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[1] The continental margin of southeast Brazil is elevated. Onshore Tertiary basins
and Late Cretaceous/Paleogene intrusions are good evidence for post breakup
tectono-magmatic activity. To constrain the impact of post-rift reactivation on the
geological history of the area, we carried out a new thermochronological study. Apatite
fission track ages range from 60.7 � 1.9 Ma to 129.3 � 4.3 Ma, mean track lengths from
11.41 � 0.23 mm to 14.31 � 0.24 mm and a subset of the (U-Th)/He ages range from
45.1 � 1.5 to 122.4 � 2.5 Ma. Results of inverse thermal history modeling generally
support the conclusions from an earlier study for a Late Cretaceous phase of cooling.
Around the onshore Taubaté Basin, for a limited number of samples, the first detectable
period of cooling occurred during the Early Tertiary. The inferred thermal histories for
many samples also imply subsequent reheating followed by Neogene cooling. Given
the uncertainty of the inversion results, we did deterministic forward modeling to assess
the range of possibilities of this Tertiary part of the thermal history. The evidence for
reheating seems to be robust around the Taubaté Basin, but elsewhere the data cannot
discriminate between this and a less complex thermal history. However, forward modeling
results and geological information support the conclusion that the whole area underwent
cooling during the Neogene. The synchronicity of the cooling phases with Andean
tectonics and those in NE Brazil leads us to assume a plate-wide compressional stress that
reactivated inherited structures. The present-day topographic relief of the margin reflects a
contribution from post-breakup reactivation and uplift.

Citation: Cogné, N., K. Gallagher, P. R. Cobbold, C. Riccomini, and C. Gautheron (2012), Post-breakup tectonics in southeast
Brazil from thermochronological data and combined inverse-forward thermal history modeling, J. Geophys. Res., 117, B11413,
doi:10.1029/2012JB009340.

1. Introduction

[2] Presently active or young rift environments tend to
have elevated rift shoulders (e.g., East Africa, the Red Sea).
Similarly, many older passive margins show elevated
topography, with an escarpment typically occurring up to
100 km or more inland of a low-lying coastal plain [e.g.,
Gilchrist and Summerfield, 1994]. There is a continuing
debate as to whether present-day high elevation is inherited
from rifting or previous orogenic activity, or whether it
reflects more strongly post-rift tectonic reactivation [e.g.,

Brown et al., 2002; Cogné et al., 2011; Japsen et al., 2012a;
Osmundsen et al., 2010; Nielsen et al., 2009; Persano et al.,
2006]. The presence of such escarpments along mature
passive margins today raises the question of how the relief
developed over the order of 100 Ma, i.e., has any initial pre-
rift or rift-related topography persisted since break-up, or has
there then been some post rift uplift [e.g., Braun and van der
Beek, 2004; Gilchrist and Summerfield, 1990, 1994; Gunnell
and Fleitout, 2000; Japsen et al., 2012a; van der Beek et al.,
1995]. To address this problem, one can consider the erosion
history onshore region and use low temperature thermo-
chronology, and especially apatite fission track analysis
(AFT, sensitive to temperature between 120�C and 60�C)
and apatite U-Th/He dating (AHe, sensitive to temperature
between 80�C and 40�C) to constrain the cooling history of
the upper crust (in the depth range of �1 to 6 km)
[Gallagher et al., 1998].
[3] Some applications of such methods to passive margins

led to interpretations in which rift shoulder related erosion
occurred more or less continuously since rifting or even
since previous orogeny [e.g., Gallagher et al., 1994, 1995;
Nielsen et al., 2009; Pedersen et al., 2012] or by discrete
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episodes linked to rifting [e.g., Gunnell et al., 2003]. How-
ever, other studies inferred that the history is more complex,
and that post rift events have left their mark on the thermo-
chronological record [Brown et al., 1990, 1999; Gallagher
and Brown, 1997, 1999; Harman et al., 1998, O’Sullivan
et al., 2000; Raab et al., 2002, Hiruma et al., 2010].
[4] Southeast Brazil provides a good case study area for

such a debate, as it is a mature rift margin of high relief,
which formed during rifting of the South Atlantic around
130 Ma [Chang et al., 1992; Nürnberg and Müller, 1991].
The onshore margin exhibits good evidence for post-rift
reactivation of the Precambrian basement, in terms of (1) a
series of Late Cretaceous to Palaeocene alkaline plutonic
bodies and (2) a series of onshore Tertiary basins that lie in
the Paraiba do Sul valley (Figure 1). Such evidence for post-
breakup tectonic activity raises the possibility of assessing
the impact of such activity on the present-day landscape.
[5] In this contribution we present new thermochrono-

logical data from southeast Brazil and more specifically
from the Taubaté and Resende Tertiary basins, the adjacent
areas of high relief (i.e., Serra da Mantiqueira and Serra do
Mar) and the Atlantic coast (Figure 2), with the aim of better
constraining the Tertiary cooling history and tectonic activ-
ity. After a brief review of the geological setting and the
AFT and AHe methodologies, we describe the data and our
modeling approaches. We then discuss our results qualita-
tively and quantitatively and integrate them with avail-
able geological data to constrain the post-rift evolution of
the margin and to assess the possible causes of post-rift
reactivation.

2. Geological Setting

[6] Here, we only briefly describe the main geological
features of the SE Brazilian margin, but for more details,

see Cogné et al. [2011]. Onshore, the outcrop is mainly
Precambrian basement, which formed during the Brasiliano
orogeny (700 to 450 Ma) [de Brito-Neves and Cordani,
1991; Trouw et al., 2000] and is cut by major shear zones
(trending NE-SW) and thrusts (trending N-S). Alkaline
bodies intruded this basement during the Late Cretaceous
and Palaeocene, mainly along the Cabo Frio lineament
[Almeida, 1991, Figure 1]. In our studied area, Tertiary
basins, with a thickness of sediments that can reach 800 m
[e.g., Riccomini et al., 2004] lie in the Paraiba do Sul valley.
According to some authors [e.g., Almeida, 1976; Riccomini
et al., 2004], these basins formed by rifting, whereas others
[e.g., Cobbold et al., 2001; Cogné et al., 2012; Padilha
et al., 1991] have favored a transtensional (pull-apart) con-
text. The basins are at least 48 � 1 Ma old (from 40Ar-39Ar
dating of intercalated lavas in the Volta Redonda Basin
[Riccomini et al., 2004]), but could be as old as Palaeocene
[Cobbold et al., 2001; Cogné et al., 2012; Sant’Anna et al.,
2004].
[7] The main topographic features onshore, between São

Paulo and Rio de Janeiro, are, from SE to NW, (1) a low
coastal plain, (2) a scarp (1000 to 1500 m) leading to the
Serra do Mar, (3) the plateau of the Paraiba do Sul valley
(400 m to 600 m), (4) a second scarp, at the southeastern
edge of the Serra da Mantiqueira (�2000 m with summit
that reach 2800 m) and (5) a hinterland plateau (Figures 2
and 3).
[8] Offshore, seismic and stratigraphic studies for

petroleum exploration have led to a good understanding of
the structure of the Santos Basin [e.g., Contreras et al.,
2010; Leyden et al., 1971; Modica and Brush, 2004;
Pereira and Macedo, 1990] and Campos Basin [e.g.,
Contreras et al., 2010; Mohriak et al., 1990, 2008]. These
studies show that the basins are mostly typical of a passive

Figure 1. General map of southeast Brazilian margin showing geological framework. Dashed rectangle
indicates region of Figure 2. APSZ = Além-Paraíba shear zone; Pdc = Poços de Caldas intrusion. Modified
from Hiruma et al. [2010].
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margin, but underwent tectonic reactivation during the
Late Cretaceous and Palaeogene for the Santos Basin
[Cobbold et al., 2001], as well as the Neogene for the
Campos Basin [Cobbold et al., 2001; Fetter, 2009].
Moreover the spatial distribution of sediment indicates a
highly variable flux over time, potentially due to variations
in the rate of onshore erosion, or to changing source

regions [e.g., Cobbold et al., 2001; Contreras et al., 2010;
Mohriak et al., 2008].

3. Sampling Strategy for Low Temperature
Thermochronology

[9] Previous thermochronological studies (mainly using
only AFT) have led to interpretations in terms of both

Figure 2. Simplified geological map of study area (for location, see Figure 1). All outcrops are of
Precambrian basement, except in colored areas. Samples are from three areas, Serra da Mantiqueira (white
stars), Tertiary basins (white circles) and Serra do Mar – coastal area (white diamonds). Samples without
AHe or AFT data (open squares) we have not used for interpretations. Topography is from Shuttle Radar
Topography Mission (SRTM), 3 arc-second. For topographic profile A-A′, see Figures 3 and 10.

Figure 3. Representative topographic cross-section of study area (see Figure 2 for line of profile),
together with AFT ages, uncorrected AHe ages and FT corrected AHe ages of samples from three areas
(as in Figure 2).
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continuous and episodic denudation [Gallagher et al., 1994,
1995; Hiruma et al., 2010; Tello-Saenz et al., 2003, 2005].
Many of the AFT-inferred local denudation rates have Upper
Cretaceous to Cenozoic peaks [Hackspacher et al., 2008;
Hiruma et al., 2010; Tello-Saenz et al., 2003, 2005], i.e.,
post-break-up. In a recent study, Cogné et al. [2011] pre-
sented a suite of new U-Th/He data on samples (mainly from
Precambrian basement but also from the Poços de Caldas
intrusion) previously used for AFT by Gallagher et al.
[1994]. The results were similar to those of Ribeiro [2007]
from a more restricted area, in implying widespread cool-
ing during the Late Cretaceous. However, due to the rela-
tively low temperatures (around surface temperature, i.e.,
20–30�C) after Late Cretaceous cooling, the constraints on
the Tertiary history were quite equivocal. Only 2 samples
suggested a discrete cooling phase in the Neogene while
others implied protracted cooling or near-surface tempera-
tures during all of the Tertiary.
[10] We collected 45 new samples from (1) Precambrian

basement rocks around the Taubaté Basin, (2) the adjacent
Serra do Mar and Serra da Mantequeira (including two
samples in the Itatiaia massif) and (3) the coastal region. We
focused specifically on the area where we considered there
to be the best opportunities to identify Late Cretaceous to
Tertiary tectonic activity onshore given the presence of
Tertiary basins. For each sample we separated apatite from
around 5 kg of rock, by traditional magnetic and heavy
liquid methods. Of the samples, 39 yielded apatite, but only
35 had enough for both fission track and (U-Th)/He analyses.

4. Thermochronology

4.1. Apatite Fission Track Analysis

[11] We use the external detector method [Gleadow, 1981;
Hurford and Green, 1982]. The apatite separates were
embedded in epoxy resin, polished to expose an internal
surface, and the spontaneous tracks are revealed by 6.5%
HNO3 during 45 s at 20�C. Afterwards we attached a low-U
external mica sheet and all samples were irradiated in the
Oregon State University Radiation Center together with
CN5 dosimeters. The induced tracks in the mica were etched
with 60% HF for 40 min at 20�C. NC did all the AFT
measurements in Rennes with a Zeiss M1 microscope with
dry magnification of �1000, using Trackscan® software.
For each sample we counted a minimum of 20 single grains
using the z calibration method [Hurford and Green, 1983;
Hurford, 1990] with a z value equal to 316.70 � 3.03 a.cm2.
The central age [Galbraith and Laslett, 1993], radial plot
[Galbraith, 1990], and single grain age distribution were
calculated with Trackkey software [Dunkl, 2002]. When it
was possible we measured 100 horizontal confined tracks for
the length distribution [Gallagher et al., 1998; Gleadow
et al., 1986] and their orientation to c-axis, as both the
annealing and etching of tracks are anisotropic [Barbarand
et al., 2003a; Donelick, 1991; Ketcham et al., 2007]. We
also measured the long axis of the etch pits, Dpar, as a proxy
for the compositional dependence of annealing [Barbarand
et al., 2003b; Carlson et al., 1999; Ketcham et al., 2007].

4.2. (U-Th)/He Analysis

[12] He in apatite is quantitatively retained at temperatures
below 40�C and the system is typically considered open at

temperatures above 80–90�C [Farley, 2000;Wolf et al., 1996,
1998], defining the He partial retention zone (HePRZ). The
effective closure temperature varies with cooling rate and
composition [Warnock et al., 1997] and with crystal size
[Farley, 2000; Reiners and Farley, 2001] but has been
reported for Durango apatite around 65 � 10�C [e.g.,
Cherniak et al., 2009; Ehlers and Farley, 2003; Farley, 2000].
[13] The diffusive loss of He is also a function of radiation

damage, produced by a-recoil, leading to enhanced He
retention for apatites with higher U and Th concentrations
[Flowers et al., 2009; Gautheron et al., 2009; Shuster et al.,
2006; Shuster and Farley, 2009]. Additionally, a-ejection
can lead to non-diffusive He loss within about 20 mm of the
crystal edge. To account for this, the measured age can be
corrected by an FT factor, which is a function of the surface/
volume ratio of the crystal grain [Farley et al., 1996;
Gautheron et al., 2006]. Alternatively, the a-ejection pro-
cess can be allowed for explicitly during thermal modeling
[Meesters and Dunai, 2002]. Here, the AHe ages are cor-
rected for alpha ejection using the FT ejection factor, because
it can lead to a more representative age for comparison with
the AFT ages [see Gautheron et al., 2012]. However, the He
concentration profile close to the boundary of a crystal
reflects both the ejection factor and thermally induced dif-
fusion. As the rate of diffusion is also controlled by the
concentration gradient at the boundary we use the uncor-
rected age when modeling the thermal history, and apply the
a-ejection correction at each model time step (as suggested
by Meesters and Dunai [2002]).
[14] Apatites were selected (by NC) under an Olympus

SZX2–16 microscope at a magnification of �120, according
to their shape, size, and lack of obvious fractures or U-Th-
rich inclusions. The selected crystals were grouped into 3–5
separate aliquots (containing 1, or rarely 2 similar crystals)
for each sample, put into a Pt tube and heated by laser to
degas He at temperatures around 1000�C. The amount of He
was measured by a quadrupole mass spectrometer. Re-
heating was undertaken to test the total degassing and the
possible presence of unidentified U-Th rich inclusions dur-
ing picking. Following Farley [2002], an aliquot was rejec-
ted if the re-extract was greater than the blank value at more
than 1.5%. After degassing, we used isotopic dilution by
spiking the samples with a known amount of 235U and 230Th
and measured the amounts of 238U and 232Th by ICP-MS.
[15] Some of the analyses were done at the Scottish

Universities Environmental Research Centre (SUERC), and
the remainder at the Interactions et Dynamiques des Envir-
onnements de Surface (IDES) laboratory at Orsay Univer-
sity. Errors on AHe age should be considered as up to about
8% corresponding to the dispersion of measured standards.

5. Results

5.1. Apatite Fission Tracks Data

[16] The AFT ages range from 60.7 � 1.9 to
129.3 � 4.3 Ma (Figure 4) and the mean track length ranges
from 11.41 � 0.23 mm to 14.31 � 0.24 mm (after c-axis
correction), the standard deviation being between 1.01 mm
and 2.46 mm (see auxiliary material).1 Dpar values range

1Auxiliary materials are available in the HTML. doi:10.1029/
2012JB009340.
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from 1.3 to 1.8 mm, indicating F-apatites that are less resis-
tant to annealing than Durango (mean Dpar of 1.91 mm with
same condition of annealing).
[17] The single grain ages show no statistically significant

dispersion, all the samples passed the c2 test and the single
grain age distributions were unimodal. On an AFT age vs
mean track length plot, the mean track length decreases
slightly with age, but do not display the boomerang form
[Gallagher and Brown, 1997; Green, 1986], characteristic of
a rapid cooling from different initial temperatures. As the
oldest age is about equal to the time of rifting, this “lack of
boomerang” indicates a more complex history since rifting.
There is no obvious relation between age and distance to the
coast, while the ages show a tendency to increase with alti-
tude (except for the 2 samples from the Itatiaia pluton,
Figure 2).

5.2. AHe Age Data

[18] Uncorrected single grain AHe ages (with measured
error) range from 8.6 � 0.1 to 393.5 � 12.6 Ma with
corresponding FT-corrected ages of 10.1 � 0.1 to
519.6 � 16.6 Ma. We often obtained large ranges in AHe
age with aliquots from the same sample (dispersion can be
more than 100%). There are various explanations for the
variation in AHe ages between and within samples [see
Cogné et al., 2011; Fitzgerald et al., 2006] and we detail
below how we consider the AHe ages, so as to assess their
consistency and then select a subset of the data. The AHe
data that we selected in this way (see auxiliary material)
have ages ranging from 33.0 � 1.1 Ma to 90.9 � 7.0 Ma
(uncorrected, Figure 4) and from 45.1 � 1.5 to 122.4 �
2.5 Ma (FT-corrected). All the selected uncorrected ages are
younger than the corresponding AFT age, and while some
corrected ages are slightly older, they are consistent at the 2s
error level. The AHe ages increase slightly with altitude

(Figure 3), while there is no obvious correlation with dis-
tance to the coast. All the selected AHe ages are younger
than rifting and some of them are Tertiary, implying cooling
and perhaps tectonic activity during this period.

6. Interpretation

[19] For a given thermal history, we use the annealing
models of Ketcham et al. [2007] to simulate AFT data and a
standard spherical diffusion model combined with the radi-
ation damage model of Gautheron et al. [2009] for AHe
ages. Using the inversion approach described in Gallagher
[2012] we sample many different thermal histories and
construct a population of models, by either retaining or
rejecting different models probabilistically, based on the fit
to the observations. In this section, we first describe how, for
a given sample, we use an iterative inversion-based approach
to assess the internal consistency of the observed AHe ages
and also their consistency with both AFT and geological
data. Subsequently, we use forward modeling with specific
thermal histories. The aim is to assess the resolution of
variability in the post-rift part of the thermal histories, given
the uncertainty range inferred for the inverse models.

6.1. Assessing the AHe Age Data

[20] There is a range of explanations for AHe age disper-
sion within and between samples, that has been previously
observed in cratonic areas, for example. These include
unrecognized U-Th rich inclusions, U-Th zonation, grain
size variations or enhanced He retention by radiation dam-
age (for a more detailed review of these factors see
Fitzgerald et al. [2006] and Cogné et al. [2011]). However,
as described in Cogné et al. [2011], the observed dispersion
in our AHe data cannot be fully explained by these factors.
Recently, Brown et al. [2011] have shown that analyzing
broken crystals can lead to a large spread in single grain
AHe ages. Synthetic models suggest that the true age is
around the mean age, and therefore it may be justifiable to
effectively reject the oldest and youngest ages and to con-
sider those closer to the mean. Similarly, Flowers and Kelley
[2011] suggest that it is valid to reject some of the data if it is
not possible to reconcile the observed range of different AHe
ages. In assessing the fidelity of the data, we proceed as
follows:
[21] (1) First we exclude samples for which we do not

have AFT data as a cross-check on the AHe ages, because
generally AHe age data alone cannot yield particularly well-
constrained temperature history models.
[22] (2) Second, we exclude all the AHe ages that are older

than corresponding AFT ages, if grain size or effective ura-
nium (eU) concentration cannot explain the differences.
[23] (3) Subsequently we ran the inverse modeling with all

the remaining AHe age data and AFT data for each sample,
and then examined the fit between each predicted and
observed AHe age to assess their internal consistency and
also their consistency with the AFT data.
[24] (4) In the situation where one AHe age was distinctly

different from others (and the variations were not correlated
with size or eU), and this age was consistently badly pre-
dicted, we excluded it.
[25] (5) Another situation arose when we had two distinct

groups of predictions. In this case different constraints were

Figure 4. Plot of individual AHe ages versus AFT central
ages, showing aliquots that we kept for modeling and those
that we rejected.
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applied to try to identify the more acceptable of the two
possibilities. First we ran separately the two configurations
with the AFT data and examined how the predictions fit both
the AFT and AHe data together. Usually one possibility
gave significantly better predictions than the others. Second,
we considered the consistency of the AHe data with nearby
samples if no major faults had been reported between them.
[26] As a consequence of this procedure we excluded the

samples Br4, Br20, Br30, Br39, Br42 (no or too few AFT
data) from the subsequent interpretations. Neither Br6 nor
Br43 with He data give temperature history with good pre-
dictions whatever the configuration of single aliquot ages
considered. After this selection process, we ended up with
6 samples with AFT data (ages, track length distribution)
only and 28 samples with AFT data and between 1 and
5 aliquots of AHe ages. From these 28 samples about a third
of the AHe data have been culled of (Figure 4). This is an
important proportion and for some samples the majority of
AHe data have been rejected. However, inclusion of these
rejected samples does not change the overall interpretations
as the other more coherent data (and the AFT data) have a
greater influence in determining the thermal history solu-
tions. Therefore, we believe this modeling based selection
makes the use of the AHe data more robust and reliable for
constraining the thermal history. Samples with only AFT
data provide fewer constraints on the thermal history, often
leading to just protracted cooling histories with no structure
in the Tertiary (see Cogné et al. [2011] for comparison
between modeling with AFT and AHe data and with AFT
data only). Therefore these samples are less informative, so
we do not consider them for the main interpretations.

6.2. Results of Inverse Modeling

[27] Thermal histories for expected and maximum likeli-
hood models with predictions are show in Figure 5 for 4
samples (Br9, Br22, Br28, Br29) that we consider are rep-
resentative, in term of ages data and modeling results, of the
evolution of the area. The detailed results for all samples are
available in the auxiliary material while the mean or expec-
ted thermal history models [see Gallagher, 2012] using both
AFT and AHe data are summarized in Figure 6.
[28] In the Serra do Mar and coastal area (Figure 2, 3,

and 6a) we infer a period of rapid cooling during the Late
Cretaceous between 100 Ma and 70 Ma. The amount of
cooling is about 50�C at a mean rate of 2.5�C/m.y. or so.
Following this cooling samples underwent an apparent
reheating of between 10 and 25�C until Neogene. From
15 Ma, we identified a second phase of accelerated cool-
ing (2.5�C/m.y) until the present-day.
[29] In the Serra da Mantiqueira area (Figure 2, 3, and 6b)

we identified the same Late Cretaceous phase of cooling as
inferred for the Serra do Mar. This cooling range from 65 to
35�C at rates between 2 to 4.5�C/m.y. Br40 and Br41, from
the Late Cretaceous Itatiaia intrusion, show rapid cooling
after the emplacement of the intrusive body and then a
monotonic cooling until present-day. Similar to the Serra do
Mar, most of the samples underwent an apparent reheating
of about 20�C after the Cretaceous cooling before a period of
accelerated cooling from 15 Ma. The amount and rate of the
inferred Neogene cooling are similar to these of the Serra do
Mar. We return to the significance of this later.

[30] Between the two Serra lie the Tertiary basins
(Figure 2, 3, and 6c). Here two samples, Br22 and Br25 also
imply Late Cretaceous cooling of about 30�C at a rate of
1.3�C/m.y. On the southeastern border of the Taubaté basin,
Br21 appears to have begun cooling earlier and more rapidly
at about 3�C/m.y. On the northwestern border, two samples,
Br27 and Br29 suggest cooling of 55–60�C during the
Eocene at a rate of 3.5–4.0�C/m.y., while a third one, Br5,
started to cool earlier during the Palaeocene. For some
samples close to the basin margins (Br21, Br27 and Br29
and to a lesser extent Br25), the initial period of cooling is
followed by an apparent reheating of about 20�C. Finally in
this area the model results also imply a period of rapid
cooling during the Neogene, similar to that inferred for the
two Serras.
[31] Overall, only few samples imply cooling around the

timing of rifting (�130 Ma). This is consistent with the
conclusions of Cogné et al. [2011], where only one sample
showed cooling at this time. This may simply be a reflection
of the samples remaining above the Partial Annealing Zone
(PAZ) after rifting rather than there being no thermal effect.
We infer 3 subsequent phases of post-rift cooling. The first
during Late Cretaceous affects the whole area. The second
during Palaeocene and Eocene is only resolved on the
northwest border of the Taubaté basin. Finally the whole
area also seems to have experienced a cooling since
�15 Ma, i.e., Neogene. Most of the samples also have an
apparent reheating between the two.
[32] With the Bayesian approach we adopt for the inverse

modeling, the probability distribution on temperature (at a
given time) and associated 95% credible intervals are an
indication of the uncertainty on the inferred temperature
history. For the Tertiary we have 20 samples that show a
Neogene cooling phase of magnitude that range between
40 to 20�C. Of those samples, a large number also imply a
reheating phase from surface temperatures before this last
cooling. However, the reheating and the cooling are in a
temperature range near the resolution limits of the thermo-
chronological methods (i.e., temperatures <50–60�C) and
the 95% credible intervals leave a range of possibilities for
thermal history.

6.3. Forward Modeling

[33] Following from the inverse modeling and the fact that
the thermal histories have uncertainties, we want to test
different thermal histories scenarios consistent with these
uncertainties. We stress here that these model results are
always conditional on the assumed kinetics for fission track
annealing and AHe diffusion. Therefore, while we consider
the range of predictions for the different forward models
considered, we are not testing the validity of the annealing or
diffusion models.
[34] We start with a representative thermal history model

obtained from the expected model of inverse modeling
(depicted in Figures 7 and 8 by model E). In general, this has
an initial cooling episode, followed by either reheating or a
period where the temperature remains more or less constant,
with a final period of cooling in the late Tertiary. Given
such a reference model, we then consider the following
variations:
[35] (1) The first cooling phase, before the reheating, does

not cool to surface temperatures but remain at a relatively
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Figure 5. Results of inverse modeling for 4 representative samples. For each sample, graph on left shows
inferred thermal history models. Solid black line is expected model with 95% credible interval range
(dashed lines); solid gray line is maximum likelihood (best data fitting) model. Thin dashed black lines
approximate AFT PAZ (short dash) and AHe PRZ (long dash) and PRZ is for standard (Durango) kinetics.
Graphs in center show predicted and observed (histogram) track length distributions, for expected model
in black line, with 95% credible interval range on predictions in dashed black, and for maximum likeli-
hood model in gray line. Graphs on right are predictions of ages as functions of observed (measured) ages,
black squares are for expected model, gray circles are for maximum likelihood model, filled symbols are
for AHe and open symbols are for AFT. Dashed line is 1:1 line.
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high and constant temperature during the Palaeogene and
then cools during the Neogene (prolonged heating, depicted
by model 1 in Figures 7 and 8).
[36] (2) The sample experienced cooling to the surface and

then remains at the surface until present-day (no reheating,
depicted by model 2 in Figures 7 and 8).
[37] (3) The first cooling phase does not cool to surface

temperatures. Then the sample experiences a protracted
second cooling to the present-day temperature (protracted
cooling, depicted by model 3 in Figures 7 and 8).
[38] (4) For samples that do not show reheating after

the first cooling, we force a reheating before the final
cooling in Neogene (forced reheating, depicted by model 4
in Figure 8).
[39] In Figure 7 we show the different thermal histories

modeled and the predictions for 2 representative samples, in
terms of data and modeling results, Br 9 for the Serra do Mar
and Br28 for the Serra da Mantiqueira. If temperature stays
below �50–55�C, the AHe data cannot readily discriminate
between the different predictions as they are more or less all
the same. The AFT data and especially track length distri-
bution do imply a cooling event during the Neogene with or
without a previous reheating. If we do not include this
Neogene cooling, the predicted tracks lengths are too long.
Finally there is no notable difference in the predictions for a
thermal history with reheating during Palaeogene and a
Neogene cooling or a constant Palaeogene temperature and
then a Neogene cooling.
[40] The forward model results for two samples (Br27 and

Br29) show a different pattern to those discussed above (see
Figure 8a for Br29). For these samples the most consistent
solution is early Tertiary cooling followed by reheating and
Neogene cooling as given by inverse modeling (see Figure 5
for Br29, and auxiliary material for Br27). In the case of a
Tertiary history resting at surface temperatures, the AFT
predictions are poor relative to the observed values, whereas
if the samples stay at higher temperatures (40–50�C), the
predicted AHe ages are too young. For these two samples, a
reheating after the first cooling phase, following by another
recent cooling, are required to explain the observed AFT and
AHe data properly. These samples are from the northern
border of the Taubaté basin, between the sediments and the
Sierra da Mantequiera.
[41] Five other samples (Br5, Br21, Br22, Br23, Br25) are

also located near the boundaries of the Taubaté-Resende
basins. From the inverse modeling stage, only the expected
model for Br21 implies reheating. However, the expected
models for these samples (except Br23) show a Late Creta-
ceous and/or Palaeogene cooling. We then examined these
inferences with forward models that involve reheating fol-
lowing this cooling phase. The results for these tests show
that the data allow a reheating phase similar to samples Br27
and Br29, and once again this is compatible with uncer-
tainties on the thermal histories obtained from the inverse
modeling (for example see model 4 in Figure 8b for Br22).
[42] Therefore we conclude that, conditional on the

assumed kinetic models for AFT annealing and AHe diffu-
sion, for the samples of the Serra do Mar and Serra da
Mantiqueira, the Palaeogene reheating is not really required,
because we can obtain similar predictions without it. How-
ever, the Neogene cooling is required to explain data ade-
quately. In contrast some samples (Br27 and Br29) from

Figure 6. Post 200 Ma inferred thermal histories for
expected models for samples with both (U-Th)/He and
AFT ages. Grey bars represent periods of post-breakup cool-
ing, inferred from inverse modeling, for (a) Serra do Mar and
Coastal area (Br6 to Br18), (b) Serra de Mantiqueira (Br1,
Br28 and Br31 to Br46) and (c) area of Tertiary basins
(Br5, Br21 to Br27 and Br29). Thin dashed black lines are
for AFT PAZ and AHe PRZ. PRZ is for standard Durango
kinetics.
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around the margins of the Tertiary basins area require a
reheating to fit the data as well as a Neogene cooling. For the
others samples of the Tertiary basin area the forward model
results show that model predictions are similar with a
reheating and without. Thus there appears to be a difference
between the thermal histories experienced by samples on the
Serras and the samples of the Paraiba do Sul valley.

7. Discussion

7.1. Episodes of Post-Rift Cooling

[43] The lack of correlation between AFT and AHe ages
and the distance to the coast implies that the development of
the Serras in SE Brazil is not simply due to scarp retreat of
the initial rift shoulder. In contrast, given the range of ther-
mal histories from inverse and forward modeling of the new
AFT and AHe data, we infer up to 3 periods of post-rift rapid
cooling (Figures 6 and 9). Over the whole area two periods
seem important, one during the Late Cretaceous and the
other during the Neogene. On the northwest border of
the Taubaté Basin, the 3 samples between the basin and the
scarp of the Serra da Mantiqueira (Br5, Br27 and Br29)
show Early Tertiary cooling of a magnitude equivalent to
that experienced during the Late Cretaceous for the other
samples. The thermal histories of these 3 samples do not

show Late Cretaceous cooling, probably because subsequent
cooling dominates the data record. Because of the results of
the sensitivity tests with forward modeling, conditional on
the assumed kinetic model, we also infer that the reheating
after the first period of cooling is not well constrained by
data for the Serra do Mar and Serra da Mantiqueira. How-
ever, in the area of Tertiary basins the data for samples that
show such reheating require it. To summarize the outcome
of this combined modeling process, we present representa-
tive thermal histories in Figure 9.

7.2. Late Cretaceous Cooling

[44] The samples imply a first post-rift phase of cooling
between 100 Ma and 70 Ma over the whole study area
(Figures 9 and 10), consistent with the conclusions of Cogné
et al. [2011]. In NE Brazil, Harman et al. [1998] inferred a
similar timing of cooling around the E-W Pernambuco shear
zone. Japsen et al. [2012b] and Cobbold et al. [2010], also
report an exhumation phase during the Campanian in NE
Brazil, of comparable magnitude to ours. There is also a
tectonic reactivation during the Campanian in the Santos
basin, offshore of our studied area, where the whole Creta-
ceous sequence tilted by up to 20� [Cobbold et al., 2001;
Contreras et al., 2010; Zalan and de Oliveira, 2005]. As the
proximal deposits are coarse-grained and the rate of

Figure 7. Forward modeling results for 2 samples representative of (a) Serra do Mar (Br9) and (b) Serra
da Mantiqueira (Br28). For each sample, graph on left is for thermal histories that we have considered (we
show here only that part of thermal history that we changed for the different models, for the older part of
thermal histories please refer to Figure 5). E is expected model from inverse modeling, 1 is for prolonged
heating, 2 is without reheating, 3 is with protracted cooling. Graphs in center summarize predictions of
track length distribution for each thermal history (E, 1, 2 and 3, as in left graphs). Graphs on right show
AHe and AFT age predictions for each thermal history. Observations are in open symbols, predictions
in filled symbols (E, 1, 2 and 3 as in left graphs). Overall data do not require reheating but do require
Neogene cooling to be predicted adequately.
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deposition was higher than in other periods, several authors
have argued for uplift of the coastal range [e.g., Almeida and
Carneiro, 1998; Assine et al., 2008; Bacoccoli and Aranha,
1984; Cobbold et al., 2001; Modica and Brush, 2004;
Mohriak et al., 2008]. Onshore, alkaline bodies intruded
Precambrian basement during the Late Cretaceous and Early
Tertiary. These intrusions lie along a major transfer zone
between the Santos and Campos basins, so Cobbold et al.
[2001] and Riccomini et al. [2005] have attributed the
intrusions to episodic reactivation of this transfer zone, the
origin of the magma probably being the Trindade hot spot,
which moved eastward with respect to South America
during the Late Cretaceous. So, on a regional scale, the lith-
osphere in SE Brazil may have been susceptible at that time
to deformation, as a result of heating and structural inheri-
tance of Brasiliano shear zones.
[45] On a more global scale, two important episodes

occurred during the Late Cretaceous. First, the half-spread-
ing rate of the South Atlantic increased to a maximum of
�35 mm/yr at Chron 34 (83 Ma) [Cande et al., 1988;
Nürnberg and Müller, 1991; Torsvik et al., 2009]. On the
other side of the South American plate, at the Pacific margin,
the tectonic context changed from extensional to compres-
sional [Ramos, 2010], resulting in the development of thrust
faults and foreland basins at the edge of the Andes
[Arriagada et al., 2006; Cobbold and Rossello, 2003].
Moreover, further shortening and subsequent exhumation of

rocks occurred along the orogen [Jaillard et al., 2005; Jaimes
and de Freitas, 2006; Martin-Gombojav and Winkler, 2008;
Tunik et al., 2010] during the Peruvian phase of Andean
orogeny. Cobbold et al. [2007] suggested that the com-
pression was a result of combined ridge-push from both the
mid-Atlantic and East-Pacific ridges and that it caused
deformation across the continent. Therefore a likely expla-
nation for Late Cretaceous cooling on the southeastern
Brazilian margin is deformation and subsequent exhumation
of a thermally and/or structurally weakened crust under
plate-wide compression.

7.3. Tertiary Evolution

[46] The new data in this paper provide better resolution
on the Tertiary history of the onshore margin of SE Brazil
than did those in the more regional study of Cogné et al.
[2011]. During the Palaeogene, most samples remained at
more or less constant temperatures, but the NW border of the
Taubaté Basin experienced rapid cooling (Figures 9 and 10).
Cogné et al. [2012] show that the basin formed under
transtension during the Palaeocene and Eocene, and this
history is coherent with the cooling of the samples. While
the basement of the basin was being buried under sediment,
the northwest border was subject to erosion. Offshore, In
Santos Basin, similar strike-slip faulting of the basement
along a Precambrian hinge line was synchronous with

Figure 8. Forward modeling results for 2 samples representative of Tertiary basins, (a) one with inverse
modeled thermal history (Br29) showing reheating and (b) the other without such reheating (Br22).
Models E, 1, 2 and 3 are the same than in Figure 7, model 4 is for forced reheating. Please note that for
Br22 there is no model 1 given that expected model already shows a prolonged heating. Overall data
for Br29 require a period of reheating and Neogene cooling for proper predictions, whereas predictions
for Br22 appear to be more consistent with observed data if there is a reheating.

COGNÉ ET AL.: BRAZILIAN TECTONIC FROM THERMOCHRONOLOGY B11413B11413

10 of 16



erosion on the shelf of the Santos Basin before deposition of
flat-lying mid-Eocene strata [Cobbold et al., 2001].
[47] The timing of this inferred reactivation is synchro-

nous with Eocene exhumation in NE Brazil [Cobbold et al.,
2010; Japsen et al., 2012b] and on a plate scale with the
Incaic phase of Andean orogeny [Cobbold et al., 2007, and
references therein]. Moreover in SE Brazil Cogné et al.
[2012] argue that the stress field in the Taubaté Basin area
was compatible with that in the Andes during the Tertiary.
We suggest that the reactivation was due to plate-wide
compression and concentrated along Precambrian shear
zones, forming the main faults of the Taubaté Basin and the
shelf of the offshore Santos Basin.
[48] After this period of deformation, the drainage system

changed, as shown through river capture, including the
Paraiba do Sul [Bacoccoli and Aranha, 1984; Karner and
Driscoll, 1999]. This led to sediment starvation in the
center of the Santos Basin [Assine et al., 2008; Cobbold
et al., 2001] and an influx of sediment to the Campos
Basin [Contreras et al., 2010; Mohriak et al., 1990, 2008].
However, our thermal history models imply that samples in

the area of the onshore Tertiary basins have undergone
reheating from at least the Late Eocene until the Middle
Miocene. We suggest that this reheating is the consequence
of the burial of the Taubaté Basin borders under about 1 km
of lacustrine sedimentary sequence (given the mean geo-
thermal gradient of 25 � 5�C in the area [Hamza et al.,
2005] and the reheating of about 20–30�C) similar to the
maximum thickness observed today (Figures 9 and 10).
This accumulation could be explained by a drainage that
was partly internal. For samples that are now in regions of
high elevation (Serras) or on the coast, we cannot exclude
the same possibility of burial, but the data are not able to
resolve this.
[49] From 15 Ma, the whole area seems to have experi-

enced a final phase of cooling (Figures 9 and 10). This
cooling is necessary, to explain the results of forward mod-
eling. However, this is clearly conditional on the assump-
tions of annealing and diffusion kinetics. At least for fission
track annealing, many authors have suggested that a late
cooling stage may be a modeling artifact [e.g., Dempster and
Persano, 2006; Gunnell, 2000; Redfield, 2010]. However,

Figure 9. Summary of thermal histories from inverse and forward modeling for whole study area. Grey
bars are the same as in Figure 6 and represent episodes of post-breakup cooling. Thin dashed black lines
are for PAZ and PRZ (for Durango kinetics). For comparison, we show timing of main events, onshore
and offshore SE Brazil, as well as Andean tectonic phases. See text for discussion.
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independent geological information provide support for such
late cooling stage in southeast Brazil. The sedimentary
influx in the onshore basins is often closely linked to the
onshore erosional history [e.g., Gallagher and Brown, 1997,
1999; Modica and Brush, 2004]. The river Paraiba do Sul,
which drained most of the area, had its outlet in the offshore
Campos Basin, where the rate of sediment input increased in
the Neogene [Contreras et al., 2010; Mohriak et al., 1990,
2008]. Similarly, in the Santos Basin, the rate of sediment
input increased at 15 Ma, even if it remained lower than in
the Campos Basin [Assine et al., 2008; Contreras et al.,
2010]. There is also structural evidence for transpressional
reactivation of onshore Tertiary basins [Cobbold et al.,
2001; Cogné et al., 2012; Riccomini et al., 2004], as well
as of the offshore Campos Basin [Fetter, 2009]. Finally,
Modenesi-Gauttieri et al. [2011] suggest Neogene and
Pleistocene uplift to explain their weathering profile in the

Campos do Jordão plateau (in the Serra da Mantiqueira).
Uplift of the whole area, with subsequent denudation,
explains the enhanced sedimentary influx and the cooling of
the samples. Therefore, we infer that Neogene cooling of
about 30�C occurred in Southeast Brazil. We note that
Japsen et al. [2012b] have also inferred a phase of Neogene
cooling in NE Brazil.
[50] As the course of the Paraíba do Sul river is parallel to

the Além-Paraíba shear zone for more than 200 km, we
suggest that, during the uplift of the area, the reactivation of
this shear zone led to destruction of the barrier that separated
the internal drainage of the Tertiary basins from the external
drainage to the Campos Basin. This destruction provoked
the formation of a new drainage that was totally external and
led to an enhanced erosion and remobilization of the accu-
mulated sediment.

Figure 10. Schematic cross sections showing post-rift evolution of SE Brazilian margin (see Figure 2 for
location of profile). (a) During Late Cretaceous, whole area was subject to uplift and erosion and samples
cooled. (b) During Early Paleogene, cooling/exhumation occurred only within area of Tertiary basins.
(c) During Late Paleogene and Early Neogene, Tertiary basins area is buried under sediments. (d) From
Late Neogene until Present-day, entire area underwent uplift and erosion, leading to cooling of samples.
See text for discussion.
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[51] As this phase was synchronous with the Quechua
phase of tectonic activity in the Andes, we suggest the
reactivation of the whole area may reflect an acceleration of
spreading on the East Pacific ridge [Pardo-Casas and
Molnar, 1987; Somoza, 1998], leading to a stronger plate-
wide compression, which is still active today. Current seis-
micity [Assumpção, 1998], deformation of Pleistocene or
later sediments in the Taubaté Basin [Riccomini et al., 1989]
and the World Stress Map (O. Heidbach et al., The World
Stress Map database release 2008, doi:10.1594/GFZ.WSM.
Rel2008) all provide evidence for ongoing compression in
SE Brazil. Moreover, Quaternary uplift driven by compres-
sion has resulted in elevated marine terraces around the
world and especially in SE Brazil [Pedoja et al., 2011]. We
therefore infer that ongoing tectonic denudation and uplift
since the Middle Miocene have accounted for rejuvenation
of the high relief in southeast Brazil.

8. Conclusions

[52] Having restricted our sampling to an area where there
was clear geological evidence of Tertiary tectonic activity,
we have been able to exploit thermochronology to better
constrain the post breakup history of the onshore margin of
SE Brazil, particularly during the Tertiary. Inverse modeling
of the thermochronological data implies 3 periods of post-rift
accelerated cooling, during (1) the Late Cretaceous, (2) the
Palaeogene and (3) the Neogene, and a period of limited
reheating. Sensitivity tests using forward modeling enable us
to consider different scenarios, consistent with the range of
uncertainties associated with the inverse thermal histories.
These tests imply that Tertiary reheating is required by the
data for the Taubaté area, whereas for current areas of high
elevation it is not. The coincidence in timing of cooling in
SE Brazil with (1) periods of accelerated cooling in NE
Brazil, (2) tectonic events both onshore and offshore and
(3) major phases of Andean tectonics, leads us to conclude
that the reactivation could be due to plate-wide compres-
sional stress, resulting from the convergence of the Nazca
and South American plates. During the Late Cretaceous the
crust in SE Brazil may have been sensitive to reactivation,
due to structural inheritance (Precambrian shear zones) and/
or thermal weakening (by magmatism and perhaps earlier
mantle plume activity). During the Palaeogene, deformation
concentrated along the inherited shear zones, leading to
localized exhumation at the edges of the Tertiary basins. The
same pattern of deformation offshore may have been partly
responsible for the current geometry of the Santos Basin,
where folds mark the hinge line. The Taubaté Basin area is
later buried beneath �1 km of sediment. Finally, an increase
in the velocity of the convergence between plate led to
(1) widespread reactivation of inherited structures, (2) uplift
of the area, (3) erosion of the SE Brazilian margin and
(4) rejuvenation of the relief during the Neogene. Independent
geological information implies that this is not an artifact of
inverse modeling. We conclude that the post-breakup evo-
lution of SE Brazil reflects a combination of structural
inheritance, magmatic activity and plate-wide stress, leading
to post-rift episodic uplift, rather than erosion of rift related
uplifted relief. Thus the margin in SE Brazil has not
remained passive since the break-up and such concept may
be the case for other “passive” margins around the world.
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