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Abstract 

The article presents an HMM-based mapping approach for 

converting ultrasound and video images of the vocal tract into an 

audible speech signal, for a silent speech interface application. 

The proposed technique is based on the joint modeling of 

articulatory and spectral features, for each phonetic class, using 

Hidden Markov Models (HMM) and multivariate Gaussian 

distributions with full covariance matrices. The articulatory-to-

acoustic mapping is achieved in 2 steps: 1) finding the most 

likely HMM state sequence from the articulatory observations; 

2) inferring the spectral trajectories from both the decoded state 

sequence and the articulatory observations. The proposed 

technique is compared to our previous approach, in which only 

the decoded state sequence was used for the inference of the 

spectral trajectories, independently from the articulatory 

observations. Both objective and perceptual evaluations show 

that this new approach leads to a better estimation of the spectral 

trajectories. 

Index Terms: silent speech interface, handicap, HMM-based 

speech synthesis, audiovisual speech processing 

1. Introduction 

In the past few years, the design of silent speech interfaces (SSI) 

has emerged as a new field in the speech research community 

[1]. SSI may be defined as automatic systems enabling oral 

communication without the necessity of vocalizing the speech 

sound. Application areas are in the medical field, as an aid for 

laryngectomized patients, and in the telecommunication sector, 

in the form of a “silent telephone”, which could be used for 

confidential or furtive communication, or in very noisy 

environments. To date, several technologies have been proposed 

to capture the articulatory activity (or the very low acoustic 

activity) during silent speech: surface electromyography (sEMG) 

[2]; tissue-conducted microphone (also called NAM 

microphone) [3]; and permanent-magnetic articulography 

(PEMA) [4]. In our approach, articulatory movements are 

captured by a multimodal imaging system composed of an 

ultrasound transducer placed beneath the chin and a video 

camera placed in front of the lips [5].  

In this paper, we address the problem of “articulatory-to-

acoustic” mapping, i.e. the synthesis of an audible speech signal, 

from (visual) articulatory data only. In our previous work, this 

problem has been addressed using non-linear regression 

techniques based respectively on artificial neural networks 

(ANN) and Gaussian mixture models (GMM). In [6], we 

proposed an HMM-based approach which allows the 

introduction of external a priori linguistic information in the 

mapping process. The mapping was achieved in two steps: 1) a 

“phonetic decoding” step during which the most likely phonetic 

sequence was predicted from the articulatory observations; and 

2) a “synthesis” step during which spectral trajectories were 

estimated from the predicted phonetic sequence and the decoded 

HMM state sequence, using the MLPG algorithm [7]. Unlike 

GMM and ANN-based approach, the mapping here was achieved 

not at the frame level, but at the phone level. External linguistic 

constraints could thus be introduced in the mapping via a 

limitation on the authorized vocabulary (as in [6]) or by using a 

statistical language model (as in [8]). A HMM-based approach 

outperforms ANN-based and GMM-based approaches: the use of 

linguistic constraints helps to recover missing information in the 

articulatory data, such as the voicing characteristic of course, but 

also the position of some articulators like the velum. However, 

this approach presents a major drawback: the spectral trajectories 

are estimated only from the decoding phonetic sequence, 

independently of the articulatory observation. As a consequence, 

the quality of the synthesis depends exclusively on the accuracy 

of the decoding phonetic sequence: an error during the decoding 

stage corrupts necessarily the synthesis.  

This paper focuses on this issue and investigates a new 

approach to estimate the spectral feature trajectories from both 

the decoded phonetic sequence and the articulatory observations. 

To do so, we adapted the approach originally proposed by Toda 

in [9] for GMM-based mapping to the framework of HMM-

based mapping. An almost identical approach has been proposed 

by Zen in [10] for voice conversion and acoustic-to-articulatory 

mapping. The proposed approach is referred in this paper as the 

“continuous HMM-based mapping technique”.    

 In this approach, the dependency between the articulatory 

and the acoustic variables is learned explicitly by jointly 

modeling sequences of articulatory and spectral features, for 

each phonetic class, with a “full-covariance” HMM (i.e. HMM 

for which the emission probability density functions (pdf) are 

modeled by multivariate Gaussian distributions with full 

covariance matrices). Spectral trajectories are estimated using a 

ML-based parameter estimation algorithm, which explicitly 

adjusts the spectral targets from the articulatory observations.   

The article is organized as follows. Section 2 details the 

theoretical aspects of the continuous HMM-based mapping 

technique. Section 3 describes the data acquisition protocol, the 

feature extraction process, and details the practical 

implementation of the two mapping techniques. Experimental 

results are presented and discussed in section 4. Conclusions and 

perspectives are presented in the last section. 



2. HMM-based feature mapping  

Sequences of articulatory and spectral feature vectors, x and y, 

are written as: x = [x
1
, ..., x

t
, ..., x

T
]  and y = [y

1
, ..., y

t
, ..., y

T
] , 

where x
t
 and y

t
, are Dx/Dy dimensional vectors of 

articulatory/spectral features observed at the time t (T is the 

sequence length). As usual in HMM-based parameter estimation, 

spectral features are augmented with their first derivatives, such 

as Y = [Y
1
, ...,Y

T
]  with Y

t
= [y

t
,!y

t
] .  

2.1. Baseline mapping technique 

The following section briefly recalls the theoretical aspects of the 

HMM-based mapping technique introduced in [6], which is 

referred in this paper as the “baseline technique”. In the training 

stage, streams of articulatory and spectral feature vectors 

(recorded synchronously) are modeled, for each phonetic class, 

by a multistream HMM. For each stream, the emission 

probability density of each state is modeled by a multivariate 

Gaussian distribution with diagonal covariance matrix. In the 

mapping stage, the sequence of spectral feature vectors ŷ  is 

estimated from the sequence of articulatory feature vectors x

such as ŷ = argmax
y

p(y | x){ } with:  

p(y | x) = p(y | !, q) " P(!, q | x)          (1) 

where ! is the parameters set of the HMM and q the HMM state 

sequence. In our implementation, ŷ  is obtained by maximizing 

separately the two conditional probability terms of Equation 1: 

(1) by estimating (!̂, q̂)  with (!̂, q̂) = argmax
! ,q P(!, q | x){ }

 using the Viterbi algorithm (phonetic decoding stage); and (2), 

by estimating ŷ  such as ŷ = argmax
y
P(y | !̂, q̂){ } , using the 

MLPG algorithm [7] (synthesis stage). This algorithm estimates 

the feature trajectories by solving the following equation:  

ŷ = W
T
!
q̂

"1
W( )

"1

W
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M

q̂

with M
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q̂
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q̂
T
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"1
= diag[!
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1

"1
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q̂
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"1
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  (2) 

where q̂ = [q̂
1
, ..., q̂

T
]  is the decoded HMM state sequence, µk  

and "k are respectively the mean and the diagonal covariance 

matrix of the Gaussian emission probability density associated 

with state k. W  is a [2DxT-by-DyT] matrix representing the 

relationship between static and dynamic feature vectors:    

 

       (3) 

2.2. Continuous HMM-based mapping 

The new approach aims at modeling more explicitly the local 

correlations between articulatory and spectral features. For that 

purpose, sequences of articulatory and spectral features are 

modeled jointly, for each phonetic class, by a single-stream “full-

covariance” HMM: the joint probability density function (pdf) of 

articulatory and spectral observations is modeled, for each HMM 

state q, by a single Gaussian, with:  
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where N (., µ, !)  is a normal distribution with mean µ  and 

covariance matrix ! . Similarly to the baseline technique, the 

mapping starts with the phonetic decoding stage, which 

determines the most likely phonetic sequence, and the 

corresponding HMM state sequence (!̂, q̂) , from the articulatory 

observations x. Unlike the baseline technique, the sequence of 

spectral feature vectors is estimated by taking into account, not 

only the decoded HMM states, but also the articulatory 

observations, such as ŷ = arg max
y

p(y | x, !̂, q̂){ }  . For each 

frame t, a conditional pdf p(Y
t
| x

t
, q̂

t
, !̂)  is derived from the 

joint pdf p
q̂
t

(x
t
,Y

t
) , estimated during training:  
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(the mathematical basis of this derivation can be found in [11], 

p.337). As shown in Equation 5, the target vector of spectral 

features E
q̂t ,t

Y
, is expressed as a linear function of the 

articulatory observation x
t
, and is based on the “local” 

correlations between the articulatory and the spectral features for 

state q̂
t

, estimated during training. Spectral trajectories ŷ  are 

finally estimated by solving the following equation:  

  
ŷ = W
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which can be seen as an adaptation of Equation 2, to the problem 

of HMM-based feature mapping. As with the MLPG algorithm, 

this method determines the vector sequence that maximizes the 

likelihood of the model with respect to a continuity constraint on 

the predicted feature trajectories.  



3. Experimental protocol 

3.1. Data acquisition 

The two mapping techniques described in section 2 are evaluated 

on a continuous speech database consisting of one-hour of high-

speed ultrasound and video sequences, recorded synchronously 

with the audio signal. Data were acquired using the Ultraspeech 

acquisition system (http://www.ultraspeech.com) [11]. 

Ultrasound and video streams were both recorded at a frame rate 

of 60 frames per second, the audio signal was recorded at 16 kHz 

(16 bits). A female native English speaker was asked to 

pronounce the 1132 sentences of CMU ARCTIC corpus [13]. 

Acquisition was split into 10 sessions, spaced in time. An inter-

session re-calibration mechanism (detailed in [11]), was used to 

maintain the positioning accuracy of the sensors across all 

sessions. A typical pair of ultrasound and video images, 

extracted from the recorded database, is shown in figure 1. 

 

Figure 1: Ultrasound and video images  

recorded with the Ultraspeech system.  

3.2. Feature extraction 

The EigenTongues/EigenLips decomposition technique [14] was 

used to encode each ultrasound/video frame. First, regions of 

interest (ROI), selected in ultrasound and video images, were 

resized to 64x64 pixels. Sets of EigenTongues/EigenLips were 

calculated by performing a Principal Component Analysis on a 

phonetically balanced subset of frames. Each ultrasound/video 

image was projected onto the set of EigenTongues/EigenLips. 

The number of projections used for coding was determined by 

keeping the eigenvectors carrying at least 80% of the variance of 

the training set; 30 coefficients were used as static features for 

each visual stream. In order to be compatible with the speech 

analysis rate, the EigenTongues/EigenLips feature sequences 

were oversampled from 60 Hz to 100 Hz. Finally, they were 

concatenated with their first derivatives in a single articulatory 

feature vector (120-dimensional vector). In order to make 

tractable the training of full-covariance HMMs, the 

dimensionality of articulatory feature vectors was reduced to 30, 

using Locality Preserving Projection technique (LPP) [15]. 

Dimensionality reduction was performed only for the continuous 

mapping technique, since it did not lead to any improvement for 

the baseline technique.  

The spectral content of the audio speech signal was 

parameterized by 25 mel-cepstrum coefficients (Blackman 

window, 25ms frame length, 10 ms frame shift). Static spectral 

features were concatenated with their first derivatives in a single 

spectral feature vector (50-dimensional vector). Silence frames 

were removed automatically using a threshold-based silence 

detection method, at the beginning and end of each recorded 

sentence.  

3.3. Training 

For the baseline technique, sequences of articulatory and 

acoustic feature vectors were modeled by a multistream HMM, 

for each of the 40 phonetic classes (with diagonal covariance 

matrix). Two streams were dedicated to the modeling of the 

visual features (ultrasound/video), one stream was used to model 

the spectral features. HMMs were first trained separately, using 

the Baum-Welch algorithm and then processed simultaneously, 

using an embedded training strategy. Context-dependency was 

then introduced in the modeling to take into account context 

effects such as co-articulation and anticipation (triphone 

modeling). A tree-based state-tying strategy was used to address 

the problem of data sparsity. Each resulting multistream HMM 

was then split into two distinct HMMs: a 2-streams “articulatory 

HMM” (ultrasound/video), used for the recognition stage, and a 

1-stream “acoustic HMM”, used for the synthesis stage. 

Articulatory HMMs were finally refined by increasing 

incrementally the number of Gaussian mixture components.    

For the continuous HMM-based mapping technique, 

sequences of articulatory and acoustic feature vectors were 

modeled, for each of the 40 phonetic classes, by a single-stream 

“full-covariance” HMM. Due to the lack of training data, the 

training of context-dependent full-covariance HMMs on this 

database was found to be not feasible. As a consequence, we use 

the context-dependent HMMs, trained for the baseline technique,  

for the phonetic decoding stage; the context-independent full-

covariance HMMs being used only for the synthesis stage (the 

target sequence of HMM states was obtained using the results of 

the phonetic decoding stage, and a forced-alignment procedure).  

4. Results & Discussion 

In the two HMM-based mapping techniques, linguistic 

constraints can be introduced to help the phonetic decoding. 

With that in mind, we implemented two decoding scenarios. In 

the first, considered “unconstrained”, the structure of the 

decoding network was a simple loop in which all phones loop 

back to each other. In the second, or “constrained” scenario, the 

decoding network allows all possible word combinations which 

can be built from a 3k word dictionary. No statistical language 

model was used in the present study.  The first 1110 sentences of 

the recorded database were divided into 37 lists of 30 sentences. 

A K-fold validation (leave-one-out) technique was employed for 

evaluation: each list was used once as the test set while the other 

34 lists composed the training set. Two test lists were excluded 

from this procedure to be used as a validation set for the 

determination of two hyperparameters: (1) the optimal number of 

Gaussians for the articulatory HMM used for the decoding stage 

(which was found to be 4); and (2), the model insertion penalty 

(which was found to be respectively -20 and -150 for the 

unconstrained  and  constrained scenario). The performance of 

the decoding stage was measured by evaluating the recognition 

accuracy defined as Acc = 100.(N ! D ! S ! I ) / N , where N 

is the total number of phones in the test set, S, D and I are 

respectively the number of substitution, deletion, and insertion 

errors. The recognition accuracy was found to be 68.4% for the 

unconstrained scenario and 78.3 % for the constrained scenario. 

The quality of the estimated spectral trajectories was first 

evaluated by calculating the Mel-cepstral distance (MCD) 

between the target and the predicted mel-cepstrum coefficients, 



defined as: MCD
s
[dB] = (10 / ln10) 2. (m̂

d
! m

d
)
2

d= s

24

" .  

If s=0, the distance includes the 0
th

 cepstral dimension which 

corresponds to overall signal power. In this paper, we focus on 

the value of MCD1 since we are interested more in the shape of 

the target spectral envelope, than in the intensity variation of the 

synthetic speech sound. Results are presented in Table 1.  

Table 1. Objective performance evaluation (MCDs[dB]).   

Scenario 
Baseline HMM-

based mapping 

Continuous HMM-

based mapping 

Unconstrained 

(Acc=68.4%) 

MCD1 = 6.01 

(MCD0 = 8.35) 

MCD1 = 5.68 

(MCD0 = 7.8) 

Constrained 

(Acc=78.3%) 

MCD1 = 5.97 

(MCD0 = 8.30) 

MCD1 = 5.60 

(MCD0 = 7.76) 

Forced-alignment 

(Acc=100%) 

MCD1 = 5.76 

(MCD0 = 7.86) 

MCD1 = 5.46 

(MCD0 = 7.4) 

The continuous HMM-based mapping technique leads to an 

average improvement of 0.33 dB for MCD1 (and 0.51 dB for 

MCD0). Paired-sample t-tests showed that this improvements 

was statistically significant, for each of the two decoding 

scenarios (and for both MCD0 and MCD1, with p<0.001). The 

continuous HMM-based mapping is also slightly less sensitive to 

decoding errors: the degradation of the performance between the 

“forced-alignment” scenario (for which the phonetic target is 

given, i.e. Acc=100%) and the unconstrained scenario 

(Acc=68.4%) is 3.9% for the continuous mapping technique, 

whereas it is 4.2% for the baseline technique.   

In order to confirm the objective evaluation conclusions, a 

perceptual comparison of the two mapping techniques was 

performed using a XAB listening test. 15 sentences were 

randomly selected from the test corpus. For each sentence, 3 

audio stimuli (named X, A and B) were synthesized using the 

STRAIGHT vocoder [16]. The target speech sound X was built 

by analyzing and (re)-synthesizing the original audio signal. The 

spectral content of stimuli A and B was estimated from the 

articulatory observations using either the baseline, or the 

continuous mapping technique. The constrained scenario 

(Acc=78.3%) was used for the phonetic decoding stage. In order 

to evaluate only the accuracy of the derived spectral trajectories, 

excitation characteristics of the target sound X (pitch, aperiodic 

component and energy) were used for the synthesis of A and B 

(so that A,B and X share the same prosodic content). 10 listeners 

were asked to say which of the sounds A or B was the most 

similar to X (A and B were presented in a random order). In 80% 

(!=9%) of the cases, the listeners chose the stimuli synthesized 

with the continuous HMM-based mapping technique  

(inter-listener agreement (Fleiss’ Kappa coefficient)=0.53±0.02). 

    

5. Conclusions and Perspectives 

The article introduces a new approach to estimate spectral 

feature trajectories from ultrasound and video articulatory data, 

for a silent speech interface application. We describe a  

parameter generation algorithm which explicitly takes into 

account the local dependencies between the articulatory and the 

spectral features, modeled by a set of full-covariance HMM. 

Both objective and perceptual evaluations shows that this 

technique outperforms our previous approach, in which the 

parameter generation were driven only by the decoded HMM 

state sequence, independently from the articulatory observations.   

Future work will focus on the real-time implementation of 

the continuous HMM-based mapping technique. The adaption of 

low-delay feature mapping techniques [17] will be investigated.  
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