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1.1 Introduction

Mathematical morphology is a discipline of image analysis that was introduced in the mid-1960s by two

researchers at the École des Mines in Paris: Georges Matheron [1] and Jean Serra [2, 3]. Historically,

it was the first consistent non-linear image analysis theory, which from the very start included not only

theoretical results but also many practical aspects. Due to the algebraic nature of morphology, the space on

which the operators are defined can be either continuous or discrete. However, it was only in 1989 [4] that

researchers from the CMM at the École des Mines began to study morphology on graphs, soon formalized in
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[5]. Fairly recent development [6, 7, 8, 9, 10, 11, 12] in this direction has several motivations and beneficial

consequences that we are going to review in this chapter. Rather than trying to cover every aspect of the

theory, we choose to present a comprehensive subset based on a recent unifying graph theoretical framework

developed by the A3SI team of the LIGM at Paris-Est University. The presentation is roughly divided in

three parts, dealing respectively with basic operators (mainly based on [10]), hierarchical segmentation

(mainly based on [13] and [14]), and optimization (mainly based on [15]). For the reader interested in a

more complete presentation of morphology, we recommend [16] and the recent [17].

One of the fundamental ideas of mathematical morphology is to compare unkown objects with known

ones. We begin by presenting the tools that make such an idea practicable: mathematical structures called

lattices (Section 1.2), allowing us to compare weighted and non-weighted edges and vertices. We then

present (Section 1.3) several dilations and erosions, that always come in pairs (they are called adjunct oper-

ators). From there, we can build (Section 1.4) some morphological filters, called opening or closing. During

the presentation of those various operators, we often give an interpretation of classical graph-operators in

morphological terms. We conclude this part by presenting (Section 1.5) some connected operators based on

pruning a tree representation of the image, illustrating their usage for image filtering and simplification.

The second part of the chapter deals with hierarchical segmentation. During the course of the chapter’s

first part, several times the minimum spanning tree appears. This tree is the oldest combinatorial optimiza-

tion problem [18, 19]. Since the seminal work of Zahn [20], the minimum spanning tree has been extensively

used in classification. Its first appearance in image processing dates from 1986, in a paper by Morris et al.

[21]. Meyer was the first to explicitely use it in a morphological context [22]. A strong momentum to its

usage in segmentation has been provided thanks to a 2004 paper by Felzenswalb and Huttenlocher [23].

In the second part of the chapter, we revisit the watershed [24], and show that in the framework of edge-

weighted graphs, the watershed has very strong links with the minimum spanning tree (Section 1.6). Thanks

to such links, we can use the watershed for building hierarchies of segmentations (Section 1.7), relying on

the filtering tools seen in the first part of the chapter.

The main principle of morphology, comparison, is rather different from the optimization paradigm.

However, rather than opposing these two viewpoints, it is more fruitful to explore their connections. In the

last part of the chapter (Section 1.8), we turn towards optimization and show that the watershed presented

in the previous part can be extended to be used as an optimization tool.

1.2 Graphs and lattices

In mathematical morphology, we compare objects one with respect to each other. The mathemathical struc-

ture that allows us to make such an operation effective is called a lattice. Recall that a (complete) lattice is a
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partially ordered set, that also has a least upper bound, called supremum, and a greatest lower bound, called

infimum. More formally, a lattice [25] (L,≤) is a set L (the space) endowed with an ordering relationship

≤, which is reflexive (∀x ∈ L,x≤ x), anti-symmetric (x≤ y and y≤ x =⇒ x = y) and transitive (x≤ y and

y≤ z =⇒ x≤ z). This ordering is such that for all x and y, we can define both a larger element x∨ y and a

smaller element x∧ y. Such a lattice is said to be complete if any subset P of L has a supremum
∨
P and an

infimum
∧
P that both belongs to L. The supremum is formally the smallest amongst all elements of L that

are greater than all the elements of P, and conversely the infimum is the largest element of L that is smaller

than all the elements of P.

Most of the morphological theory can be presented and developed at this abstract level, without making

references to the properties of the underlying space. However, studying what impact such properties have

can indeed be interesting in some situations. In the sequel, we study some lattices that can be built from

graph spaces, and what kind of (morphological) operators can be built from such lattices.

1.2.1 Lattice of graphs

We define a graph as a pair G= (V(G),E(G)) where V(G) is a set and E(G) is composed of unordered pairs

of distinct elements in V(G), i.e., E(G) is a subset of {{v1,v2} ⊆ V(G) | v1 6= v2}. Each element of V(G) is

called a vertex or a point (of G), and each element of E(G) is called an edge (of G). In the sequel, to simplify

the notations, ei j stands for the edge {vi,v j} ∈ E(G).

Let G1 and G2 be two graphs. If V(G2)⊆ V(G1) and E(G2)⊆ E(G1), then G1 and G2 are ordered and we

write G2 v G1. If G2 v G1, we say that G2 is a subgraph of G1, or that G2 is smaller than G1 and that G1 is

greater than G2.

Important remark. Hereafter, the workspace is a graph G=(V(G),E(G)) and we consider the sets V(G),

E(G) and G of respectively all subsets of V(G), all subsets of E(G) and all subgraphs of G. We also use the

classical notations V= V(G) and E= E(G).

Let S0,S1 ⊆ G be the sets of respectively the graphs made of a single vertex and the graphs made of a

pair of vertices linked by an edge, i.e., S0 = {({v}, /0) | v ∈ V(G)} and S1 = {({vi,v j},{ei j}) | ei j ∈ E(G)}.
We set S = S0 ∪ S1. Any graph G1 ∈ G is generated by the family F = {G1, . . . ,G`} of all elements in S

smaller than G1: G1 = (
⋃

i∈[1,`]V(Gi),
⋃

i∈[1,`]E(Gi)); we say that the elements of F are the generators of G1

[10]. Conversely, any family F of elements in S generates an element of G. Hence, S (sup-) generates G.

Clearly, the ordering v on graphs amount to say that G2 v G1 when all generators of G2 are also gen-

erators of G1. Therefore, ordering v provides a lattice structure on the set G. Indeed, the largest graph

smaller than a family F = {G1, . . . ,G`} of elements in G is the graph generated by the generators common

to all Gi, i ∈ [1, `]; this infimum is denoted by uF . Similarly, the supremum tF is generated by the union
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of the families of generators of all Gi, i ∈ [1, `].

If V(G1)⊆V(G) (resp. E(G2)⊆E(G)), we denote by V(G1) (resp. E(G2)) the complementary set of V(G1)

(resp. E(G2)) in V(G) (resp. E(G)), that is V(G1) = V(G) \V(G1) (resp. E(G2) = E(G) \E(G2)). Observe

that, if G1 is a subgraph of G, then, except in some degenerated cases, the pair (V(G1),E(G1)) is not a graph.

Property 1 ([10])

The set G of the subgraphs of G form a complete lattice, sup-generated by the set S = S0 ∪ S1, but not

complemented. The supremum and the infimum of any family F = {G1, . . .G`} of elements in G are given

by respectively uF = (
⋂

i∈[1,`]V(Gi),
⋂

i∈[1,`]E(Gi)) and tF = (
⋃

i∈[1,`]V(Gi),
⋃

i∈[1,`]E(Gi)).

1.2.2 Lattice of weights

As a fixed grid is able to represent images by assigning grey tones to pixels, the graph G is able to generate

a number of derived graphs by assigning weights to the vertices and edges of the graph G. According to the

applications, the weights can be real or integer, taking their values in R,R+,N, [−n,+n] , [0,+n]. The weight

of a vertice vi is written wi, while the one of an edge ei j is written wi j. The set of all (edges and vertices)

weights is written w. The case where the weights are binary, belonging to {0,1} may be interpreted as

presence/absence: wi j = 1 and wk = 1 express respectively the existence of an edge ei j and of a vertice vk.

All edges and vertices of G with weight 0 do not exist in this weighted graph.

A possible lattice structure on the weights is given by the following. Let w1 and w2 be two sets of

weights, we have w1 ≺ w2 whenever w1
i j < w2

i j and w1
k < w2

k . The supremum (resp. infimum) of a family of

sets of weights is a set of weights where the weight of a given element is the greatest (resp. lowest) possible

weight of the weights of the same element in the family.

Remark 2

In a graph, there may be isolated vertices, that is vertices which are not adjacent to an edge. On the contrary,

each edge is adjacent to two vertices. For this reason not any binary distribution of weights on the vertices

and edges of G represents a graph. It is the case if and only if each edge with weight 1 is adjacent to two

vertices with weight 1. The same holds for any weight distributions. w correspond to a graph if each edge

with weight wi j is such that wi j ≤ wi and wi j ≤ w j. In other words, this is the case if the extremities of an

edge have weights which are not lower than the weight of the edge. Graphs may be used for modelling many

different structures. In some cases vertex weight only have a physical meaning and the edge weights simply

serve for storing intermediate results in the computation of the weights of the vertices. In other cases it is

the converse. In such situations one does not care whether the weights represent a graph. In other situations

on the contrary, one cares to define operators transforming an graph into another graph.
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1.3 Neighborhood operations on graphs

Morphology really starts if one considers the neighborhood relations between vertices and edges. We now

define operators taking as arguments such neighborhoods. The construction is incremental, from the smallest

neighborhood to larger neighborhoods.

1.3.1 Adjunctions on graphs

In the graph G, we can consider sets of points as well as sets of edges. Therefore, it is convenient to consider

operators that go from one kind of sets to the other one. In this section, we investigate such operators and

we study their morphological properties. Then, based on these operators, we propose several dilations and

erosions acting on the lattice of all subgraphs of G.

Let V(G1) be a subset of V(G), we denote by GV(G1) the set of all subgraphs of G whose vertex set

is V(G1). Let E(G2) be a subset of E(G). We denote by GE(G2) the set of all subgraphs of G whose edge set

is E(G2).

Definition 3 (edge-vertex correspondences, [10])

We define the operators δEV, εEV from E(G) into V(G) and the operators εVE,δVE from V(G) into E(G) as

follows:

E(G)→ V(G) V(G)→ E(G)

Provide the object with a graph

structure

E(G1) → δEV(E(G1)) such that

(δEV(E(G1)),E(G1)) = uGE(G1)

V(G1) → εVE(V(G1)) such that

(V(G1),εVE(V(G1))) = tGV(G1)

Provide its complement with a

graph structure

E(G1) → εEV(E(G1)) such that

(εEV(E(G1)),E(G1)) = uGE(G1)

V(G1) → δVE(V(G1)) such that

(V(G1),δVE(V(G1))) = tGV(G1)

In other words, if V(G1)⊆V(G) and E(G2)⊆E(G), (δEV(E(G2)),E(G2)) is the smallest subgraph of G whose

edge set is E(G2), (V(G1),εVE(V(G1))) is the largest subgraph of G whose vertex set is V(G1), (εEV(E(G2)),E(G2))

is the smallest subgraph of G whose edge set is E(G2), and (V(G1),δVE(V(G1))) is the largest subgraph of G

whose vertex set is V(G1).

These operators are illustrated in Figs. 1.1a-f. The following property locally characterizes them.

Property 4 ([10])

For any E(G1)⊆ E(G) and V(G2)⊆ V(G):

1. δEV : E(G)→ V(G) is such that δEV(E(G1)) = {vi ∈ V(G) | ∃ei j ∈ E(G1)};

2. εVE : V(G)→ E(G) is such that εVE(V(G2)) = {ei j ∈ E(G) | vi ∈ V(G2) and v j ∈ V(G2)};

3. εEV : E(G)→ V(G) is such that εEV(E(G1)) = {vi ∈ V(G) | ∀ei j ∈ E(G),ei j ∈ E(G1)};
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Figure 1.1: Dilations and erosions.

4. δVE : V(G)→ E(G) is such that δVE(V(G2)) = {ei j ∈ E(G) | either vi ∈ V(G2) or v j ∈ V(G2)}.

In other words, δEV(E(G1)) is the set of all vertices which belong to an edge of E(G1), εVE(V(G2)) is the set

of all edges whose two extremities are in V(G2), εEV(E(G1)) is the set of all vertices which do not belong to

any edge of E(G1), and δVE(V(G2)) is the set of all edges which have at least one extremity in V(G2).

From this characterization, we can recognize the general graph version of some operators introduced by

Meyer and Angulo [8] (see also [7]) for the hexagonal grid. By translating supremum and infimum of the

graph lattice to the corresponding supremum and infimum of the lattice of weigths, we obtain the weighted

version of these operators. The four basic operators of Definition 3 translate to: (δEV(w))i = max{wi j | ei j ∈
E}, εEV(w)i = min{wi j | ei j ∈ E}, (δVE(w))i j = max{wi,w j} and (εVE(w))i j = min{wi,w j}.

Before further analyzing the operators defined above, let us briefly recall some algebraic tools which are

fundamental in mathematical morphology [26].

Given two lattices L1 and L2, an operator δ : L1 → L2 is called a dilation when it preserves the

supremum (i.e. ∀X ⊆L1,δ(∨1X )=∨2{δ(x) | x∈X }, where∨1 is the supremum in L1 and∨2 the supremum

in L2). Similarly, an operator which preserves the infimum is called an erosion.

Two operators ε : L1 → L2 and δ : L2 → L1 form an adjunction (ε,δ) when for any x in L2 and

any y in L1, we have δ(x)≤1 y⇔ x≤2 ε(y), where ≤1 and ≤2 denote the order relations on respectively L1

and L2. Given two operators ε and δ, if the pair (ε,δ) is an adjunction, then ε is an erosion and δ is a dilation.
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Given two complemented lattices L1 and L2, two operators α and β from L1 into L2 are dual (with

respect to the complement) of each other when, for any x ∈ L1, we have β(x) = α(x). If α and β are dual of

each other, then β is an erosion whenever α is a dilation.

Property 5 (dilation, erosion, adjunction, duality, [10])

1. Both (εVE,δEV) and (εEV,δVE) are adjunctions.

2. Operators εVE and δVE (resp. εEV and δEV) are dual of each other.

3. Operators δEV and δVE are dilations.

4. Operators εEV and εVE are erosions.

Let us compose these dilations and erosions to act on V(G) and E(G).

Definition 6 (vertex-dilation, vertex-erosion)

We define δ and ε that act on V(G) (i.e., V(G)→ V(G)) by δ = δEV ◦δVE and ε = εEV ◦ εVE.

As compositions of respectively dilations and erosions, δ and ε are respectively a dilation and an erosion.

Moreover, by composition of adjunctions and dual operators, δ and ε are dual and (ε,δ) is an adjunction.

In fact, it can be shown that δ and ε correspond exactly to the usual notions of an erosion and of a

dilation of a set of vertices in a graph [4, 5]. It means, in particular that, when V(G) is a subset of the grid

points Zd and when the edge set E(G) is obtained from a symmetrical structuring element, then the operators

defined above are equivalent to the usual binary dilation and erosion by the considered structuring element.

For instance, in Fig. 1.1, V(G) is a rectangular subset of Z2 and E(G) corresponds to the basic “cross”

structuring element. It can be verified that the vertex sets in Fig. 1.1g and h, obtained by applying δ and ε

to V(G1) (Fig. 1.1b), are the dilation and the erosion by a “cross” structuring element of V(G1).

We now consider a dual/adjunct pair of dilation and erosion acting on E(G).

Definition 7 (edge-dilation, edge-erosion, [10])

We define ∆ and E that act on E(G) by ∆ = δVE ◦δEV and E = εVE ◦ εEV.

Definition 8 ([10])

We define the operators δ > ∆ and ε > E by respectively (δ(V(G1)),∆(E(G1))) and (ε(V(G1)),E(E(G1))),

for any G1 ∈G.

For instance, Figs. 1.1f and 1.1g present the results obtained by applying the operator δ > ∆ and the opera-

tor ε>E to the subgraph G1 (Fig. 1.1b) of G (Fig. 1.1a).

Theorem 9 (graph-dilation, graph-erosion,[10])

The operators δ > ∆ and ε > E are respectively a dilation and an erosion acting on the lattice (G,v). Fur-

thermore, (ε>E ,δ>∆) is an adjunction.
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Note that since lattice G is sup-generated by set S , it suffices to know the dilation of the graphs in S for

characterizing the dilation of the graphs in G.

Compared to classical morphological operators on sets, the dilations and erosions introduced in this

section furthermore convey some connectivity properties different than the ones which can be deduced

from classical dilations and erosions. Observe, for instance, in Fig. 1.1g, that some 4-adjacent vertices

of δ(V(G1)) are not linked by an edge in the graph δ > ∆(G1). These properties can be useful in further

processing involving for instance connected operators [27, 28, 29, 30].

Thanks to the operators presented in Definition 3, other intersecting adjunctions (hence dilations/erosions)

can be defined on G:

1. (α1,β1) such that ∀G1 ∈G, α1(G1) = (V(G),E(G1)) and β1(G1) = (δEV(E(G1)),E(G1));

2. (α2,β2) such that ∀G1 ∈G, α2(G1) = (V(G1),εVE(V(G1))) and β2(G1) = (V(G1), /0);

3. (α3,β3) such that ∀G1 ∈G, α3(G1) = (εEV(E(G1)),εVE ◦ εEV(E(G1)))

and β3(G1) = (δEV ◦δVE(V(G1)),δVE(V(G1))).

The adjunction (α3,β3) is illustrated in Fig. 1.1i and 1.1j. Note also that, using usual graph terminologies, β1

(resp. α2) can be defined as the operator which associates to a graph the graph induced by its edge set (resp.

vertex set).

A more general version of those operators can be obtained in the framework of complexes [12], allowing

us to deal for example with meshes. There also exist other recent graph-based approaches to morphology,

for example based on hypergraphs [11] or on discrete differential equations [9].

1.4 Filters

In mathematical morphology, a filter is an operator α acting on a lattice L , which is increasing (i.e. ∀x,y ∈
L , α(x) ≤ α(y) whenever x ≤ y) and idempotent (i.e. ∀x ∈ L , α(α(x)) = α(x)). A filter α on L which is

extensive (i.e. ∀x∈L , x≤ α(x)) is called a closing on L whereas a filter α on L which is anti-extensive (i.e.

∀x ∈ L , α(x)≤ x) is called an opening on L . It is known that composing the two operators of an adjunction

yields an opening or a closing depending on the order in which the operators are composed [26]. In this

section, the operators of Section 1.3 are composed to obtain filters on V(G), E(G) and G.

Definition 10 (opening, closing, [10])

1. We define γ1 and φ1, that act on V(G), by γ1 = δ◦ ε and φ1 = ε◦δ.

2. We define Γ1 and Φ1, that act on E(G), by Γ1 = ∆◦E and Φ1 = E ◦∆.
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a: G2 b: γ>Γ1(G2) c: γ>Γ1/2(G2) d: β3 ◦α3(G2)

e: G3 f: φ>Φ1(G3) g: φ>Φ1/2(G3) h: α3 ◦β3(G3)

Figure 1.2: Openings and closings (G is induced by the 4-adjacency relation).

3. We define the operators γ > Γ1 and φ > Φ1 by respectively γ > Γ1(G1) = (γ1(V(G1)),Γ1(E(G1)))

and φ>Φ1(G1) = (φ1(V(G1)),Φ1(E(G1))) for any G1 ∈G.

Figs. 1.2b and 1.2f present the result of γ>Γ1 and φ>Φ1 for respectively the subgraph of Fig. 1.2a and the

one of Fig. 1.2e.

The opening γ1 and the closing φ1 correspond to the classical opening and closing on the vertices. The

closing Γ1 and the opening Φ1 are the corresponding edge-version of these operators. By combination, we

obtain γ>Γ1 and φ>Φ1.

In fact, by composing δEV with εVE and δEV with εVE, we obtain smaller filters.

Definition 11 (half-opening, half-closing, [10])

1. We define γ1/2 and φ1/2, that act on V(G), by γ1/2 = δEV ◦ εVE and φ1/2 = εEV ◦δVE.

2. We define Γ1/2 and Φ1/2, that act on E(G) by Γ1/2 = δVE ◦ εEV and Φ1/2 = εVE ◦δEV.

3. We define the operators γ>Γ1/2 and φ>Φ1/2 by respectively γ>Γ1/2(G1)= (γ1/2(V(G1)),Γ1/2(E(G1)))

and φ>Φ1/2(G1) = (φ1/2(V(G1)),Φ1/2(E(G1))), for any G1 ∈G.
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Thanks to Property 4, the operators defined above can be locally characterized. Let V(G1) ⊆ V(G)

and E(G2)⊆ E(G), we have:

γ1/2(V(G1)) = {vi ∈ V(G1) | ∃ei j ∈ E(G) with v j ∈ V(G1)}

= V(G1)\{vi ∈ V(G1) | ∀ei j ∈ E(G),v j /∈ V(G1)}

Γ1/2(E(G2)) = {ei j ∈ E(G) | {eik ∈ E(G)} ⊆ E(G2)}

= E(G2)\{e ∈ E(Y ) | ∀vi ∈ e,∃ei j ∈ E(G) with ei j /∈ E(G2)}

φ1/2(V(G1)) = {vi ∈ V(G) | either vi ∈ V(G1) or ∀ei j ∈ E(G),v j ∈ V(G1)}

= V(G1)∪{vi ∈ V(G1) | ∀ei j ∈ E(G),v j ∈ V(G1)}

Φ1/2(E(G2)) = {ei j ∈ E(G) | ∃eik ∈ E(G2) and ∃e jl ∈ E(G2)}

= Y ∪{ei j ∈ E(G2) | vi ∈ δEV(E(G2)) and v j ∈ δEV(E(G2))}.

Informally speaking, γ1/2 removes from G1 its isolated vertices whereas Γ1/2 removes from G2 the edges

which do not contain a vertex completely covered by edges in G2. It may be furthermore seen that γ1/2 (resp.

Γ1/2) is the dual of φ1/2 (resp. Φ1/2). Thus, φ1/2 adds to G1 the vertices of V(G1) completely surrounded

by elements of G1 whereas Φ1/2 adds to G2 the edges of E(G2) whose two extremities belong to at least one

edge in G2 (see for instance Fig. 1.2).

The family G is closed under the operators presented in Definition 10.3 since they are obtained by

composition of operators also satisfying this property. Furthermore, it can be deduced from the local char-

acterization of the operators γ1/2, Γ1/2, φ1/2 and Φ1/2 that the family G is also closed under the operators of

Definition 11.3. Hence, thanks to the properties of adjunctions recalled in the introduction of this section,

the following theorem can be established.

Theorem 12 (graph-openings, graph-closings,[10])

1. The operators γ1/2 and γ1 (resp. Γ1/2 and Γ1) are openings on V(G) (resp. E(G)) and φ1/2, and Φ1

(resp. Φ1/2 and φ1) are closings on V(G) (resp. E(G)).

2. The family G is closed under γ>Γ1/2, φ>Φ1/2, γ>Γ1, and φ>Φ1.

3. The operators γ>Γ1/2 and γ>Γ1 are openings on G and φ>Φ1/2 and φ>Φ1 are closings on G.

Composing the operators of the adjunctions (αi,βi), defined at the end of Section 1.3, also yields re-

markable openings and closings. Indeed, it can be easily seen that: α1 ◦β1 = α1, α2 ◦β2 = α2, β1 ◦α1 = β1

and β2 ◦α2 = β2. Thus α1 and α2 are both a closing and an erosion and β1 and β2 are both a dilation and an

opening. This means, in particular, that α1 and α2 are idempotent extensive erosions and that β1 and β2 are

idempotent anti-extensive dilations. The opening and the closing resulting from the adjunction (α3,β3) are

illustrated in Figs. 1.2d and 1.2h.
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(a) Original noisy image (b) Classical alternating filter (c) Vertex-edge alternating filter

Figure 1.3: Illustration of classical versus vertex-edge alternating filter (see [10]).

The weighted versions of those various operators also have an interpretation related to classical notions

of graph theory. Consider for example the weighted version of the opening Γ1/2 = δVEεEV. The dilation δVE

assigns to each edge the highest weight of its adjacent vertices; but each adjacent vertice has been assigned

by εEV the weight of its lowest edge. So if wi j is left unchanged by Γ1/2, it means that the edge ei j is (one

of) the lowest edges of vi or of v j, say vi. Its weight is higher or equal to the weight of the lowest edge

of v j. Thus, using some well-known properties of minimum spanning trees (see Section 1.6.3 for a precise

definition of a minimum spanning tree), it can be shown that the graph induced by the set of edges that

are left invariant by Γ1/2 is the union of all mininimum spanning trees of this graph, closely related to the

Gabriel graph [31].

It is possible to associate with any lattice L , the lattice of all increasing operators on L . In this context,

two filters ϕ1 and ϕ2 on the lattice L are said ordered if, for any ∈ L , ϕ1(x) ≤ ϕ2(x) or if, for any x ∈
L , ϕ2(x) ≤ ϕ1(x). A usual way to build a hierarchy of filters (i.e. an ordered family of filters) from an

adjunct pair (α,β) of erosion and dilation consists of building the dilations and erosions obtained by iterating

several times α and β. In general, composing these iterated versions of α and β leads to hierarchies of filters

when the number of iterations increases. By combining and iterating the operators that we have defined in

this section, we obtain [10] hierarchies of filters in the lattice G that perform better than the classical ones,

in the sense that they are able to remove more noise (see Fig. 1.3.)

1.5 Connected operators and filtering with the component tree

Gray-level connected operators [27] act by merging neighboring “flat” zones. They cannot create new

contours and, as a result, they cannot introduce in the output image a structure that is not present in the input

image. Furthermore, they cannot modify the position of existing boundaries between regions, and therefore

have very good contour preservation properties.

To create “flat” zones, a simple operation on a weighted graph is thresholding, that produces a level set.

For λ ∈R+, the level-sets of an edge-weighted graph are denoted w<
E [λ] = {ei j ∈ E|wi j ≤ λ}. We define C<

E
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(a) Component tree

h

(b) Height

a

(c) Area

v

(d) Volume (e) Area filtering

Figure 1.4: Illustration of respectively a component tree (dashed lines), the height, the area and the volume

of a component and an area filtering.

as the set composed of all the pairs [λ,C], where λ ∈ R+ and C is a (connected) component of the graph

w<
E [λ]. We note that one can reconstruct w from C<

E ; more precisely, we have:

wi j = min{λ | [λ,C] ∈ C<
E ,ei j ∈ E(C)} (1.1)

One can remark that two elements of C<
E are either disjoint or nested, thus it is easy to order the elements

of C<
E in a tree. This tree is called the (min) component tree, and there exists fast algorithms to compute

it [32, 33].

Using C<
E allows us to deal with specific components of w. For example, a minimum of w is a component

C such that there exists λ with [λ,C] ∈ C<
E and it does not exist [λ1,C1] ∈ C<

E with C1 @ C and C1 6= C.

Observe that a minimum of w is a graph. The set of all minima of w is denoted M. Similarly, we can

define C>
E allowing us to deal with maxima of edge-weighted graphs, C<

V and C>
V allowing us to deal with

node-weighted graphs, and C<
VE and C<

VE allowing us to deal with node-and-edge weighted graphs.

We mention that other trees are possible, for example the binary partition tree [34], the tree of level lines

also known as the inclusion tree or the tree of shapes [35], etc. The interest of the tree of shapes is that it

allows us to interact both with maxima and minima, in a self-dual manner. See [36] for a survey of the usage

of those trees in image processing. Here, we illustrate the usage of the component tree for filtering.

Given Eq. (1.1), filtering a graph can be seen as equivalent to removing some components of (say) C<
E .

Such a filtering is called flooding. One way to make this idea practicable is to design an attribute that tells

us if a given component should be kept or not. Among the numerous attributes that can be computed, three

are natural: the height, the area, and the volume (Fig. 1.4). Let [λ,C] ∈ C<
E . We define

height([λ,C]) = max{λ−wi j|ei j ∈ E(C)} (1.2)

area([λ,C]) = |V(C)| (1.3)

volume([λ,C]) = ∑
ei j∈E(C)

(λ−wi j) (1.4)

For example, removing all the components whose area is lower than a threshold is a closing of w (Fig. 1.4.e).

Remark that a filtering with either the height or the volume is not a closing, as such a filtering is not idem-

potent.
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(a) (b) (c) (d)

Figure 1.5: (a) Original image. (b) Maxima of image (a), in white. (c) Filtered image. (d) Maxima of image

(c), which correspond to the ten most significant lobes of the image (a).

Fig. 1.5 illustrates this kind of filtering. Fig. 1.5.a is an image of a cell, in which we want to extract the

ten bright lobes. If we consider that the brighter a pixel is, the higher its weight, then the tree we want to

process is C>
V . Fig. 1.5.b shows that the image 1.5.a contains numerous maxima. Fig. 1.5.c is the filtered

image obtained by a volume-based filtering, and Fig. 1.5.d shows the maxima of this filtered image.

As the components of the level sets can be ordered into a tree, they form a hierarchy of components. In

the context of classification [37], hierarchies are widely studied, and the morphological framework can shed

some light on the tools that are developed in that community. For example, let us look at the application

Ψ that associates to any set of edge-weights w the map Ψ(w) such that for any edge ei j ∈ E, Ψ(w)(ei j) =

min{λ | [λ,C]∈ C<
E ,vi ∈V(C),v j ∈V(C)}. Intuitively, and using a geographical metaphore, Ψ(w)(ei j) is the

lowest altitude to which one has to climb to go from vi to v j. It is straightforward to see that Ψ(w)≤ w, that

Ψ(Ψ(w)) = Ψ(w) and that if w′ ≤ w, Ψ(w′)≤Ψ(w). Thus Ψ is an opening [38]. We remark that the subset

of strictly positive maps that are defined on the complete graph (V,V×V) and that are open with respect

to Ψ is the set of ultrametric distances on V. The mapping Ψ is known under several names, including

“subdominant ultrametric” and “ultrametric opening”. It is well known that Ψ is associated to the simplest

method for hierarchical classification called single linkage clustering [39, 40], closely related to Kruskal’s

algorithm [41] for computing a minimum spanning tree.

Before concluding the section, let us mention another flooding that has been used as a preprocessing step

for watershed segmentation with markers. It is called geodesic reconstruction from the markers [42, 43],

where the markers is a subgraph. It consists in removing all the components of C<
E that are not marked (i.e.

that do not contain a vertice of the markers) and is given as a function wR such that, for every edge e, we

set wR(e) to be equal to the level λ of the lowest component of w containing e and at least one vertice of the

markers. Observe that any component of wR indeed contains at least one vertice of the markers. Given some

markers, the geodesic reconstruction is a closing. Such a closing is also useful as an efficient preprocessing

for a fast power-watershed optimization algorithm (see [15] and Section 1.8).
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1.6 Watershed cuts

There exist many possible ways for defining a watershed [24, 44, 45, 46, 13, 47]. Intuitively, the watershed

of a function (seen as a topographical surface) is composed of the locations from which a drop of water

could flow towards different minima. The framework of edge-weighted graph allows the formalization

of this principle and the proof of several remarkable properties [13] that we review in the sequel of the

section. We first show that watershed cuts can be equivalently defined by their “catchment basins” (through

a steepest descent property) or by the “dividing lines” separating these catchment basins (through the drop

of water principle). As far as we know, in discrete frameworks, a similar property does not hold. The second

property establishes the optimality of watershed-cuts: there is an equivalence between the watershed-cuts

and the separations induced by a minimum spanning forest relative to the minima.

1.6.1 The drop of water principle
Definition 13 (from Def. 12 in [46])

Let G1 and G2 be two non-empty subgraphs of G. We say that G2 is an extension of G1 (in G) if G1 v G2 and

if any component of G2 contains exactly one component of G1.

The notion of extension is very general. Many segmentation algorithms iteratively extend some seed

components in a graph: they produce an extension of the seeds. Most of them terminate once they have

reached an extension which cover all the vertices of the graph. The separation which is thus produced is

called a graph cut. Let S⊆ E. We denote by S̄ the complementary set of S in E, i.e., S̄= E\S. Recall that

the graph induced by S, given by the dilation β1, is the graph whose edge set is S and whose vertex set is

made of all points which belong to an edge in S, i.e., ({v ∈ V | ∃e ∈ S,v ∈ e},S). In the following, the graph

induced by S is also denoted by S.

Definition 14

Let G1 v G and S⊆ E. We say that S is a (graph) cut for G1 if S̄ is an extension of G1 and if S is minimal for

this property, i.e., if T ⊆ S and T̄ is an extension of G1, then we have T = S.

We introduce the watershed cuts of an edge-weighted graph. To this end, we formalize the drop of water

principle. Intuitively, the catchment basins constitute an extension of the minima and they are separated by

“lines” from which a drop of water can flow down towards distinct minima.

Let π = (v0, · · · ,vn) be a path. The path π is descending if, for any i ∈ [1, l−1], w(vi−1,vi)≥ w(vi,vi+1).

Definition 15 (drop of water principle, [13])

Let S⊆ E. We say that S is a watershed cut (or simply a watershed) if S̄ is an extension of M and if for any

ei j = {vi,v j} ∈ S, there exist π1 = (v1
0 = vi, · · · ,v1

n) and π2 = (v2
0 = v j, · · · ,v2

m) which are two descending
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Figure 1.6: An edge-weighted graph G The edges and vertices drawn in bold are: (a), the minima of w; (b),

an extension of M; (c), an MSF rooted in M. In (b), the set of dashed edges is a watershed cut of w.

paths in S̄ such that v1
n and v2

m are vertices of two distinct minima of w; and wi j ≥ w({v1
0,v

1
1}) (resp. wi j ≥

w({v2
0,v

2
1})), whenever π1 (resp. π2) is not trivial.

We illustrate the previous definition on the edge-weighted graph depicted in Fig. 1.6. The weights w

contain three minima (in bold in Fig.1.6a). Let us denote by S the set of dashed edges depicted in Fig. 1.6b

and by e = {v1,v2} the only edge whose altitude is 8. It may be seen that S̄ (in bold Fig. 1.6b) is an extension

of M. We also remark that there exists π1 (resp. π2) a descending path in S̄ from v1 (resp. v2) to the minimum

at altitude 1 (resp. 3). The altitude of the first edge of π1 (resp. π2) is lower than the altitude of e. It can be

verified that the previous properties hold true for any edge in S. Thus, S is a watershed of F .

1.6.2 Catchment basins by a steepest descent property

A popular alternative to Definition 15 consists of defining a watershed exclusively by its catchment basins

and the paths of steepest descent of w [48, 44, 49, 45] and does not involve any property of the divide. The

following theorem (17) establishes the consistency of watershed cuts in edge-weighted graphs: they can be

equivalently defined by a steepest descent property on the catchment basins (regions) or by the drop of water

principle on the cut (border) which separate them. As far as we know, there is no definition of watershed in

vertex-weighted graphs that verifies a similar property. This theorem thus emphasizes that the framework of

edge-weighted graphs is adapted for the study of discrete watersheds.

Let π = (v0, · · · ,vl) be a path in G. The path π is a path of steepest descent (for w) if, for any i ∈ [1, l],

w(vi−1,vi) = (εEVw)i−1 = min{wi j|∀ j such that ei j ∈ E}.

Definition 16 ([13])

Let S ⊆ E be a cut for M. We say that S is a basin cut (of w) if, from each point of V to M, there exists,

in the graph induced by S̄, a path of steepest descent for w. If S is a basin cut of w, any component of S̄ is

called a catchment basin (of w, for S).
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Theorem 17 (consistency, [13])

Let S⊆ E be a cut for M. The set S is a watershed if and only if S is a basin cut of w.

1.6.3 Minimum spanning forests

We establish the optimality of watersheds. To this end, we introduce the notion of minimum spanning forests

rooted in some subgraphs of G. Each of these forests induces a unique graph cut. The main result of this

study (Th. 19) states that a graph cut is induced by a minimum spanning rooted in the minima of a function

if and only if it is a watershed of this function.

Definition 18 (rooted MSF, [14])

Let G1 and G2 be two nonempty subgraphs of G. We say that G2 is rooted in G1 if V(G1)⊆ V(G2) and if the

vertex set of any component of G2 contains the vertex set of exactly one component of G1. Recall that the

weight of G1 is the sum of its weight, i.e. ∑ei j∈E(G1) wi j

We say that G2 is a minimum spanning forest (MSF) rooted in G1 if (1) G2 is spanning for V, (2) G2 is

rooted in G1, and (3) the weight of G2 is less than or equal to the weight of any graph G3 satisfying (1) and

(2) (i.e., G3 is both spanning for V and rooted in G1). The set of all minimum spanning forests rooted in G1

is denoted by MSF(G1).

The above definition of rooted MSFs allows the usual notions of graph theory based on trees and forests

to be recovered. In particular, if v is a vertex of V , it can be seen that any element in MSF({v}, /0) is

a minimum spanning tree of (G,w), and that, conversely, any minimum spanning tree of (G,w) belongs

to MSF({v}, /0).

Let us consider the edge-weighted graph G and the subgraph M (in bold) of Fig. 1.6a. It can be verified

that the graph G1 (in bold in Fig. 1.6c) is an MSF rooted in M.

We now have the mathematical tools to present the main result of this section (Th. 19) which establishes

the optimality of watersheds.

Let G1 be a subgraph of G and let G2 be a spanning forest rooted in G1. There exists a unique cut for G2

and this cut is also a cut for G1. We say that this unique cut is the cut induced by G2.

Theorem 19 (optimality, [13])

Let S⊆ E. The set S is a cut induced by a MSF rooted in M if and only if S is a watershed cut.

1.6.4 Illustrations to segmentation

In this subsection, we illustrate the versatility of the proposed framework to perform segmentation on differ-

ent kinds of geometric objects. Firstly, we show how to segment triangulated surfaces by watershed cuts, and
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(a) (b)

(c)

(d) (e) ( f )

Figure 1.7: Surface segmentation by watershed cut. (a): A mesh in black and its associated graph in gray.

(b): A cut on this graph (in bold); and (c), the corresponding segmentation of the mesh. (d): Rendering of

the mesh of a sculpture. (e): A watershed (in red) of a map F which behaves like the inverse of the mean

curvature and, in ( f ), a watershed of a filtered version of F . The mesh shown in (d) is provided by the

French Museum Center for Research.

secondly we apply the watershed cuts to the segmentation of diffusion tensors images, which are medical

images associating a tensor to each voxel.

3D shape acquisition and digitizing have received more and more attention for a decade, leading to an

increasing amount of 3D surface-models (or meshes) such as the one in Fig. 1.7d. In a recent work [50], a

new search engine has been proposed for indexing and retrieving objects of interests in a database of meshes

(EROS 3D) provided by the French Museum Center for Research. One key idea of this search engine is to

use region descriptors rather than global shape descriptors. In order to produce such descriptors, it is then

essential to obtain meaningful mesh segmentations.

Informally, a mesh M in the 3D Euclidean space is a set of triangles, sides of triangles and points such

that each side is included in exactly two triangles (see Fig. 1.7a). In order to perform a watershed cut on

such a mesh, we build a graph G= (V,E) whose vertex set V is the set of all triangles in M and whose edge

set E is composed by the pairs ei j = {vi,v j} such that vi and v j are two triangles of M that share a common

side (see Fig. 1.7a). The graph G is known under the name of 2-dual of the surface mesh [51].

To obtain a segmentation of the mesh M thanks to a watershed cut, we need to weight the edges of G (or

equivalently the sides of M) by a map whose values are high around the boundaries of the regions that we

want to separate. We have found that the interesting contours on the EROS 3D meshes are mostly located

on concave zones. Therefore, we weight the edges of G by a weighting w which behaves like the inverse
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(a) (b) (c)

Figure 1.8: Diffusion tensor images segmentation. (a): A close-up on a cross-section of a 3D brain DTI.

(b): Image representation of the markers (same cross-section as (a)), obtained from a statistical atlas, for the

corpus callosum (dark gray) and for its background (light gray) (c): Segmentation of the corpus callosum by

an MSF-cut for the markers. The tensors belonging to the component of the MSF which extends the marker

labelled “corpus callosum” are removed from the initial DTI: thus the corresponding voxels appear black.

of the mean curvature of the surface (see [50] for more details). Then, we can compute a watershed cut (in

bold in Fig. 1.7b) which leads to a natural and accurate mesh segmentation in the sense that the “borders”

of the regions are made of sides of triangles (in bold in Fig. 1.7c) of high curvature.

The direct application of this method on the mesh shown Fig. 1.7d leads to a strong over-segmentation

(Fig. 1.7e) due to the huge number of local minima. By using the methodology introduced in section 1.5 to

remove from w all the minima which have a depth lower than a predefined threshold (here 50) A watershed

cut of the filtered w is depicted in Fig. 1.7f.

In the medical context, Diffusion Tensor Images (DTIs) [52] provide a unique insight into oriented

structures within tissues. A DTI T maps the set of voxels V ⊆ Z3 (i.e. V is a cuboid of Z3) into the set

of 3×3 tensors (i.e. 3×3 symmetric positive definite matrices). The value T (v) of a DTI T at a voxel v ∈ V
describes the diffusion of water molecules at v. For instance, the first eigenvector of T (v) (i.e. the one

whose associated eigenvalue is maximal) provides the principal direction of water molecules diffusion at

point x and its associated eigenvalue gives the magnitude of the diffusion along this direction. Since water

molecules highly diffuse along fiber tracts and since the white matter of the brain is mainly composed of

fiber tracts, DTIs are particularly adapted to the study of brain architecture. Fig. 1.8a shows a representation

of a cross-section of a brain DTI where the tensors are represented by ellipsoids. Indeed, the data of a tensor

is equivalent to the one of an ellipsoid. In the brain, the corpus callosum is an important structure made of
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fiber tracts connecting homologous areas of each hemisphere. In order to track the fibers that pass through

the corpus callosum, it is necessary to segment it first. The next paragraph briefly reviews how to reach this

goal thanks to watershed cuts [47].

We consider the graph G = (V,E) induced by the 6-adjacency and defined by ei j ∈ E iff vi ∈ V,v j ∈ V

and Σk∈{1,2,3}|vk
i − vk

j|= 1, where vi = (v1
i ,v

2
i ,v

3
i ) and v j = (v1

j ,v
2
j ,v

3
j). In order to weight any edge ei j of G

by a dissimilarity measure between the tensors T (vi) and T (v j), we choose the Log-Euclidean distance

which is known to satisfy interesting properties [53]. Then, we associate to each edge ei j ∈ E the weight

wi j = ‖ log(T (vi))− log(T (v j))‖, where log denotes the matrix logarithm and ‖.‖ the Euclidean (sometimes

also called Frobenius) norm on matrices. To segment the corpus callosum in this graph, we extract (thanks

to a statistical atlas), markers for both the corpus callosum and its background and we compute an MSF-cut

for these markers. An illustration of this procedure is shown in Figs. 1.8.

To conclude this section, let us mention that spatio-temporal graphs are also feasible. For example,

in [54], a 3D+t segmentation of the left-ventricle on cine-MR images was computed, showing an improvemnt

with respect to the segmentation of each 3D volume separately.

1.7 MSF cut hierarchy and saliency maps

We now study some optimality properties of hierarchical segmentations (see [55, 56, 57, 58, 59, 60] for

examples of hierarchical segmentations) in the framework of edge-weighted graphs, where the cost of an

edge is given by a dissimilarity between two points of an image. Since the pioneering work of [39, 40] stating

an equivalence between hierarchies and minimum spanning trees (MST), a large number of hierarchical

schemes rely on the construction of such a tree (see [21] for one of the oldest). We formalize a fundamental

operation called uprooting that allows us to merge a marked region with one of its neighbors with the

cheapest cost. When applied sequentially on the weighted graph of neighboring regions, the uprooting

builds a MST of this neighboring graph. Intuitively, one can see that, if one starts from a minimum spanning

forest (MSF) rooted in the minima of the image (or, equivalently, from a watershed cut), then one builds a

hierarchy of MSFs of the original image itself, the last uprooting step giving an MST of this original image.

More surprisingly, Th. 23 states that the two processes are equivalent: any MST of the original image can

be built from an uprooting sequence on a watershed cut. Thus, watershed cuts are the only watershed that

allows the building of hierarchical segmentations that are optimal with respect to the original image, in the

sense that they “preserve” the MST of the original image.

Definition 20 (MSF hierarchy, [14])

Let M = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima of w and let T = 〈G0, . . .G`〉 be a sequence

of subgraphs of G. We say that T is an MSF hierarchy for S if for any i ∈ [0, `], the graph Gi is an MSF
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Figure 1.9: (a): An edge-weighted graph G, the minima of w are depicted in bold. (b): A watershed cut

represented by dashed edges; the watershed cut is equivalent to the graph G0 ∈MSF(M) represented in bold.

(c,d): two bold graphs called respectively G1 and G2 such that T = 〈G0,G1,G2〉 is both an MSF hierarchy

for and an uprooting by 〈M1,M2〉 (where Mi is the minimum of w whose altitude is i); their associated cuts

are represented by dashed edges. (e): The saliency map of the MSF hierarchy 〈G0,G1,G2〉.

rooted in t[M\{M j | j ∈ [1, i]}], and for any i ∈ [1, `], we have Gi−1 v Gi.

Theorem 21 ([61, 14])

Any Gi of an MSF hierarchy is a watershed cut of the geodesic reconstruction wR where the markers are the

minima rooting the MSF Gi.

1.7.1 Uprootings and MSF hierarchies

In this section, we introduce a simple transformation, called uprooting, that allows a forest G1 rooted in a

graph G2 to be incrementally transformed into a forest G3 rooted in a graph G4 obtained by removing some

components of G2. Through an equivalence theorem, we establish an important link between the uprooting

transform and the MSF hierarchies. This result opens the way toward efficient algorithms for computing

MSF hierarchies.

Let G1 be a subgraph of G that is spanning for V, and let v ∈ V. We denote by CCv(G1) the component

of G1 whose vertex set contains v. Let V′ ⊆ V, we set CCV′(G1) = t{CCv(G1) | v ∈ V′}.
Let G1 v G, and let ei j = {vi,v j} ∈ E. The edge ei j is outgoing from G1 if ei j is made of a vertex in V(G1)

and of a vertex in V(G1). In the following, by abuse of notation, we write G1t{ei j} for the supremum of G1

and the graph induced by {ei j}: G1t{ei j}= (V(G1)∪ ei j,E(G1)∪{ei j}).
Let G1,G2, and G3 be three subgraphs of G such that G1 is spanning for V and such that G1 6= G2. We say

that G2 is an elementary uprooting of G1 by G3 if there exists an edge e of minimum weight among the edges

outgoing from CCV(G3)(G1) such that G2 = G1t{u}. We also say that G2 is an elementary uprooting of G1

by G3 if G2 = G1 and if there is no edge outgoing from CCV(G3)(G1).

Definition 22 ([14])

Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima of w. An uprooting by S is a sequence
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〈G0, . . . ,G`〉 of graphs such that G0 ∈MSF(M) and, for any i ∈ [1, `], Gi is an elementary uprooting of Gi−1

by Mi.

Theorem 23 ([14])

Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima of w. Let T = 〈G0, . . .G`〉 be a sequence of

subgraphs of G. The sequence T is an MSF hierarchy for S if and only if the sequence T is an uprooting

by S .

1.7.2 Saliency maps

The cuts of the sequence of any MSF hierarchy can be stacked to form a weighting called the saliency map.

The saliency map allows us to easily assess the quality and the robustness of a hierarchical segmentation.

Furthermore, it is a weigthed graph, and can be further processed if needed, for example to remove small

regions unwanted in the hierarchy.

Let us give a precise defition of the saliency map [56, 14]. We first need to define, for a graph G, the map

φ as φ(G) = t{α2(Gi) | Gi is a component of G}. In other words, φ(G) is the union of all the graphs induced

by the connected components of G. It is easy to see that φ is an opening.

Let M = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima of w and Let T = 〈G0, . . .G`〉 be a

MSF hierarchy for M . The saliency map s for T is the map such that for any ei j ∈ E, either si j = k if there

exists k such that k is the lowest number satisfying ei j ∈ φ(Gk) or si j = l+1 if it does not exists any Gk such

that ei j ∈ φ(Gk). Observe in particular that if ei j ∈ E(φ(G0)), si j = 0 and that s[λ] = φ(Gλ) for λ ∈ {0, · · · , l}.

Under the term of ultrametric watershed, one can give a computable definition to saliency maps, allow-

ing to show the equivalenve between the set of hierarchical segmentations and the set of saliency maps [60].

1.7.3 Application to image segmentation

To use the framework in practice, we have to design an order on the minima of w. Let µ be an attribute on

C<
E (i.e. a function from C<

E to R that is increasing on C<
E ) such as the area, the volume or the height. We

compute an extinction measure [62, 63] µe to each minima of w by first definining a strict total order relation

≺ on the set of minima (based for example on the altitude of each minimum) such that M0 ≺M1 ≺ ·· · ≺Ml;

then we set µe(M0) = ∞ and

µe(Mi) = min{µ([λ,C]) | [λ,C] ∈ C<
E , there exists M j a minimum of w, M j ≺Mi} (1.5)

The map µe will define the order≺e of the sequence for the hierachy of MSF: Mi ≺e M j whenever µe(Mi)<

µe(M j).
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Other choices for the ordering are possible: for example waterfall [64], that consists in computing a

sequence of watersheds of watersheds, each step leading to a drastic reduction in the number of basins. An-

other interesting ordering is done by optimization [57]). Let us consider a two-term-based energy function

of the form λC+D, where D is a goodness-of-fit term and C is a regularization term. Finding an optimum

of this function is NP-hard in the general case. On the other hand, on a hierarchy (hence, on a watershed

cut), when the goodness-of-fit term decreases with the fineness of the partitions, and, inversely, that the

regularization term increases with this fineness, we can show that finding an optimum can be done in linear

time, by dynamic programming. Such an optimization is an efficient way to control the flooding, that is

stopped when the optimum is reached. Varying the λ parameter allows us to obtain a complete hierarchy of

segmentations.

Fig. 1.10b,c, and d illustrates some saliency maps on the image of Fig. 1.10a. The underlying graph is the

one induced by the 4-adjacency relation whose edges are weighted by a simple color gradient (maximum,

over the RGB channels, of the absolute differences of pixel values). The minima are ordered thanks to

extinction values [62] related to depth, volume and color consistency.

(a) (b) (c) (d)

Figure 1.10: Illustration of saliencies of watershed cuts (original picture (a) from koakoo:

http://blog.photos-libres.fr/).

1.8 Optimization and the Power Watershed

In this section, we review the Power Watershed framework [15] (see also Leo Grady’s chapter, this book).

In the previous sections dealing with watershed cuts, the weights encode a dissimilarity such as a gradient.

Classicaly, in the context of segmentation and clustering applications based on optimization, the weights

encode affinity such that vertices connected by an edge with high weight are considered to be strongly

connected and edges with a low weight represent nearly disconnected vertices. One common choice for

generating weights from image intensities is to set a Gaussian weighting such as

wi j = exp(−β(∇I)2), (1.6)
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@
@
@
@@

q

p
0 finite ∞

1 Collapse to seeds Max-Flow (Graph cuts) Power watershed q = 1

2 `2 norm Voronoi Random walker Power watershed q = 2

∞ `1 norm Voronoi `1 norm Voronoi Shortest Path Forest

Table 1.1: The generalized scheme of [15] for image segmentation includes several popular segmentation

algorithms as special cases of the parameters p and q. The power watershed may be optimized efficiently

with a maximum spanning forest calculation.

where ∇I is the normalized gradient of the image I. The gradient for a grey level image is Ii− I j. As the

weights are inverted, the maxima are considered instead of minima, and a thalweg is computed instead of

watershed. A thalweg is the deepest continuous line along a valley. In the rest of the paper, we continue to

use by convention the term “watershed” instead of “thalweg”.

Given foreground F and background B seeds, and p,q two real positive values, the energy presented for

binary segmentation in [15] is given by

x?pq = argmin
x ∑

ei j∈E
wp

i j|xi− x j|q s.t. x(F) = 1, x(B) = 0. (1.7)

In this energy, wi j can be interpreted as a weight enforcing a regularization of the contours, such that any

(usually unwanted) high-frequency content is penalized in x. The energy defined in (1.7) essentially forces

x to remain smooth within the object, while allowing it to vary quickly close to point clusters near the

boundary of the object. The data constraints enforce fidelity of x to a specified configuration, taking the

values zero and one as the reconstructed object indicator. Observe that the values of x may not necessarily

be binary when the value of q is strictly greater than one.

The different values of p and q lead to different algorithms for optimizing the energy. Those algorithms

form the underpinning for many of the advanced image segmentation methods in the literature. Table 1.1

gives a reference for the different algorithms generated by various values of p and q. The limit cases are the

limit of the minimizers of eq. (1.7), e.g., the case p→ ∞ reads

x?q = lim
p→∞

x?pq. (1.8)

Let us highlight the main choices for those parameters.

• When the power on the weight, p, is finite, and the exponent q = 1, we recover [61] the Max-Flow

(Graph Cuts) energy which can be optimized by a max flow algorithm.
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• When q = 2, we obtain a combinatorial Dirichlet problem also known as the Random walker prob-

lem [65].

• When q and p converge toward infinity with the same speed, then [66] a solution to (1.8) can be

computed by the shortest path (geodesics) algorithm [6, 67].

• As described in [15], by raising the power p toward infinity and varying the power q we obtain a

family of segmentation models which we refer to as power watershed, that we detail below.

A primary advantage of power watershed with varying q is that the main computational burden of these

algorithms depends on an MSF computation, which is extremely efficient [68]. For example, interpreted

from the standpoint of the Gaussian weighting function in (1.6), it is clear that we may associate β = p

to understand that the watershed equivalence comes from operating the weighting function in a particular

parameter range. In the case q = 1, an important insight from this connection is that above some value of β

we can replace the expensive max-flow computation with an efficient maximum spanning forest computation.

Let us review some important theoretical results. First, we highlight that the cut obtained when mini-

mizing the energy (1.8) is a watershed cut [13], and thus a Maximum Spanning Forests [13] (MSF). Let x?

be a solution to (1.8) and s be the segmentation result defined as si = 1 if x?i ≥ 1
2 ,0 if x?i < 1

2 .. The set of

edges ei j such that si 6= s j is a q-cut.

Theorem 24 ([15])

For q≥ 1, any q-cut is a watershed cut of the (geodesically) reconstructed weights.

Furthermore, if every connected component of M contains at least a vertex of B∪F , and q≥ 1, then any

q-cut when p→ ∞ is an MSF cut for w.

An algorithm is presented in Algorithm 1 to optimize the (unique) watershed that optimizes the energy

for q≥ 1 and p→ ∞. The set of parameters p→ ∞ and q = 2 is particularly interesting.

1. The power watershed algorithm in the case q = 2 has a well-defined behavior in the absence or lack

of weight information (presence of plateaus); indeed, as the energy is strictly convex, the solution to

(1.8) is unique.

2. The worst-case complexity of the power watershed algorithm in the case p→∞ is given by the cost of

optimizing (1.7) for the given q. In the best-case scenario (all weights have unique values), the power

watershed algorithm has the same asymptotic complexity as the algorithm used for a MSF computa-

tion (quasi-linear). In practical applications where the plateaus have a size less than some fixed value

K, then the complexity of the power watershed algorithm matches the quasi-linear complexity of the

standard watershed-cut algorithm.
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Algorithm 1: Power watersheds algorithm p→ ∞,q > 1
Data: A weighted graph G(V,E) comprising known labels x(B),x(F).

Result: A potential function x̄ (solution of (1.8) thanks to Th. 25.)

while any node has an unknown label do

Find a maximal subgraph S ∈ G composed of edges of maximal weight;

if S contains any nodes with known x then

Find xS minimizing (1.7) for q on the subset S;

Consider all xS values produced by this operation as known;

else
Merge all of the nodes in S into a single node, such that when the value of x for this merged

node becomes known, all merged nodes are assigned the same value of x and considered

known;

The main properties of Algorithm 1 (with q≥ 1) are summarized in the following theorem. This theorem

states that the energy found by the algorithm is the correct one, i.e. x?q = x̄, and that furthermore, the

computed cut is a MSF cut.

Theorem 25 ([15])

If q > 1, the potential x? obtained by minimizing the energy of (1.7) subject to the boundary constraints

converges toward the potential x̄ obtained by Algorithm 1 as p→ ∞.

Furthermore, for any q≥ 1, the cut C defined by the segmentation s computed by Algorithm 1 is an MSF

cut for w.

1.8.1 Applications

Minimizing exactly the energy E1,1 is possible by using the graph cuts (i.e. q = 1) algorithm in the case

of two labels, but is NP-hard if constraints impose more than two different labels. However, the other al-

gorithms presented in the framework (and in particular the watershed cuts and the power watershed) can

efficiently perform seeded segmentation with as many labels as desired [15]. As several examples of seg-

mentation have already been shown in this chapter, we rather highlight two other applications that take

advantage the unique optimization characteristics of the power watershed.

The first example is shape fitting: surface reconstruction from a set of noisy point measurements has

been a well studied problem over the last decades. Recently, variational [71, 72] and discrete optimization

[73] approaches have been applied to solve it, demonstrating good robustness to outliers thanks to a global

energy minimization scheme. In [69], Couprie et al. use the power watershed framework to derive a specific
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(a) (b) (c) (d) (e)

Figure 1.11: Two applications of power watershed. (a-c) Shape fitting using Power Watershed [69]. (a)

Reconstructed bunny. (b) A close-up on one of the ears. (c) A close-up on the set of original scanned

noisy points measurements. (d-e) Filtering of a liver image by anisotropic diffusion driven by power water-

shed [70]. In (e) noise and small vessels are both removed from (d), leading to a result which may be used

as a first step before segmentation.

watershed algorithm for surface reconstruction. The proposed algorithm is fast, robust to marker placement,

and produces smooth surfaces. Figure 1.11(a-c) shows a surface reconstructed from noisy scanned dot sets

using the power watershed algorithm.

The second example deals with filtering. In [70], Couprie et al. reformulate the problem of anisotropic

diffusion as an L0 optimization problem, and show that power watersheds are able to optimize this energy

quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose

minimizer in many different computer vision contexts. An example of such an L0 optimization is presented

in Fig. 1.11(d-e).

1.9 Conclusion

We have presented in this paper some applications of mathematical morphology to weighted graphs. The

translation of the abstract framework of lattices to graphs allows us to obtain morphological operators thinner

(in the sense that they process smaller details) than the usual ones usually defined only on the vertices. We

have shown how to filter an image using connected filters based on a tree representation of the image.

We have exhibited the links between watersheds and minimum spanning trees, allowing us to make the

equivalence between hierarchical segmentation based on watershed cuts and minimum spanning trees. We

conclude the chapter by exploring links between the morphological and the optimization approaches.

For practical applications, we want to stress the importance of having a framework with an open-source

generic implementation of existing algorithms, not limited to the pixel framework, but also able to deal

transparently with edges, or, more generally, with graphs and complexes [74].
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adjunction, 6

anisotropic diffusion, 26

catchment basin, 15

closing, 8

component tree, 12

dilation, 6

duality, 7

edge, 3

erosion, 6

extension, 14

extinction, 21

filter, 8

flooding, 12

forest

minimum spanning, 16

graph, 3

induced, 14

graph cuts, 23

hierarchy, 13

MSF, 19

infimum, 3

lattice, 3

complete, 3

mesh, 17

minimum spanning tree, 16

MSF, see forest, minimum spanning

opening, 8

point, 3

random walker, 24

reconstruction

geodesic, 13

saliency map, 21

shape fitting, 25

supremum, 3

tree

component, 12

uprooting, 20

vertex, 3

watershed

cut, 14

power, 24

ultrametric, 21
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