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Local Optima Networks (LONs) have been recently proposed as an alternative model of combinatorial fitness landscapes. The model compresses the information given by the whole search space into a smaller mathematical object that is the graph having as vertices the local optima and as edges the possible weighted transitions between them. A new set of metrics can be derived from this model that capture the distribution and connectivity of the local optima in the underlying configuration space.This paper departs from the descriptive analysis of local optima networks, and actively studies the correlation between network features and the performance of a local search heuristic. The N K family of landscapes and the Iterated Local Search metaheuristic are considered. With a statisticallysound approach based on multiple linear regression, it is shown that some LONs' features strongly influence and can even partly predict the performance of a heuristic search algorithm. This study validates the expressive power of LONs as a model of combinatorial fitness landscapes.

INTRODUCTION

One of the most conspicuous limitations of heuristic search methods in combinatorial optimization, is the ability to become trapped at a local optimum [START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF]. The number and distribution of local optima in a search space have, therefore, an important impact on the performance of heuristic search algorithms. A recently proposed model: Local Optima Networks [START_REF] Tomassini | Complex-network analysis of combinatorial spaces: The NK landscape case[END_REF][START_REF] Verel | Local optima networks of NK landscapes with neutrality[END_REF], provides an intermediate level of description for combinatorial fitness landscapes. The model has a higher descriptive power than a single statistical metric or set of metrics; but it also compresses the search space into a more manageable mathematical object. Specifically, a graph having as vertices the optima configurations of the problem and as edges the possible weighted transitions between these optima. This network representation allows the application of new analytical tools and metrics to study combinatorial landscapes, namely, those of complex networks analysis (e.g. degree distribution, clustering coefficient, assortativity, and community structure, to name a few). In previous work, alternative definitions of edges have been studied, and some of these metrics have been computed on the network extracted for two combinatorial problems: the NK family of landscapes [START_REF] Tomassini | Complex-network analysis of combinatorial spaces: The NK landscape case[END_REF][START_REF] Ochoa | A study of NK landscapes' basins and local optima networks[END_REF][START_REF] Ochoa | First-improvement vs. best-improvement local optima networks of nk landscapes[END_REF][START_REF] Verel | Local optima networks of NK landscapes with neutrality[END_REF][START_REF] Verel | Local Optima Networks with Escape Edges[END_REF], and the Quadratic Assignment problem [START_REF] Daolio | Local Optima Networks of the Quadratic Assignment Problem[END_REF][START_REF] Daolio | Communities of minima in local optima networks of combinatorial spaces[END_REF]. Those studies have been mainly descriptive, although distinctive correlations between some network features and previous knowledge about search difficulty in these landscapes had been found. A previous related work [START_REF] Pelikan | Nk landscapes, problem difficulty, and hybrid evolutionary algorithms[END_REF], explored the relationships between N K landscape features and the performance of a hybrid EA. The authors use standard landscape metrics, and conduct a study based mainly on scatter plots. They suggest that: "further work is necessary to gain better understanding of the escape rate on the actual problem difficulty". The present study, addresses exactly this point. The goal is to systematically explore correlations between local optima network features and the performance of a stochastic local search algorithm (Iterated Local Search) running on the underlying combinatorial optimization problem (in this study the N K family of landscapes). The 'escape rate' is a property related to the local optimum, and the LON could be considered as a new tool to better understand problem difficulty. The ultimate goal is to have predictive models of the performance of specific local search heuristics when solving a given combinatorial optimization problem. This paper proposes an initial predictive model of performance based on the most influential LON features.

METHODS

The local optima network model of combinatorial landscapes, and the iterated local search metaheuristic are considered in this study. The relevant definitions and experimental setup are given below.

Local Optima Network

A fitness landscape [START_REF] Reidys | Combinatorial landscapes[END_REF] is a triplet (S, V, f ) where S is a set of potential solutions i.e. the search space, V : S -→ 2 S is a function that assigns to every s ∈ S a set of neighbors V (s) i.e the neighborhood structure, and f : S -→ R is the evaluation of the corresponding solutions i.e. the fitness function.

The present study uses the well-known N K-landscapes [START_REF] Kauffman | The Origins of Order[END_REF] as a benchmark set. It is a problem-independent model for constructing combinatorial landscapes that are tunably rugged. In the model, N refers to the number of (binary) genes in the genotype, i.e. the string length, and K to their epistatic interaction, i.e. the number of other loci (chosen at random here) that influence the fitness contribution of a particular gene. Starting from this N -loci 2-allele additive model, by increasing the non-linearity K from 0 to N -1, the landscapes can be tuned from smooth to rugged. Hence, S is the search space of all N -bit binary strings, and its size is S = 2 N . The neighborhood is defined by the minimum possible move on it, which is the single bit-flip operation, and the neighborhood size is V (s) = N . The fitness function evaluates each genotype s as f (s) =1 N N i=1 fi(si, si1, . . . , siK ), where the values of loci contributions fi : {0, 1} K+1 → [0, 1] are drawn uniformly at random in [0, 1].

A local optimum (LO), which is taken to be a maximum here, is a solution s * such that ∀s ∈ V (s), f (s) ≤ f (s * ). All optima are determined through exhaustive search by recursively running the 1-bit-flip best-improvement hill-climber, as in Algorithm 1. Let us denote by h(s) the operator that associates to each solution s ∈ S, the solution obtained after applying that algorithm until convergence to a LO. Since S is of finite size and there is no neutrality in f (s) values, this produces a partition of the landscape in a finite number of basins of attraction, which we can denote by LO1, LO2, LO3 . . . , LOnv, the local optima.

Algorithm 1: Best-Improvement Hill-Climber Choose initial solution s ∈ S ;

repeat choose s ∈ V (s), such that f (s ) = max x∈V (s) f (x); if f (s) < f (s ) then s ← s ; until s is a Local Optimum;
The connections among them account for the chances of escaping from a LO and jumping into another one with a controlled move [START_REF] Verel | Local Optima Networks with Escape Edges[END_REF]. There exists a directed transition eij from LOi to LOj if it exists a solution s such that d(s, LOi) ≤ D and h(s) = LOj, where the distance d(si, sj) can be measured in "number of moves" (i.e Hamming distance in the bit-flip operator case). The distance-threshold D ∈ N can be chosen accordingly to the applied perturbation; in this work, it is set to D = 2. The weight wij of such a transition is then: wij = {s ∈ S | d(s, LOi) ≤ D and h(s) = LOj}, i.e. the number of paths at distance D starting at LOi and reaching the basin of LOj. This can be normalized by the number of solutions within reach w.r.t. the given distance threshold, i.e. {s ∈ S | d(s, LOi) ≤ D}.

The weighted and directed graph G = (V, E) having the set of vertices V = {LO1, . . . , LOnv} and the set of edges E = {eij|wij > 0}, is the Local Optima Network (LON) [START_REF] Verel | Local Optima Networks with Escape Edges[END_REF].

Iterated Local Search

Iterated local search is a relatively simple but successful algorithm. It operates by iteratively alternating between applying a move operator to the incumbent solution and restarting local search from the perturbed solution. This search principle has been rediscovered multiple times, within different research communities and with different names [START_REF] Baxter | Local optima avoidance in depot location[END_REF][START_REF] Martin | Large-step Markov chains for the TSP incorporating local search heuristics[END_REF]. The term iterated local search (ILS) was proposed in [START_REF] Lourenço | Iterated local search[END_REF]. Algorithm 2 outlines the procedure.

Algorithm 2: Iterated Local Search s0 ← GenerateInitialSolution; s * ← LocalSearch(s0); repeat s ← Perturbation(s * ); s * ← LocalSearch(s ); s * ← AcceptanceCriterion(s * , s * ); until termination condition met;
In the present study, the base LocalSearch heuristic is the same best-improvement hill-climber of Algorithm 1, which stops on a LO. This heuristic uses the single bit-flip move operator. Therefore, a 2-bit-flip mutation is chosen as a Perturbation operator. When a different LO is found after that, the search process accepts the move if its fitness is higher (we are assuming maximization). With these settings, ILS is performing a first-improvement hill-climbing in the configuration space of the LON with the escape-edges at distance D = 2, as defined in section 2.1.

The search terminates at the global optimum, which for benchmark problems is known a priori, or when reaching a pre-set limit of fitness evaluations F Emax.

Performance Evaluation

As the performance criterion, we selected the expected number of function evaluations to reach the global optimum (success) after independent restarts of the ILS algorithm (Algorithm 2) [START_REF] Auger | Performance evaluation of an advanced local search evolutionary algorithm[END_REF]. This measure accounts for both the success rate (ps ∈ (0, 1]) and the convergence speed. In theory, after (N -1) unsuccessful runs stopped at Tus-steps and the final successful one running for Tssteps, the total running time would be T = N -1 k=1 (Tus) k + Ts. Taking the expectation and considering that N follows a geometric distribution 1 with parameter ps, it gives:

E(T ) = 1 -ps ps E(Tus) + E(Ts)
where in the present case E(Tus) = F Emax, the ratio of successful to total runs is an estimator for ps, and E(Ts) can be estimated by the average running time of those successful runs.

The ILS variant detailed in Sec. 2.2 is essentially incomplete, i.e. there are soluble problem instances for which the success probability is < 1 even in the limit of an infinite running time [START_REF] Hoos | Stochastic local search: Foundations and applications[END_REF]. Given the chosen acceptance criterion, the search will eventually get stuck. Indeed, out of the test runs, 1 instance with K = 16 and 3 instances with K = 17 were not solved. This theoretical limitation could be overcome by performing as many random restart as to cover the whole search space, but such a solution is of limited practical interest for large problems. In the present study, the success performance has been estimated on all the instances that had been solved at least once.

The benchmark set consists of N K-landscapes with N = 18 and K ∈ {2, 4, 6, 8, 10, 12, 14, 16, 17}. Those are the largest possible parameter combinations for which we could afford the exhaustive extraction of the local optima networks. In order to minimize the influence of the random generation of landscapes, 30 independent problem instances are considered for each combination of N and K, which accounts for a total of 270 instances in the problem set. The function-evaluations limit is set to 1/5 of S, i.e. F Emax 5.2 • 10 4 , success rate ps and running time of successful runs Ts are estimated on 500 random restarts per instance.

RESULTS

Descriptive Statistics

Table 1 summarises the LON metrics. Results are grouped according to the K value of the corresponding N K-landscapes, and present averages and standard deviations over 30 independent realizations per group. The number of local optima nv, is a metric familiar to any description of a rugged landscape. The other metrics are particular to the complex-network perspective provided by the LON model [START_REF] Newman | The structure and function of complex networks[END_REF].

From left to right in the table, lo represents the average length of the shortest paths that reach the global optimum starting from any other local optimum. The cost associated to an edge ij of the LON graph, is dij = 1/wij. This measure can be interpreted as the expected number of random perturbations for escaping LOi and entering exactly the basin of LOj. lv gives the average path length for the whole graph, which accounts for the weighted network characteristic length. lo is intuitively more directly related to the search difficulty. Indeed, lo increases steadily with the landscape ruggedness K, whilst the trend with lv is less clear. As a possible explanation, the network growth in terms of nodes might be counteracted by a growth in nodes connectivity: the number of weighted outgoing transitions from a given LO, i.e. its out-degree in the LON, increases with K (cf. column zout in Tab. 1).

Column f nn measures the correlation between the fitness of a node and the weighted average of the fitness of its nearest neighbors [START_REF] Barthélemy | Characterization and modeling of weighted networks[END_REF]. This is relevant as the ILS acceptance criterion takes the fitness values of LO into account. With respect to this metric, N Klandscapes behave at the LO level as they do at the solution level: they become the more and more uncorrelated with K approaching N -1 (see column f nn). In general, it is expected that a high and positive f nn correlation would help the search process.

Column wii reports the average number of perturbations that remain in the same basin of attraction, which is a proxy for the basin size. The larger the basins, the more difficult it is to escape them. Table 1 shows that average wii value decreases with the landscape ruggedness.

Column cc, reports the clustering coefficient [START_REF] Newman | The structure and function of complex networks[END_REF], which measures the ratio of connected triples in the LON graph. In a social network, this coefficient measures the probability for one's friends to be friends among each other. In the LO networks, it provides an index of topological locality for the transitions between local optima. Table 1 suggest that cc values decrease steadily with increasing K, but so does the LON density [START_REF] Verel | Local Optima Networks with Escape Edges[END_REF] and that might be the reason.

Column zout counts the number of transitions departing from a given LO. It is relevant to know whether all the transitions have the same rate, or if there is a preferred direction. To this aim, the disparity score y2 gauges the weight heterogeneity of out-going edges [START_REF] Barthélemy | Characterization and modeling of weighted networks[END_REF]. When all connections eij leaving a given LOi have the same probability wij, the disparity will be close to the inverse of the out-degree 1/zouti otherwise it will be higher than this value. Column y2 shows that the disparity monotonically decreases with increasing K. From the point of view of a metaheuristic dynamic, a low disparity means that transitions are almost equiprobable. The LON topology does not preferentially guide the search trajectory, which makes the search process harder.

Column knn, reports the nearest-neighbors degree correlation or assortativity, a classical description of the mixing pattern of nodes in a network. The assortativity measures the affinity to connect with high or low-degree neighbors. The LONs of N K-landscapes are strongly disassortative, i.e. LO with few connections tend to link to others with many, and conversely. The implications of this observation on the search difficulty are worth further investigation.

The last column in Table 1 gives the values of the success performance indicator E(T ) detailed in Sec 2.3, which we abbreviate to ets in the following. Clearly, the expected running time increases with the landscape ruggedness (problem non-linearity) K. In order to analyze the inter-correlations between all the studied metrics, Figure 1 displays a correlogram of the whole data set. The figure depicts any possible pairing among the observed variables with a scatter plot in the panel below the diagonal, and the corresponding correlation coefficient in the upper panel. Table 1 corresponds to the first column of the correlation matrix, i.e. the one showing how the different network metrics shape against the epistasis K.

We are mostly interested in the correlations with the performance metric ets. Thus, the most relevant scatter plots are those in the last row of Figure 1 together with the respective Pearson coefficients in the last column. By inspecting these values, the highest positive correlation is with the average length of the shortest path climbing to the global optimum (r(ets, lo) 0.52). and with the total number of LO (r(ets, nv) 0.50). This observation seems reasonable: the more rugged the landscape (i.e. the larger its LON), the higher the number of hops through the LON to reach the global optimum, and thus the longer the expected running time of a restarting local search. Conversely, the larger the LO basins, and the higher the nearest-neighbors fitness-fitness correlation, the shorter the running time ((r(ets, wii) r(ets, f nn) -0.40)). The catch here, is that those metrics are in turn correlated among themselves (e.g. r(f nn, wii) 0.92), which prevents one from drawing relationships of causality from simple pair-wise correlations.

The last column plots also suggest a strong non-linearity of the performance estimator w.r.t. the LON metrics. In order to further analyze these relationships, Figure 2 zooms on the relevant scatter plots, and displays the logarithm of ets as a function of the considered landscape measures. The log-transformation allows to approach linearity, highlighting and confirming the results in the last column of Figure 1. Namely, the relationships between ets and all the metrics but lv appear clearly. The picture suggests a positive exponential trend with lo and zout, and a negative exponential trend with f nn, wii, cc, and y2. In the case of nv, the relation could also be close to power-law.
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Statistical Modeling

Figure 2: Scatter plots of the logarithm of the estimated time to succeed against all measured variables (see labels on x-axis). The epistasis value K is treated as a category, thus results are in a box-and-whisker diagram per group (fist plot on the top-left corner).

Table 1: Group averages of all the observed variables, aggregated by the epistasis K of the corresponding N K-landscape. Standard deviations are given in subscripts. nv = number of vertices (Local Optima), lo = average shortest path to reach the global optimum, lv = average path length (dij = 1/wij), f nn = Spearman coefficient for the nearest-neighbors fitness-fitness correlation, wii = average non-normalized weight of self-loops, cc global clustering coefficient, zout = average out-going degree, y2 = average weight disparity for out-going edges, knn = degree assortativity, ets = estimated time to succeed. 

yi = β0 + β1xi,1 + β2xi,2 + • • • + βpxi,p + i (1) 
where the response variable y in our case would be ets and p different predictors xj are to be chosen among the LON metrics; is the usual random noise term. The least square regression produces estimates βj for the βj model coefficients; the difference between the predicted values and the actual, observed values, are the regression residuals:

ei = yi -ŷi = yi -β1xi1 -β2xi2 -• • • -βpxip.
The difficulty of this analysis is that there are several possible explanatory variables, which are in turn intercorrelated. In consequence, some of them could have a confounding effect on the regression. In general, when confounders are known, measurable, and measured, it is a good practice to include them in the model. We, therefore, start by fitting the following formula:

log(ets) = β0 +β1k +β2 log(nv)+β2lo+• • •+β10knn+ (2)
where, w.r.t the general expression 1, the response and one of the predictors have been log-transformed in order to better approach linearity, as seen in Figure 2. Moreover, the variable k is qualitative and enters the model as a fixed effect, which translates in one appropriate dummy variable for each class K = 2, K = 4, . . . , K = 17.

The summary statistics for this model are reported in Table 3. In the table caption, the multiple R 2 represents the proportion of variance explained by the linear regression. R 2 would be equal to 1 if all observed data points were lying on the regression plane. When comparing models with a different number of predictors, the adjusted R 2 should be used instead. The F statistic is the ratio of the variance explained by the parameters in the model, to the residual or unexplained variance. The p-value is the probability of achieving an F that large under the null hypothesis of no effect [START_REF] Chambers | Linear models[END_REF].

The estimated coefficient βj and their estimated standard error σj are given in the 2 nd and 3 rd columns, respectively. Their ratio is the t-statistic (4 th column) that is used to calculate a p-value for the significance of the estimation (last column). In this initial model, the average length of paths to the global optimum lo is the only predictor with a regression coefficient that is statistically-significant at the 0.05 threshold (β lo = 0.04882, p-value = 2.37e -19).

Therefore, we proceed to perform a step-wise model selection by backward elimination [START_REF] Venables | Modern Applied Statistics with S[END_REF]. From the initial formula, at each step we compute what change in the fit could be produced by dropping each predictor in turn, and then we eliminate the one that minimizes the AIC score of the resulting model [START_REF] Sakamoto | Akaike information criterion statistics[END_REF]. By iterating until all predictors become significant, we obtain the final model:

log(ets) = β0 + β lo lo + βzoutzout + βy2y2 + β knn knn + (3)
which is detailed in Table 4. This final model is able to explain 84.94% of the variance observed in log(ets) with a linear regression on four variables that are all LON network metrics. Among these metrics, the length of the paths to the global optimum, and the weight disparity have the highest relative importance [START_REF] Groemping | Relative importance for linear regression in R: The package relaimpo[END_REF].
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ing possible violations of the linearity hypothesis [START_REF] Fox | An R Companion to Applied Regression[END_REF]. All assumptions seem acceptable. Therefore, formula 3 could be used to make inferences. In other words, formula 3 coefficients can be interpreted as conditional expectations for the average change in the response when one predictor undergoes a unitary change, and all the others remain fix. Since the dependent variable is log-transformed, this effect would be multiplicative.

The only important limitation of the proposed model is multicollinearity: due to the complex intercorrelations among LON metrics (cf. Figure 1), predictors are not really independent. This does not invalidate the multiple linear regression analysis, but it inflates the variance of its coefficients and makes it harder to disentangle their respective contributions [START_REF] Fox | An R Companion to Applied Regression[END_REF].

CONCLUSIONS

This article explored correlations between local optima network features and the performance of a stochastic local search algorithm running on the underlying combinatorial optimization problem. The NK family of landscapes and the iterated local search meta-heuristic were considered. It has been shown in previous work e.g. [START_REF] Tomassini | Complex-network analysis of combinatorial spaces: The NK landscape case[END_REF][START_REF] Verel | Local optima networks of NK landscapes with neutrality[END_REF] that some features of the LON networks are related to the N Klandscapes ruggedness, and thus to problem difficulty. However, no statistically testable model was presented. The contribution of this study was to investigate, with a statistically-sound approach, which features of the LONs have a strong influence on the search performance, expressed as expected running times to success. The results obtained through the use of a multiple linear regression model show that some LON metrics are more important than others. These are: the average length of the shortest paths to the optimum, the average out-degree, the average disparity, and the degree assortativity. This study confirms and provides significant evidence that LON modeling is a compressed-but-relevant view of the fitness landscape, and can be used to understand and predict search difficulty.

It is worth noticing that some network metrics can be estimated without knowing the global optimum beforehand, such as the average out-degree, the fitness-fitness correlation, the average disparity and assortativity. Using these metrics and an adequate statistical model, as we have done in this work, opens up exciting possibilities. With standard sampling methods, larger search spaces could be studied. Thereafter, using the performance model based on the estimated LON metrics, the search heuristic parameters or its operators can be off-line tuned, or even on-line controlled. We plan to continue working in this direction and to extend this analysis to other combinatorial problems such as QAP.

Figures 1 and 2 ,

 2 Figures 1 and 2, along with Table2, address already some of the research questions asked in Section 1, but do not provide an explanatory model for the algorithm performance as a function of the landscape features. To this end, we perform a multiple linear

Figure 1 :

 1 Figure1: Correlation matrix for all pairs of the observed variables, to be read from the diagonal. The lower panel displays scatter plots and smoothing splines for every possible pairing; the upper panel gives the corresponding Pearson correlation coefficient, with text size proportional to its absolute value. In the lower panel, the smoothing is done through locally-weighted polynomial regressions[START_REF] Cleveland | Lowess: A program for smoothing scatterplots by robust locally weighted regression[END_REF]. In the upper panel, the correlation coefficient is tested against the null hypothesis and the resulting p-value is symbolically encoded at the levels of 0.1 ('), 0.05 (*), 0.01 (**), and 0.001 (***).

Table 2 :

 2 Spearman's ρ statistic for the correlation between ets and the LON metrics (p-value < 2.2e -16 for all pairings).

	aggregate	nv	lo		lv	fnn		wii	cc	zout	y2	knn	ets (×10 4 )
	K = 2		4328	33.514	18751	0.7030.19	10511	0.4250.086	6.91.8	0.3920.075	0.1550.4	2.163.3
	K = 4		22139	53.712	21415	0.5870.07	83.93	0.2630.013	14.31	0.2190.016	-0.5360.13	8.397.74
	K = 6		74870	66.713	1884.8	0.5350.041	67.51.9	0.190.005	24.80.86	0.1240.0059	-0.7780.035	32.636.1
	K = 8		166973	76.69.1 1711.9	0.4310.025 53.30.88 0.1590.0012 35.70.57	0.07690.002	-0.8560.022	51.861.1
	K = 10	3148110	90.78.4 1661.2	0.3420.016 40.70.78 0.1430.00085 47.20.57	0.04910.0011	-0.9040.011	81.570.6
	K = 12	5270104	10812	1700.64 0.2550.015 30.80.35 0.1330.00054 57.80.39 0.03340.00046 -0.9280.0093	276544
	K = 14	8100121	1258.6	1810.6	0.190.011	23.50.25 0.1280.00032 66.90.33 0.02450.00022 -0.9440.0063	300288
	K = 16	11688101	14611	1970.42 0.1430.0073 18.20.11 0.1250.00023 74.60.17 0.01967.8e-05 -0.9480.0055	414632
	K = 17	1380174	15612	2050.42	0.1330.01	16.10.06 0.1250.00021 78.20.13 0.01796.5e-05 -0.9440.0063	793844
	nv	lo	lv	fnn	wii	cc	zout	y2	knn		
	0.885 0.915 0.006 -0.830 -0.883 -0.875 0.885 -0.883 -0.850		
	regression on the data, which has the general form:				

Table 3 :

 3 Summary statistics of the linear regression model on all variables. Residual standard error: 0.8702 on 248 degrees of freedom (4 observations deleted due to missingness). Multiple R-squared: 0.8585, Adjusted R-squared: 0.8488. Fstatistic: 88.52 on 17 and 248 DF, p-value: < 2.2e -16.

	summary	Estimate	Std. Error	t value	Pr(>|t|)
	(Intercept)	16.06966	7.39640	2.1726 3.08e -02
	k4	0.01542	0.63987	0.0241 -01
	k6	-1.08926	1.39976 -0.7782 4.37e -01
	k8	-3.14529	2.46616 -1.2754 2.03e -01
	k10	-5.67316	3.76828 -1.5055 1.33e -01
	k12	-8.19327	5.04638 -1.6236 1.06e -01
	k14	-10.34765	6.17715 -1.6751 9.52e -02
	k16	-12.85523	7.14074 -1.8003 7.30e -02
	k17	-13.40456	7.59325 -1.7653 7.87e -02
	log(nv)	-1.91370	1.12656 -1.6987 9.06e -02
	lo	0.04882	0.00499	9.7919 2.37e -19
	lv	0.00198	0.00376	0.5265 5.99e -01
	fnn	0.54148	0.89574	0.6045 5.46e -01
	wii	-0.00302	0.02739 -0.1104 9.12e -01
	cc	-7.22853	5.00042 -1.4456 1.50e -01
	zout	0.29514	0.15838	1.8636 6.36e -02
	y2	-3.46837	5.00914 -0.6924 4.89e -01
	knn	-0.88961	0.49062 -1.8132 7.10e -02

Table 4 :

 4 Summary statistics of the final linear regression model. Residual standard error: 0.8751 on 261 degrees of freedom (4 observations deleted due to missingness). Multiple R-squared: 0.8494, Adjusted R-squared: 0.8471. F-statistic: 368.1 on 4 and 261 DF, p-value: < 2.2e -16.

	summary	Estimate Std. Error t value	Pr(>|t|)
	(Intercept) 10.3838	0.58512	17.75 9.24e -47
	lo	0.0439	0.00434	10.11 1.67e -20
	zout	-0.0306	0.00831 -3.68 2.81e -04
	y2	-7.2831	1.63038 -4.47 1.18e -05
	knn	-0.7457	0.40501 -1.84 6.67e -02

probability distribution of the number N -1 of failures before the first success (Bernoulli trials)
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