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Abstract : This paper proposes an extension of the classification trees to time series
input variables. A new split criterion based on time series proximities is introduced.
First, it relies on an adaptive (i.e., parametrized) time series metric to cover both behav-
ior and values proximities. The metric’s parameters may change from one internal node
to another to best bisect the set of time series. Second, it involves the automatic extrac-
tion of the most discriminating sub-sequences. The proposed time series classification
tree is applied to a wide range of datasets: public and new, real and synthetic, univariate
and multivariate data. We show, through the carried out experiments, that the proposed
tree outperforms temporal trees using standard time series distances, and leads to good
performances compared to other competitive time series classifiers.

Keywords: time series proximity measures, classification trees, learning met-
ric

1. Introduction

Time series classification has prompted extensive research in the last few
years. A first category of proposals consists of mapping time series to a new
description space where conventional classifiers can be applied. Signal pro-
cessing or statistical tools are commonly used to project time series into a
given functional basis space. For instance, this projection can be performed
by a Fourier or Wavelet transform, a polynomial or an ARIMA approxima-
tion. Standard classifiers are then applied on the fitted basis coefficients (e.g.,
Garcia-Escudero & Gordaliza (2005), Serban & Wasserman (2005)). A sec-
ond class of works proposes new heuristics starting generally with the time
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series segmentation to extract prototypes that best characterize the time series
classes. The prototypes, defined by a set of sub-sequences, regions of values,
etc., are then described by a set of features where standard classifiers can be
applied (e.g., Kudo et al. (1999), Geurts & Wehenkel (2005)). This paper fo-
cuses on a distance-based approach to extend classification trees to temporal
data. We propose a new time series split criterion characterized by, on the one
hand, the use of an adaptive metric to cover both behavior and values proxim-
ities. This metric may change from one node to another according to the set of
time series to divide. On the other hand, the proposed split involves an auto-
matic extraction of the most discriminating sub-sequences. We show, through
the carried out experiments, that the proposed tree outperforms temporal trees
using standard time series distances, and leads to good performances com-
pared to some competitive time series classifiers.
The rest of the paper is organized as follows. In the next section, we dis-
cuss two distance-based temporal trees proposed in Yamada et al. (2003) and
Balakrishnan & Madigan (2006). In Section 3., the major metrics for time
series are presented in a novel unified formalism. Section 4. presents the new
time series classification tree, gives the main algorithms and discusses their
complexity. In Section 5., the proposed classification tree is performed on six
public and three new simulated datasets. The induced trees are compared to
temporal trees using standard distances.

2. Related works

In this section, we describe two temporal classification trees proposed in Ya-
mada et al. (2003) and Balakrishnan & Madigan (2006) . Both works build
binary classification trees where internal nodes are labeled by one or two time
series. Proposed classifiers are mainly based on new split tests to best bi-
sect the set of time series within internal nodes. Yamada et al. Yamada et al.
(2003) propose two split tests. The first one, called the Standard-example split
test, selects through an exhaustive search one existing time series (called the
standard time series), leading to division with a maximum purity gain ratio.
The first child node is composed of time series whose distance to the standard
time series is less than a given threshold, while the second child node contains
the remaining time series. If more than one standard time series provides the
largest value of the purity gain ratio, a class isolation criterion is used to select
the split that exhibits the most dissimilar child nodes. The second proposed
split test, called the Cluster-example split test, looks through an exhaustive
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search for a couple of standard time series. The bisection is constructed by
assigning each time series to the nearest standard time series. Similarly, the
purity gain ratio and the class isolation criterion are used to select the best split
test. For both split tests, the dynamic time warping is considered as the time
series proximity measure. Balakrishnan and Madigan Balakrishnan & Madi-
gan (2006) look for a couple of reference time series that best bisects the set
of time series according to a clustering goodness criterion. For this, a kmeans
algorithm is used, it ensures a partitioning that optimizes clustering criteria,
namely the compactness and isolation of the clusters, but not their purity. To
alleviate this problem, authors perform several times the kmeans clustering
and select the partition that gives the highest Gini index. The centers of the
clusters define the pair of reference time series of the split test. For the time
series proximities, both the Euclidean distance and the dynamic time warping
are used to compare the efficiency of the obtained classification trees.
In summary, the Cluster-example split test of Yamada et al. Yamada et al.
(2003) and the one proposed by Balakrishnan and Madigan Balakrishnan &
Madigan (2006) are highly similar. The former, first looks for a set of time
series bisections with the highest purity clusters (i.e., here the highest Gini
index) and then picks the one optimizing some clustering criteria (i.e., maxi-
mizing the separability of the clusters), whereas the latter, first looks for a set
of splits optimizing clustering criteria (i.e., kmeans criteria) and then selects
the one exhibiting the highest purity clusters (i.e., maximizing the Gini in-
dex). When giving priority to a clustering criterion instead to the purity of the
clusters, the split test may fail to select bisections of lower clustering criteria
but of higher purity.
Let us make some remarks about the above proposed split tests. First, as
for many distance-based approaches, the Euclidean distance and the dynamic
time warping are considered for time series proximities. These standards
measures are value-based metrics and ignore the time series behaviors, as
discussed in Section 3.. Second, the proposed splits involve the same metric
to divide all the nodes, whereas the time series peculiarities may change from
one node to another. Finally, the time series distances are calculated by using
the whole time series values, even though the discrimination is determined by
some sub-sequences.
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3. Time series metrics

We present briefly, in a unified formalism, three categories of time series met-
rics (deeply detailed in Douzal-Chouakria & Amblard (2012)). The first cat-
egory relies on two standard values-based metrics: the dynamic time warping
and the Euclidean distance. In the second category, we recall the definition
of the correlation coefficient and the temporal correlation coefficient, two
behavior-based metrics. In the third category, we present a model to cover
both behavior and values time series components. In particular, an extension
of the Euclidean distance and of the dynamic time warping are provided to
cover both behavior and values proximities. Let S1 = (u1, ..., up) and S2 =
(v1, ..., vq) be two time series of p and q values observed at the time instants
(t1, ..., tp) and (t′1, ..., t

′
q), respectively. A mapping r between S1 and S2 is de-

fined as a sequence ofm pairs of observations ((ua1 , vb1), (ua2 , vb2), ..., (uam , vbm)),
with ai ∈ {1, .., p}, bi ∈ {1, ..q}, and i ∈ {1, ..,m − 1} obeying to the order
constraints:

a1 = 1, am = p, ai+1 = ai or ai + 1 and,

b1 = 1, bm = q, bi+1 = bi or bi + 1.

with m ∈ [max(p, q), p+ q − 1]. Let R be a subset of such mappings, satis-
fying possibly some additional constraints, and c(r) (r ∈ R) be the mapping
cost function measuring the distance between the coupled values in r. A uni-
fied formalism of the time series proximity measures, denoted dUnif , may
be presented as an optimization problem minimizing the cost function c(r) on
the search space R:

dUnif(c,R)(S1, S2) = min
r∈R

c(r). (1)

3.1. Values-based metrics

For the cost function definition c(r) =
∑m

i=1 |uai − vbi |, dUnif(c,R) (Eq. 1)
leads to the standard dynamic time warping Kruskall & Liberman (1983):

dDtw(S1, S2) = min
r∈R

(
m∑
i=1

|uai − vbi |). (2)

In the case of times series of the same length (m = p = q), and for the
cost function definition c(r) = (

∑m
i=1(ui − vi)2)

1
2 minimized on R = {r0},

dUnif(c,R) gives the Euclidean distance, with:

r0 = ((u1, v1), (u2, v2), ..., (um, vm)) (3)
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dE(S1, S2) = c(r0) = (
m∑
i=1

(ui − vi)2)
1
2 . (4)

The above cost functions c(r) involve the differences between the aligned
values, without allowance for the values neighborhoods.

3.2. Behavior-based metrics

One may define two time series S1 and S2 as similar on behavior if at any
observed period [ti, ti+1], they increase or decrease simultaneously with the
same growth rate. In contrast, they are considered as opposite on behavior if
at any observed period [ti, ti+1] where S1 increases, S2 decreases and vice-
versa with the same growth rate (in absolute value). Until nowadays, many
applications in different domains use the Pearson correlation coefficient as
a behavior proximity measure between signals. The correlation coefficient
assumes the data independent as based on the differences between all the pairs
of values observed at [ti, ti′ ]; whereas the behavior proximity needs only to
capture how time series behave at [ti, ti+1]. Thus, the correlation coefficient
is biased by all the remaining pairs of values observed at [ti, ti′ ] with |i −
i′| > 1. To overcome the limitations of the Pearson correlation coefficient, the
temporal correlation coefficient is used, which reduces the Pearson correlation
coefficient to the first order differences:

Cort(S1, S2) =

∑
i(ui+1 − ui)(vi+1 − vi)√∑

i(ui+1 − ui)2
√∑

i(vi+1 − vi)2
(5)

with Cort(S1, S2) belonging to [−1, 1]. The value Cort(S1, S2) = 1 indi-
cates that S1 and S2 exhibit similar behavior. The value Cort(S1, S2) = −1
indicates that S1 and S2 exhibit opposite behavior. Finally, Cort(S1, S2) = 0
expresses that the growth rates S1 and S2 are stochastically, linearly indepen-
dent, thereby identifying time series of different behaviors, namely that they
are neither similar nor opposite.

3.3. Values and behavior based metrics

To define a proximity measure covering both the behavior and values com-
ponents, we consider the cost function ck(r) Douzal-Chouakria et al. (2009)
modulating the values-based proximity according to the behavior-based prox-
imity:

ck(r) =
2

1 + exp(k Co(r))
.c(r), k ≥ 0 (6)
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where c(r) and Co(r) define, respectively, values-based (e.g., Eqs. (2), (4))
and behavior-based (e.g. Eqs. (5)) cost functions. The parameter k defines
the relative contributions of the behavior and values components to ck(r). For
a mapping cost function ck(r) covering only the values proximity component
(i.e., ignoring the behavior component), k is fixed to 0 and ck=0(r) = c(r).
On the other hand, for k >= 6, ck=6(r) completely includes the behavior
proximity component. Hence, if Co(r) = 1, then ck=6(r) ≈ 0, which means
that if two time series are of similar behavior, the cost function is reduced to
zero regardless of the value of c(r). If Co(r) = −1, then ck=6(r) ≈ 2c(r);
this corresponds, in the case of time series of opposite behaviors, to penalty
of a factor of 2 to c(r). Finally, if Co(r) = 0, then ck=6(r) ≈ c(r), which
means that in the case of time series of different behaviors, the mapping cost
ck=6(r) is determined by the only available information c(r).

Based on the cost function ck(r), the definition of the adaptive dissimilarity
covering both values and behavior proximities Douzal-Chouakria et al. (2009)
is:

Dk(S1, S2) = min
r∈R

(
2

1 + exp(k Co(r))
c(r)).

4. Time series classification trees

In this section, we present a new split test for multivariate time series clas-
sification trees, characterized by two additive values and deeply detailed in
Douzal-Chouakria & Amblard (2012). First, the use of an adaptive metric
which may change from one internal node to another to best bisect the set of
time series. Second, the involvement of the automatic extraction of the most
discriminating sub-sequences. Let {s1, ..., sN} be a set ofN multivariate time
series partitioned into C classes, and I1, ..., IN (Ii = [1, Ti]) their respective
observation intervals. Before building the classification tree, time series are
preprocessed to make them of equal length I = [1, T ], and pairwise time
series dissimilarities computed.

4.1. Time series length normalization

To make the time series of the same length, two cases have to be considered.
For data allowing time delays, time series are simply resampled by a linear in-
terpolation to make them of equal length I = [1, T ]. In the case of data that do
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not allow time delays, the smallest observation period I = min(I1, ..., IN) is
considered; and linear interpolations may be used to resample the data within
I .

4.2. Time series split (TSSplit) test algorithms

To split a given node S composed of a set of time series, the procedure
TSSplit(S, I, α) is called with as input parameters: the set S = {s1, ..., sN}
of time series to bisect, the observation interval I = [1, T ], and a rate α needed
for the discriminant sub-sequences search. In TSSplit(S, I, α) (Algorithm 1),
a first call to AdaptSplit(S, I) is performed to determine the best split of S
involving the adaptive metric Dk evaluated on I .
The main idea behind the procedure AdaptSplit(S, I) (Algorithm 2) is that,
given a value of the parameter k ∈ [0, 6] and two time series (l, r) from S×S,
a bisection of S, denoted σ(l, r, k, I), is obtained by assigning each time se-
ries ts ∈ S to the left node if it is closest to the time series l than to r, namely
if Dk(ts, l) ≤ Dk(ts, r), and to the right node otherwise (see Figure 1). To
determine the best split, several values of the triplet (l, r, k) are explored to
find the bisection exhibiting the minimum impurity Gini index. As output,
AdaptSplit(S, I) returns the best split σ(lI∗, r

I
∗, k

I
∗, I) and its impurity Gini in-

dex GI(σ(lI∗, r
I
∗, k

I
∗, I)).

The best split σ(lI∗, r
I
∗, k

I
∗, I) is obtained by comparing the time series prox-

imities according to their observations within I . In the case of time series dif-
ferentiation induced by some sub-sequences instead of implicating all the ob-
servations of I , the split σ(lI∗, r

I
∗, k

I
∗, I) may fail to reach higher purity classes.

To alleviate this limitation, DichoSplit allows us to determine, through a di-
chotomy search between left and right sub-sequences of I , those entailing a
bisection of lower impurity than σ(lI∗, r

I
∗, k

I
∗, I).

TheDichoSplit(S, σ(lI∗, r
I
∗, k∗, I), eI , α) (Algorithm 3) is called with as input

parameters: the set of time series S, the best split σ(lI∗, r
I
∗, k

I
∗, I) of S obtained

by comparing time series over I , its corresponding impurity Gini index error
named eI , and the rate α ≥ 0 needed to define the boundaries of the left IL
and right IR sub-intervals of I . Two calls to AdaptSplit are performed to split
S based on the observations of IL and IR, respectively.
If the impurity Gini index is not improved (eI ≤ min(eIL , eIR)), all the obser-
vations within I are needed to best discriminate time series. DichoSplit stops
and returns the split σ(lI∗, r

I
∗, k

I
∗, I). However, if the impurity Gini index is

improved by at least one of the splits based on IL or IR, a call to DichoSplit
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is pursued with the most discriminative sub-interval.

S s1

σ(l*, r*, k*, I*)

Sl Sr

l* r*

s2

s3

s4

s5

s6

I*I*

s1

s2s3
s4s5
s6

Figure 1: The adaptive time series split test

4.3. Algorithms specifications

In AdaptSplit , the explored splits σ(l, r, k, I) (Algorithm 2, line 3) rely on the
adaptive metric Dk, for seven values of k ∈ [0, 6].
In DichoSplit , a value of α = 0.6 is taken to divide I into the left and right
covering intervals, this allows to cover discriminating sub-sequences in the
central region of I . Of course, other values of α may be taken to divide I
either into disjoint (α = 0.5) or more covering (α > 0.6) left and right sub-
intervals. Once the two calls to AdaptSplit based on IL and IR achieved (Al-
gorithm 3 lines 4 and 5), some options are taken when faced with the equality
cases. First, in the case of eI = eIL = eIR , DichoSplit (Algorithm 3, line
6) stops and returns the best split based on I . Whereas a more costly variant
may continue by exploring the splits based on IL and IR and stops only if
eI < min(eIL , eIR). Second, if eIL = eIR < eI (Algorithm 3 line 8); the split
continues with only the left sub-interval.
The three algorithms TSSplit , AdaptSplit , and DichoSplit were implemented
in C and integrated to the CART algorithm of the R package tree proposed by
B. Ripley (http://cran.r-project.org/web/packages/tree/). As default parame-
ters, the time series decision tree is induced without pruning and with a mini-
mum size of leaves of 2 time series.
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4.4. Time series classification

Each node of the induced time series classification tree (TSTree) is char-
acterized by a split test σ(l∗, r∗, k∗, I∗) described by the two representative
time series (l∗, r∗), the optimal value k∗ of the learned metric Dk∗ and the
most discriminating sub-sequence I∗. A new time series ts is assigned to
the left sub-node if it is closest to the left time series l∗ than to r∗ with
Dk∗(ts, l∗) <= Dk∗(ts, r∗), otherwise assigned to the right sub-node. The
time series proximities Dk∗ are evaluated over the discriminant period I∗. As
in conventional classification trees, ts is assigned to the class of the leaf in
which it falls.

Algorithm 1 TSSplit(S, I, α)

1: (σ(lI∗, r
I
∗, k

I
∗, I), eI) = AdaptSplit(S, I)

2: (σ(l∗, r∗, k∗, I∗), eI∗)=DichoSplit(S, σ(lI∗, r
I
∗, k

I
∗, I), eI , α)

3: return(σ(l∗, r∗, k∗, I∗), eI∗)

Algorithm 2 AdaptSplit(S, I)
1: e∗ =∞
2: for k in [0; 6] do
3: (lk, rk) = argmin(l,r)(GI(σ(l, r, k, I)))
4: if GI(σ(lk, rk, k, I)) < e∗ then
5: e∗ = GI(σ(lk, rk, k, I))
6: lI∗ = lk, rI∗ = rk, kI∗ = k
7: end if
8: end for
9: return(σ(lI∗, r

I
∗, k

I
∗, I), e∗)

4.5. TSSplit complexity

Let N be the number of time series, K the number of explored values of the
parameter k, T the initial time series length, and α the cover rate for the di-
chotomous search. On the one hand, the core of the complexity of AdaptSplit
is determined by the exhaustive search of the triple (l, r, k) which isO(KN2).
For each explored triple, the Gini index (complexity of O(N)) is evaluated,
leading to a total complexity for AdaptSplit of O(KN3). The AdaptSplit
complexity can be reduced by limiting the exhaustive search to the pairs of
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Algorithm 3 DichoSplit(S, σ(lI∗, r
I
∗, k

I
∗, I), eI , α)

1: [a, b] = I
2: IL = [a, a+ α(b− a)]
3: IR = [b− α(b− a), b]
4: (σ(lIL∗ , r

IL
∗ , k

IL
∗ , IL), eIL) = AdaptSplit(S, IL)

5: (σ(lIR∗ , r
IR
∗ , k

IR
∗ , IR), eIR) = AdaptSplit(S, IR)

6: if eI ≤ min(eIL , eIR) then
7: return(σ(lI∗, r

I
∗, k

I
∗, I), eI )

8: else if eIL ≤ eIR then
9: DichoSplit(S, σ(lIL∗ , r

IL
∗ , k

IL
∗ , IL), eIL , α)

10: else
11: DichoSplit(S, σ(lIR∗ , r

IR
∗ , k

IR
∗ , IR), eIR , α)

12: end if

time series of different classes. On the other hand, DichoSplit performs two
calls to AdapSplit and a recursive call to DichoSplit if either IL or IR pro-
vides a better purity Gini index than the interval I . The maximum number
of recursive calls is Log 1

α
(T ), corresponding to the number of dichotomous

splits of I = [0, T ] until having a sub-interval of length one. Thus, in the
worst case, the complexity of DichoSplit is O(Log 1

α
(T )2KN3). Finally,

based on the complexities of AdaptSplit and DichoSplit , the complexity
of TSSplit is dominated by O(Log 1

α
(T )2KN3+KN3) that is globally about

O(Log 1
α
(T )KN3).

5. Experimental study

The proposed time series classification tree TSTree is first applied to four
public datasets frequently used in the literature for the validation of the ma-
jor competitive approaches: CBF Saito (1994), CBF-TR Geurts (2002), CC

Asuncion & Newman (2007), and TWO-PAT Geurts (2002). Note that the four
datasets share some similar characteristics: each class identifies a distinctive
global behavior, classes are well discriminated by their global behaviors, and
time series progress in relatively close domains. It is indisputable that in real
applications time series specifications may be more complex. For instance,
time series may involve time delays, have tendency or amplitude variations,
may share a global common profile or be characterized by some local com-
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Begin

Middle

End

Figure 2: LOCAL-DISC classes

mon events. To complete and broaden the validation process to properties
frequently encountered in temporal applications, we propose three additional
datasets. On the one hand, a synthetic time series datasets with time series
discrimination based on local events rather than on the global behaviors. On
the other hand, two real and multivariate time series, describing character tra-
jectories and handwritten digits Asuncion & Newman (2007). Let us detail in
the following section the specifications of these additional datasets.

5.1. Additional time series datasets

5.1.1. LOCAL-DISC

The aim of the LOCAL-DISC dataset is to study the efficiency of time se-
ries classification trees when time series of a same class may have distinc-
tive global behaviors while sharing common local features. The LOCAL-DISC

dataset is composed of 3 time series classes, Begin, Middle and End. In the
Begin class, the time series share a common local event characterized by a
little bell arising at the begin period; the Middle class consists of time series
sharing similar global behavior characterized by a centered large bell, and
the time series of the End class share a common local event corresponding
to a bell arising at the end period. The Begin, Middle and End time series
classes are illustrated in Figure 2. First, remark that the global behavior is not
a discriminative criterion as time series of different classes may share simi-
lar global behaviors (e.g., a cylinder shape). Second, time series of the same
class may eventually have different global behaviors and progress in different
ranges of values.

5.1.2. Character trajectories

The character trajectories dataset Asuncion & Newman (2007) consists of a
set of pen tip trajectories recorded while writing individual characters. All
samples are from the same writer, for the purposes of primitive extraction.
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Only characters with a single pen-down segment were considered. The data
were captured using a WACOM tablet. Each handwritten character trajectory
is a 3-dimensional time series: x, y for the pen positions and z for the pen tip
force.

5.1.3. Handwritten digits

The handwritten digits data are extracted from the UJI Pen Characters database
Asuncion & Newman (2007). Samples are collected from 11 writers, with two
samples for each pair writer/digit. Only x and y coordinate information was
recorded along the strokes by the acquisition program, without, for instance,
pressure level values or timing information. As several handwritten proto-
types may be used by the 11 writers to generate a same digit, a class may be
composed of time series of different global behaviors. For usual and addi-
tional datasets, Table 1 gives the main characteristics of the above datasets.

Name Sample Num. Num. TS Multi. Real
size classes TS/class lengths TS. data

CBF 300 3 100 128 No No
CBF-TR 300 3 100 128 No No
CC 600 6 100 60 No No
TWO-PAT 400 4 100 128 No No
LOCAL-DISC 300 3 100 128 No No
CHAR-TRAJ 400 20 20 [100-200] Yes Yes
DIGITS 220 10 22 110 Yes Yes

Table 1: Usual and additional datasets description

5.2. Validation protocol

To highlight the additive value of the new temporal classification tree, several
configurations of the split procedure are considered: an adaptive metric (i.e.,
a behavior and values based metric) vs. a non-adaptive metric (i.e., a classi-
cal values based metric), a dichotomous vs. a non-dichotomous search, and a
temporal correlation vs. a Pearson correlation for the behavior cost-function.
In addition, according to classes including or not time delays, these configu-
rations are modulated for several variants of the dynamic time warping and
of the Euclidean distance. A misclassification error rate, based on a 10-fold
stratified cross-validation, is estimated.
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Time Adap. Dich. Behav. Metric
delay metric search cost

Yes Yes Cort DTWcort
k

Yes Yes Cor DTWcor
k

Yes Yes No Cort DTWcort
k

Yes No Cor DTWcor
k

No No - dDtw

Yes Yes Cort DEcort
k

Yes Yes Cor DEcor
k

No Yes No Cort DEcort
k

Yes No Cor DEcor
k

No No - dE

Table 2: The studied configurations for TSSplit

5.3. Performances results

Table 3 and 4 give for each usual and additional dataset the misclassification
error rates and the number of leaves of the induced trees. These results allow
us to study the effect of each TSSplit’s configuration (Table 2) on the perfor-
mances of the induced tree. In particular, it allows us to compare the decision
trees performances when the split criterion uses an adaptive metric versus a
standard one, involves a dichotomous search versus not. For instance, Figure
3 visualizes the DIGITS trees of minimum error rate over the studied TSSplit
configurations. Let us first bring some interpretation elements of the built
classification trees. Each node is characterized by the triplet (Type, I∗,Class)
indicating respectively: the metric’s type “B”, “V”, or “BV” indicating, respec-
tively, if the learned Dk∗ is behavior-based (k∗ greater than 3), values-based
(k∗ lower than 3), or equally behavior and values-based (for k=3), the most
discriminating interval or sub-interval I∗ on which Dk∗ will be evaluated, and
the class label of the representative time series.

5.4. Discussion

From Table 3 we can see for all datasets (except for the noisy TOW-PAT) that
a TSTree based on an adaptive metric (the 4th first configurations) outper-
forms a tree based on the standard metrics (dE , dDTW ). The performances
of TSTree remain the same when it involves or not the dichotomous search
revealing that each class is characterized by one distinctive global behavior
and a discrimination mainly based on the global behaviors of time series. Fi-
nally, for all the datasets the performances of TSTree are improved when
involving the temporal correlation instead of the Pearson correlation. From
Table 4, we can see for all additional datasets, introducing several tempo-
ral peculiarities, that the TSTree based on an adaptive metric outperforms a
tree based on the standard metrics. These performances are always improved
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Datasets Metric Dicho. Error rate Nb. leaves

DECort
k Yes 0.000000 3

DECor
k Yes 0.000000 3

CBF DECort
k No 0.000000 3

DECor
k No 0.000000 3

dE No 0.006667 3

DTWCort
k Yes 0.023333 3

DTWCor
k Yes 0.170000 22

CBF-TR DTWCort
k No 0.023333 3

DTWCor
k No 0.183333 23

dDtw No 0.136667 30

DTWCort
k Yes 0.005000 6

DTWCor
k Yes 0.028333 7

CC DTWCort
k No 0.005000 6

DTWCor
k No 0.025000 10

dDtw No 0.021667 13

DTWCort
k Yes 0.002632 6

DTWCor
k Yes 0.002632 4

TWO-PAT DTWCort
k No 0.002632 6

DTWCor
k No 0.002632 4

dDtw No 0.000000 4

Table 3: Times series classification trees on the usual datasets: adaptive vs.
standard metrics

when involving the temporal correlation instead of the Pearson correlation.
The dichotomous search improves significantly the results for LOCAL-DISC

and DIGITS, as classes may be composed of time series of different global
behaviors. In fact, for DIGITS the 11 writers may follow different trajectories
to write a same digit. From the tree given in Figure 3, we can see that the
dichotomous search plays a part at two nodes: to separate the digits 3 and 5,
then 4 and 9. In fact, time series of the digits 3 and 5 (resp. 4 and 9) provided
by different writers may be very close on the second half of the trajectories.
Thus, the dichotomous search selects the first half of the trajectories (under-
lined in red in Figure 3) as best discriminating these digits. In other words,
to best separate the digits 3 and 5 (resp. 4 and 9) the dissimilarities between
those digits are evaluated based on their first half trajectories. Finally, one
may know from the induced trees the typical profiles of the time series be-
longing to each child node, whether these profiles cover all the observation
period, or reference sub-sequences, and whether the assignation rules are val-
ues or behavior-based. Although the best specification for TSSplit involves
an adaptive metric, the temporal correlation and a dichotomous search, study-
ing the other configurations may be informative: it may reveals whether the



Adaptive split test for multivariate time series classification trees

Datasets Metric Dicho. Error rate Nb. leaves

DTWCort
k Yes 0.020000 3

DTWCor
k Yes 0.020000 5

LOCAL-DISC DTWCort
k No 0.073333 13

DTWCor
k No 0.096667 22

dDtw No 0.096667 30

DTWCort
k Yes 0.075000 20

DTWCor
k Yes 0.082500 20

CHAR-TRAJ DTWCort
k No 0.075000 24

DTWCor
k No 0.095000 24

dDtw No 0.080000 24

DTWCort
k Yes 0.065657 12

DTWCor
k Yes 0.141414 11

DIGITS DTWCort
k No 0.141414 13

DTWCor
k No 0.161616 12

dDtw No 0.247475 16

Table 4: Times series classification trees on the additional datasets: adaptive
vs. standard metrics
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Figure 3: Classification tree of DIGITS data

time series involve amplitude variations and drifts, whether the discrimination
is due to some local events or to the global behavior, and whether it is values
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or behavior-based.
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