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Abstract

In this paper we focus on the minimal deterministic finite automaton S k that rec-
ognizes the set of suffixes of a word w up to k errors. As first results we give a
characterization of the Nerode’s right-invariant congruence that is associated with
Sk. This result generalizes the classical characterization described in [5]. As second
result we present an algorithm that makes use of S k to accept in an efficient way
the language of all suffixes of w up to k errors in every window of size r of a text,
where r is the repetition index of w. Moreover, we give some experimental results on
some well-known words, like prefixes of Fibonacci and Thue-Morse words. Finally,
we state a conjecture and an open problem on the size and the construction of the
suffix automaton with mismatches.

Key words: Combinatorics on words, indexing, suffix automata, languages with
mismatches, approximate string matching.

1 Introduction

One of the seminal results in string matching is that the size of the suffix
automaton of a word, also called DAWG (directed acyclic word graph), is
linear [4,5,11]. More precisely, in [4] it is proved that the size of the suffix
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automaton is linear, while in [5] authors have given an on-line linear time
algorithm to build this automaton. Minimality as an automaton accepting
the suffixes is in [11].

These results are surprising as the maximal number of subwords that may
occur in a word is quadratic according to the length of the word. Suffix trees
are linear too, but they represent strings by pointers to the text, while DAWGs
work without the need of accessing it.

Literature on languages with mismatches and corresponding data structures
involves many results, among the most recent ones [2,6,8,9,14,15,17,20,22,25].
Most of these papers deal with approximate string matching and indexing. In
particular, [22] presents the most efficient algorithm for approximate string
matching with mismatches without indexing. Moreover, in [14,15,17] authors
have considered some data structures recognizing words occurring in a text
w up to k errors in each substring of length r of the text. The presence of a
window in which a fixed number of errors is allowed generalizes the classical k-
mismatch problem and, at the same time, it allows more errors on the overall.

In this paper we focus on the minimal deterministic finite automaton that
recognizes the set of suffixes of a word w up to k errors, denoted by S w,k, or
simply by S k if there are no risk of misunderstanding on w. Our contribution
is mainly theoretical in nature, even if we give some experimental results
that support a conjecture on the size of S k. In the first part of the paper we
present two main results. The first one is a characterization of the Nerode’s
right-invariant congruence that is associated with S k. This results generalizes
the classical characterization described in [5] (see also [13,21]). This classical
characterization has been used to design an efficient construction of the suffix
automaton with no mismatches, which, up to the set of final states, is also
called DAWG. Up to now we have only extended Nerode’s congruence to the
approximate case and we have proved some theoretical results on it. We think
these results will be useful for designing an efficient on-line algorithm for the
construction of the suffix automaton with mismatches. It still remains an open
problem how to design such an algorithm.

The second main result concerns the description of an algorithm that makes
use of the automaton S k in order to accept, in an efficient way, the language
of all suffixes of w up to k errors in every windows of size r̂, for a specific
integer r̂ called the repetition index. To do this we first provide a linear-time
algorithm that finds r̂.

In the second part of the paper we show some empirical results. We have
constructed the suffix automaton with mismatches of a great number of words
and have considered overall its structure when the input word is well-known,
such as the prefixes of Fibonacci and Thue-Morse words, as well as words
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of the form bban, a, b ∈ Σ, n ≥ 1, and some random words generated by
memoryless sources. We have studied how the number of states grows w.r.t
the length of the input word. Following our experiments on these classes of
words, we conjecture that the (compact) suffix automaton with k mismatches
of any text w has size O(|w| · logk(|w|)).

Given a word v, Gad Landau wondered if there exists a data structure hav-
ing a size “close” to |v| that allows approximate pattern matching in time
proportional to the query plus the number of occurrences. This question is
still open, even if recent results are getting closer to a positive answer. If our
conjecture turns out to be true, it would settle Landau’s question as discussed
at the end of this paper. Moreover, in this case our data structure may be
used in some classical applications of approximate indexing and string match-
ing, such as recovering the original signals after their transmission over noisy
channels, finding DNA subsequences after possible mutations, text searching
in case there are typing or spelling errors, retrieving musical passages, A.I.
techniques in feature vector, and so on. It may be important even in other ap-
plications, like in the field of Web search tools when we deal with agglutinative
languages, i.e. languages that mainly resort to suffixes and declinations such
as many Finno-Uralic languages (like Hungarian, Finnish, and Estonian), or
in the case of real-time proposal of alternative internet URL in Domain Name
Servers, or for deeper analysis of biological sequences.

The remainder of this paper is organized as follows. In the second section we
give some basic definitions. In the third section we describe a characterization
of the Nerode’s right-invariant congruence relative to S k. The fourth section
is devoted to describe an algorithm that makes use of the automaton S k to
accept in an efficient way the language of all suffixes of w up to k errors in
every window of size r̂ of a text, where r̂ is the value of the repetition index of
w. The fifth section contains our conclusions and some conjectures on the size
of the suffix automaton with mismatches based on our experimental results.

2 Basic definitions

Let Σ be a finite set of symbols, usually called alphabet. A word or string w

is a finite sequence w = a1a2 . . . an of characters in the alphabet Σ, its length
(i.e. the number of characters of the string) is defined to be n and it is denoted
by |w|. The set of words built on Σ is denoted by Σ∗ and the empty word by
ǫ. We denote by Σ+ the set Σ∗ \ {ǫ}. A word u ∈ Σ∗ is a factor (resp. a prefix,
resp. a suffix ) of a word w if and only if there exist two words x, y ∈ Σ∗ such
that w = xuy (resp. w = uy, resp. w = xu). Notice that some authors call
substring what we define as a factor. We denote by Fact(w) (resp. Pref(w),
resp. Suff(w)) the set of all factors (resp. prefixes, resp. suffixes) of a word w.
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We denote an occurrence of a nonempty factor in a string w = a1a2 . . . an at
position i ending at position j by w(i, j) = ai . . . aj, 1 ≤ i ≤ j ≤ n. The length
of the factor w(i, j) is j − i + 1, and we say that u occurs in w at position i if
u = w(i, j), with |u| = j − i + 1.

In order to handle languages with errors, we need a notion of distance between
words. It is represented by the function d : Σ∗×Σ∗ → R

+∪{0} defined between
two strings x and y on the alphabet Σ as the minimal cost of a sequence of
operations that transform x into y (and ∞ if no such sequence exists). In most
applications the possible operations are insertion, deletion, substitution and
transposition. These operations lead to the definitions of different distances
between words. In this work we consider the Hamming distance [27] that allows
only substitutions, which cost 1 in the simplified definition. It is finite whenever
|x| = |y|. In this case the inequalities 0 ≤ d(x, y) ≤ |x| hold.

In other words, given two strings x and y having the same length, the distance
d(x, y) between them is the minimal number of character substitutions that
transform x into y.

In the field of approximate string matching, typical approaches for finding a
string in a text consist in considering a percentage D of errors, or fixing the
number k of them. Instead, we use an hybrid approach introduced in [17] that
considers a new parameter r and allow at most k errors for any factor of length
r of the text.

Definition 1 Let w be a string over the alphabet Σ, and let k, r be non neg-
ative integers such that k ≤ r. A string u 6= ǫ occurs in w at position ℓ up to
k errors in a window of size r or, simply, kr-occurs in w at position ℓ, if one
of the following two conditions holds:

- |u| < r ⇒ d(u,w(ℓ, ℓ + |u| − 1)) ≤ k;
- |u| ≥ r ⇒ ∀i, 1 ≤ i ≤ |u|−r+1, d(u(i, i+r−1), w(ℓ+i−1, ℓ+i+r−2)) ≤ k.

A string u satisfying the above property has a kr-occurrence of w. A string u

that kr-occurs as a suffix of w is a kr-suffix of w.

The empty word ǫ kr-occurs in w at any position ℓ = 0, 1, . . . , |w|. It also
represents a kr-suffix of w.

We suppose that the text w is non-empty, r ≥ 2 and 0 ≤ k ≤ r, otherwise
the above definition would have no meaning. We denote by L(w, k, r) (resp.
Suff (w, k, r)) the set of words (resp. suffixes) u that kr-occur in w at some
position ℓ, 1 ≤ ℓ ≤ |w| − |u|+ 1. Notice that L(w, k, r) is a factorial language,
i.e. if u ∈ L(w, k, r) then each factor of u belongs to L(w, k, r). Moreover, we
denote by Suff (w, k) the set of kr-suffixes of w for r = |w|.
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Remark 2 The condition r = |w| is equivalent to considering no window
on w. Indeed, in this situation, the problem of finding all kr-occurrences of a
string u in the text is equivalent to the k-mismatch problem, that consists in
finding all occurrences of the string u in w with at most k errors (cf. [19]).

Example 3 Let w = abaa be a string on the alphabet Σ = {a, b}. The set of
words that kr-occur in w, when k = 1 and r = 2, is

L(w, 1, 2) = {a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab,

bba, bbb, aaaa, aaab, abaa, abab, abba, bbaa, bbab, bbba}.

Notice that words aab, aaab, bbab, bbba occur with one error every r = 2 sym-
bols, but with two errors in the whole word. Hence, they belong to L(w, 1, 2),
but not to L(w, 1, 4). Moreover,

Suff(w, 1, 2) = {a, b, aa, ab, ba, aaa, aab, baa, bab, bba,

aaaa, aaab, abaa, abab, abba, bbaa, bbab, bbba}

and

Suff(w, 1) = {a, b, aa, ab, ba, aaa, baa, bab,

bba, aaaa, abaa, abab, abba, bbaa}.

Now we can recall the definition of the repetition index, denoted by R(w, k, r),
that plays an important role in the construction of an automaton recognizing
the language L(w, k, r) (cf. [17]).

Definition 4 The repetition index of a string w, denoted by R(w, k, r), is the
smallest integer h for which all strings of this length kr-occur at most once in
the text w.

The parameter R(w, k, r) is well defined because the set of integers h for which
all strings of this length kr-occur at most once in the text w is always non
empty since the integer h = |w| satisfies the condition. Moreover, it is easy to
prove that if k

r
≥ 1

2
then R(w, k, r) = |w| (cf. [14]).

In [14] it is proved that R(w, k, r) is a non-increasing function of r and a
non-decreasing function of k, and that the equation r = R(w, k, r) admits an
unique solution r̂. Moreover, it is proved, under some hypothesis on the source,
that R(w, k, r) has an upper bound that is almost surely logarithmic in the
size of the text w. Recall that a sequence of random variables Xn converges
to a random variable X almost surely, denoted Xn → X (a.s.), if

∀ǫ > 0, lim
N→∞

Pr{sup
n≥N

|Xn − X| < ǫ} = 1.

Almost surely convergence implies convergence in probability (see also [28,
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Chapther 2] for further details).

Remark 5 In [17] authors gave an algorithm for building a deterministic fi-
nite automaton (DFA) recognizing the language L(w, k, r) of all words that kr-
occur in the string w. They proved that the size of such automaton A(w, k, r)
is bounded by a function that depends on the length |w| of the text w, the
repetition index R(w, k, r), and the number k of errors allowed in windows of
size r̂ unique solution of the equation r = R(w, k, r), namely |A(w, k, r)| =
O(|w| · (r̂)k+1).
In the worst case, when both r̂ and k are proportional to |w|, the size of the
automaton A(w, k, r) is exponential. But, under the hypothesis that w is a se-
quence generated by a random memoryless source with identical symbol prob-
abilities and that the number k of errors is fixed for any window of size r̂, the
size of this automaton is

O(|w| · logk+1(|w|)) almost surely.

Starting from the automaton A(w, k, r), an automaton recognizing the lan-
guage Suff(w, k, r) can be simply deduced from a procedure that first builds
the automaton A(w$, k, r), extending the alphabet Σ by letter $, then sets
as terminal states only those states from which an edge labeled by letter $
outgoes, and finally removes all edges labeled $ and the state they reach [13].
In this paper we focus on the minimal automaton recognizing Suff(w, k). It is
therefore natural to study the Nerode’s congruence corresponding to it.

3 On the Nerode’s congruence

In this section, we introduce a right-invariant congruence relation on Σ∗ used
to define the suffix automaton of a word up to mismatches and we prove
some properties of it. In particular we give a characterization of the Nerode’s
congruence relative to S k. This result generalizes a classical result described
in [5] (see also [13,21]), where it is used in an efficient construction of the suffix
automaton with no mismatches, that is also called DAWG (directed acyclic
word graph), up to the set of final states. We think that it is possible to define
such an algorithm even when dealing with mismatches. It would be probably
more complex than the classical one.

In what follows, we do not consider the window, i. e. we set r = |w|.

Let us start by introducing the following definition, that is a generalization of
the one given in [5].

Definition 6 Let w = a1 . . . an be a word in Σ∗. For any word y ∈ Σ∗, the
end-set of y in w up to k mismatches, denoted by end-setw(y, k), is the set
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of all final positions in which y k-occurs in w, i.e. end-setw(y, k) = {j |
y k-occurs in w with ending position j}. Notice that end-setw(ǫ, k) = {0, 1, . . . ,
n}.

By using Definition 6 we can define an equivalence relation between words on
Σ∗.

Definition 7 Two words x and y in Σ∗ are endk-equivalent, or ≡w,k, on w if
the following two conditions hold.

(1) end-setw(x, k) = end-setw(y, k);
(2) for any position i ∈ end-setw(x, k) = end-setw(y, k), the number of errors

available in the suffix of w starting at position i + 1 is the same after the
reading of x and of y, i.e.

min{|w| − i, k − erri(x)} = min{|w| − i, k − erri(y)},
where erri(u) is the number of mismatches of the word u that kr-occurs
in w with final position i.

We denote by [x]w,k the equivalence class of x with respect to ≡w,k. The de-
generate class is the equivalence class of words that have no k-occurrences in
w (i.e., words with empty end-set in w up to k mismatches).

In other words, two words x and y in Σ∗ are endk-equivalent if, besides having
the same end-set in w up to k mismatches as in the exact case [5], the number
of errors available in the suffix of w after the reading of x and of y is the same.
The definition includes two cases depending on the considered final position
i ∈ end-setw(x, k) = end-setw(y, k) of x and y in w:

2.a) if this position is sufficiently “far from” the end of the word, which means
that |w| − i ≥ max{k − erri(x), k − erri(y)}, then the number of errors
available after this position is the same in both cases, i.e. k − erri(x) =
k − erri(y), which implies that erri(x) = erri(y). In this case

min{|w| − i, k − erri(x)} = k − erri(x) = k − erri(y) =
min{|w| − i, k − erri(y)}.

2.b) otherwise, if this position is sufficiently “near” the end of the word, which
means that |w| − i ≤ min{k − erri(x), k − erri(y)}, then mismatches are
possible in any position of the suffix of w having length |w| − i. This does
not necessarily imply that erri(x) = erri(y). Therefore

min{|w| − i, k − erri(x)} = |w| − i = min{|w| − i, k − erri(y)}.

Example 8 Let us consider the prefix of length 10 of the Fibonacci word,
w = abaababaab, and let us suppose that the number k of errors allowed in
any factor is 2.

- The words x = baba and y = babb have the same end-set, that is end-
setw(baba, 2) = {5, 6, 8, 10} = end-setw(babb, 2), but the two words are not
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endk-equivalent because it is not true that for any position i ∈ end-setw(baba, 2)
= end-setw(babb, 2), the number of errors available in the suffix of w having
i + 1 as first position is the same after the reading of x and of y. In fact, if
we consider i = 5,

err5(baba) = 2 and err5(babb) = 1
and then

min{|w| − 5, 2 − err5(baba)} = 0 6= 1 = min{|w| − 5, 2 − err5(babb)}.

- The words x = abaababa and y = baababa are trivially endk-equivalent
because they have the same end-set, that is end-setw(abaababa, 2) = {8} =
end-setw(baababa, 2), and for i = 8 the number of errors available in the
suffix of w having i + 1 as first position is the same after the reading of x

and of y. In fact, if we consider i = 8,
err8(abaababa) = 0 and err8(baababa) = 0

and then
min{|w| − 8, 2 − err8(abaababa)} = 2 = min{|w| − 8, 2 − err8(baababa)}.

- The words x = abaababaa and y = baababab have the same end set, that
is end-setw(abaababaa, 2) = {9} = end-setw(baababab, 2), and for i = 9 the
number of errors available in the suffix of w having i + 1 as first position is
the same after the reading of x and of y, even if

err9(abaababaa) = 0 and err9(baababab) = 1.
In fact, one has that
min{|w| − 9, 2 − err9(abaababaa)} = 1 = min{|w| − 9, 2 − err9(baababab)},
and then x and y are endk-equivalent.

The following lemma and theorem summarize some properties of endk-equivalen-
ce. Before stating them, we recall that an equivalence relation ≡ on Σ∗ is right
invariant if, for any x, y, z ∈ Σ∗, x ≡ y implies that xz ≡ yz.

Lemma 9(i) ≡w,k is a right-invariant equivalence relation on Σ∗.
(ii) If x and y are endk-equivalent on w and end-setw(x, k) = end-setw(y, k) 6=

∅, then one is a suffix of the other up to 2k errors.
(iii) Words xy and y are endk-equivalent on w if and only if for any i ∈ end-

setw(xy, k) = end-setw(y, k), the k-occurrence of y with ending position i is
immediately preceded by a t-occurrence of x, where t = max{(k− erri(y))−
(|w| − i), 0)}.

PROOF.

(i) ≡w,k is an equivalence relation. Indeed it is obviously reflexive, symmetric
and transitive.

Moreover this relation is a right-invariant equivalence. For any x, y ∈ Σ∗,
if x ≡w,k y, then end-setw(x, k) = end-setw(y, k) and for any position i ∈
end-setw(x, k) = end-setw(y, k), min{|w|− i, k−erri(x)} = min{|w|− i, k−
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erri(y)}. Since the number of errors available in the suffix of w having i

as first position is the same after the reading of x and of y, then for any
z ∈ Σ∗ xz is a k-occurrence of w if and only if yz is a k-occurrence of
w. Hence, end-setw(xz, k) = end-setw(yz, k) and for any position j ∈ end-
setw(xz, k) = end-setw(yz, k) the number of errors available in the suffix of
w having j as first position is the same after the reading of xz and of yz.

(ii) By definition x and y are such that end-setw(x, k) = end-setw(y, k). There-
fore, for any i ∈ end-setw(x, k) = end-setw(y, k), both x and y k-occur in w

with final position i, which implies that one of them is a suffix of the other
up to mismatches. By the triangular inequality, d(x, y) ≤ d(x,w)+d(w, y) ≤
2k. Hence, by definition, x and y are one a 2k-suffix of the other.

(iii) Let us suppose, by hypothesis, that xy ≡w,k y. Therefore, end-setw(xy, k) =
end-setw(y, k) and for any position i ∈ end-setw(xy, k) = end-setw(y, k),
min{|w| − i, k − erri(xy)} = min{|w| − i, k − erri(y)}. Since erri(y) ≤
erri(xy), then k − erri(xy) ≤ k − erri(y). For any i ∈ end-setw(xy, k) =
end-setw(y, k), we can distinguish the following cases.

(1) Let min{|w| − i, k − erri(y)} = k − erri(y). Since k − erri(xy) ≤ k −
erri(y) ≤ |w| − i, then min{|w| − i, k − erri(xy)} = k − erri(xy). Since
min{|w|− i, k− erri(xy)} = min{|w|− i, k− erri(y)}, then k− erri(xy) =
k − erri(y) and all the erri(xy) errors are in y and x occurs exactly in w.

(2) Let min{|w| − i, k− erri(y)} = |w| − i. Since min{|w| − i, k− erri(xy)} =
min{|w|−i, k−erri(y)}, one has that the number of errors available in the
suffix of w having i+1 as first position is min{|w|−i, k−erri(xy)} = |w|−i.
Therefore the maximal allowed number of errors in x is k−[erri(y)+(|w|−
i)] ≥ 0.

Hence, for any i ∈ end-setw(xy, k) = end-setw(y, k), the k-occurrence of y

with final position i is immediately preceded by a t-occurrence of x, where
t = max{(k − erri(y) − (|w| − i), 0)}.

Let us suppose, now, that for any i ∈ end-setw(xy, k) = end-setw(y, k),
the k-occurrence of y with final position i is immediately preceded by a t-
occurrence of x, where t = max{(k−erri(y))− (|w|− i), 0)}. By hypothesis,
end-setw(xy, k) = end-setw(y, k). Let us distinguish two cases.

(1) Let us consider positions i ∈ end-setw(xy, k) = end-setw(y, k) such that
t = 0. In this case all the erri(xy) are in y and the number of errors
available in the suffix of w having i + 1 as first position is the same after
the reading of xy and of y.

(2) Let us, now, consider positions i ∈ end-setw(xy, k) = end-setw(y, k) such
that t = (k−erri(y))−(|w|− i). In this case k−erri(y) ≥ |w|− i and then
min{|w|− i, k−erri(y)} = |w|− i. By hypothesis, this k-occurrence of y is
immediately preceded by an occurrence of x up to t = (k−erri(y))−(|w|−
i) errors. Therefore, k− erri(xy) ≥ k− [k− (erri(y)+ |w|− i)+ erri(y)] =
|w| − i and min{|w| − i, k − erri(xy)} = |w| − i. 2

Theorem 10 Words x and y are endk-equivalent if and only if they have the
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same future in w, i.e. for any z ∈ Σ∗, xz is a k-suffix of w if and only if yz

is a k-suffix of w.

PROOF. By Lemma 9(i), if x and y are endk-equivalent, then for any z ∈ Σ∗

xz and yz are endk-equivalent and then xz is a k-suffix if and only if yz is a
k-suffix.

Let us suppose, now, that for any z ∈ Σ∗, xz is a k-suffix if and only if yz is a
k-suffix. Therefore end-setw(x, k) = end-setw(y, k). Moreover, for any z such
that xz and yz are suffixes of w, the ending position i of x and y is such that
|w| − i = |z|. By hypothesis, we can have two cases depending on |z|.

- Suppose that z is such that |z| ≤ min{k − erri(x), k − erri(y)}. For such z

one has that min{|w|−i, k−erri(x)} = |w|−i and min{|w|−i, k−erri(y)} =
|w| − i and the thesis is proved.

- Suppose that z is such that |z| ≥ max{k − erri(x), k − erri(y)}. For such
z one has that min{|w| − i, k − erri(x)} = k − erri(x) and min{|w| −
i, k − erri(y)} = k − erri(y). By hypothesis, for any position i ∈ end-
setw(x, k) = end-setw(y, k), any word z ∈ Σ∗ having i + 1 as first position
is such that xz is a k-suffix of w if and only if yz is a k-suffix of w and then
k − erri(x) = k − erri(v) and the thesis is proved. 2

In what follows we use the term partial DFA (with respect to the alphabet Σ)
for a deterministic finite automaton in which each state has not necessarily a
transition for every letter of Σ. The smallest partial DFA for a given language
is the partial DFA that recognizes the language and has the smallest number
of states. It is called the minimal DFA recognizing the language. Uniqueness
follows from Nerode’s Theorem [23] of the right invariant equivalence relation.

By using Nerode’s theorem and by Theorem 10 we have the following result.

Corollary 11 For any w ∈ Σ∗, the (partial) deterministic finite automa-
ton having input alphabet Σ, state set {[x]w,k | x is a k occurrence of w}, ini-
tial state [ǫ]w,k, accepting states those equivalence classes that include the k-
suffixes of w (i.e., whose end-sets include the position |w|) and transitions
{[x]w,k −→a [xa]w,k | x and xa are k-occurrences of w}, is the minimal deter-
ministic finite automaton, denoted by Sw,k (or simply by Sk if there are no
risks of misunderstanding on w), which recognizes the set Suff(w, k).

PROOF. Since the union of the equivalence classes that form the accepting
states of S k is exactly the set of all k-suffixes of w, by Nerode’s Theorem one
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has that S k recognizes the language of all k-suffixes of w, i.e. the set Suff (w, k).
The minimality follows by Theorem 10. 2

Remark 12 We note that Suff(w,k)=Suff(w,k,r) with r = |w|, which is equiv-
alent to saying that there are at most k errors in the entire word without
window, and that Suff(w,k,r) ⊆ L(w, k, r).

4 Allowing more mismatches

In this section we present the second main result of the paper, that is the
description of an algorithm that makes use of the automaton S k in order
to accept, in an efficient way, the language Suff (w, k, r̂) of all suffixes of w

up to k errors in every window of size r̂, that is the unique solution of the
equation r = R(w, k, r). As proved in [14–16] from r̂ up to |w| the repetition
index gets constant, i.e. for any value t ≥ r̂ one has that r̂ = R(w, k, t). This
is also valid when the parameter t is such that t = |w|, which implies that
r̂ = R(w, k, |w|) = R(w, k). These two extremal cases are the two cases we
are considering. This fact implies that any word u of length |u| = r̂ has the
following property: if u kr̂-occurs or k-occurs in w, then, in both cases, it
occurs only once in the text |w|.

Before describing our algorithm, we give a preliminary result that is important
both for the following and on its own.

Lemma 13 Given the automaton Sk, there exists a linear-time algorithm that
returns r̂.

PROOF. In this proof we consider w to be fixed. Let q0 be the initial state
of S k and let δ be its transition function. We call δ∗ its extension to words,
i.e. δ∗(q, w) is recursively defined as δ∗(q, w) = q if w is the empty word and
δ∗(q, w) = δ(δ∗(q, w−), a), where w− is the word w without the last letter and
a is the last letter of w.

If u k-occurs twice in w, then from state q′ = δ∗(q0, u) there are two paths
having different lengths to a final state. Conversely, if from a state q ′ there
are two paths having different lengths to a final state, then any word u such
that q′ = δ∗(q0, u) k-occurs twice in w. Therefore r̂ − 1 is the greatest length
of all words that reach a state from which there are two paths having different
lengths to a final state. In what follows in this proof we will describe an
algorithm that finds r̂ − 1 in linear time and outputs r̂.

We firstly find all states q′ such that there are two paths having different
lengths from it to a final state. For “finding” these states we mean that we
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will add a flag information to each state and we will turn this flag information
to “red” only to these states.

The graph G underlying S k is a directed acyclic graph (DAG in short) because
the language of S k is finite. Thus, the inverse Ĝ of G, that is the graph where
all arcs are inverted, is also a DAG. In order to simplify the algorithm we
add an initial state q̂ to Ĝ that goes with one arc to each final state of S k.
It is well known that it is possible to find all single source minimal paths in
linear time in a DAG and an algorithm V is described in [10]. We refer to
such algorithm V and to each step of it we add at most a constant number
of extra steps. Roughly speaking, if during the execution of this algorithm
the field distance of a state has been updated more than once, then the flag
information has to be turned in red. More in details, the flag information can
be white, green or red. The flag white means that the node has not yet been
met during the execution of V, the green one means that, up that moment
during the execution of V, the node has been encountered at least once and
that the field distance has not been updated more than once i.e. all paths in G

to a final state have same lengths. The flag red means that there are at least
two paths in G to a final state having different lengths, or that, equivalently,
the field distance has been updated more than once. The flag of the initial
state q̂ is set to be green and its distance is set to 0 while the flags of all other
nodes are set to be white and distance equal to +∞. If a node with white flag
is reached starting from a node with a green flag, then its flag is set to green
and its distance becomes the distance from the initial state, i.e. the distance
of previous node plus one. If a node with green flag is reached starting from
another node with a green flag and if its distance is equal to the distance of
previous node plus one, then the flag remains green, otherwise it is set to red.
Red flags propagate in the sense that the flag information of any state that
is reached starting from a state with a red flag is set to be red. The fact that
red flags propagate corresponds to the fact that if in G there is an arc from q ′

to q′′ (i.e. there is an arc from q′′ to q′ in Ĝ) and from q′′ there are two paths
having different lengths to a final state then also from q ′ there are two paths
having different lengths to a final state.

The formal proof that the flag information is red only for all states q ′ such
that there are two paths having different lengths from it to a final state in G,
is left to the reader.

At this point we have to find the greatest length of all words that reach a
state having red flag in S k or, equivalently, we have to find the length of a
maximal path in G from q0 to a state with a red flag. Since G is a DAG, we
now behave analogously as suggested in [10] as an application of the linear
time algorithm V for single source shortest paths in DAG’s. The application
described in [10] concerns PERT’s diagrams where one has to find longest
paths and not anymore shortest paths. A simple solution is to set the weight
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of each arc in G to be equal to −1 and look for the shortest path and the
minimal distance. Changing the signs to these distance in each node will give
the length of the longest path to each node.

The repetition index minus one r̂ − 1 is the greatest value among all nodes
having red flag. The algorithm outputs r̂. 2

Remark 14 As a side effect of this algorithm, each state of the automaton
Sk is equipped with an integer that represents a distance from this state to
the end. For this purpose, it is sufficient to make a linear-time visit of the
automaton.

Now we can describe the algorithm that accepts the language Suff (w, k, r̂).
It makes use of S k and the value r̂ computed by previous algorithm. We can
distinguish two cases.

i) If a word u has a length no more than r̂ then we check if the word u is
accepted by the automaton S k. If u is accepted by this automaton then it is
in the language Suff (w, k, r̂), otherwise it does not belong to the language.

ii) If a word u has a length greater than r̂ then we consider its prefix u′ of length
r̂. Let q be the state that is reached after reading u′ and let i be the integer
associated with this state (cf. Remark 14). We have that |w| − i − r̂ + 1 is
the unique possible initial position of u. Given a position, checking whether
a word kr̂-occurs at that position in the text w can be done in linear time.

Remark 15 A simple variation of above algorithm allows us to find a pattern
word in the text with more mismatches than k in each window of size r̂. It is
sufficient that its prefix of length r̂ occurs in the text up to k mismatches,
while the remaining suffix can have an arbitrary large number of mismatches.
As stated in ii) of previous algorithm, this can be done in linear time.

5 Experimental results and conclusions

This section is devoted to some experimental results and conjectures following
from these.

We have constructed the suffix automaton with mismatches of a great number
of words and we have considered overall its structure when the input word is
well-known, such as the prefixes of Fibonacci and Thue-Morse words, as well
as words of the form bban, a, b ∈ Σ, n ≥ 1 and some random words. We have
studied how the number of states grows w.r.t. the length of the input word.
The algorithm we have used for the construction of the suffix automaton with
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mismatches is neither efficient nor on-line. This is the reason for leaving out
its description in this paper.

Concerning the prefixes of length n of the Fibonacci word, in the non ap-
proximate case, a result in [7], together with a result in [5], implies that the
following result holds.

Proposition 16 The suffix automaton of any prefix v of the Fibonacci word
f has |v| + 1 states.

PROOF. In [7] it is proved that there exists an infinite set X of prefixes of
the Fibonacci word (X is the set of the special prefixes) such that for any v

in X the suffix automaton of v has |v| + 1 states. In [5] it is proved that the
suffix automaton of va has either 1 or 2 states more than the suffix automaton
of v, for any v in Σ∗, a in Σ. Therefore, for any prefix v of the Fibonacci word
f , its suffix automaton has |v| + 1 states. 2

Remark 17 The result in [7] holds for the whole class of special Sturmian
words. Therefore, above proposition can be extended to this class of infinite
words.

Our experimental results in the approximate case have led us to the following
sequence {q′n}n, representing the number of states of the suffix automaton
with one mismatch:

{q′n}n = 2, 4, 6, 11, 15, 18, 23, 28, 33, 36, 39, 45, 50, 56, 61, 64, 67, 70, 73, 79, 84, 90,

96, 102, 107, 110, 113, 116, 119, 122, 125, 128, 134, 139, 145, 151, 157, 163, 169, 175,

180, 183, 186, 189, 192, 195, 198, 201, 204, 207, 210, 213, 216, 222, 227, 233, 239, 245,

251, 257, 263, 269, . . .

This means that the sequence of differences between two consecutive terms is:

{q′n+1−q′n}n = 2, 2, 5, 4, 3, 5, 5, 5, 3, 3, 6, 5, 6, 5, 3, 3, 3, 3, 6, 5, 6, 6, 6, 5, 3, 3, 3, 3, 3,

3, 3, 6, 5, 6, 6, 6, 6, 6, 6, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

5, 3, 3, 3, 3, 3, 3, 3, 3, . . . .

We note that after an initial part, there are (fibi−1 − 2) consecutive 6s, one 5,
(fibi−1) consecutive 3s, one 6, one 5,etc, where fibi denotes the i-th Fibonacci
number, i = 4, 5, 6 . . . . This leads to the following recursive formula:

q′fibn

= q′fibn−1
+ 3(q′fibn−3

− 1) + 10 + 6(q′fibn−4
− 1).

From this recursion an explicit formula is easy to find. We did not prove the
rule that describes the growth of the suffix automaton with one mismatch,
but we checked that this rule holds true up to prefixes of length 2000 of the
Fibonacci word f .
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Conjecture 18 The size of the suffix automaton with one mismatch of the
prefixes of the Fibonacci word grows according to the recursive formula q ′

fibn

=
q′fibn−1

+ 3(q′fibn−3
− 1) + 10 + 6(q′fibn−4

− 1).

Concerning the size of the suffix automaton with two mismatches of the pre-
fixes of the Fibonacci word, our experimental results have led us to the follow-
ing sequence {q′′n}n, representing the number of states of the suffix automaton
with two mismatches:

{q′′n}n = 2, 3, 6, 10, 18, 27, 38, 49, 63, 73, 82, 103, 127, 148, 168, 182, 191, 200, 209,

230, 251, 276, 298, 320, 340, 354, 365, 374, 383, 392, 401, 410, 431, 452, 475, 501,

525, 547, 569, 591, 611, 625, 636, 647, 658, 667, 676, 685, 694, 703, 712, 721, 730,

751, 772, 795, 819, 843, 869, 893, 917, 939, 961, 983, 1005, 1027, 1047, 1061, 1020,

1072, 1083, 1094, 1105, 1116, 1127, 1136, 1145, 1154, 1163, 1172, 1181, 1190, 1199,

1208, 1217, 1226, 1235, 1244, 1265, 1286, 1309, 1333, 1357, 1381, 1405, 1429 . . .

This means that the sequence of differences between two consecutive terms is:

{q′′n+1−q′′n}n = 1, 3, 4, 8, 9, 11, 14, 10, 9, 21, 24, 21, 20, 14, 9, 9, 9, 21, 21, 25, 22, 22,

20, 14, 11, 9, 9, 9, 9, 9, 21, 21, 23, 26, 24, 22, 22, 22, 20, 14, 11, 11, 11, 9, 9, 9, 9, 9, 9,

9, 9, 21, 21, 23, 24, 24, 26, 24, 24, 22, 22, 22, 22, 22, 20, 14, 11, 11, 11, 11, 11, 11,

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 21, 21, 23, 24, 24, 24, 24, 24, . . . .

We note that after an initial part, there is one 23,(fibi−2 − 3) consecutive
24s, one 26, (fibi−3 − 1) consecutive 24s, (fibi−2) consecutive 22s, one 20, one
14, (fibi−1 − 2) consecutive 11s, fibi consecutive 9s, two consecutive 21s etc,
where fibi denotes the i-th Fibonacci number, i = 6, 7, . . . .

This leads to the following recursive formula:

q′′fibn

= q′′fibn−1
+125+24(q′′fibn−5

−4)+22(q′′fibn−6
)+11(q′′fibn−5

−2)+9(q′′fibn−4
).

Conjecture 19 The size of the suffix automaton with two mismatches of the
prefixes of the Fibonacci word grows according to the recursive formula

q′′fibn

= q′′fibn−1
+125+24(q′′fibn−5

−4)+22(q′′fibn−6
)+11(q′′fibn−5

−2)+9(q′′fibn−4
).

Given a word v, Gad Landau wondered if a data structure having a size “close”
to |v| and that allows approximate pattern matching in time proportional to
the query plus the number of occurrences exists. In the non approximate case,
suffix trees and compact suffix automata do the job (cf. [12,21]). Let us see
the approximate case. In [14,16,17,24,25] it is proved that for a random text
w, the size of its compact suffix automaton with k mismatches is linear times
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a polylog of the size of w, i.e. O(|w| · logk |w|). From our experimental results
it seems that the multiplicative constant hidden on the O notation in this
random case is very small (less than 3). By using this data structure, the time
for finding the list occ(x) of all occurrences of any word x in the text w up
to k mismatches is proportional to |x|+ |occ(x)|. Therefore, for random texts
the open problem of Landau has a positive answer. For prefixes of Fibonacci
word our previous conjecture tells us that suffix automata do the same. In the
case of words of the form bban, a, b ∈ Σ, n ≥ 1, our experimental results have
led us to the following formula describing the behaviour of the sequence of
differences between two consecutive terms involving words having n greater
than or equal to 4: {an+1−an} = 19+6∗(n−4). We have experimented also on
prefixes of Thue-Morse words and, even if we have not obtained a well-formed
formula, we have tested that the size of the compact suffix automata with 1
mismatch obtained is less than or equal to 2· |w| · log(|w|). Moreover, the result
is true also in the case of periodic words. We also made an exhaustive search
of the worst case for binary strings of length up to 18, i.e. we looked for strings
whose suffix automaton with k mismatches has the greatest number of states
in the case of one and two mismatches. The result was somewhat surprising.
Both for one mismatch and for two mismatches one such string for any length
greater than or equal to 12 in the case of one mismatch and greater than or
equal to 8 in the case of two mismatches has the form 001p01q0. The number
q seems to be always greater than p and the ratio between q and p seems to
slowly decrease and it is different in the case of one mismatch with respect to
the case of two mismatches.

When we deal with non compacted suffix automaton with mismatches, the
worst case within this family of strings leads to a number of states that seems
to grow like O(|w| · log2k(|w|)), where k is the number of mismatches. This
result is not bad at all if we consider that the language they represent has size
Ω(|w|k+2).

If we deal with the compacted versions, results are better, but the asymptotic
growth seems to be the same.

Conjecture 20 The compact suffix automaton with k mismatches of any text
w has worst-case size O(|w| · log2k(|w|)).

It is still an open problem to find an algorithm for constructing this automaton
in an efficient way.

The minimal deterministic finite automaton S k is useful for solving the prob-
lem of approximate indexing and the applications of it. Classically, an index
(cf. [13]) over a fixed text w is an abstract data type based on the set Fact(w).
Such data type is equipped with some operations that allow it to answer to
the following queries. 1) Given a word x, say whether it belongs to Fact(w)
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or not. If not, an index can optionally give the longest prefix of x that belongs
to Fact(w). 2) Given x ∈ Fact(w), find the first (respectively the last) occur-
rence of x in w. 3) Given x ∈ Fact(w), find the number of occurrences of x in
w. 4) Given x ∈ Fact(w), find the list of all occurrences of x in w. In the case
of exact string matching, the classical data structures for indexing are suffix
trees, suffix arrays, DAWGs, factor automata or their compacted versions (cf.
[13]). The algorithms that use them run in a time usually independent of the
size of the text or at least substantially smaller than it. The last property is
required by some authors to be an essential part in the definition of an index
(cf. [1]). All the operations defined for an index can easily be extended to the
approximate case. But in the case of approximate string matching the problem
is somehow different. We refer to [3,18,19,26] and to the references therein for
a panorama on this subject and on approximate string matching in general.
The minimal deterministic finite automaton S k introduced in this paper is
useful for solving the problem of approximate indexing. More precisely, it is
easy to answer queries 1) and 2), but the other questions are more complex
and they can be solved by using techniques analogous to those in [17].

Moreover, if the Conjecture 20 is true and constants involved in O-notation
are small, our data structure is useful for some classical applications of ap-
proximate indexing, as mentioned in the introduction.

Finally, we think that it is possible to connect the suffix automaton S k of
the language Suff (w, k, |w|) (without window) to the suffix automaton S k,r̂

of the language Suff (w, k, r̂), with r̂ the unique solution of the equation r =
R(w, k, r). More precisely, we conjecture that if S k and S k,r̂ are the suffix
automata of the languages Suff (w, k) (without window) and Suff (w, k, r̂),
respectively, then |S k,r̂| = O(|S k|). From experimental results, it seems that
S k,r̂ has a greater size than S k. Therefore, the algorithm described in Section
4 that accepts the language Suff (w, k, r̂) seems to be more space-efficient than
the automaton S k,r̂.
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