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OCTONION ALGEBRAS OVER RINGS ARE NOT

DETERMINED BY THEIR NORMS

PHILIPPE GILLE

Résumé: Répondant à une question de H. Petersson, nous contruisons une
classe d’exemples de paires d’algèbres d’octonions définies sur un anneau
ayant des normes isométriques.

Abstract: Answering a question of H. Petersson, we provide a class of
examples of pair of octonion algebras over a ring having isometric norms.
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1. Introduction

If Q is a quaternion algebra over a field k, we know from Witt that Q
is determined by its norm [13, §1.7]. This result has been extended over
rings by Knus-Ojanguren-Sridharan ([9, prop. 4.4] , [8, V.4.3.2]) and holds
actually over an arbitrary base (§2).

If C is a octonion algebra over k, we know from Springer-Veldkamp that
it is determined by its norm form [13, §1.7]; more generally it is true over
local rings (Bix, [1, Lemma 1.1]). In his Lens lecture, H. Petersson raised
the question whether it remains true over arbitrary commutative rings.

The goal of this note is to produce a counterexample to this question,
namely an example of two non-isomorphic octonions algebras over some
commutative ring R having isometric norms. Our argument is based on the
study of fibrations of group schemes and uses topological fibrations which
makes clear why it holds for quaternion algebras and not for octonions.

For the theory of reductive group schemes and related objects (e.g. Lie
algebra sheaves, homogeneous spaces, quadratic spaces, ... ) we refer to
SGA3 [12] and to the book by Demazure-Gabriel [4]. The sheaves in sets or
groups are denoted as F and are for the fppf topology over a base scheme
S.
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2. Quaternion algebras and norms

Let S be a scheme. By a quaternion1 algebra over S, we mean a rank
4 Azumaya OS–algebra Q. Equivalently, it is an étale S–form of the ma-
trix algebra M2(OS), namely the twist of M2(OS) by the PGL2–torsor
E = Isomalg(M2(OS),Q).

By descent, it follows that isomorphism classes of quaternion S-algebras
correspond to the étale cohomology set H1(S,PGL2).

The reduced norm (resp. trace) Nrd : Q → OS (resp: Trd) is the twist by
E of the determinant map M2(OS) → OS (resp. the trace), it is a quadratic
(resp. linear) form over S.

Furthermore the canonical involution X 7→ tr(X)−X on M2(OS) induces
by descent the canonical involution of Q.

The point is that the semisimple group scheme SO(Q,NQ) is of type
A1 ×A1 and its universal cover is SL1(Q)× SL1(Q).

2.1. Lemma. We have an exact sequence of group schemes

1 → µ2 → SL1(Q)× SL1(Q)
f
→ SO(Q,NQ) → 1

where f(x, y).q = xq y−1 for every q ∈ Q.

Proof. Up to localize for the étale topology, we can assume that Q = M2

and that S = Spec(Z). We have µ2 ⊂ ker(f) and let us show the converse
inclusion. Let R be a ring and pick (x, y) ∈ ker(f)(R). A such element
satisfies xAy−1 = A for each A ∈ M2(R). By taking A = y, we see that
x = y so that xAx−1 = A for each A ∈ M2(R). By taking the canonical R-
basis of M2(R), it follows that x ∈ Gm(R). Since x ∈ SL2(R), we conclude
that (x, y) ∈ µ2(R). Thus µ2 = ker(f).

Since µ2 is a central subgroup of SL2 ×R SL2, we can mod out by µ2 [12,

XXII.4.3] and get a monomorphism f̃ : (SL2 ×R SL2)/µ2 → SO(M2, det)
of semisimple group schemes. According to [12, XVI.1.5.a], it is a closed
immersion. On both sides, each Q-fiber is smooth connected of dimension

6. It follows that f̃Q is an isomorphism. Since SO(M2, det) is flat over Z,

we conclude that f̃ is an isomorphism. �

The adjoint map Ad : PGL2 → GL(M2) gives rise to the closed S–
immersion PGL2 → O(M2,det) where O(M2,det) stands for the orthog-
onal group scheme of the non–singular quadratic form det [4, III.5.2]. It
is equipped with the Dickson map O(M2,det) → Z/2Z whose kernel is by
definition the special linear group SO(M2,det). By twisting, it provides a
closed S-immersion

Ad : PGL1(Q) → O(Q,Nrd), q 7→ Ad(q)

where PGL1(Q) stands for the group scheme GL1(Q)/Gm of projective
units.

1Knus’ definition requests less conditions [8, 1.3.7]; we deal here then with “separable
quaternions algebras”.



OCTONION ALGEBRAS 3

In the other hand, the orthogonal S–group O(Q,Nrd) acts on SL1(Q) =
Ker(GL1(Q)) → Gm) by the action induced from the standard action of
GL(Q) on Q.

2.2. Proposition. (1) The S–scheme SL1(Q) is a homogeneous space under
the action of SO(Q,Nrd) and a fortiori under the action of O(Q,Nrd).

(2) The orbit map

u : SO(Q,Nrd) → SL1(Q), g 7→ g.1

is a split PGL1(Q)–torsor.

Proof. We put G/S = SO(Q,Nrd), H/S = PGL1(Q) and X/S = SL1(Q).

(1) We consider the S–group morphism s : X → G defined by q 7→ Lq

(left translation by q), it is a section of f . Hence X(T ) is homogeneous
over G(T ) for each S-scheme T . The assertion (1) holds then by some nice
characterization of homogeneous spaces [12, VIB .6.7(i)].

(2) The map u ◦ f : SL1(Q) × SL1(Q) → SL1(Q) applies (x, y) to xy−1.

Therefore SL1(Q) ×S SL1(Q)/SL1(Q)
∼

−→ SL1(Q) where SL1(Q) acts on
SL1(Q)×S SL1(Q) by z.(x, y) = (x z, z−1 x). By moding out by the diagonal
µ2 of SL1(Q)×S SL1(Q), we get an isomorphism of flat sheaves

SO(Q,Nrd)/PGL1(Q)
∼

−→ SL1(Q)

where PGL1(Q) embeds by h in SO(Q,Nrd). �

2.3. Lemma. O(Q,Nrd) = SO(Q,Nrd) ×S Z/2Z where Z/2Z is the S-
subgroup O(Nrd) defined by the canonical involution.

Proof. We have to show that the Dickson map O(Q,Nrd) → Z/2Z is split by
applying 1 to the canonical involution. To check that the Dickson invariant
of the canonical involution is 1, we can reason étale locally and deal with
the split case over Z and even over C. It is then enough to check it for
the real standard quaternion algebra Q with quaternionic basis 1, i, j, ij.
We have O(Q,Nrd) = O4 and the canonical involution transforms 1, i, j, ij
respectively to 1,−i,−j,−ij, so is of determinant −1. Thus the canonical
involution has non-trivial Dickson invariant. �

If follows that we have an isomorphism of homogeneous O(Q,Nrd)-spaces

O(Q,Nrd)/(PGL1(Q)×S Z/2Z)
∼

−→ SL1(Q).

2.4. Theorem. Let Q′ be a OS-quaternion algebra. Then Q′ is isomorphic
to Q if and only if the quadratic S–form Nrd and Nrd′ are isometric.

Proof. SinceH1(S,PGL1(Q)) classifies S–quaternion algebras andH1(S,O(Q,Nrd))
classifies the isometry classes of non-singular quadratic forms of dimension
4, it follows that the kernel of the map

Ad∗ : H
1(S,PGL1(Q)) → H1(S,O(Q,Nrd))
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classifies the isomorphism classes of quaternions S–algebras such that the
quadratic S–form Nrd and Nrd′ are isometric. By applying [6, III.3.2.2] to

the isomorphism O(Q,Nrd)/(PGL1(Q) ×S Z/2Z)
∼

−→ SL1(Q), we get an
exact sequence of pointed sets

O(Q,Nrd)(S)
f
→ SL1(Q)(S) → H1(S,PGL1(Q)×SZ/2Z) → H1(S,O(Q,Nrd)).

By Proposition 2.2, the map f admits a retraction so that the kernel of
H1(S,PGL1(Q) ×S Z/2Z) → H1(S,O(Q,Nrd)) is trivial. A fortiori, the
kernel of H1(S,PGL1(Q)) → H1(S,O(Q,Nrd)) is trivial, as desired. �

2.5. Remark. Knus-Ojanguren-Sridharan’s proof uses the even Clifford al-
gebra of the norm forms to encode the algebra. Somehow we use also
the Clifford algebra by means of the Dickson invariant which is in the
case related to the fact that the simply connected cover of SO(Q,NQ) is
SL1(Q)×S SL1(Q).

3. Octonion algebras and norms

Let R be a commutative ring (with unit). From §4 of [7], we recall that
a octonion algebra2 over R is a non-associative algebra C over R is a f.g.
projective R–module of rank 8, contains an identity element 1C and admits
a norm nC : C → R which is uniquely determined by the two following two
conditions: nC is a non-singular quadratic form and nC(xy) = nC(x)nC(y)
for all x, y ∈ C.

This notion is stable under base extension and descends under faithfully
flat base change of rings.

The basic example of an octonion algebra is the split octonion algebra
(ibid, 4.2) denoted C0 and called the algebra of Zorn vector matrices, which
is defined over Z. There is another isomorphic description of this algebra in
§1.8 of [13] over fields by the “doubling process”. It actually works over Z,
we take

C ′

0 = M2(Z)⊕M2(Z)

with multiplication law (x, y).(u.v) = (xu + v σ(y), σ(x)v + u y) (σ is the
canonical involution of M2(Z)) and norm nC′

0
(x, y) = det(x) − det(y). We

know that the fppf Z–group sheaf Aut(C0) ∼= Aut(C ′

0) is representable by
an affine smooth group Z–scheme Aut(C0) [7, 4.10].

3.1. Proposition. The Z–group scheme Aut(C0) is the Chevalley group of
type G2.

Proof. Let us first show that Aut(C0) is a semisimple group scheme of type
G2, that is by definition a smooth affine group scheme whose geometrical
fibers are are semisimple groups of type G2 [12, XIX]. The quoted result
states that an affine smooth group Z–scheme Aut(C0) and the fibers are in-
deed semisimple groups of type G2 according to theorem 2.3.5 of [13]. Hence

2One can of course globalize this definition, see [11].



OCTONION ALGEBRAS 5

Aut(C0) is a semisimple group scheme of type G2. By Demazure’s unicity
theorem [12, cor. 5.5] the Chevalley group of type G2 is the unique split
semisimple group scheme of type G2, that is the unique semisimple group
scheme of type G2 admitting a split torus of rank two. Since PGL2 × PGL2

embeds in Aut(C ′

0), Aut(C
′

0) contains a two dimensional split torus. Thus
Aut(C0) ∼= Aut(C ′

0) is the Chevalley group of type G2. �

We come now to the question whether an octonion algebra is determined
by its norm. Let C be an octonion algebra over R. We have natural closed
group embeddings of group schemes

Aut(C)
j
→ O(nC) ⊂ GL(C).

By taking the cohomology, it provides a map

j∗ : H1(R,Aut(C)) → H1(R,O(nC)).

The left handside classifies octonion algebras over R while the right handside
classifies regular quadratic R–forms. By descent, we have j∗([C

′]) = [nC′ ]
for each octonion R–algebra C ′. It follows that the kernel of j∗ classifies the
octonion algebras over R whose norm form is isometric to nC .

3.2. Lemma. The fppf quotient O(nC)/Aut(C) is representable by an affine
scheme of finite presentation over R.

Proof. According to [3, 6.12], the fppf quotient GL(C)/Aut(C) is repre-
sentable by an affine scheme of finite type over R. It is of finite presentation
over R by the standard limit argument [12, VIB.10.2]. In the other hand, the
fppf sheaf GL(C)/O(nC) is representable by an affine scheme of finite pre-
sentation over R [14, lemme 2.26]. Therefore the “kernel” O(nC)/Aut(C)
of the natural map GL(C)/Aut(C) → GL(C)/O(nC) is representable by an
affine scheme of finite type. �

We denote byA(C) the coordinate ring of the affine scheme O(nC)/Aut(C).

3.3. Theorem. Assume that R is a non zero Q-ring. Then the Aut(C)-
torsor O(nC) → Spec(A(C)) is not trivial, so that ker(j∗,A(C)) is not trivial.

3.4.Remark. By inspection of the proof, the result holds also for SO(nC) →
SO(nC)/Aut(C). If R = C, it provides then a counterexample over a con-
nected smooth complex affine variety.

Let us do first a special case.

3.5. Proposition. Let C/R be the “compact” Cayley octonion algebra. Then
Theorem 3.3 holds is this case.

Proof. In this case G = Aut(C)/R is the anisotropic real form of G2 and we
consider its embedding in the “compact” O8. We reason by contradiction
assuming that the G–torsor O8 → O8/G is split. It follows that there is
a G-equivariant isomorphism O8

∼= O8/G ×R G over O8/G. Hence the
map G → O8 admits a section. Taking the real points, it follows that
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the map G(R) → O8(R) admits a continuous section, hence the homotopy
group πn(G(R), •) is a direct summand of πn(O8(R), •) for all n ≥ 1. From
the tables [10, p. 970], we have π6(G(R), •) ∼= Z/3Z and πn(O8(R), •) =
πn(SO8(R), •) = 0, hence a contradiction.

�

We can proceed to the proof of Theorem 3.3.

Proof. We claim that the above counterexample survives when extending the
scalars to C. According to the Cartan decomposition, there are homomeor-
phisms G(C) ∼= G(R)× Rm and O8(C) ∼= O8(R)× Rn Hence π6(G(C), •) =
Z/3Z and does not inject in π6(O8(C), •) = 0.

In other words, Theorem 3.3 holds for the case R = Spec(C) and C = C0.
It holds over Q and over an arbitrary algebraically closed field of character-
istic zero.

For the general case, we consider a morphism R → F where F is an alge-
braically closed field. Since the Aut(C)F -torsor O(nC)F → O(nC)F /Aut(C)F
is not split, it follows that the Aut(C)F -torsor O(nC) → O(nC)/Aut(C) is
not split. �

Concluding remark. The rings occuring in the examples are at least of
dimension 14. The next question is to know the minimal dimension for the
counterexamples. The dimension one case is already open and especially
the Dedekind ring case where it is unknown whether an octonion algebra
is determined by its norm. In the case of Z, it is true since there are only
three octonions algebras [2] having distinct norm forms.
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