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This paper proposes an extension of the classification trees to time series input variables. A new split criterion based on time series proximities is introduced. First, it relies on an adaptive (i.e., parametrized) time series metric to cover both behavior and values proximities. The metric's parameters may change from one internal node to another to best bisect the set of time series. Second, it involves the automatic extraction of the most discriminating sub-sequences. The proposed time series classification tree is applied to a wide range of datasets: public and new, real and synthetic, univariate and multivariate data. We show, through the carried out experiments, that the proposed tree outperforms temporal trees using standard time series distances, and leads to good performances compared to other competitive time series classifiers.

Introduction

Time series classification has prompted extensive research in the last few years. A first category of proposals consists of mapping time series to a new description space where conventional classifiers can be applied. Signal processing or statistical tools are commonly used to project time series into a given functional basis space. For instance, this projection can be performed by a Fourier or Wavelet transform, a polynomial or an ARIMA approximation. Standard classifiers are then applied on the fitted basis coefficients (e.g., [START_REF] Gordaliza | A proposal for robust curve clustering[END_REF], [START_REF] Serban | CATS: Cluster after transformation and smoothing[END_REF]). A second class of works proposes new heuristics starting generally with the time CAp 2012 series segmentation to extract prototypes that best characterize the time series classes. The prototypes, defined by a set of sub-sequences, regions of values, etc., are then described by a set of features where standard classifiers can be applied (e.g., [START_REF] Kudo | Multidimensional curve classification using passing-through regions[END_REF], [START_REF] Geurts | Segment and combine approach for non-parametric time-series classification[END_REF]). This paper focuses on a distance-based approach to extend classification trees to temporal data. We propose a new time series split criterion characterized by, on the one hand, the use of an adaptive metric to cover both behavior and values proximities. This metric may change from one node to another according to the set of time series to divide. On the other hand, the proposed split involves an automatic extraction of the most discriminating sub-sequences. We show, through the carried out experiments, that the proposed tree outperforms temporal trees using standard time series distances, and leads to good performances compared to some competitive time series classifiers. The rest of the paper is organized as follows. In the next section, we discuss two distance-based temporal trees proposed in [START_REF] Yamada | Decisiontree induction from time-series data based on standard-example split test[END_REF] and [START_REF] Balakrishnan | Decision trees for functional variables[END_REF]. In Section 3., the major metrics for time series are presented in a novel unified formalism. Section 4. presents the new time series classification tree, gives the main algorithms and discusses their complexity. In Section 5., the proposed classification tree is performed on six public and three new simulated datasets. The induced trees are compared to temporal trees using standard distances.

Related works

In this section, we describe two temporal classification trees proposed in [START_REF] Yamada | Decisiontree induction from time-series data based on standard-example split test[END_REF] and [START_REF] Balakrishnan | Decision trees for functional variables[END_REF] . Both works build binary classification trees where internal nodes are labeled by one or two time series. Proposed classifiers are mainly based on new split tests to best bisect the set of time series within internal nodes. [START_REF] Yamada | Decisiontree induction from time-series data based on standard-example split test[END_REF] propose two split tests. The first one, called the Standard-example split test, selects through an exhaustive search one existing time series (called the standard time series), leading to division with a maximum purity gain ratio. The first child node is composed of time series whose distance to the standard time series is less than a given threshold, while the second child node contains the remaining time series. If more than one standard time series provides the largest value of the purity gain ratio, a class isolation criterion is used to select the split that exhibits the most dissimilar child nodes. The second proposed split test, called the Cluster-example split test, looks through an exhaustive search for a couple of standard time series. The bisection is constructed by assigning each time series to the nearest standard time series. Similarly, the purity gain ratio and the class isolation criterion are used to select the best split test. For both split tests, the dynamic time warping is considered as the time series proximity measure. [START_REF] Balakrishnan | Decision trees for functional variables[END_REF] look for a couple of reference time series that best bisects the set of time series according to a clustering goodness criterion. For this, a kmeans algorithm is used, it ensures a partitioning that optimizes clustering criteria, namely the compactness and isolation of the clusters, but not their purity. To alleviate this problem, authors perform several times the kmeans clustering and select the partition that gives the highest Gini index. The centers of the clusters define the pair of reference time series of the split test. For the time series proximities, both the Euclidean distance and the dynamic time warping are used to compare the efficiency of the obtained classification trees. In summary, the Cluster-example split test of [START_REF] Yamada | Decisiontree induction from time-series data based on standard-example split test[END_REF] and the one proposed by Balakrishnan and Madigan [START_REF] Balakrishnan | Decision trees for functional variables[END_REF] are highly similar. The former, first looks for a set of time series bisections with the highest purity clusters (i.e., here the highest Gini index) and then picks the one optimizing some clustering criteria (i.e., maximizing the separability of the clusters), whereas the latter, first looks for a set of splits optimizing clustering criteria (i.e., kmeans criteria) and then selects the one exhibiting the highest purity clusters (i.e., maximizing the Gini index). When giving priority to a clustering criterion instead to the purity of the clusters, the split test may fail to select bisections of lower clustering criteria but of higher purity. Let us make some remarks about the above proposed split tests. First, as for many distance-based approaches, the Euclidean distance and the dynamic time warping are considered for time series proximities. These standards measures are value-based metrics and ignore the time series behaviors, as discussed in Section 3.. Second, the proposed splits involve the same metric to divide all the nodes, whereas the time series peculiarities may change from one node to another. Finally, the time series distances are calculated by using the whole time series values, even though the discrimination is determined by some sub-sequences.
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Time series metrics

We present briefly, in a unified formalism, three categories of time series metrics (deeply detailed in Douzal-Chouakria & Amblard (2012)). The first category relies on two standard values-based metrics: the dynamic time warping and the Euclidean distance. In the second category, we recall the definition of the correlation coefficient and the temporal correlation coefficient, two behavior-based metrics. In the third category, we present a model to cover both behavior and values time series components. In particular, an extension of the Euclidean distance and of the dynamic time warping are provided to cover both behavior and values proximities. Let S 1 = (u 1 , ..., u p ) and S 2 = (v 1 , ..., v q ) be two time series of p and q values observed at the time instants (t 1 , ..., t p ) and (t 1 , ..., t q ), respectively. A mapping r between S 1 and S 2 is defined as a sequence of m pairs of observations ((u a 1 , v b 1 ), (u a 2 , v b 2 ), ..., (u am , v bm )), with a i ∈ {1, .., p}, b i ∈ {1, ..q}, and i ∈ {1, .., m -1} obeying to the order constraints:

a 1 = 1, a m = p, a i+1 = a i or a i + 1 and, b 1 = 1, b m = q, b i+1 = b i or b i + 1.
with m ∈ [max(p, q), p + q -1]. Let R be a subset of such mappings, satisfying possibly some additional constraints, and c(r) (r ∈ R) be the mapping cost function measuring the distance between the coupled values in r. A unified formalism of the time series proximity measures, denoted dU nif , may be presented as an optimization problem minimizing the cost function c(r) on the search space R:

dU nif (c,R) (S 1 , S 2 ) = min r∈R c(r).
(1)

Values-based metrics

For the cost function definition c(r) = m i=1 |u a i -v b i |, dU nif (c,R) (Eq. 1) leads to the standard dynamic time warping [START_REF] Kruskall | The symmetric time warping algorithm: From continuous to discrete[END_REF]:

d Dtw (S 1 , S 2 ) = min r∈R ( m i=1 |u a i -v b i |).
(2)

In the case of times series of the same length (m = p = q), and for the cost function definition

c(r) = ( m i=1 (u i -v i ) 2 ) 1 2 minimized on R = {r 0 }, dU nif (c,R)
gives the Euclidean distance, with:

r 0 = ((u 1 , v 1 ), (u 2 , v 2 ), ..., (u m , v m ))
(3)

d E (S 1 , S 2 ) = c(r 0 ) = ( m i=1 (u i -v i ) 2 ) 1 2 . ( 4 
)
The above cost functions c(r) involve the differences between the aligned values, without allowance for the values neighborhoods.

Behavior-based metrics

One may define two time series 

S
i | > 1.
To overcome the limitations of the Pearson correlation coefficient, the temporal correlation coefficient is used, which reduces the Pearson correlation coefficient to the first order differences:

Cort(S 1 , S 2 ) = i (u i+1 -u i )(v i+1 -v i ) i (u i+1 -u i ) 2 i (v i+1 -v i ) 2 (5) 
with Cort(S 1 , S 2 ) belonging to [-1, 1]. The value Cort(S 1 , S 2 ) = 1 indicates that S 1 and S 2 exhibit similar behavior. The value Cort(S 1 , S 2 ) = -1 indicates that S 1 and S 2 exhibit opposite behavior. Finally, Cort(S 1 , S 2 ) = 0 expresses that the growth rates S 1 and S 2 are stochastically, linearly independent, thereby identifying time series of different behaviors, namely that they are neither similar nor opposite. where c(r) and Co(r) define, respectively, values-based (e.g., Eqs. ( 2), ( 4)) and behavior-based (e.g. Eqs. ( 5)) cost functions. The parameter k defines the relative contributions of the behavior and values components to c k (r). For a mapping cost function c k (r) covering only the values proximity component (i.e., ignoring the behavior component), k is fixed to 0 and c k=0 (r) = c(r).

Values and behavior based metrics

On the other hand, for k >= 6, c k=6 (r) completely includes the behavior proximity component. Hence, if Co(r) = 1, then c k=6 (r) ≈ 0, which means that if two time series are of similar behavior, the cost function is reduced to zero regardless of the value of c(r). If Co(r) = -1, then c k=6 (r) ≈ 2c(r); this corresponds, in the case of time series of opposite behaviors, to penalty of a factor of 2 to c(r). Finally, if Co(r) = 0, then c k=6 (r) ≈ c(r), which means that in the case of time series of different behaviors, the mapping cost c k=6 (r) is determined by the only available information c(r).

Based on the cost function c k (r), the definition of the adaptive dissimilarity covering both values and behavior proximities Douzal-Chouakria et al. ( 2009) is:

D k (S 1 , S 2 ) = min r∈R ( 2 1 + exp(k Co(r)) c(r)).

Time series classification trees

In this section, we present a new split test for multivariate time series classification trees, characterized by two additive values and deeply detailed in Douzal-Chouakria & Amblard (2012). First, the use of an adaptive metric which may change from one internal node to another to best bisect the set of time series. Second, the involvement of the automatic extraction of the most discriminating sub-sequences. Let {s 1 , ..., s N } be a set of N multivariate time series partitioned into C classes, and I 1 , ..., I N (I i = [1, T i ]) their respective observation intervals. Before building the classification tree, time series are preprocessed to make them of equal length I = [1, T ], and pairwise time series dissimilarities computed.

Time series length normalization

To make the time series of the same length, two cases have to be considered.

For data allowing time delays, time series are simply resampled by a linear interpolation to make them of equal length I = [1, T ]. In the case of data that do not allow time delays, the smallest observation period I = min(I 1 , ..., I N ) is considered; and linear interpolations may be used to resample the data within I.

Time series split (TSSplit) test algorithms

To split a given node S composed of a set of time series, the procedure TSSplit(S, I, α) is called with as input parameters: the set S = {s 1 , ..., s N } of time series to bisect, the observation interval I = [1, T ], and a rate α needed for the discriminant sub-sequences search. In TSSplit(S, I, α) (Algorithm 1), a first call to AdaptSplit(S, I) is performed to determine the best split of S involving the adaptive metric D k evaluated on I.

The main idea behind the procedure AdaptSplit(S, I) (Algorithm 2) is that, given a value of the parameter k ∈ [0, 6] and two time series (l, r) from S ×S, a bisection of S, denoted σ(l, r, k, I), is obtained by assigning each time series ts ∈ S to the left node if it is closest to the time series l than to r, namely if D k (ts, l) ≤ D k (ts, r), and to the right node otherwise (see Figure 1). To determine the best split, several values of the triplet (l, r, k) are explored to find the bisection exhibiting the minimum impurity Gini index. As output, AdaptSplit(S, I) returns the best split σ(l I is pursued with the most discriminative sub-interval. Algorithm 2 AdaptSplit(S, I) 

1: e * = ∞ 2: for k in [0; 6] do 3: (l k , r k ) = arg min (l,r) (GI(σ(l, r, k, I))) 4: if GI(σ(l k , r k , k, I)) < e * then
(T )2KN 3 + KN 3 ) that is globally about O(Log 1 α (T )KN 3 ).

Experimental study

The proposed time series classification tree TSTree is first applied to four public datasets frequently used in the literature for the validation of the major competitive approaches: CBF [START_REF] Saito | Local feature extraction and its application using a library of bases[END_REF], CBF-TR [START_REF] Geurts | Contributions to decision tree induction: bias/variance tradeoff and time series classification[END_REF], CC [START_REF] Newman | UCI, machine learning repository[END_REF], and TWO-PAT [START_REF] Geurts | Contributions to decision tree induction: bias/variance tradeoff and time series classification[END_REF]. Note that the four datasets share some similar characteristics: each class identifies a distinctive global behavior, classes are well discriminated by their global behaviors, and time series progress in relatively close domains. It is indisputable that in real applications time series specifications may be more complex. For instance, time series may involve time delays, have tendency or amplitude variations, may share a global common profile or be characterized by some local com-
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Figure 2: LOCAL-DISC classes mon events. To complete and broaden the validation process to properties frequently encountered in temporal applications, we propose three additional datasets. On the one hand, a synthetic time series datasets with time series discrimination based on local events rather than on the global behaviors. On the other hand, two real and multivariate time series, describing character trajectories and handwritten digits Asuncion & [START_REF] Newman | UCI, machine learning repository[END_REF]. Let us detail in the following section the specifications of these additional datasets.

Additional time series datasets

LOCAL-DISC

The aim of the LOCAL-DISC dataset is to study the efficiency of time series classification trees when time series of a same class may have distinctive global behaviors while sharing common local features. The LOCAL-DISC dataset is composed of 3 time series classes, Begin, Middle and End. In the Begin class, the time series share a common local event characterized by a little bell arising at the begin period; the Middle class consists of time series sharing similar global behavior characterized by a centered large bell, and the time series of the End class share a common local event corresponding to a bell arising at the end period. The Begin, Middle and End time series classes are illustrated in Figure 2. First, remark that the global behavior is not a discriminative criterion as time series of different classes may share similar global behaviors (e.g., a cylinder shape). Second, time series of the same class may eventually have different global behaviors and progress in different ranges of values.

Character trajectories

The character trajectories dataset Asuncion & Newman (2007) consists of a set of pen tip trajectories recorded while writing individual characters. All samples are from the same writer, for the purposes of primitive extraction. 

Performances results

Table 3 and 4 give for each usual and additional dataset the misclassification error rates and the number of leaves of the induced trees. These results allow us to study the effect of each TSSplit's configuration (Table 2) on the performances of the induced tree. In particular, it allows us to compare the decision trees performances when the split criterion uses an adaptive metric versus a standard one, involves a dichotomous search versus not. For instance, Figure 3 visualizes the DIGITS trees of minimum error rate over the studied TSSplit configurations. Let us first bring some interpretation elements of the built classification trees. Each node is characterized by the triplet (Type, I * , Class) indicating respectively: the metric's type "B", "V", or "BV" indicating, respectively, if the learned D k * is behavior-based (k * greater than 3), values-based (k * lower than 3), or equally behavior and values-based (for k=3), the most discriminating interval or sub-interval I * on which D k * will be evaluated, and the class label of the representative time series.

Discussion

From Table 3 we can see for all datasets (except for the noisy TOW-PAT) that a TSTree based on an adaptive metric (the 4th first configurations) outperforms a tree based on the standard metrics (d E , d DT W ). The performances of TSTree remain the same when it involves or not the dichotomous search revealing that each class is characterized by one distinctive global behavior and a discrimination mainly based on the global behaviors of time series. Finally, for all the datasets the performances of TSTree are improved when involving the temporal correlation instead of the Pearson correlation. From Table 4, we can see for all additional datasets, introducing several temporal peculiarities, that the TSTree based on an adaptive metric outperforms a tree based on the standard metrics. These performances are always improved The dichotomous search improves significantly the results for LOCAL-DISC and DIGITS, as classes may be composed of time series of different global behaviors. In fact, for DIGITS the 11 writers may follow different trajectories to write a same digit. From the tree given in Figure 3, we can see that the dichotomous search plays a part at two nodes: to separate the digits 3 and 5, then 4 and 9. In fact, time series of the digits 3 and 5 (resp. 4 and 9) provided by different writers may be very close on the second half of the trajectories. Thus, the dichotomous search selects the first half of the trajectories (underlined in red in Figure 3) as best discriminating these digits. In other words, to best separate the digits 3 and 5 (resp. 4 and 9) the dissimilarities between those digits are evaluated based on their first half trajectories. Finally, one may know from the induced trees the typical profiles of the time series belonging to each child node, whether these profiles cover all the observation period, or reference sub-sequences, and whether the assignation rules are values or behavior-based. Although the best specification for TSSplit involves an adaptive metric, the temporal correlation and a dichotomous search, studying the other configurations may be informative: it may reveals whether the 

  To define a proximity measure covering both the behavior and values components, we consider the cost function c k (r)[START_REF] Douzal-Chouakria A | Adaptive clustering for time series: application for identifying cell cycle expressed genes[END_REF] modulating the values-based proximity according to the behavior-based proximity:
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 1 Figure 1: The adaptive time series split test

  GI(σ(l k , r k , k, I)) 6: l I * = l k , r I time series of different classes. On the other hand, DichoSplit performs two calls to AdapSplit and a recursive call to DichoSplit if either I L or I R provides a better purity Gini index than the interval I. The maximum number of recursive calls is Log 1 α (T ), corresponding to the number of dichotomous splits of I = [0, T ] until having a sub-interval of length one. Thus, in the worst case, the complexity of DichoSplit is O(Log 1 α (T )2KN 3 ). Finally, based on the complexities of AdaptSplit and DichoSplit , the complexity of TSSplit is dominated by O(Log 1 α

Figure 3 :

 3 Figure 3: Classification tree of DIGITS data

  1 and S 2 as similar on behavior if at any observed period [t i , t i+1 ], they increase or decrease simultaneously with the same growth rate. In contrast, they are considered as opposite on behavior if at any observed period [t i , t i+1 ] where S 1 increases, S 2 decreases and viceversa with the same growth rate (in absolute value). Until nowadays, many applications in different domains use the Pearson correlation coefficient as a behavior proximity measure between signals. The correlation coefficient assumes the data independent as based on the differences between all the pairs of values observed at [t i , t i ]; whereas the behavior proximity needs only to capture how time series behave at [t i , t i+1 ]. Thus, the correlation coefficient is biased by all the remaining pairs of values observed at [t i , t i ] with |i -

Table 2 :

 2 The studied configurations for TSSplit

	Time	Adap.	Dich.	Behav.	Metric
	delay	metric	search	cost	
	Yes No	Yes Yes Yes Yes No Yes Yes Yes Yes No	Yes Yes No No No Yes Yes No No No	Cort Cor Cort Cor -Cort Cor Cort Cor -	DT W cort k DT W cor k DT W cort k DT W cor k d Dtw DE cort k DE cor k DE cort k DE cor k d E

Table 3 :

 3 Times series classification trees on the usual datasets: adaptive vs. standard metrics when involving the temporal correlation instead of the Pearson correlation.

	Datasets	Metric	Dicho.	Error rate	Nb. leaves
	CBF	DE Cort k DE Cor k DE Cort k DE Cor k d E	Yes Yes No No No	0.000000 0.000000 0.000000 0.000000 0.006667	3 3 3 3 3
	CBF-TR	DT W Cort k DT W Cor k DT W Cort k DT W Cor k d Dtw	Yes Yes No No No	0.023333 0.170000 0.023333 0.183333 0.136667	3 22 3 23 30
	CC	DT W Cort k DT W Cor k DT W Cort k DT W Cor k d Dtw	Yes Yes No No No	0.005000 0.028333 0.005000 0.025000 0.021667	6 7 6 10 13
	TWO-PAT	DT W Cort k DT W Cor k DT W Cort k DT W Cor k d Dtw	Yes Yes No No No	0.002632 0.002632 0.002632 0.002632 0.000000	6 4 6 4 4

Table 4 :

 4 Times series classification trees on the additional datasets: adaptive vs. standard metrics

	Datasets	Metric		Dicho.	Error rate	Nb. leaves
	LOCAL-DISC	DT W Cort k DT W Cor k DT W Cort k DT W Cor k d Dtw	Yes Yes No No No			0.020000 0.020000 0.073333 0.096667 0.096667	3 5 13 22 30
	CHAR-TRAJ	DT W Cort k DT W Cor k DT W Cort k DT W Cor k d Dtw	Yes Yes No No No			0.075000 0.082500 0.075000 0.095000 0.080000	20 20 24 24 24
	DIGITS	DT W Cort k DT W Cor k DT W Cort k DT W Cor k	Yes Yes No No			0.065657 0.141414 0.141414 0.161616	12 11 13 12
		Dtw		No			0.247475	16
		(	Dichotomou	s	,	DTW	cort k	)

c k (r) =

+ exp(k Co(r)) .c(r), k ≥ 0 (6)

Only characters with a single pen-down segment were considered. The data were captured using a WACOM tablet. Each handwritten character trajectory is a 3-dimensional time series: x, y for the pen positions and z for the pen tip force.

Handwritten digits

The handwritten digits data are extracted from the UJI Pen Characters database [START_REF] Newman | UCI, machine learning repository[END_REF]. Samples are collected from 11 writers, with two samples for each pair writer/digit. Only x and y coordinate information was recorded along the strokes by the acquisition program, without, for instance, pressure level values or timing information. As several handwritten prototypes may be used by the 11 writers to generate a same digit, a class may be composed of time series of different global behaviors. For usual and additional datasets, Table 1 gives the main characteristics of the above datasets. 

Validation protocol

To highlight the additive value of the new temporal classification tree, several configurations of the split procedure are considered: an adaptive metric (i.e., a behavior and values based metric) vs. a non-adaptive metric (i.e., a classical values based metric), a dichotomous vs. a non-dichotomous search, and a temporal correlation vs. a Pearson correlation for the behavior cost-function.

In addition, according to classes including or not time delays, these configurations are modulated for several variants of the dynamic time warping and of the Euclidean distance. A misclassification error rate, based on a 10-fold stratified cross-validation, is estimated.