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Abstract

The article is an overview of basic issues related to repetitions in strings, con-
centrating on algorithmic and combinatorial aspects. This area is important both
from theoretical and practical point of view. Repetitions are highly periodic factors
(substrings) in strings and are related to periodicities, regularities, and compression.
The repetitive structure of strings leads to higher compression rates, and conversely,
some compression techniques are at the core of fast algorithms for detecting repeti-
tions. There are several types of repetitions in strings: squares, cubes, and maximal
repetitions also called runs. For these repetitions, we distinguish between the factors
(sometimes qualified as distinct) and their occurrences (also called positioned fac-
tors). The combinatorics of repetitions is a very intricate area, full of open problems.
For example we know that the number of (distinct) primitively-rooted squares in a
string of length n is no more than 2n — ©(logn), conjecture to be n, and that their
number of occurrences can be O(nlogn). Similarly we know that there are at most
1.029n and at least 0.944n maximal repetitions and the conjecture is again that
the exact bound is n. We know almost everything about the repetitions in Sturmian
words, but despite the simplicity of these words, the results are nontrivial. One of
the main motivations for writing this text is the development during the last cou-
ple of years of new techniques and results about repetitions. We report both the
progress which has been achieved and which we expect to happen.

Keywords: Repetitions, squares, cubes, runs, consecutive repeats, tandem repeats,
compression, factorisation, algorithms.
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1 Introduction

Repetitions and periods in strings constitute one of the most fundamental
areas of string combinatorics. They have been studied already in the papers
of Axel Thue [46], considered as having founded stringology. While Thue was
interested in finding long sequences with few repetitions, in recent times a lot
of attention has been devoted to the algorithmic side of the problem.

Periods are ubiquitous in string and pattern matching algorithms. Knuth-
Morris-Pratt string-matching algorithm uses the border table of the pattern,
which is equivalent to using the periods of all its prefixes. Periods are implicitly
computed when preprocessing the pattern in the as well famous Boyer-Moore
algorithm (see [9,26]). The basic reason why periods show up in this question
is that stuttering is likely to slow down any string-matching algorithm. The
analysis of periods is even more important in constant-space optimal pattern
matching algorithms because the only information on the patterns that is
precomputed and stored is related to global and local periods of the pattern:
perfect factorisation [23], critical factorisation [15], or sampling method [24].
By the way, the difficulties in extending string-matching techniques to image
pattern matching methods are essentially due to different and more complex
structures of 2D-periodicities.

Periodicities and repetitions in strings have been extensively studied and are
important both in theory and practice. The strings of the type ww and www,
where w is a nonempty string, are called squares and cubes, respectively. They
are well investigated objects in combinatorics of strings [33] and in string-
matching with small memory [16].

Detecting repetitions in strings is an important element of several questions:
pattern matching, text compression, and computational biology to quote a
few. Pattern matching algorithms have to cope with repetitions to be efficient
as these are likely to slow down the process; the large family of dictionary-
based text compression methods (see [47]) use a weaker notion of repeats
(like the software gzip); repetitions in genomes, called satellites or Simple
Sequence Repeats, are intensively studied because, for example, some over-
repeated short segments are related to genetic diseases [35]; some satellites
are also used in forensic crime investigations.
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In this survey, we recall some of the most significant achievements in the
area over the past three decades or so, as well as point out several central
open questions. We focus on algorithms for finding repetitions and, as a key
component, on counting various types of repetitions. The main results concern
fast if not optimal algorithms for computing squares occurrences and runs, as
well as combinatorial estimation on the number of the corresponding objects.
Section 2 is devoted to properties of squares, Section 3 to that of runs, and
finally the last two sections investigates repetitions in Fibonacci words and in
Sturmian words.

2 Squares

Let A be an alphabet of size a and A* the set of all finite strings over A. We
denote by |w| the length of a string or word w, its ith letter by w[i], and its
factor (substring) wliJw(i + 1]...w[j] by w[i..j]. Note that w = w[l..|wl].
We say that w has period p if w[i] = w[i + p], for all 4, 1 < i < |w| — p.
The period of w is its smallest period and is denoted by period(w). The ratio
between the length and the period of w is called the exponent of w. The
string w is said to be periodic if period(u) < |u|/2. A repetition in w is an
interval [i..j] C [1..|w]|] for which the associated factor wli..j] is periodic.
It is an occurrence of a periodic string wli .. j], sometimes called a positioned
repetition in the literature. A string can contain many repetitions, see Figure 3.

In the following, we analyse squares in a string x of length n.

The simplest but most investigated type of repetition is the square. A square
is a string of the form ww, where w is nonempty. Indeed, to avoid counting
redundant elements, the root w of the square is assumed to be primitive, that
is, it is not itself the power of another string. This is equivalent to say that
the exponent of ww is 2. Note that the same square may appear several times
in the same string and then we talk about square occurrences or equivalently
positioned squares. As we shall see, counting distinct squares, i.e. squares that
are distinct strings, or squares occurrences gives very different results.

2.1 Square occurrences

Initially people investigated mostly squares occurrences, but their number can
be as high as O(nlogn) [6], hence algorithms computing all of them cannot
run in linear time, due to the potential size of the output. Indeed the same
result holds for any type of repetition having an integer exponent greater than
1 [8]. The optimal algorithms reporting all positioned squares or just a single
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Fig. 1. Three squares that are prefixes of each other: u? < v? < w? with |w| < 2|u.
In this case none of the strings w, v, w is primitive.

square were designed in [6,1,37,7].

Theorem 1 (Crochemore [6], Apostolico-Preparata [1], Main-Lorentz [37])
There ezists an O(nlogn) worst-case time algorithm for computing all the oc-
currences of primitively-rooted squares in a string of length n.

Techniques used to design the algorithms are based on partitioning, suffix
trees, and naming segments, respectively. A similar result has been obtained
by Franek, Smyth, and Tang using suffix arrays [22]. The key component of
the algorithm of Theorem 3 is the function described in the following lemma.
We say that an occurrence of a square ww in uv is centred in u (resp. v) if its
position ¢ satisfies ¢ + |w| < |u| (resp. i + |w| > |ul).

Lemma 2 (Main-Lorentz [37]) Given two square-free strings u and v, re-
porting if uv contains a square centred in u can be done in worst-case time

O(ful).

Using suffix trees or suffix automata together with the function derived from
the lemma, the following fact has been shown.

Theorem 3 (Crochemore [7], Main-Lorentz [37]) Testing if a string of
length n is square-free can be done in worst-case time O(nloga), where a is
the size of the alphabet of the string.

Another interesting result concerning periodicities is the following lemma and
its fairly immediate corollary.

Lemma 4 (Three Square Prefixes, Crochemore-Rytter [16]) If u, v,
and w are three strings such that u is primitive, uu is a proper prefix of vv,
and vv is a proper prefix of ww, then |u| + |v| < |w].

A couple of proofs of this important lemma, different from the original, were
given. A short one appears in [33, page 281]. A very simple proof of a slightly
weaker result, where 2|u| < |w|, is given in [34, page 433]. We recall here the
simplest such proof, due to Ilie [28], which yields two results: a weaker version
of Lemma 4 (2|u| < |w| if any of the three strings is assumed primitive) and
Corollary 2 below. For the former, assume 2|u| > |w|; see Figure 1 where



u; =u, 1 <i<3.Set ulv = aP with 2 primitive. The overlap between u,
and ugy gives that u = z"2’, for a prefix 2’ of x. Synchronisation of primitive
powers of x in us with those in uy and the suffix 2P of v implies that 2’ is
empty and hence none of u, v, and w is primitive, a contradiction.

A fairly immediate consequence of Lemma 4 is the next corollary.

Corollary 1 Any nonempty string of length n possesses less than logg n pre-
fizes that are squares, where ® is the golden mean (14 /5)/2.

2.2 Distinct squares

Unlike their number of occurrences discussed above, it is known that only
O(n) (distinct) squares can appear in a string of length n [19].

In the configuration of Lemma 4, a second consequence is that uu is a prefix of
w. Therefore, a position in a string x cannot be the largest (rightmost) position
of more than two squares, which yields the next corollary. As mentioned earlier,
a simple proof of it, bypassing Lemma 4 and due to Ilie [28], is illustrated by
Figure 1. If three squares u?, v?, and w? start at the same position, then the
shortest of those, u? appears again later. Indeed, this is obvious if 2|u| < |w|.
Otherwise, u? appears again |x| positions later. Therefore, at most two squares
can have their last (rightmost) occurrences starting at the same position. The
claim follows.

Corollary 2 (Fraenkel and Simpson [19]) Any string of lengthn contains
at most 2n (distinct) squares.

The structure of all squares and of unpositioned runs has been also computed
within the running time O(nloga) in [36] and [27].

Based on numerical evidence, it has been conjectured that the number of
(distinct) squares in a string of length n is at most n. The best bound to date,
2n — O(logn), was given in [29].

Proving the conjecture is probably difficult due to the following example from
[19]. Consider the family of strings w,, = @, 0°77110°10°"'1, for all m > 1 (®

denotes the concatenation). Then, the length of wy, is |w,,| = 2m? + £m and
odd(m)

the number of squares it contains is very close to it: %mz +4m — 3+ ——,

that is, |wy,| — o(|wn|).

Figure 2 displays w,4 and the last occurrences of all its squares. It is interesting
to note that, although the string has many squares, this bottom sequence
contains very few 2’s.
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Fig. 2. The string wy = 021011021 031021031 0%10310%1 0°10*10°1 contains many
squares. The rightmost occurrence of each square is displayed. The numbers in the
bottom sequence give the number of squares whose rightmost occurrence starts at
that position.

b aababaaba bba baababaa b

Fig. 3. The structure of runs in the string baababaababbabaababaab = bz?(z%)?p,
where z = aabab and 2 = babaa.

3 Runs

The concept of mazimal repetitions, called runs in [30], has been introduced
to represent all repetitions in a succinct manner. The crucial property of runs
is that there are only O(n) many of them in a string of length n [32,42,10,40].

A run in a string w is an interval [i..j] such that both the associated string
wli..j] has period p < (j —i+ 1)/2, and the periodicity cannot be extended
to the right nor to the left: w[i — 1] # wlz +p—1] and w[j —p+1] # w[j + 1]
when these elements are defined. When the period p of a run is known, we call
it a p-run. An example is displayed in Figure 3.

As a consequence of the algorithms and of the estimation on the number of
squares, the most important result related to repetitions in strings can be
formulated as follows.

Theorem 5 (Kolpakov-Kucherov [32], Rytter [42], Crochemore-Ilie [10])
(i) All runs in a string of length n over an alphabet of size a can be computed
in time O(nloga).

(ii) The number of all runs is linear in the length of the string.

The point (ii) is very intricate and of purely combinatorial nature. The al-
gorithm for (i) executes in time proportional to the number of runs (on a
fixed-size alphabet) which, by (ii), is linear. Indeed, with an reasonable hy-
pothesis on the alphabet, the running time of (i) can be reduced to O(n) as
stated in Theorem 6 below.

Let p(n) be the maximal number of runs in a string of length n. By item (ii) we
have p(n) < cn for some constant c. Based on the results in Table 1, Kolpakov
and Kucherov [32] conjectured that ¢ = 1 for binary alphabets. A stronger
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Fig. 4. The f-factorisation of the string baababaababbabaababaab of Figure 3 and
the set of its internal runs; all other runs overlap factorisation points.

conjecture was proposed in [21] where a family of strings is given with the
number of runs equal to % = 0.927... (® is the golden ratio), thus proving
¢ >0.927.... The authors of [21] conjectured that this bound is optimal, but
the best known lower bound for ¢ has been shown to be 0.944 more recently
by Matsubara et al. [38]. Some reasons which might indicate that the optimal
bound may be less than n are discussed in Section 6.

Table 1
Maximum number of runs in binary strings of length n,5 <n < 31 (from [32]).

n ‘5678910111213141516171819202122232425262728293031

runs‘23455 6 7 8 8 1010111213 14151516 17 18 19 20 21 22 23 24 25

3.1  Computing runs

Next, we sketch shortly the basic components of the proof of the point (i)
of Theorem 5. The main idea is to use, as for the previous Theorem 3, the
[-factorisation of the input string? (see [7]): a string w is decomposed into
factors uq, us, ..., ug, where u; is the longest segment which appears before
its position in w, i.e. in wjusy ... u;A™Y, possibly with overlapping the present
occurrence of w;; if the segment is empty u; is a single letter (see Figure 4).

The runs which fit in a single factor of the f-factorisation are called inter-
nal runs, other runs are called here overlapping runs. Figure 4 shows the
f-factorisation and the internal runs of an example string.

There are three crucial facts:

e all overlapping runs can be computed in linear time,

e cach internal run is a copy of an earlier overlapping run,

e the f-factorisation can be computed in linear time under some hypothesis
on the alphabet of the string (see Theorem 6 below).

It follows easily from the definition of the f-factorisation that if a run overlaps
two (consecutive) factors uy,_; and uy then its size is at most twice the total
size of these two factors.

4 This factorisation plays an important role in data compression algorithms and
has many other applications. Its combinatorial properties have been investigated in
[3] and [5]; see the latter for a number of open problems.
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Fig. 5. If an overlapping run with period p starts in ug_1, ends in ug, and its part
in ui_1 is of size at least p, then it is easily detectable by computing continuations
of the period p in the two directions, left and right.

Figure 5 shows the basic idea for computing runs that overlap u;_; and wuy in
time O(|ug—_1| + |ug|). Using similar tables as in the Morris-Pratt algorithm
(border and prefix tables, see [9,17]) we can test the continuation of a period
p, to the left and to the right. The corresponding tables can be constructed in
linear time in a preprocessing phase.

After computing all overlapping runs the internal runs can be copied from
their earlier occurrences by processing the string from left to right. Recall
that, by (ii), there are only linearly many.

The above process is offline and computing all runs in linear time online, i.e.
sequentially while reading the input string, is an open question. This might
be of great interest when processing streams of data.

The f-factorisation of a string is commonly computed with the suffix tree or
the suffix automaton of the string. When the alphabet of the string has a
fixed size thanks to the efficient algorithms for building these data structures,
the whole process can be carried on in linear time. Two recent algorithms,
due to [12] and [4] (see also [13]), use the suffix array of the string to provide
linear-time algorithms for integer alphabets. The hypothesis means that the
alphabet of the string of length n is in the interval [0, n¢], for some constant
d, which implies that letters can be sorted in linear time.

Theorem 6 (Crochemore-Ilie [12], Chen-Puglisi-Smyth [4]) On an in-
teger alphabet, the f-factorisation of a string and its runs can be computed in
linear time.

3.2 Counting runs

The most intriguing question remains the asymptotically tight bound for
the maximum number of runs p(n) in a string of length n. The first proof
(by painful induction) was quite difficult and has not produced any concrete
constant coefficient in the O(n) notation. This subject has been studied in
[21,20,44,45]. The exact number of runs has been considered for special types
of strings (see Sections 4 and 5): Fibonacci strings and more generally Stur-
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Fig. 6. This string of length 116 contains 99 runs (99/116 > 0.85). It has 27 1-runs,
26 2-runs, 27 3-runs, 6 5-runs, 5 8-runs, 6 13-runs, 1 21-run, and the whole string
is a b5-run.
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Fig. 7. Several runs starting at the same position. Their periods grow exponentially.
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Fig. 8. Several runs with the same centre. Their periods grow only linearly. Above
the string, strong local periodicities are shown.

mian strings [18,30,42]. The best-known lower bound of approximately 0.944 n
is from [38].° Figure 6 gives a sample of string containing many runs.

The first explicit upper bound for general strings was given by Rytter [42],
that is, p(n) < 5n, and improved in a structural and intricate manner in [43],
p(n) < 3.44 n, by introducing a sparse-neighbour technique. Another improve-
ment of the ideas of [42] was done in [40] where the bound 3.48 n is obtained.
The neighbours are runs for which both the distance between their starting po-
sitions is small and the difference between their periods is also proportionally
small according to some fixed coefficient of proportionality. The occurrences
of neighbours satisfy certain sparsity properties which imply the linear upper
bound. Several variations for the definitions of neighbours and sparsity are
possible. Considering runs having close centres (the beginning position of the
second period) the bound has been lowered to 1.6n in [10,11], improved to
1.52n in [25], and further to 1.029n as a result of computations (see [14]).°

It is interesting to note that the approach of [10,11] is somewhat counterintu-
itive. On the one hand, Corollary 1 states that there can be only logarithmi-
cally many runs starting at the same position and this is how they are counted
in [42]; see Figure 7 for an example. On the other hand, there can be linearly
many runs with the same centre, see the example in Figure 8, and still count-
ing them this way in [10,11] yields a better bound. This is essentially due to
the fact that many runs with the same centre implies strong local periodicities
in the string, thus eliminating many other potential runs.

® See the Web page http://www.shino.ecei.tohoku.ac.jp/runs/.
6 See the Web page http://www.csd.uwo.ca/~ilie/runs.html for the results of
latest computations.



4 The structure of runs in Fibonacci words

The structure of runs is well understood for the class of Fibonacci words. Let
us denote by f,, the n-th Fibonacci word ( fj is the empty word, f; = b, fo = a,
and f, = fa_1fu_2 for n > 2), by F, = |f,| the nth Fibonacci number, and
by F. the infinite Fibonacci word.

Kolpakov and Kucherov (see [34, Chapter 8]) have shown the following two
properties of runs occurring in Fibonacci words.

Theorem 7 (Kolpakov-Kucherov [34])
(i) There are exactly 2F,_o — 3 runs in the n-th Fibonacci word f,.

(ii) The sum of exponents of runs in Fibonacci words is hF, + o(n), where
1.922 < h < 1.926.

Property (i) shows in particular that the asymptotic ratio of runs in Fibonacci
words is (@ is the golden mean (1 ++/5)/2)

. 2F, »—3 2
lim =

0.76.
nme | fal 1+o

Q

In fact we can compute the number of p-runs for a specific period p. We say
that the p-run w is short if |w| < 3p, and long otherwise. Let also g, be the
n-th Fibonacci word f,, with the last two letters removed. We have:

Lemma 8 Fvery run of F, with a period larger than two is of one of the two
types: either a short 3-run, i.e. of the form B = f#_ gx_a, or a long a-run,
i.e. of the form cy, = f2_,gx_3, for some integer k.

An immediate corollary follows from the structure of runs.

Corollary 3 (Karhumaiki [31]) There is no nonempty factor of the form

w? in the infinite Fibonacci word F.

Indeed, it appears that maximal-exponent repetitions in F,, correspond to
long a-runs. Their exponent, for a given k, is then:

|| _ | [ _2k—s] 3ot P32 Fpa—2 L9
period(ak) |fk;—2| Fk_g Fk_g ’
whose limit is:
F. -2
lim L 21 2-9+2.
k—oo Fg2

Therefore, if we define the repetition order of the (finite or infinite) string =,

10
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Fig. 9. The structure of runs in the Fibonacci word Fii. The arrows show endpoints
of its prefixes which are the Fibonacci words fy, f5, ..., fi1. The string contains 65
runs. There are 21 = Fg 1-runs (occurrences of aa), 12 = Fy — 1 2-runs, 13 = F;
3-runs, 8 = Fg 5-runs, 5 = Fy 8runs, 3 = Fy 13-runs, 2 = F3 21-runs, and 1 = Fy
34-run.

denoted by rep(x), as
rep(z) = sup{|w|/period(w) | w is a finite factor of x},
we get the stronger following corollary (see [33, Chapter 8]).

Corollary 4 (Mignosi-Pirillo [39]) The repetition order of the infinite Fi-
bonacci word Fo, is rep(Foo) = ® + 2.

Counting runs occurring in Fibonacci words by their period yields the next
result illustrated by Figure 9. This provides an alternative proof for the number
of all runs in Fibonacci words.

Theorem 9 (Rytter [41]) The Fibonacci word f,, n > 6, contains F,_3
1-runs, F,,_4—1 2-runs, and F,_; Fj-runs for any k satisfying 4 < k <n—2.

5 Maximal repetitions in Sturmian words

The standard Sturmian words are generalization of Fibonacci words and sim-
ilarly as Fibonacci words are described by recurrences. We denote by S the
class of standard Sturmian words.

The recurrence for a standard word is related to its so-called directive sequence:
an integer sequence of the form v = (yo,71,...,7Vn), where 79 > 0 and ; > 0
for 0 < i < n. The standard word corresponding to v, denoted by S(v) = x,,11,
is defined by the recurrence relations:

— — _ )0 1
r1 =0, xg=a, v1 =x’T_1, T2 = 2{ T0,
I ] _ In—1 _
T3 =Ty T1,..., Tp = xnn—l Tp—2, Tntl = xznxn—l

For example, a Fibonacci word is generated by a directive sequence of the
form (1,1,...,1).

11



The number N = |z,,41| is the (real) length of the word, while n can be thought
as its compressed size. It happens that N can be exponential with respect to
n, and computations on the word in time O(n) are often rather nontrivial.

To state the next result, we introduce a zero-one function, called unary, for
testing if its argument equals 1:

if x =1 then unary(z) =1 else unary(z) = 0.

We also denote by |z|, the number of occurrences of letter a in the word w.
The next statement gives a precise count of the number of runs in a Sturmian
word.

Theorem 10 (Baturo-Piatkowski-Rytter [2]) Let v = (y0,...,7.) be
the directive sequence and n > 3. Then the number of runs in S(v) equals:

2A+2B+A(y) -1 i = =1
(M +2) A+ B+A(y) —odd(n) if =1 m>1
p(S(7)) = ,
2A+ 3B+ A(y) — even(n) if v>1 =1
Cm+1)A + 2B + A(y) Otherwise
where

A = |S(’72a’73"'a’7n)|aa B :|S(’73a’74"'77n)|a
A(y)=n—1—=(m+...+ ) —unary(y,).

The theorem yields the two next corollaries by the same authors.

Corollary 5
(a) p(w) < 3 |w| for eachw € S
(b) Let wy, = S(1,2,k, k). Then limy_.oo 2% = 4,

Corollary 6
Counting the number of runs in the standard Sturmian word S(vo, ..., Vn) can
be achieved in time O(n).

6 Conclusion and further research

One of the main motivations for writing this text was the development during
the last couple of years of new techniques and results about repetitions. In this
survey, we reported both the progress which has been achieved and which we
expect to happen. We recalled some of the most significant achievements, as
well as pointed out several central open questions, like the conjectures on the

12



maximal number of (distinct) squares occurring in a string and the maximal
number of runs. We focused on algorithms for finding repetitions and, as a
key component, on counting various types of repetitions.

Although the Kolpakov and Kucherov’s conjecture on the maximum number
of runs in a string is still unsolved, from the practical point of view of the
analysis of algorithms depending on this number, its very tight approximation
is largely sufficient. A possible research track to attack the question is to
study the compressibility of run-rich strings in addition to their combinatorial
properties.

Aside from the above-mentioned open questions, we discuss here several other
related problems.

Distinct runs. Inspired by the square problem, we may look at the strings
associate with runs and count only the number of runs associated with different
strings. Notice that the number of nonequivalent runs and that of squares do
not seem to be obviously related to each other. The same run may contain
several distinct squares (e.g., ababa contains the squares abab and baba) but
we can have also distinct runs corresponding to a single square (e.g., aa and
aaa are distinct runs but only the square aa is involved).

(2 + e)*-repetitions. A way to weaken the conjecture on the number of
squares is to increase the exponent of the repetition. Given a non-negative ¢,
one could count only the number of repetitions of exponent 2+¢ or higher. We
need first to make it precise what we are talking about. We count primitively-
rooted repetitions of exponent at least 2 + ¢ and having distinct roots. That
is, x* and y”, x and y primitive, o« > 2+¢, 8 > 2+¢, are different if and only

if v #y.

This conjecture might be easier to prove. At least for 2 + & = 1 + ® (where
® is the golden ratio) we can prove it immediately. We count each square
at the position where its rightmost occurrence starts and show that no two
distinct squares can have the same rightmost starting position. Assume z'*®
is a prefix of y'*® and denote |z| = p < ¢ = |y|. Then necessarily |z'T®| =
(1+®)p > &g = |y®| as otherwise ' T® would have another occurrence to the
right. That means ®?p = (1 + ®)p > ®q, or p > ¢. Therefore, the overlap
between the two runs has the length |#1%®| = (1 + ®)p =p + Pp > p + ¢. By
Fine and Wilf’s lemma, this means x and y are powers of the same string and
therefore not primitive, a contradiction.
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(2 — e)*-repetitions. This is similar to the previous problem except that
now we consider repetitions of exponent 2 — ¢ or higher. Is the number of such
maximal repetitions still linear? If this is false for any ¢ > 0, then 2 is the
optimal threshold. Otherwise, the optimal threshold needs to be found.
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