d 2 and 1 < p < ∞. Surprisingly, in some cases of operators A, a better estimate of f α (A) is available than given by Mihlin's theorem. Namely, in [START_REF]L p estimates for the wave equation[END_REF] for the classical case and in [12, (3.1)] for the case of a sublaplacian operator on a Heisenberg group, it is proved that for the square root A of -∆ resp. of the sublaplacian, (1.2) f α (A) p→p t α with α > d-1 2 and 1 < p < ∞, so the critical value of α is smaller by 1 2 . This observation is the starting point of the present article.

Apart from M α , we introduce two new functional calculus classes E α ∞ and E α unif . The second one admits an embedding from and into M β depending on what are the values of α and β, whereas the first one can be nicely compared to Besov spaces B α ∞,1 , see [START_REF] Kriegler | Functional calculus and dilation for c 0 -groups of polynomial growth[END_REF]Proposition 3.5] where it is studied in detail. By means of a transference principle, we show that a condition (1.2) together with a second similar bound imply that A which acts on some Banach space X has a smoothed E α ∞ calculus in the sense that

(1 + A) -β f (A) ≤ C f E α ∞ for a certain power β.
One of the consequences of a Mihlin type theorem is that A admits a spectral decomposition of Paley-Littlewood type. By this we mean, that if (ϕ n ) n∈Z is a dyadic partition of unity (see Definition 2.1), then the norm on the space X where A acts on admits a partition of the form

(1.3) x 2 ∼ = E n∈Z γ n ⊗ ϕ n (A)x 2 ,
where γ n are independent Gaussian random variables on some probability space. The expression on the right hand side of (1.3) is also used to define the notion of γ-boundedness well-known to specialists (see Section 2). A further result in this article is that if A satisfies a strengthened γ-bounded version of (1.2) together with a Paley-Littlewood decomposition (1.3), then A has an E α unif functional calculus. Furthermore, in Theorem 4.3, we obtain an equivalence of the strengthened γbounded form of (1.2) and a γ-bounded functional calculus. Secondly, we deduce the E α unif calculus.

This theorem applies to the standard case, which is the content of Section 5. There we prove that the hypothesis of Theorem 4.3 is satisfied for A = (-∆) 1 2 . Apart from an application of Theorem 4.3, we deduce a γ-bounded strengthening of the very first cited result, the classical Mihlin theorem.

Preliminaries

In this section, we present the tools used in the subsequent sections. Definition 2.1.

(

) Let φ ∈ C ∞ c such that supp φ ⊂ [-1, 1]. Put φ n = φ(• -n) and assume that n∈Z φ n (t) = 1 for any t ∈ R. We call (φ n ) n an equidistant partition of unity. (2) Let ϕ ∈ C ∞ c such that supp ϕ ⊂ [ 1 2 1 
, 2] and with ϕ n = ϕ(2 -n •) we have n∈Z ϕ n (t) = 1 for any t > 0, then we call (ϕ n ) n a dyadic partition of unity.

(3) Let ψ 0 , ψ 1 ∈ C ∞ c (R) such that supp ψ 1 ⊂ [ 1 2 , 2] and supp ψ 0 ⊂ [-1, 1]. For n ≥ 2, put ψ n = ψ 1 (2 1-n •), so that supp ψ n ⊂ [2 n-2 , 2 n ]. For n ≤ -1, put ψ n = ψ -n (-•).
We assume that n∈Z ψ n (t) = 1 for all t ∈ R. Then we call (ψ n ) n∈Z a dyadic Fourier partition of unity, which we will exclusively use to decompose the Fourier image of a function.

For the existence of such smooth partitions, we refer to the idea in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Lemma 6.1.7]. Whenever (φ n ) n is a partition of unity as above, we put

φ n = 1 k=-1 φ n+k .
It is useful to note that φ m φ n = φ n for m = n and φ m φ n = 0 for |n -m| ≥ 2.

The Besov spaces B α ∞,∞ and B α ∞,1 , are defined for example in [15, p. 45]: Let (ψ n ) n∈Z be a dyadic Fourier partition of unity. Then

B α ∞,∞ = {f ∈ C 0 b : f B α ∞,∞ = sup n∈Z 2 |n|α f * ψn ∞ < ∞} and B α ∞,1 = {f ∈ C 0 b : f B α ∞,1 = n∈Z 2 |n|α f * ψn ∞ < ∞}. Note that B α ∞,1 ֒→ B α ∞,∞ ֒→ B α-ǫ ∞,1 [15, 2.3.2. Proposition 2]
. We define the Mihlin class for some α > 0 to be

M α = {f : R + → C : f e ∈ B α ∞,1 }, equipped with the norm f M α = f e B α ∞,1 .
Here we write

f e : J → C, z → f (e z )
for a function f : I → C such that I ⊂ C\(-∞, 0] and J = {z ∈ C : | Im z| < π, e z ∈ I}. The space M α coincides with the space Λ α ∞,1 (R + ) in [3, p. 73]. We point out the particular function f α (λ) = (1 + λ) -α e itλ .

The function f α belongs to M α-ǫ for any ǫ ∈ (0, α) with f α M α-ǫ ≤ C t α [8, Proposition 4.12]. Let (γ k ) k≥1 be a sequence of independent standard Gaussian variables on some probability space Ω 0 . Then we let Gauss(X) ⊂ L 2 (Ω 0 ; X) be the closure of Span{γ k ⊗x : k ≥ 1, x ∈ X} in L 2 (Ω 0 ; X). For any finite family x 1 , . . . , x n in X, we have

k γ k ⊗ x k Gauss(X) = E k γ k (•)x k 2 X 1 2 = Ω 0 k γ k (λ) x k 2 X dλ 1 2 .
Now let τ ⊂ B(X). We say that τ is γ-bounded if there is a constant C ≥ 0 such that for any finite families T 1 , . . . , T n in τ , and x 1 , . . . , x n in X, we have

k γ k ⊗ T k x k Gauss(X) ≤ C k ǫ k ⊗ x k Gauss(X)
.

In this case, we let γ(τ ) denote the smallest possible C. If X is a Hilbert space then γ(τ ) = sup T ∈τ T and in a general Banach space, γ(τ ) ≥ sup T ∈τ T . Note that Kahane's contraction principle states that τ = {c id X : |c| ≤ 1} ⊂ B(X) is γ-bounded for any Banach space X. Recall that by definition, X has Pisier's property (α) if for any finite family x k,l in X, (k, l) ∈ F, where F ⊂ Z × Z is a finite array, we have a uniform equivalence

(k,l)∈F γ k ⊗ γ l ⊗ x k,l Gauss(Gauss(X)) ∼ = (k,l)∈F γ k,l ⊗ x k,l Gauss(X) .
Examples of spaces with property (α) are subspaces of an L p space with p < ∞.

Let H be a separable Hilbert space. We consider the tensor product H ⊗ X as a subspace of B(H, X) in the usual way, i.e. by identifying n k=1 h k ⊗ x k ∈ H ⊗ X with the mapping u : h → n k=1 h, h k x k for any finite families h 1 , . . . , h n ∈ H and x 1 , . . . , x n ∈ X. Choose such families with corresponding u, where the h k shall be orthonormal. Let γ 1 , . . . , γ n be independent standard Gaussian random variables over some probability space. We equip

H ⊗ X with the norm u γ(H,X) = k γ k ⊗ x k Gauss(X)
.

By [START_REF] Diestel | Absolutely summing operators[END_REF]Corollary 12.17], this expression is independent of the choice of the h k representing u.

We let γ(H, X) be the completion of H ⊗ X in B(H, X) with respect to that norm. Then

for u ∈ γ(H, X), u γ(H,X) = k γ k ⊗ u(e k ) Gauss(X)
, where the e k form an orthonormal basis of H [START_REF] Van Neerven | γ-radonifying operators: a survey[END_REF]Definition 3.7].

Assume that (Ω, µ) is a σ-finite measure space and H = L 2 (Ω). Denote P 2 (Ω, X) the space of Bochner-measurable functions f : Ω → X such that x ′ • f ∈ L 2 (Ω) for all x ′ ∈ X ′ . We identify P 2 (Ω, X) with a subspace of B(L 2 (Ω), X ′′ ) by assigning to f the operator u f defined by

u f h, x ′ = Ω f (t), x ′ h(t)dµ(t).
An application of the uniform boundedness principle shows that, in fact, u f belongs to B(L 2 (Ω), X) [7, Section 4], [6, Section 5.5]. Then we let

γ(Ω, X) = f ∈ P 2 (Ω, X) : u f ∈ γ(L 2 (Ω), X) and set f γ(Ω,X) = u f γ(L 2 (Ω),X) . The space {u f : f ∈ γ(Ω, X)} is a proper subspace of γ(L 2 (Ω), X) in general. It is dense in γ(L 2 (Ω), X) as it contains L 2 (Ω) ⊗ X.
An element in γ(Ω, X) is called square function. For more reading on this subject we refer to [START_REF] Van Neerven | γ-radonifying operators: a survey[END_REF] and for similar objects to [START_REF] Auscher | Singular integral operators on tent spaces[END_REF]. For a proof of the following lemma, we refer to [START_REF] Van Neerven | γ-radonifying operators: a survey[END_REF].

Lemma 2.2.

(

) If K ∈ B(H 1 , H 2 ) 1 
where H 1 and H 2 are Hilbert spaces and u ∈ γ(H 2 , X) then we have u

• K ∈ γ(H 1 , X) and u • K γ(H 1 ,X) ≤ u γ(H 2 ,X) K . (2) For f ∈ γ(R, X) and g ∈ γ(R, X ′ ), we have R | f (t), g(t) |dt ≤ f γ(R,X) g γ(R,X ′ ) . A closed operator A : D(A) ⊂ X → X is called ω-sectorial, if the spectrum σ(A) is contained in Σ ω , R(A) is dense in X and (2.1) for all θ > ω there is a C θ > 0 such that λ(λ -A) -1 ≤ C θ for all λ ∈ Σ θ c .
Note that R(A) = X along with (2.1) implies that A is injective. We are particularly interested in operators that are ω-sectorial for any ω > 0 and call them 0-sectorial operator.

For such operators there is a theory of holomorphic functional calculus [START_REF] Cowling | Banach space operators with a bounded H ∞ functional calculus[END_REF]. Building upon this, the 0-sectorial operator A is said to have a Mihlin calculus, or more precisely a M α calculus if there exists C > 0 such that f (A) ≤ C f M α for any f ∈ M α [8, Definition 4.17]. Any 0-sectorial operator always generates a C 0 -semigroup exp(-tA) which is analytic on the whole right half plane. We have the following link between γ bounds of this semigroup and of f α (2 k A), with the function f α as above. Consider

(2.2) γ exp(-e iθ 2 k tA) : k ∈ Z ( π 2 -|θ|) -α and (2.3) γ (1 + 2 k A) -α e it2 k A : k ∈ Z t α . Then (2.2) =⇒ (2.3) [8, Lemma 4.72].
3. Smoothed E α ∞ calculus Definition 3.1. Let (φ n ) n∈Z be an equidistant partition of unity. We define for an α > 0

E α ∞ = f : R → C : f E α ∞ = n∈Z n α f * φn ∞ < ∞ .
Properties of this space are investigated in detail in [START_REF] Kriegler | Functional calculus and dilation for c 0 -groups of polynomial growth[END_REF].

Definition 3.2. Let (φ n ) n∈Z be an equidistant partition of unity and (ϕ k ) k∈Z a dyadic partition of unity. Then we define for an α > 0

E α unif = f : (0, ∞) → C : f E α unif = n∈Z n α sup k∈Z [f (2 k •)ϕ 0 ] * φn ∞ < ∞ .
The space E α unif satisfies the following elementary properties. Lemma 3.3.

(1) The definition of E α unif is independent of the choice of the dyadic partition

(ϕ k ) k . (2) E α unif is an algebra, more precisely, if f, g ∈ E α unif , then f • g E α unif ≤ C f E α unif g E α unif . Proof.
The first part of the lemma is easy to check and left to the reader. Now let f, g ∈ E α unif . We write in the following in short * l,j for l,j:

|n-(l+j)|≤3 . f (2 k •)g(2 k •)ϕ 0 * φn ∞ = f (2 k •) φ0 g(2 k •)ϕ 0 * φn ∞ * l,j f (2 k •) φ0 * φl ∞ g(2 k •)ϕ 0 * φj ∞ . Thus, calling f k,l = l α f (2 k •) φ0 * φ l ∞ and g k,j = j α g(2 k •)ϕ 0 * φj ∞ , we have n∈Z n α sup k∈Z f (2 k •)g(2 k •)ϕ 0 * φn ∞ n∈Z n α sup k∈Z * l,j l α f (2 k •) φ0 * φl ∞ j α g(2 k •)ϕ 0 * φj ∞ l -α j -α n∈Z n α * l,j l -α j -α sup k∈Z f k,l g k,j l∈Z sup k f k,l j∈Z sup k g k,j ∼ = f E α unif g E α
unif , using the first part of the lemma in the end.

We use the space E α unif as a functional calculus space, as is also the case for M α . We have the following embeddings between the two. Proposition 3.4. For any ǫ > 0, we have M α+1+ǫ ֒→ E α unif ֒→ M α-ǫ . Proof. Start with the second embedding. We have, using the compact support of ϕ 0 in the first line, and [9, Proposition 3.5 [START_REF] Auscher | Singular integral operators on tent spaces[END_REF]] in the second line,

f M α-ǫ sup k∈Z f (2 k •)ϕ 0 M α-ǫ sup k∈Z f (2 k •)ϕ 0 B α ∞,1 sup k∈Z f (2 k •)ϕ 0 E α ∞ = sup k∈Z n∈Z n α f (2 k •)ϕ 0 * φn ∞ ≤ n∈Z n α sup k∈Z f (2 k •)ϕ 0 * φn ∞ = f E α unif .
For the first embedding, let for n ∈ N, A n = {k ∈ N : 2 n-1 ≤ k ≤ 2 n -1}, A -n = -A n and A 0 = {0}. Thus the A n form a disjoint partition of Z. Let (ψ n ) n∈Z be a dyadic Fourier partition of unity. Then

f E α unif = n∈Z n α sup k∈Z [f (2 k •)ϕ 0 ] * φn ∞ = n∈Z l∈An l α sup k∈Z f (2 k •)ϕ 0 * φl * ψn ˇ ∞ n∈Z 2 |n|α 2 |n| sup k∈Z [f (2 k •)ϕ 0 * ψn ˇ ∞ = n∈Z 2 -|n|ǫ sup k∈Z 2 |n|(α+ǫ+1) [f (2 k •)ϕ 0 ] * ψn ˇ ∞ ≤ n∈Z 2 -|n|ǫ sup k∈Z sup m∈Z 2 |m|(α+1+ǫ) [f (2 k •)ϕ 0 ] * ψm ∞ sup k∈Z f (2 k •)ϕ 0 B α+1+ǫ ∞,∞ f M α+1+ǫ ′ ,
using again the compact support of ϕ 0 in the last line.

The following proposition of transference principle type is the main result of this section. It can be compared to [9, Theorem 4.9]. Proposition 3.5. Let A be a 0-sectorial operator such that

(1 + A) -β 1 e itA ≤ C t α and {(1 + A) -β 2 e itA : t ∈ [0, 1]} is γ-bounded, for some constants β 1 , β 2 ≥ α > 0. Then A has a smoothed E α ∞ functional calculus in the sense that for β = β 1 + 2β 2 , (1 + A) -β f (A) ≤ C f E α ∞ (f ∈ E α ∞ , f has compact support in (0, ∞)). Proof. Assume first that f ∈ C ∞ c (0, ∞).
Then we have by a representation formula [8, Lemma 4.77]

(1 + A) -β f (A)x = 1 2π R f (t)(1 + A) -β e itA xdt = 1 2π R n∈Z f (t)φ n (t)(1 + A) -β e itA xdt. (3.1) Write I : X → γ(R, X), x → 1 [n-2,n+1] (-t)(1 + A) -β 1 -β 2 e -itA x and P : γ(R, X) → X, g → 1 [0,1] (1 + A) -β 2 e itA g(t)
dt. Further, we let M f φn : γ(R, X) → γ(R, X) be the convolution with f φ n . Recall that the Fourier transform is isometric on L 2 (R), so by Lemma 2.2 (1) also on γ(R, X). We thus have by [9, Proof of Proposition 4.6 ( 2

)] that M f φn γ(R,X)→γ(R,X) ∼ = f * φn ∞ . One easily checks that (3.1) = 1 2π n∈Z P M f φn I(x).
Note that

I : X → γ(R, X) γ({(1 + A) -β 1 -β 2 e -itA : t ∈ [n -2, n + 1]}) ≤ C n α ,
and by Lemma 2.2 (2) also

P ≤ γ({1 + A) -β 2 e itA : t ∈ [0, 1]}) < ∞. We conclude (1 + A) -β f (A)x ≤ C n∈Z n α f * φn ∞ x ∼ = f E α ∞ x . The proposition follows since C ∞ c (0, ∞) is dense in {f ∈ E α ∞ : f has compact support in (0, ∞)}. For exam- ple, the reader may check that f * ρ m -f E α ∞ → 0 for any sequence (ρ m ) m ⊂ C ∞ c (R) with supp ρ m ⊂ (-1 m , 1 m ), R ρ m = 1, ρ m ≥ 0. Remark 3.6.
Note that the second hypothesis of Proposition 3.5 is satisfied for any operator having a bounded Mihlin calculus [START_REF] Kriegler | Spectral multipliers, R-bounded homomorphisms, and analytic diffusion semigroups[END_REF]Theorem 4.73]. Then the above proposition applies in two cases. Firstly, if A = (-∆) 1 2 on X = L p (R d ) for some 1 < p < ∞, then the hypotheses are satisfied for any α > d-1

2 [START_REF]L p estimates for the wave equation[END_REF]. Secondly, if A is the square root of a sublaplacian on the Heisenberg group, then the hypotheses are also satisfied for any α > d-1

2 [12, (3.1)]. Note that the critical order d-1

2 is by 1 2 smaller, so better, than the critical order of d 2 in usual spectral multiplier theory.

E α

unif calculus Let A be a 0-sectorial operator. Consider the conditions (4.1)

γ (1 + 2 k A) -β e it2 k A : k ∈ Z ≤ C t α and (4.2) γ (1 + 2 k A) -γ e it2 k A : k ∈ Z, t ∈ [0, 1] < ∞.
Lemma 4.1. Let X have property (α) and A be a 0-sectorial operator satisfying (4.1) and

(4.2). Let G ⊂ E α ∞ such that any f ∈ G has compact support in (0, ∞). Then {(1 + 2 k A) -(β+2γ) f (2 k A) : k ∈ Z, f ∈ G} is γ-bounded provided n∈Z n α sup f ∈G f * φn ∞ < ∞.
Proof. Let à = k∈Z 2 k P k ⊗ A be the operator defined on Gauss(X) where

P k ( j∈Z γ j ⊗ x j ) = γ k ⊗ x k , so that Ã( j∈Z γ j ⊗ x j ) = k∈Z γ k ⊗ 2 k Ax k . Put Sβ (t) = k∈Z P k ⊗ (1 + 2 k A) -β e it2 k A = (1 + Ã) -β e it Ã. Then (4.1) ⇐⇒ Sβ (t) t α and (4.2) ⇐⇒ { Sγ (t) : t ∈ [0, 1]} is γ-bounded in B(Gauss(X))
. Indeed, let y n ∈ Gauss(X), t n ∈ [0, 1] and write y n = k γ k ⊗ x nk . Then using property (α), and writing

S k γ (t) = (1 + 2 k A) -γ e it2 k A , we have n∈Z γ n ⊗ Sγ (t n )y n Gauss(Gauss(X)) ∼ = n,k γ nk ⊗ S k γ (t n )x nk Gauss(X) ≤ C n,k γ nk ⊗ x nk ∼ = n γ n ⊗ y n .
Therefore, Proposition 3.5 can be applied to the operator à in place of A and one obtains

(1 + Ã) -(β+2γ) f ( Ã) ≤ C f E α ∞ .
Moreover, let G satisfy the assumption of the lemma and f 1 , . . . , f N ∈ G. Put f (t) = N k=1 γ k ⊗ f k (t) id X , so that f : R → B(Gauss(X)). The image of f commutes with Sβ (t) for any t ∈ R. As in [9, Proof of Proposition 5.5] it follows now from Proposition 3.5 that

(1 + Ã) -(β+2γ) f ( Ã) n∈Z n α γ f * φn (t) : t ∈ R n∈Z n α sup f ∈G f * φn ∞ ,
where we used Kahane's contraction principle in the last step.

But (1 + Ã) -(β+2γ) f ( Ã) = γ({(1 + 2 k A) -(β+2γ) f l (2 k A) : k ∈ Z, l = 1, . . . , N})
, so the lemma follows by taking the supremum over all f 1 , . . . , f N ∈ G. Lemma 4.2. Let A be a 0-sectorial operator. Let the conclusion of Lemma 4.1 hold, i.e.

{(1 + 2 k A) -(β+2γ) f (2 k A) : k ∈ Z, f ∈ G} is γ-bounded if n∈Z n α sup f ∈G f * φn ∞ < ∞.
Suppose that A admits a Paley-Littlewood spectral decomposition. That is, for a dyadic partition of unity (ϕ k ) k∈Z , we have

x ∼ = k∈Z γ k ⊗ ϕ k (A)x Gauss(X) . (1) If f ∈ E α unif , then f (A) ∈ B(X). (2) If X has property (α) and G ⊂ E α ∞ satisfies n∈Z n α sup f ∈G sup k∈Z f (2 k •)ϕ 0 * φn ∞ < ∞, then {f (A) : f ∈ G} is γ-bounded.
Proof. The first part of the lemma follows from the proof of the second part by considering G = {f } a singleton. So let G satisfy the hypotheses in (2) of the lemma and f 1 , . . . , f N ∈ G. Then by the Paley-Littlewood spectral decomposition and property (α),

N n=1 γ n ⊗ f n (A)x ∼ = n,k γ nk ⊗ (f n ϕ k )(A) ϕ k (A)x . It thus remains to check that {(f n ϕ k )(A) : n = 1, . . . , N, k ∈ Z} is γ-bounded. We have (f n ϕ k )(A) = (f n ϕ 0 (2 -k •))(A) = (f n (2 k •)ϕ 0 )(2 -k A). Let G = {f n (2 k •)ϕ 0 (1 + (•)) β+2γ : n, k}. Note that functions in G have compact support in (0, ∞). If (4.3) n n α sup g∈ G g * φn ∞ < ∞, then (1 + 2 l A) -(β+2γ) g(2 l A) : l ∈ Z, g ∈ G ⊃ (1 + 2 -k A) -(β+2γ) f n (A)ϕ k (A)(1 + 2 -k A) β+2γ : n, k
would be γ-bounded and the lemma would follow. It remains to show (4.3). Denoting * l,j = l,j: |n-l-j|≤3 , we have

n∈Z n α sup m≤N, k∈Z f m (2 k •)(1 + •) β+2γ ϕ 0 * φn ∞ ≤ n∈Z n α * l,j f m (2 k •)ϕ 0 * φl (1 + •) β+2γ φ0 * φj * φn ∞ . ≤ n∈Z n α * l,j f m (2 k •)ϕ 0 * φl ∞ (1 + •) β+2γ φ0 * φj ∞ φn 1 ≤ n∈Z n α * l,j j -β ′ (1 + •) β+2γ φ0 E β ′ ∞ sup k,m f m (2 k •)ϕ 0 * φl ∞
where we choose β ′ > α + 1. Then the above inequalities continue

= l∈Z l α * n,j l -α n α j -β ′ sup k,m f m (2 k •)ϕ 0 * φl l∈Z l α sup f ∈G sup k∈Z f (2 k •)ϕ 0 * φl ∞ ,
which is finite according to the hypothesis.

We are now able to prove the main result of this section which is the following theorem. Theorem 4.3. Let X have property (α). Assume that A has a bounded M β calculus for some β and let α > 0 be a parameter. Then (B) =⇒ (A) =⇒ (B ′ ), where

(A) γ {(1 + 2 k A) -β 1 e i2 k tA : k ∈ Z} ≤ C t α for some β 1 ≥ α. (B) γ {(1 + 2 k A) -β 2 f (2 k A) : k ∈ Z} ≤ C f E α ∞ for some β 2 ≥ α and any f ∈ E α ∞ . (B') γ {(1 + 2 k A) -β 2 f (2 k A) : k ∈ Z} ≤ C f E α ∞ for some β 2 ≥ α and any f ∈ E α ∞ with compact support in (0, ∞). Conditions (A) and (B) imply moreover that (C) f (A) ≤ C f E α unif (f ∈ E α unif ). (D) If G ⊂ E α unif such that n∈Z n α sup f ∈G sup k∈Z f (2 k •)ϕ 0 * φn ∞ < ∞, then {f (A) : f ∈ G} is γ-bounded.
Proof. Since A has a bounded M β calculus, we have 

(A') {(1 + 2 k A) -γ e it2 k A : k ∈ Z, t ∈ [0, 1]} is γ-

Application: Poisson semigroup

We now apply Theorem 4.3 to the square root of the standard Laplacian on L p (R d ). That is, we check condition (A). 

{(1 + 2 k A) -α e it2 k A : k ∈ Z} t α ,
so condition (4.1) is satisfied for any α > d-1 2 . Proof. Our proof follows closely the chapter on maximal functions in [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]. Note that on L p spaces for p < ∞, one has

k γ k ⊗ x k p ∼ = ( k |x k | 2 ) 1 2
p . Thus according to [14, p. 76, 5.4] it suffices to show that for any α > d-1

2 (5.2) |x|≥2|y| |p 2 k t,θ (x -y) -p 2 k t,θ (x)|dx ≤ C( π 2 -|θ|) -α (k ∈ Z).
According to the proof in [14, p. 74], (5.2) follows from the hypotheses of [14, 4. 

bounded for γ sufficiently large [ 8 ,

 8 Theorem 4.73]. Then Lemma 4.1 shows that (A') and (A) imply (B') with β 2 = β 1 + 2γ. On the other hand, (B) implies (A) with β 1 = β 2 because of e it(•) E α ∞ t α [9, Proof of Theorem 4.9]. The bounded M β calculus also implies that the Paley-Littlewood spectral decomposition x ∼ = k∈Z γ k ⊗ ϕ k (A)x holds [10]. Then (A'), (A) (resp. (B)) and the Paley-Littlewood decomposition show with Lemma 4.2 that (C) and (D) hold.
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 5112 Let A = (-∆) on X = L p (R d ) for some d ∈ N and 1 < p < ∞, i.e. the generated semigroup exp(-e iθ tA) is analytic on the right halfplane and has as integral kernel the Poisson kernel p t,θ (x) = e iθ t ((e iθ t) 2 + |x| 2 ) d+1 Then for any α > d-1 2 , {exp(-e iθ t2 k A) : k ∈ Z} is γ-bounded with bound ( π 2 -|θ|) -α for any |θ| < π 2 . Consequently, by (2.3), (5.1) γ

2 . 1 1 0 1 0 4 + 0 | 2 as soon as the parameter δ < 1 .= d+1 2 ∇Φ 1 =

 2111402121 Corollary]. This means that it remains to show |Φ(x -y) -Φ(x)|dx ≤ η(|y|) (5.3) and |x|≥R |Φ(x)|dx ≤ η(R -1), R ≥ 1(5.4) for some Dini modulus η, i.e. η(y) dy y < ∞, and for Φ(x) = |p t,θ (x)|. According to [14, p. 74], η(y) dy y is then an upper bound for the γ bound in the claim (5.1). For simplicity suppose first t = 1. We writeC 2 (s) = R d |∇φ (s) (x)|dx, C 3 (s) = R d |Φ (s) (x)|dx, C 4 = R d |Φ(x)|(1 + |x|) δ dx, where Φ (s) (x) = |e 2iθ + x 2 | -d+1 2 (1-s) (1 + |x|) -cs, and where c, δ are positive constants. The Φ (s) form a family analytic in s with Φ (0) = Φ. Thus by the three lines lemma|Φ (0) (x -y) -Φ (0) (x)|dx C 3 (-ǫ) 1-ϑ C 2 (1) ϑ |y| ϑfor the parameter ϑ given by 0= -ǫ(1 -ϑ) + 1 • ϑ, so ϑ = ǫ 1+ǫ ∈ (0, 1). Concerning (5.4), if C 4 = |Φ(x)|(1 + |x|) δ dx < ∞, for some δ > 0 then |x|≥R |Φ(x)|dx = |x|≥R |Φ(x)|(1 + |x|) δ (1 + |x|) -δ dx ≤ (1 + R) -δ C 4 . So choosing η(u) = cu β (C 4 + C 3 (-ǫ) 1-ϑ C 2 (1) ϑ ) with β = min( ǫ 1+ǫ , δ), we have the estimate C 3 (-ǫ) 1-ϑ C 2 (1) ϑ ).Let us now estimate the expressions C 2 , C 3 , C 4 . We haveC 4 = |e 2iθ + x 2 | -d+1 2 (1 + |x|) δ dx = | cos(2θ) + x 2 + i sin(2θ)| -d+1 2 (1 + |x|) δ dx.The integrand is radial, and depending on the radius, the real or the imaginary part dominates. If ||x| 2 -1| ≥ π 2 -|θ|, then the real part dominates, otherwise the imaginary part dominates. Thus we naturally divide the integral C 4 into the three regions 0 ≤ x 2 ≤ 1 -( π 2 -|θ|), 1 -( π 2 -|θ|) ≤ x 2 ≤ 1 + ( π 2 -|θ|), and 1 + ( π 2 -|θ|) ≤ x 2 . Then a simple calculation shows C 4 ∼ = ∞ cos(2θ) + s + i sin(2θ)| -d+1 2 (1 + s) Let us turn to C 2 . We have with P (x) = e 2iθ + x 2 and a (s) (x) = -a(1 -s)|P (x)| -a(1-s)-1 Re P (x) |P (x)| P ′ (x)(1 + |x|) -cs + (-cs) x |x| |P (x)| -a(1-s) (1 + |x|) -cs-|P (x)| -a(1-s)-1 (1 + |x|) -cs-1 • -a(1 -s) Re P (x) |P (x)| P ′ (x)(1 + |x|) -cs x |x| |P (x)| .

If Re s = 1, then P ′ (x) = 2x, and the first term in the above brackets is dominated by | Im s| • |x| • (1 + |x|). In all we get for Re s = 1

2 .

We have

2 < ∞ as soon as c is large enough

Let us finally turn to C 3 (s). We consider Re s = -ǫ < 0. Then

The first integral can be estimated against ( π 2 -|θ|) -a(1+ǫ)+1 , and the second integral is finite as soon as ǫ(c -d -1) < 1. In all, we get

2 +ǫ , with 1-ǫ 1+ǫ = 1 -ǫ. Now it is easy to repeat the argument for p t,θ in place of p 1,θ . This finishes the proof. Theorem 5.1 can be used in combination with Theorem 4.3, but moreover it has also a consequence for the Mihlin functional calculus of -∆. Note that the classical theorem of Mihlin gives mere boundedness of the set in (5.5) below.

Corollary 5.2. The operator

Proof. This follows from [START_REF] Kriegler | Spectral multipliers, R-bounded homomorphisms, and analytic diffusion semigroups[END_REF]Proposition 4.79] applied to the estimate

2 . Note that for the underlying L p space, one always has