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Abstract. This paper deals with the approximate string-matching prob-
lem with Hamming distance. The approximate string-matching with k-
mismatches problem is to find all locations at which a query of length
m matches a factor of a text of length n with k or fewer mismatches.
The approximate string-matching algorithms have both pleasing theoret-
ical features, as well as direct applications, especially in computational
biology. We consider a generalisation of this problem, the fixed-length ap-

proximate string-matching with k-mismatches problem: given a text t, a
pattern x and an integer ℓ, search for all the occurrences in t of all factors
of x of length ℓ with k or fewer mismatches with a factor of t. We present
a practical parallel algorithm of comparable simplicity that requires only
O(nm⌈ℓ/w⌉

p
) time, where w is the word size of the machine (e.g. 32 or 64

in practice) and p the number of processors. Thus the algorithm’s per-
formance is independent of k and the alphabet size |Σ|. The proposed
parallel algorithm makes use of message-passing parallelism model, and
word-level parallelism for efficient approximate string-matching.

Key words: string algorithms, parallel algorithms, approximate string-
matching

1 Introduction

The problem of finding factors of a text similar to a given pattern has been
intensively studied over the last thirty years and it is a central problem in a wide
range of applications, including file comparison, spelling correction, information
retrieval, and searching for similarities among biosequences.

One of the most common variants of the approximate string-matching prob-
lem is that of finding factors that match the pattern with at most k-differences.
The first algorithm addressing exactly this problem is attributable to Sellers [15].
Sellers algorithm requires O(mn) time, where m is the length of the query and
n is the length of the text. One of the first intensive study on the question is
by Ukkonen [16]. A thread of practice-oriented results exploited the hardware
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word-level parallelism of bit-vector operations. Wu and Manber in [18] showed
an O(knm/w) algorithm for the k-differences problem, where w is the num-
ber of bits in a machine word. Baeza-Yates and Navarro in [1] have shown a
O(knm/w) variation on the Wu-Manber algorithm, implying O(n) performance
when km = O(w). Another general solution based on existing algorithms can be
found in [3].

In this paper, we consider the following versions of the sequence compari-
son problem: given a solution for the comparison of A and B = bB̂, can one
incrementally compute a solution for A versus B̂? and given a solution for the
comparison of A and B̂, can one incrementally compute a solution for A versus
B̂c? Here b and c are additional symbols. By solution we mean some encoding of
a relevant portion of the traditional dynamic programming matrix D computed
for comparing A and B.

Landau, Myers and Schmidt in [8] demonstrated the power of efficient algo-
rithms answering the above questions, with a variety of applications to computa-
tional problems such as “the longest common subsequence problem”,“the longest
prefix approximate match problem”, “approximate overlaps in the fragment as-
sembly problem”, “cyclic string comparison” and “text screen updating”.

The above ideas are the bases of the fixed-length approximate string-matching

problem: given a text t of length n, a pattern x of length m and an integer ℓ,
compute the optimal alignment of all factors of x of length ℓ with factors of t.
Iliopoulos, Mouchard and Pinzon in [7] presented the Max-Shift algorithm, a
bit-vector algorithm that requires O(nm⌈ℓ/w⌉) time and its performance is inde-
pendent of k. As such, it can be used to compute blocks of dynamic programming
matrix as the 4-Russians algorithm (see [19]).

In this paper, we consider the fixed-length approximate string-matching with

k-mismatches problem: given a text t, a pattern x and an integer ℓ, search for
all the occurrences in t with k or fewer mismatches of all factors of x of length ℓ.
There has been ample work in the literature for devising parallel algorithms for
different models and platforms, for the approximate string-matching problem [2],
[4], [6], [10], [13]. We design and analyse a practical parallel algorithm for address-
ing the fixed-length approximate string-matching problem with k-mismatches in

O(nm⌈ℓ/w⌉
p ) time. Thus the algorithm’s performance is independent of k and

the alphabet size |Σ| (provided that a letter fits in a computer word). The pro-
posed algorithm makes use of message-passing parallelism model, and word-level
parallelism for efficient approximate string matching.

The rest of the paper is structured as follows. In Section 2, the basic defini-
tions that are used throughout the paper are presented. In Section 3, we formally
define the problem solved in this paper. In Sections 4 and 5, we present the se-
quential and the parallel algorithm, respectively. In Section 6, we present the
experimental results of the proposed algorithm. Finally, we briefly conclude in
Section 7.
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2 Basic Definitions

A string or sequence is a succession of zero or more symbols from an alphabet
Σ of cardinality s ; the string with zero symbols is denoted by ǫ. The set of
all strings over the alphabet Σ is denoted by Σ∗. A string x of length m is
represented by x[1 . . m], where x[i] ∈ Σ for 1 ≤ i ≤ m. The length of a string
x is denoted by |x|. We say that Σ is bounded when s is a constant, unbounded

otherwise. A string w is a factor of x if x = uwv for u, v ∈ Σ∗.

Consider the sequences x and y with x[i], y[i] ∈ Σ ∪ {ǫ}. If x[i] 6= y[i], then
we say that x[i] differs from y[i]. We distinguish among the following three types
of differences:

1. A symbol of the first sequence corresponds to a different symbol of the second
one, then we say that we have a mismatch between the two characters, i.e.,
x[i] 6= y[i].

2. A symbol of the first sequence corresponds to “no symbol” of the second
sequence, that is x[i] 6= ǫ and y[i] = ǫ. This type of difference is called a
deletion.

3. A symbol of the second sequence corresponds to “no symbol” of the first
sequence, that is x[i] = ǫ and y[i] 6= ǫ. This type of difference is called an
insertion.

As an example of the types of differences, see Figure 1.

1 2 3 4 5 6 7 8

String x: B A D F E ǫ C A
| | | | |

String y: B C D ǫ E B C A

Fig. 1: Types of differences: mismatch in position 2 (A, C), deletion in position 4 (F,
ǫ), insertion in position 6 (ǫ, B)

Another way of seeing this difference is that one can transform the x sequence
to y by performing operations. The edit distance, δE(x, y), between strings x and
y, is the minimum number of operations required to transform x into y. These
operations are Replacement of a mismatched symbol, a Deletion or an Insertion

of a symbol. The edit distance is symmetrical, and it holds 0 ≤ δE(x, y) ≤
max(|x|, |y|).

Let t = t[1 . . n] and x = x[1 . . m] with m ≤ n. We say that x occurs at
position q of t with at most k-differences (or equivalently, a local alignment of

x and t at position q with at most k-differences), if t[q] . . . t[r], for some r > q,
can be transformed into x by performing at most k of the following operations:
inserting, deleting or replacing a symbol.
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The Hamming distance δH is defined only for strings of the same length. For
two strings x and y, δH(x, y) is the number of places in which the two strings
differ, i.e. have different characters. Formally

δH(x, y) =

|x|
∑

i=1

1x[i] 6=y[i] , where 1x[i] 6=y[i] =

{

1, if x[i] 6= y[i]
0, otherwise

(1)

The Hamming distance is symmetrical, and it holds 0 ≤ δH(x, y) ≤ |x|.

3 Problem Definition

The focus is on computing matrix M , which contains the number of mismatches
of all factors of pattern x of length ℓ and any contiguous factor of the text t of
length ℓ.

Example. Let the text t = x = GGGTCTA and ℓ = 3. Table 1 shows the matrix
M .

0 1 2 3 4 5 6 7

ǫ G G G T C T A

0 ǫ 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 2 1 0 0 1 2 2 2
3 G 3 2 1 0 1 2 3 3
4 T 3 3 2 1 0 2 2 3
5 C 3 3 3 2 2 0 3 2
6 T 3 3 3 3 2 3 0 3
7 A 3 3 3 3 3 2 3 0

Table 1: Matrix M for t = x = GGGTCTA and ℓ = 3.

Example. Let the text t = GTGAACT , x = GTCACGT and ℓ = 3. Table 2
shows the matrix M .

The fixed-length approximate string-matching with at most k-mismatches

problem can be formally defined as follows.

Problem 1. Given a text t of length n, a pattern x of length m and an integer
ℓ, find all factors of x of length ℓ that match any contiguous factor of t of length
ℓ with at most k-mismatches.
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0 1 2 3 4 5 6 7

ǫ G T G A A C T

0 ǫ 0 0 0 0 0 0 0 0
1 G 1 0 1 0 1 1 1 1
2 T 2 2 0 2 1 2 2 1
3 C 3 3 3 1 3 2 2 3
4 A 3 3 3 3 1 2 3 2
5 C 3 3 3 3 3 2 1 3
6 G 3 2 3 2 3 3 2 1
7 T 3 3 1 3 2 3 3 2

Table 2: Matrix M for t = GTGAACT , x = GTCACGT and ℓ = 3.

4 The Bit-Vector-Mismatches Algorithm

Iliopoulos, Mouchard and Pinzon in [7] presented the Max-Shift algorithm, a
bit-vector algorithm that solves the fixed-length approximate string-matching

problem: given a text t of length n, a pattern x of length m and an integer ℓ,
compute the optimal alignment of all factors of x of length ℓ and a factor of
t. The focus of the Max-Shift algorithm is on computing matrix D′, which
contains the best scores of the alignments of all factors of pattern x of length ℓ
and any contiguous factor of the text t.

The Max-Shift algorithm makes use of word-level parallelism in order to
compute matrix D′ efficiently, similar to the manner used by Myers in [12]. The
algorithm is based on the O(1) time computation of each D′[i, j] by using bit-
vector operations, under the assumption that ℓ ≤ w, where w is the number
of bits in a machine word or O(ℓ/w)-time for the general case. The algorithm
maintains a bit-vector matrix B[0 . . m, 0 . . n], where the bit integer B[i, j], holds
the binary encoding of the path in D′ to obtain the optimal alignment at i, j
with the differences occurring as leftmost as possible.

Here the key idea is to devise a bit-vector algorithm for the fixed-length

approximate string-matching with at most k-mismatches problem. We maintain
the bit-vector B[i, j] = bℓ . . b1, where bλ = 1, 1 ≤ λ ≤ ℓ, if there is a mismatch
of a contiguous factor of the text t[i − ℓ + 1 . . i] and x[j − ℓ + 1 . . j] in the λth

position. Otherwise we set bλ = 0.

Given the restraint that the integer ℓ is less than the length of the computer
word w, then the bit-vector operations allow to update each entry of the ma-
trix B in constant time (using “shift”-type of operation on the bit-vector). The
maintenance of the bit-vector is done via operations defined as follows:

1. shiftc(x): shifts and truncates the leftmost bit of x.

2. δH(x, y): returns the minimum number of replacements required to transform
x into y
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The Bit-Vector-Mismatches algorithm for computing the bit-vector ma-
trix B and matrix M is outlined in Figure 2.

Bit-Vector-Mismatches

⊲Input: t, n, x, m, ℓ

⊲Output: B, M

1 begin

2 ⊲ Initialisation

3 for i← 0 until n do

4 B[0, i]← 0; M [0, i]← 0

5 for i← 0 until m do

6 B[i, 0]← min(i, ℓ) 1’s; M [i, 0]← min(i, ℓ)

7 ⊲ Matrix B and Matrix M computation

8 for i← 1 until m do

9 for j ← 1 until n do

10 B[i, j]← shiftc(B[i− 1, j − 1]) or δH(x[i], t[j])

11 M [i, j]← ones(B[i, j])

12 end

Fig. 2: The Bit-Vector-Mismatches algorithm for computing matrix B and matrix
M

Example. Let the text t = x = GGGTCTA and ℓ = 3. Table 3 shows the bit-
vector matrix B. Consider the case when i = 7 and j = 5. Cell B[7, 5] = 101
denotes that factors t[3 . . 5] = CTA and t[5 . . 7] = GTC have a mismatch in
position 1, a match in position 2, and a mismatch in position 3, resulting in a
total of two mismatches, as shown in cell M [7, 5] (see Table 1).

0 1 2 3 4 5 6 7

ǫ G G G T C T A

0 ǫ 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 11 10 00 00 01 11 11 11
3 G 111 110 100 000 001 011 111 111
4 T 111 111 101 001 000 011 110 111
5 C 111 111 111 011 011 000 111 101
6 T 111 111 111 111 110 111 000 111
7 A 111 111 111 111 111 101 111 000

Table 3: The bit-vector matrix B for t = x = GGGTCTA and ℓ = 3.
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Assume that the bit-vector matrix B[0 . .m, 0 . . n] is given. We can use the
function ones(v), which returns the number of 1’s (bits set on) in the bit-vector
v, to compute matrix M (see Figure 2, line 11).

Theorem 1. Given the text t = t[1 . . n], the pattern x = x[1 . . m], the motif
length ℓ, and the size w of the computer word, the Bit-Vector-Mismatches

algorithm correctly computes the matrix M in O(nm⌈ℓ/w⌉) units of time.

Proof. Without loss of generality, assume that we want to compute cell M [i, j],
where

M [i, j] = δH(x[i − ℓ + 1 . . i], t[j − ℓ + 1 . . j]) (2)

It is not difficult to see that,

δH(x[i−ℓ+1 . . i], t[j−ℓ+1 . . j]) = δH(x[i−ℓ+1 . . i−1], t[j−ℓ+1 . . j−1])+δH(x[i], t[j])
(3)

Let last(b[ℓ] . . b[1]) be an operation that returns the leftmost bit of the bit-
vector b. It follows that,

δH(x[i−ℓ+1 . . i−1], t[j−ℓ+1 . . j−1]) = M [i−1, j−1]−last(B[i−1, j−1]) (4)

From Equations 2, 3 and 4,

M [i, j] = M [i − 1, j − 1] − last(B[i − 1, j − 1]) + δH(x[i], t[j]) (5)

Equation 5 is equivalent to line 10 of the Bit-Vector-Mismatches algo-
rithm. ⊓⊔

Hence, this algorithm runs in O(nm) under the assumption that ℓ ≤ w and
its space complexity is reduced to O(n) by noting that each row of B depends
only on its immediately preceding row.

5 The Parallel-Bit-Vector-Mismatches Algorithm

The next proposed parallel algorithm makes use of the message-passing paral-
lelism model by using p processors. The following assumptions for the model
of communications in the parallel computer are made. The parallel computer
comprises a number of nodes. Each node comprises one or several identical pro-
cessors interconnected by a switched communication network. The time taken to
send a message of size n between any two nodes is independent of the distance
between nodes and can be modelled as tcomm = ts +ntw, where ts is the latency
or start-up time of the message, and tw is the transfer time per data. The links
between two nodes are full-duplex and single-ported: a message can be trans-
ferred in both directions by the link at the same time, and only one message can
be sent and one message can be received at the same time.

We will use the functional decomposition, in which the initial focus is on the
computation that is to be performed rather than on the data manipulated by
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the computation. We assume that both text t and pattern x are stored locally
on each processor. This can be done by using a one-to-all broadcast operation in
(ts + tw(n + m)) log p communication time, which is asymptotically O(n log p).

The key idea behind parallelising the Bit-Vector-Mismatches algorithm,
is that cell B[i, j] can be computed only in terms of B[i − 1, j − 1]. Based on
this, if we partition the problem of computing matrix B (and M) into a set of
diagonal vectors ∆0, ∆1, . . , ∆n+m, as shown in Equation 6, the computation of
each one of these would be independent, and hence parallelisable.

∆ν [x] =







B[ν − x, x] : 0 ≤ x ≤ ν, (a)
B[m − x, ν − m + x] : 0 ≤ x < m + 1, (b)
B[m − x, ν − m + x] : 0 ≤ x < n + m − ν + 1, (c)

(6)

where,
(a) if 0 ≤ ν < m
(b) if m ≤ ν < n
(c) if n ≤ ν < n + m + 1

It is possible that in a certain diagonal ∆ν , ν > 0, a processor will need a cell
or a pair of cells, which were not computed on its local memory in diagonal ∆ν−1.
We need a communication pattern in each diagonal ∆ν , for all 0 ≤ ν < n + m,
which minimises the data exchange between the processors. It is obvious, that
in each diagonal, each processor needs only to communicate with its neighbours.
In particular, in each diagonal, each processor needs to swap the boundary cells
with its left and right neighbour processor.

An outline of the Parallel-Bit-Vector-Mismatches algorithm in each
diagonal ∆ν , for all 0 ≤ ν < n + m + 1, is as follows:

Step 1. Each processor is assigned with |∆ν |/p cells (without loss of generality).
Step 2. Each processor computes each allocated cell using the Bit-Vector-

Mismatches algorithm.
Step 3. Processors communication involving point-to-point boundary cells swaps.

Theorem 2. Given the text t = t[1 . . n], the pattern x = x[1 . .m], the mo-
tif length ℓ, the size w of the computer word, and the number of processors p,
the Parallel-Bit-Vector-Mismatches algorithm computes the matrix M

in O(nm⌈ℓ/w⌉
p ) units of time.

Proof. We partition the problem of computing matrix B into a set of n + m + 1
diagonal vectors, thus O(n) supersteps. In step 1, the allocation procedure runs

in O(1) time. In step 2, the cells computation requires O(m⌈ℓ/w⌉
p ) time. In step 3,

the data exchange between the processors involves O(1) point-to-point message

transfers. Hence, asymptotically, the overall time is O(nm⌈ℓ/w⌉
p ). ⊓⊔

Hence, the parallel algorithm runs in O(nm
p ) under the assumption that

ℓ ≤ w, and its space complexity is reduced to O(n) by noting that each diagonal
vector ∆ν of matrix B, for all 2 ≤ ν ≤ n + m, depends only on ∆ν−2.
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6 Experimental Results

In order to evaluate the parallel efficiency of our algorithm, we implemented
the Bit-Vector-Mismatches algorithm in ANSI C language and parallelised
it with the use of the MPI library. Both implementations, the sequential and
the parallel algorithm, are available at a website1, which has been set up for
maintaining the source code and the documentation.

Experimental tests were run on 1 up to 16 processing nodes (2.6 GHz AMD
Opteron) of a cluster architecture. As an input, DNA sequences of the mouse
chromosome X were used, retrieved from the Ensembl genome database. Exper-
imental results regarding the execution time and measured speed-up are illus-
trated in Figures 3 and 4, respectively. The speed-up is calculated as the ratio
of elapsed time with p processors to elapsed time with one processor.
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Fig. 3: Execution time for t = x and ℓ = 20

The presented experimental results demonstrate a good scaling of the code.
The proposed algorithm scales well even for small problem sizes. As expected
in some cases, when increasing the problem size, the algorithm achieves a lin-
ear speed-up, confirming our theoretical results. Further tests were conducted
for different values of fixed-length ℓ, with no difference observed, regarding the
execution time.

7 Conclusion

We have presented a practical parallel algorithm that solves a generalisation of
the approximate string-matching problem. In particular, the proposed parallel al-
gorithm solves the fixed-length approximate string matching with k-mismatches

1 http://www.dcs.kcl.ac.uk/pg/pississo/
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Fig. 4: Measured speed-up for t = x and ℓ = 20

problem in O(nm⌈ℓ/w⌉
p ) time, which is O(nm

p ), in practical terms. It is consider-
ably simple and elegant, it achieves a theoretical and practical linear speed-up,
it does not require text preprocessing, it does not use/store look up tables and
it does not depend on the number of differences k and the alphabet size |Σ|.
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