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This study reconsiders the role of jumps for volatility forecasting by showing that jumps have a positive and mostly significant impact on future volatility. This result becomes apparent once volatility is separated into its continuous and discontinuous component using estimators which are not only consistent, but also scarcely plagued by small-sample bias. To this purpose, we introduce the concept of threshold bipower variation, which is based on the joint use of bipower variation and threshold estimation. We show that its generalization (threshold multipower variation) admits a feasible central limit theorem in the presence of jumps and provides less biased estimates, with respect to the standard multipower variation, of the continuous quadratic variation in finite samples. We further provide a new test for jump detection which has substantially more power than tests based on multipower variation. Empirical analysis (on the S&P500 index, individual stocks and US bond yields) shows that the proposed techniques improve significantly the accuracy of volatility forecasts especially in periods following the occurrence of a jump.

Introduction

The importance of jumps in financial economics is widely recognized. A partial list of recent studies on this topic includes test specification of [START_REF] Aït-Sahalia | Disentangling diffusion from jumps[END_REF], [START_REF] Jiang | Testing for jumps when asset prices are observed with noise-a "swap variance" approach[END_REF], Barndorff-Nielsen and Shephard (2006), [START_REF] Lee | Jumps in financial markets: A new nonparametric test and jump dynamics[END_REF] and [START_REF] Aït-Sahalia | Testing for jumps in a discretely observed process[END_REF], as well as the empirical studies of and [START_REF] Maheu | News arrival, jump dynamics and volatility components for individual stock returns[END_REF]; [START_REF] Bollerslev | A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects[END_REF]; Andersen et al. (2007); [START_REF] Cartea | The relationship between the volatility of returns and the number of jumps in financial markets[END_REF]; nonparametric estimation in the presence of jumps, as in [START_REF] Bandi | On the functional estimation of jump-diffusion models[END_REF]; [START_REF] Johannes | The statistical and economic role of jumps in continuous-time interest rate models[END_REF]; [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF]; option pricing as in [START_REF] Duffie | Transform analysis and asset pricing for affine junp-diffusions[END_REF]; [START_REF] Eraker | The impact of jumps in equity index volatility and returns[END_REF]; [START_REF] Eraker | Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices[END_REF]; applications to bond and stock market, as in [START_REF] Das | Systemic Risk and International Portfolio Choice[END_REF]; [START_REF] Wright | Bond risk premia and realized jump volatility[END_REF]. Interesting references for a review are [START_REF] Cont | Financial Modelling with Jump Processes[END_REF] and [START_REF] Barndorff-Nielsen | Variation, jumps, market frictions and high frequency data in financial econometrics[END_REF]. However, while jumps have been shown to be relevant in economic and financial applications, previous research has not found evidence that jumps help in forecasting volatility.

In this study we start from an apparent puzzle contained in the studies of Andersen et al. (2007) (henceforth ABD), [START_REF] Forsberg | Why do absolute returns predict volatility so well[END_REF], [START_REF] Giot | The information content of implied volatility in light of the jump/continuous decomposition of realized volatility[END_REF] and [START_REF] Busch | The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets[END_REF]:

these works find a negative (or null) impact of jumps on future volatility. We find this result puzzling in at least two respects. First, visual inspection of realized variance time series reveals that bursts in volatility are usually initiated by a large and unexpected movement of asset prices, suggesting that jumps should have a forecasting power for volatility. Second, it is well known that volatility is associated with dispersion of beliefs and heterogeneous information, see e.g. [START_REF] Shalen | Volume, volatility and dispersion of beliefs[END_REF]; [START_REF] Wang | A model of competitive stock trading volume[END_REF] and [START_REF] Buraschi | The Joint Behavior of Credit Spreads, Stock Options and Equity Returns when Investors Disagree[END_REF]. If the occurrence of a jump increases the uncertainty on fundamental values, it is likely to have a positive impact on future volatility. Why, then, jumps have been found to be irrelevant? Our first contribution is to show that this puzzle is spuriously due to the small-sample bias of bipower variation, a very popular measure of continuous quadratic variation introduced by [START_REF] Barndorff-Nielsen | Power and bipower variation with stochastic volatility and jumps[END_REF]. We show by realistic simulations that, even if bipower variation is consistent, in finite samples it is largely upper biased in the presence of jumps, and this implies a large underestimation of the jump component. Unfortunately, this problem cannot be accommodated by simply shrinking the observation interval, since market microstructure effects would jeopardize the estimation in an unpredictable way. 1 The second contribution of this paper is then to introduce an alternative estimator of integrated powers of volatility in the presence of jumps which is less affected by small-sample bias. We introduce (Section 2) the concept of threshold multipower variation, which can be viewed as combination 1 Attempts to study and correct bipower variation under microstructure noise can be found in [START_REF] Podolskij | Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps[END_REF], and [START_REF] Christensen | Realised quantile-based estimation of the integrated variance[END_REF]. ABD and [START_REF] Huang | The relative contribution of jumps to total price variance[END_REF] propose a staggered version of bipower variation. [START_REF] Fan | Multi-scale jump and volatility analysis for high-frequency financial data[END_REF] study jumps and microstructure noise with wavelet methods. [START_REF] Jacod | Microstructure noise in the continuous case: the pre-averaging approach[END_REF] pre-average the data to get rid of microstructure noise. The impact of microstructure noise on threshold estimation of [START_REF] Mancini | Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps[END_REF] is instead unknown. Directly incorporating microstructure noise can improve volatility forecasting, see e.g. [START_REF] Aït-Sahalia | Out of sample forecasts of quadratic variation[END_REF].

of multipower variation and the threshold realized variance of [START_REF] Mancini | Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps[END_REF]. We show consistency and asymptotic normality in the presence of jumps of the newly proposed estimator (a central limit theorem for bipower variation has been recently proved by [START_REF] Vetter | Limit theorems for bipower variation of semimartingales[END_REF]. Moreover, using realistic simulation of asset prices (Section 4), we show that threshold bipower variation is nearly unbiased on continuous trajectories and, importantly, also in the presence of jumps. Finally, it is robust to the choice of the threshold function, in the sense that the impact of the threshold choice on estimation is marginal. Thus, it is an ideal candidate to estimate models of volatility dynamics in which we use separately the continuous and discontinuous volatility as explanatory variables.

Our third contribution is the introduction of a novel test for jump detection in time series (Section 3). Our C-Tz test is basically a correction of the z statistics of Barndorff-Nielsen and Shephard (2006) which softens the finite-sample bias in estimating the integral of the second and fourth power of continuous volatility in the presence of jumps. We show, by using simulated data (Section 4), that the two tests are equally sized under the null, but that in the presence of jumps the C-Tz test has substantially more power than the z test, especially when jumps are consecutive, a situation which is quite frequent in high-frequency data.

Empirical results (Section 5) constitute our fourth contribution. We work with stock index futures, individual stocks and Treasury bond data. We find that lagged jumps have a positive and highly significant impact on realized variance, a result which cannot be observed when bipower variation is employed because of its inherent bias. We also document, uniformly on our data sets, that it is possible to get higher R 2 (especially in days following a jump) and generally significant lower relative root mean square error, just by using measures based on threshold multipower variation instead of measures based on multipower variation, with no other changes in the model used for volatility forecasting. Concluding remarks are in Section 6.

Threshold Multipower Variation

Introductory concepts

We work in a filtered probability space (Ω, (F t ) t∈[0,T ] , F, P), satisfying the usual conditions [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]. We assume that an economic variable X t , for example the logarithmic price of a stock or an interest rate, satisfies the following assumption: Assumption 2.1 (X t ) t∈[0,T ] is a real-valued process such that X 0 is measurable with respect to F 0 and

dX t = µ t dt + σ t dW t + dJ t (2.1)
where µ t is predictable, σ t is cádlág; dJ t = c t dN t where N t is a non-explosive Poisson process whose intensity is an adapted stochastic process λ t , the times of the corresponding jumps are (τ j ) j=1,...,N T and c j are i.i.d. adapted random variables measuring the size of the jump at time τ j and satisfying, ∀t ∈ [0, T ], P({c j = 0}) = 0.

Typically, a time window T is fixed, e.g. one day, and we define the quantities of interest on a time span of length T . Quadratic variation of such a process over a time window is defined as:

[X] t+T t := X 2 t+T -X 2 t -2 t+T t X s-dX s , (2.2)
where t indexes the day. It can be decomposed into its continuous and discontinuous component as:

[X] t+T t = [X c ] t+T t + [X d ] t+T t (2.3) where [X c ] t+T t = t+T t σ 2 s ds and [X d ] t+T t = N t+T j=Nt c 2 j .
To estimate these quantities, we divide the time interval [t, t + T ] into n subintervals of length δ = T /n. On this grid, we define the evenly sampled returns as:

∆ j,t X = X jδ+t -X (j-1)δ+t , j = 1, . . . , n (2.4) 
For simplicity, in what follows we omit the subscript t and we simply write ∆ j X. A popular estimator of [X] t+T t is realized variance, defined as:

RV δ (X) t = n j=1 (∆ j X) 2 , (2.5)
which converges in probability to [X] t+T t as δ → 0. To disentangle the continuous quadratic variation from the discontinuous one, multipower variation has been introduced by [START_REF] Barndorff-Nielsen | Power and bipower variation with stochastic volatility and jumps[END_REF]. It is defined as:

MPV δ (X) [γ1,...,γ M ] t = δ 1-1 2 (γ1+...+γ M ) [T /δ] j=M M k=1 |∆ j-k+1 X| γ k , (2.6)
and it converges in probability, as δ → 0, to t+T t σ γ1+...+γ M s ds times a suitable constant. Asymptotic properties of multipower variation have been studied by Barndorff-Nielsen et al. (2006) in the absence of jumps, and by [START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF] and [START_REF] Woerner | Power and multipower variation: inference for high frequency data[END_REF] in the presence of jumps. For practical applications, multipower variation is used for the estimation of t+T t σ2 s ds and t+T t σ 4 s ds. Bipower variation is defined as:

BPV δ (X) t = µ -2 1 MPV δ (X) [1,1] t = µ -2 1 [T /δ] j=2 |∆ j-1 X| • |∆ j X|, (2.7)
with µ 1 ≃ 0.7979, and it converges in probability, as δ → 0, to Based on a threshold function Θ(δ), [START_REF] Mancini | Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps[END_REF] provides alternative estimators of squared and fourth power integrated volatility. Threshold realized variance is defined as follows:

TRV δ (X) t = [T /δ] j=1 |∆ j X| 2 I {|∆ j X| 2 ≤Θ(δ)} (2.8)
where I {•} is the indicator function and the threshold function has to satisfy

lim δ→0 Θ(δ) = 0, lim δ→0 δ log 1 δ Θ(δ) = 0, (2.9)
that is it has to vanish slower than the modulus of continuity of the Brownian motion in order to have convergence in probability of TRV δ (X) t , as δ → 0, to t+T t σ 2 s ds. Mancini ( 2009) also establishes a central limit theorem for TRV and provides a similar quarticity estimator, which is defined in Eq. (A.3) in Appendix A.

Definition and asymptotic theory

We now introduce our family of estimators. In what follows, we use a strictly positive random threshold function ϑ s : [t, t + T ] → R + . For brevity, we write ϑ j := ϑ jδ+t . Definition 2.2 Let γ 1 , . . . , γ M > 0. We define the realized threshold multipower variation as:

TMPV δ (X) [γ1,...,γ M ] t = δ 1-1 2 (γ1+...+γ M ) [T /δ] j=M M k=1 |∆ j-k+1 X| γ k I {|∆ j-k+1 X| 2 ≤ϑ j-k+1 }
(2.10)

The intuition behind the concept of threshold multipower variation is the following. Suppose

|∆ j X| contains a jump. In the case of bipower variation, it multiplies |∆ j-1 X| and |∆ j+1 X|. Asymptotically, both these returns have to vanish and bipower variation converges to integrated continuous volatility. However, for finite δ these returns will not vanish, causing a positive bias which will be larger as |∆ j X| increases. This consideration suggests that the bias of multipower variation will be extremely large in case of consecutive jumps. For estimators (2.10) instead, if

|∆ j X| contains a jump larger than ϑ j , the corresponding indicator function vanishes, thus correcting for the bias. This intuition is supported by the analysis in the subsequent sections.

Importantly, threshold multipower variation admits a central limit theorem in the presence of jumps, which is stated as follows.

Theorem 2.3 Let Assumption 2.1 hold, and let ϑ t = ξ t Θ(δ), where Θ(δ) is a real function satisfying conditions (2.9) and ξ t is a stochastic process on [0, T ] which is a.s. bounded and with a strictly positive lower bound. Then, as δ → 0:

TMPV δ (X) [γ1,...,γ M ] t p -→ M k=1 µ γ k t+T t σ γ1+...+γ M s ds (2.11)
where the above convergence is in probability, and

δ -1 2 TMPV δ (X) t - M k=1 µ γ k t+T t σ γ1+...+γ M s ds -→ c γ t+T t σ γ1+...+γ M s dW ′ s (2.12)
where W ′ is a Brownian motion independent on W , the above convergence holds stably in law and:

c 2 γ = M k=1 µ 2γ k -2(M -1) M k=1 µ 2 γ k + 2 M -1 j=1   j k=1 µ γ k M k=M -j+1 µ γ k M -j k=1 µ γ k +γ k+j   (2.13) Proof. Write X = Y + Z
where Y t = t+T t µ s ds + t+T t σ s dW s . If Z = 0, the Theorem has been proved by Barndorff-Nielsen et al. (2006) for multipower variation. Since Z is a finite activity jump process and Y is a Brownian semimartingale, by virtue of Theorem 1 in [START_REF] Mancini | Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps[END_REF] and Remark 3.4 in [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] we can write, for δ small enough:

TMPV δ (X) [γ1,...,γ M ] t = δ 1-1 2 (γ1+...+γ M )   [T /δ] j=M M k=1 |∆ j-k+1 Y | γ k - [T /δ] j=M I * j,M M k=1 |∆ j-k+1 Y | γ k  
where I * j,M is 1 if there has been a single jump between t jδ and t j+M δ , and zero otherwise. Thus, using the modulus of continuity of the Brownian motion,

TMPV δ (X) [γ1,...,γ M ] t -MPV δ (Y ) [γ1,...,γ M ] t = δ 1-1 2 (γ1+...+γ M ) O p N T (δ log |δ|) 1 2 (γ1+...+γ M ) = O p δ (log |δ|) 1 2 (γ1+...+γ M ) which is o p (δ 1 
2 ), thus TMPV(X) has the same limit of MPV(Y ) both in probability and distribution.

In Theorem 2.3 we could also allow for infinite activity jumps under suitable conditions on the coefficients γ 1 , . . . , γ M , see e.g. [START_REF] Jacod | Asymptotic properties of realized power variations and associated functionals of semimartingales[END_REF]; [START_REF] Mancini | Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps[END_REF].

A simple special case of TMPV is threshold bipower variation, obtained with γ 1 = γ 2 = 1 and multiplying by a suitable constant:

TBPV δ (X) t = µ -2 1 TMPV δ (X) [1,1] t = µ -2 1 [T /δ] j=2 |∆ j-1 X| • |∆ j X|I {|∆ j-1 X| 2 ≤ϑ j-1 } I {|∆ j X| 2 ≤ϑ j } . (2.14)
For estimators of the integrated fourth-power of volatility using threshold multipower variation, see Appendix A. Alternative estimators of the integrated variance, with the aim of reducing the bias induced by jumps, have been recently proposed by [START_REF] Andersen | Jump robust volatility estimation[END_REF], using the minimum

of |∆ j-1 X| • |∆ j X| or the median value of |∆ j-1 X| • |∆ j X| • |∆ j+1 X|.
Their estimators also admit a central limit theorem in the presence of jumps, and have the advantage of not needing the specification of the threshold function, but the disadvantage of a larger asymptotic variance with respect to TBPV. Related work can be found in [START_REF] Christensen | Realised quantile-based estimation of the integrated variance[END_REF] and [START_REF] Boudt | Outlyingness Weighted Quadratic Covariation[END_REF].

For applications, it is important to note that our central limit theorem holds even with a stochastic threshold ϑ t fulfilling the assumptions of the Theorem. This can be important since it is natural to scale the threshold function with respect to the local spot variance, which is estimated with the data themselves. In this paper, we write

ϑ t = c 2 ϑ • V t , (2.15)
where V t is an auxiliary estimator of σ 2 t and c ϑ is a scale-free constant. The dimensionless parameter c ϑ can be used to change the threshold, and by varying it we can test the robustness of proposed estimators with respect to the choice of the threshold. As we show below by simulations, the choice of the auxiliary estimator V t , among unbiased estimators of the local variance, is immaterial for our purposes. The estimator of the local variance used in this paper with simulated and actual data is described in Appendix B.

In addition to provide a feasible asymptotic theory, the newly proposed threshold multipower variation is expected to perform better in finite sample. Indeed, bipower variation is largely biased by big jumps but is less affected by small jumps. On the other hand, threshold realized variance is problematic with small jumps while much more effective with large ones. Thus, the joint combination of bipower variation and threshold is doubly effective in disentangling diffusion from jumps since each method tends to compensate the weakness of the other. We provide evidence of the benefit of this "double sword" technique below, using simulated data.

Jump detection test

The test we propose for jump detection is a modification of the test proposed by Barndorff-Nielsen and Shephard (2006) based on the difference between RV and BPV, which is expected to be small in the absence of jumps (the null) and large in the presence of the jumps (the alternative): we modify it by replacing estimators based on multipower variation with estimators based on threshold multipower variation. However, when using the latter for finite δ, when |∆ j X| 2 > ϑ j the corresponding return is annihilated. This is a potential issue when testing for the presence of jumps, since variations larger than the threshold exist even in the absence of jumps and annihilating them is a source of negative bias for threshold multipower variation. This issue can be attenuated if, when |∆ j X| 2 > ϑ j , we replace |∆ j X| γ with its expected value under the assumption that ∆ j X ∼ N (0, σ 2 ), which is given by:

E |∆ j X| γ (∆ j X) 2 > ϑ = Γ γ+1 2 , ϑ 2σ 2 2N (- √ ϑ σ ) √ π 2σ 2 1 2 γ , (3.1)
where N (x) is the standard normal cumulative function and Γ(α, x) is the upper incomplete gamma function. 2 Then, writing ϑ = c 2 ϑ σ 2 , we define the corrected realized threshold multipower estimator as:

C-TMPV δ (X) [γ1,...,γ M ] t = δ 1-1 2 (γ1+...+γ M ) [T /δ] j=M M k=1 Z γ k (∆ j-k+1 X, ϑ j-k+1 ) (3.2)
where the function Z γ (x, y) is defined as:

Z γ (x, y) =      |x| γ if x 2 ≤ y 1 2N (-c ϑ ) √ π 2 c 2 ϑ y γ 2 Γ γ + 1 2 , c 2 ϑ 2 if x 2 > y (3.3)
Relevant cases which will be examined in what follows are γ = 1, 2, 4/3. In these special cases we have, with c ϑ = 3 and

x 2 > y, Z 1 (x, y) ≃ 1.094 • y 1 2 , Z 4/3 (x, y) ≃ 1.129 • y 2 3
, and Z 2 (x, y) ≃ 1.207 • y. For example, the corrected version of (2.14) is the corrected threshold bipower variation defined as:

C-TBPV δ (X) t = µ -2 1 C-TMPV δ (X) [1,1] t = µ -2 1 [T /δ] j=2 Z 1 (∆X j , ϑ j )Z 1 (∆X j-1 , ϑ j-1 ) (3.4)
The test statistics we propose is based on this correction and it is defined by:

C-Tz = δ -1 2 (RV δ (X) T -C-TBPV δ (X) T ) • RV δ (X) -1 T π 2 4 + π -5 max 1, C-TTriPV δ (X) T (C-TBPVδ(X) T ) 2 , (3.5)
where C-TTriPV δ (X) T is a quarticity estimator which is a subcase of threshold multipower variation and is precisely defined in Eq. (A.5) in Appendix A. It is immediate to prove the following:

Corollary 3.1 Under the assumptions of Theorem 2.3 we have that if

dJ t = 0 then C-Tz → N (0, 1)
stably in law as δ → 0.

Proof. The correction, for small δ, affects only the jumps which are a finite number. Then we use the delta-method as in [START_REF] Barndorff-Nielsen | Power and bipower variation with stochastic volatility and jumps[END_REF] and Theorem 2.3, which implies 2 See [START_REF] Abramowitz | Handbook of mathematical functions[END_REF]. The funcion N (•) and Γ(•, •) are defined by

N (x) = Z x -∞ 1 √ 2π e -1 2 s 2 ds, Γ(α, x) = Z +∞ x s α-1 e -s ds. When α = 1, Γ(1, x) = e -x .
For large γ, it is useful the integration by parts formula Γ

(α + 1, x) = αΓ(α, x) + x α e -x .
that the denominator converges in probability to the integrated quarticity, with thus yielding the desired result.

Simulations in the next section show that the C-Tz test is correctly sized in finite samples under the null. 3

Simulation study

To assess the small sample properties of concurrent estimators we use Monte Carlo simulations of realistic stochastic processes which have been extensively used to model stock index prices. The purpose of this section is to show that, in finite samples, bipower variation is a biased estimator of integrated volatility in the presence of jumps, while threshold-based estimator are much less sensitive to jumps and accordingly less biased. Moreover, we show that while threshold realized variance (2.8) is particularly sensitive to the choice of the threshold, threshold bipower variation (2.14) is instead largely robust to this choice. This latter feature is particularly important, since it suggests that the results obtained in our empirical applications using threshold multipower variation do not depend crucially on the threshold employed.

The model we simulate is a one-factor jump-diffusion model with stochastic volatility, described by the couple of stochastic differential equations:

dX t = µ dt + √ v t dW x,t + c t dN t , d log v t = (α -β log v t ) dt + ηdW v,t , (4.1) 
where W x and W v are standard Brownian motions with corr (dW x , dW v ) = ρ, v t is a stochastic volatility factor, c t dN t is a compound Poisson process with random jump size which is Normally distributed with zero mean and standard deviation σ J . We use the model parameters estimated by [START_REF] Andersen | An empirical investigation of continuous-time equity return models[END_REF] on S&P 500 prices: µ = 0.0304, α = -0.012, β = 0.0145, η = 0.1153, ρ = -0.6127, σ J = 1.51, where the parameters are expressed in daily units and returns are in percentages. Similar estimates have been obtained by [START_REF] Bates | Post-'87 crash fears in the S&P 500 futures option market[END_REF]; [START_REF] Pan | The jump-risk premia implicit in options: Evidence from an integrated time series study[END_REF]; [START_REF] Chernov | Alternative models for stock price dynamics[END_REF]. The numerical integration of the system (4.1) is performed with the Euler scheme, using a discretization step of ∆ = 1 second. Each day, we simulate 7 • 60 • 60 steps corresponding to seven hours. We then use δ = 5 minutes, that is 84 returns per day. The threshold is set as in Eq. (2.15), with the local variance estimator V t defined in Appendix B and c ϑ = 3.

We generate samples of 1, 000 "daily" replications in the following way. In the first sample (no jumps), we do not generate jumps at all. In the second sample (one jump), we generate a single

3 Under the alternative, the corrected version of threshold multipower variation is subject to a source of upper bias. Indeed, suppose that there is a jump J such that ∆jX = ∆jX c + J. jump for each day which is located randomly within the day. In the third sample (two jumps), we generate exactly two jumps per day which are located randomly within the day. In the fourth sample (two consecutive jumps), we generate two jumps per day and we force them to be consecutive (i.e., the first is located randomly and the second jump is forced to occur 300 seconds after the first). This procedure allows us to compute the expected value conditional to the presence of zero, one, two jumps and two consecutive jumps. For every simulated daily trajectory, we compute the estimates of BPV (and its staggered version, see ABD) and their fourth-power counterparts QPV,TriPV as well as threshold estimators TRV, TQV, TTriPV and threshold multipower estimators TBPV, TQPV,TTriPV (precise definitions of these estimators are given in Appendix A). We compute daily percentage estimation error and compute averages and standard deviations across the sample. 1 are compelling. Bipower variation is substantially biased if there is one jump in the trajectory (+48.04%) and largely biased (+102.03%) if there are two jumps in the trajectory. If the two jumps are consecutive, the bias is huge (+595.57%) and can only marginally be softened by using staggered bipower variation (+97.07%, similar to the case of two jumps). The bias of multipower variation in estimating integrated quarticity is even larger.

If (∆jX) 2 > ϑj, we replace |∆jX| γ with E ˆ|∆jX c | γ ˛(∆jX c ) 2 > ϑ ˜, which is much larger than E [|X c | γ ],

Results reported in Table

Threshold-based estimators, instead, are much more robust to the presence of jumps. The bias of threshold realized variance in estimating integrated squared volatility is around -5% in the absence of jumps and ranges from -6% to -7% in the presence of one and two jumps, consecutive or not. The same happens when estimating quarticity, the bias being around -16%. The presence of a negative bias is due to the fact that, by their proper definitions, threshold estimators remove completely observations larger than the threshold. When we correct for this as indicated in Section 3, the bias turns out to be positive since, when an observation is above the threshold, we replace it with its expected value under the assumption that the observation was actually above threshold; which is true under the null of no jumps, but needs not to be true under the alternative, see footnote

3.

The estimators based on threshold multipower variation, introduced in this study, yield equally good results. Threshold bipower variation has a bias of -4.15% in the case of no jumps, of -4.83% with a single jump, of -5.65% in the case of two jumps, and of -4.70% in the case of two consecutive jumps. When estimating quarticity, these biases range between -9% and -15% according to the number of jumps and the estimator used. Again, the corrected versions largely correct the bias under the null of no jumps, but turn the negative bias in a positive one in the case of jumps.

However, from our simulated experiment we can conclude that threshold-based estimators perform much better than multipower variation in the presence of jumps.

Between the two competing threshold estimators (threshold realized volatility and threshold bipower variation), our simulation experiments highlight a substantial advantage in using the second: as shown in Figure 1 integrated volatility measures are much more robust with respect to the parameter c ϑ . Bipower variation does not depend on the value of the threshold but it is largely biased. Threshold estimators are less biased, however we can see that threshold bipower variation is less sensitive to the choice of the threshold than threshold power variation. This is basically due to the fact that, even if both TBPV and TRV converge to [X c ] as δ → 0, for fixed δ we have

TBPV δ -→ c ϑ →∞ BPV δ while TRV δ -→ c ϑ →∞ RV δ .
We also use Monte Carlo experiments to evaluate the size and power of the z statistiscs constructed with multipower variation methods (Barndorff-Nielsen and Shephard, 2006, see Eq. (A.7) in Appendix A for its precise definition), and the C-Tz statistics (3.5). Results with different confidence levels are reported in Table 2 in the case of no jumps, a single jump, and two consecutive jumps.

The C-Tz (with c ϑ = 3) has the largest power in detecting jumps, still preserving a size which is virtually identical to that of the z statistics. With higher confidence level, the advantage in using C-Tz statistics increases. Such an advantage is very large if the jumps in the simulated trajectory are consecutive. In this case, the power of the z test at the 99.99% confidence level is just 42.4%, while the corresponding power of the C-Tz test is 93.1%. We conclude that, on our simulations, there is a clear advantage in using the C-Tz statistics. Again, we can check the sensitivity of C-Tz tests with respect to the choice of the parameter c ϑ . Figure 2 shows a direct comparison between threshold estimators in the case of a single jump in every trajectory. We observe that the C-Tz test has always more power than the z test and it is reasonably robust to the choice of c ϑ .

Summarizing our results on simulated experiments, we conclude that: 1. When measuring integrated volatility in the presence of jumps, bipower variation is largely upward biased, while threshold-based estimators are slightly downward biased (with the corrected versions being upward biased, though much less than bipower variation).

2. When measuring integrated variance, threshold bipower variation is nearly insensitive to the choice of the threshold for c ϑ ≥ 3 while threshold realized variance is more sensitive to this choice.

3. When testing for the presence of jumps, tests based on threshold multipower variation yield a substantial advantage with respect to those based on multipower variation. Thus, in our empirical analysis we will use threshold bipower variation as an estimator of integrated volatility, and C-Tz statistics as jump detection test.

Empirical Analysis

Our data set covers a long time span of almost 15 years of high frequency data for the S&P 500 futures and US Treasury Bond with maturity 30 years, and nearly 5 years of six individual stocks. The purpose of this section is mainly to analyze the impact of jumps on future volatility when threshold bipower variation is employed as jump measure. We will focus not only on the impact of jumps on future realized variance, but also on the performance of models which explicitly incorporate lagged jumps in the volatility dynamics.

All the analysis presented in this section is based on measures of threshold multipower variation with the threshold defined as in Eq. (2.15), with c ϑ = 3 and V t defined as in Appendix B. When not differently specified, jumps are detected using the C-Tz statistics. Our tables are built at confidence level α = 99.9% but the most interesting quantities will be computed and plotted for different values of α as well. Further results with c ϑ = 4, 5 are qualitatively very similar and can be provided upon request.

The forecasting model

Empirical evidence on strong temporal dependence of realized volatility has been already found for instance in [START_REF] Andersen | The distribution of realized exchange rate volatility[END_REF] and [START_REF] Andersen | The distribution of realized stock volatility[END_REF]. This evidence, together with our empirical results reported below, suggests that realized variance series should be described by models allowing for slowly decaying autocorrelation and possibly long-memory, see [START_REF] Andersen | Parametric and nonparametric volatility measurement[END_REF]; [START_REF] Banerjee | Modelling structural breaks, long memory and stock market volatility: an overview[END_REF]; [START_REF] Mcaleer | Realized volatility: a review[END_REF]. These features are displayed by the HAR model of [START_REF] Corsi | A simple approximate long-memory model of realized volatility[END_REF], which has been extended by ABD to allow for the separation of quadratic variation in its continuous part and jumps.

We then borrow the model of ABD to forecast realized variance. However, when implemented in finite sample, we use the newly proposed measures based on threshold multipower variation.

Let t = 1, . . . be the day index and write RV t = RV δ (X) t . For two days t 1 and t 2 ≥ t 1 , define:

RV t1:t2 = 1 t 2 -t 1 + 1 t2 t=t1 RV t .
(5.1)

The HAR model reads:

RV t:t+h-1 = β 0 + β d RV t-1 +β w RV t-5:t-1 +β m RV t-22:t-1 +ε t .
(5.2)

ABD proposed the HAR-CJ model: 4

RV t:t+h-1 = β 0 + β d C t-1 + β w C t-5:t-1 + β m C t-22:t-1 + β j J t-1 + ε t .
(5.3)

The daily jump is defined as:

J t = I {zt>Φα} • (RV t -BPV t ) + ,
(5.4) with z t given by Eq. (A.7) in Appendix A and Φ α being the cumulative distribution function of the Normal distribution at confidence level α; x + = max(x, 0). The continuous part of the quadratic variation is defined by:

C t = RV t -J t .
(5.5)

Finally, C t-5:t-1 and C t-22:t-1 are the weekly and monthly aggregation of C t as in Eq. (5.1). Using model (5.3), ABD estimate β j to be not significant and negative, and a very similar conclusion has been reached by [START_REF] Forsberg | Why do absolute returns predict volatility so well[END_REF], [START_REF] Giot | The information content of implied volatility in light of the jump/continuous decomposition of realized volatility[END_REF] and [START_REF] Busch | The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets[END_REF]; see also the analysis of [START_REF] Ghysels | Predicting volatility: getting the most out of return REFERENCES 29 data sampled at different frequencies[END_REF].

By the light of the above sections, it is natural to define the HAR-TCJ model as:

RV t:t+h-1 = β 0 + β d T C t-1 + β w T C t-5:t-1 + β m T C t-22:t-1 + β j T J t-1 + ε t (5.6)
where we employ the threshold bipower variation measure to estimate the jump component

T J t = I {C-Tz>Φα} • (RV t -TBPV t ) + (5.7) the corresponding continuous part T C t = RV t -T J t .
The square-root and logarithmic counterparts of the model read:

RV 1 2 t:t+h-1 = β 0 + β d T C 1 2 t + β w T C 1 2 t-5:t-1 + β m T C 1 2 t-22:t-1 + β j T J 1 2 t-1 + ε t (5.8) and log RV t:t+h-1 = β 0 + β d log T C t-1 + β w log T C t-5:t-1 + β m log T C t-22:t-1 + β j log T J t-1 + 1 + ε t
(5.9) and the same transformations will be estimated for model (5.2) and (5.3). Everywhere we use annualized volatility measures (one year = 252 days).

To evaluate the forecasting performance of the different models, we use: a) the R 2 of Mincer-Zarnowitz forecasting regressions; b) the heteroskedasticity adjusted root mean square error suggested in [START_REF] Bollerslev | Periodic autoregressive conditional heteroscedasticity[END_REF]:

HRM SE = 1 T T t=1 RV t -RV t RV t 2
(5.10)

4 ABD also consider weekly and monthly aggregation of the jump component. In this paper, we focus on the daily component only to better evaluate the impact of a single jump on future volatility. Weekly and monthly components are considered in [START_REF] Corsi | Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling[END_REF], together with an heterogeneous leverage component.

where RV t is the ex-post value of realized variance and RV t is the forecast; c) since the HRMSE is not a robust loss function (see [START_REF] Patton | Volatility forecast comparison using imperfect volatility proxies[END_REF], we also employ the QLIKE function, defined as:

QLIKE = 1 T T t=1 log RV t + RV t RV t .
(5.11)

The QLIKE loss function is robust, in the sense defined by [START_REF] Patton | Volatility forecast comparison using imperfect volatility proxies[END_REF]. Significant difference among competing forecasting models are evaluated through the [START_REF] Diebold | Comparing predictive accuracy[END_REF] test at the 5% confidence level.

Stock index futures S&P500 data

The first and most important data set we analyze is the S&P500 futures time series. We have all high-frequency transactions from January 1990 to December 2004 (3,736 days). In order to mitigate the impact of microstructure effects on our estimates, we choose, as in ABD, a sampling frequency of δ = 5 minutes, corresponding to 84 returns per day. Figure 3 is an example in which using the C-Tz statistics is effective. It displays the S&P 500 time series on one specific day, in which there is an abrupt price change. However, in this day, the z statistics, which is based on multipower variation, is negative and does not reveal a jump at any reasonable significance level; while the C-Tz statistics, which is based on threshold multipower variation, does reveal a very significant jump. Our interpretation for this day is that, since the jump appears in the form of two consecutive and very large returns, this creates a huge bias (especially in the quarticity estimates) which makes the z statistics very noisy. This bias is instead completely removed by the corrected threshold estimators.

Figure 4 shows the number of jumps detected in the sample by the conditions C-Tz > Φ α and z > Φ α as a function of α. We see that with the statistics based on threshold multipower variation, we detect an higher number of jumps, reflecting the greater power of the C-Tz test.

We then estimate and compare the HAR-TCJ model (5.6) and the HAR-CJ model (5.3). We also estimate the standard HAR model (5.2) as a benchmark. Results are reported in Table 3, 4 and5 for daily, weekly and monthly volatility forecasts respectively.

Results are unambiguous. When the jump component is measured by means of bipower variation, as in the HAR-CJ model, its coefficient is significantly negative for the square model and insignificant for the log and square root model in explaining future volatility. This result, although consistent with the literature, is rather surprising in our opinion, being at odd with the economic intuition which would suggest an increase in volatility after a jump in the price process. Moreover, this result is even more puzzling, given that the unconditional correlations between realized variation and jumps lagged by one day is significantly positive and around 20% for the variances, 30% for the volatilities and 25% for the log volatilities. However, the simulated experiments in Section 4 suggest that when the jump component is estimated via Eq. (5.4) it is largely downward biased because of the large upward bias of bipower variation in the presence of jumps. As a consequence, the continuous component C t estimated using bipower variation is still contaminated by the jump component and hence the impact of jumps is also passing through the positive coefficients of the other regressors.

When instead the jump component is measured by means of threshold bipower variation, the estimated coefficients β j are positive and highly significant for the square root and log model.

Most importantly, the HAR-TCJ model yields an higher R 2 and a significantly lower HRM SE and QLIKE (as witnessed by the Diebold-Mariano test at the 5% confidence level), which implies a better forecasting power. To better understand this point, we divide the sample in days immediately following the occurrence of a jump and the remainder. On these two samples, we compute the R 2 , HRM SE and QLIKE statistics separately, denoting them by J -R 2 , J -HRM SE, J -QLIKE and C -R 2 , C -HRM SE, C -QLIKE respectively. The results in Table 3 show that the TCJ models largely and significantly improves the forecasting power on realized variance in days immediately following a jump, and it is still slightly more performing in days that do not follow a jump. Our interpretation of this result is that, since we are better measuring the jump component, we are also removing noise from the continuous component in the explanatory variables; and thus, we also get slightly better results on days in which there were no jumps before.

Figure 5 displays the most important quantities as a function of the confidence interval α. It shows that the jump component of the HAR-TCJ model, as measured by the t-statistics of the coefficient β j , is always positive for all models and highly significant for square root and log transformations; while the jump component of the HAR-CJ model is mainly significantly negative or not significant.

Importantly, it shows that the HAR-TCJ model provides superior forecasts when measured in terms of R 2 and the HRM SE, irrespective of the confidence level used and model employed.

When forecasting weekly and monthly volatility, the β j of the HAR-CJ model tends to be negative, sometimes significantly. Instead, for the HAR-TCJ model, the β j are largely positive and significant in the square root and log model, and insignificant in the square model. Again, the R 2 and the HRM SE confirm, in days following a jump, the better forecasting ability of the HAR-TCJ model, which is not worse than HAR-CJ in days not following a jump. 5 5 The analysis with higher values of cϑ reveals that the βj coefficient of the TCJ specification is mildly significant for cϑ = 4 and not significant for cϑ = 5. This is not surprising, since as we increase cϑ we get closer to the results obtained with bipower variation. We also estimated the HAR-CJ model using the jumps detected via the z statistics (A.7) and compare it with the HAR-TCJ model estimated with the jumps detected via the C-Tz statistics (3.5).

The results indicate that in this case the difference between the two models is even more pronounced in favor of the HAR-TCJ. Daily (h = 1) S&P500 Regressions HAR:

RV t:t+h-1 = β0 + β d RVt-1 +βw RVt-5:t-1 +βm RVt-22:t-1 +εt HAR-CJ: Table 3: OLS estimate for daily (h = 1) HAR, HAR-CJ and HAR-TCJ volatility forecast regressions for S&P500 futures from January 1990 to December 2004 (3,736 observations). The significant daily jumps are computed using a critical value of α = 99.9% and the C-Tz statistics computed with cϑ = 3. Reported in parenthesis are the t-statistics based on Newey-West correction with order 5. Performance measures are the Mincer-Zarnowitz R 2 , the HRMSE as in equation (5.10) and the QLIKE as in (5.11), computed unconditionally, conditionally on having had a jump at time t -1 (J-R 2 , J-HRMSE, J-QLIKE) and conditionally on no jump at time t -1 (C-R 2 , C-HRMSE, C-QLIKE). Using the Diebold-Mariano test at the 5% confidence level, a * denotes significant improvement in the forecasting performance with respect to the HAR model, and a † with respect to the HAR-CJ model.

RV t:t+h-1 = β0 + β d b Ct-1 + βw b Ct-5:t-1 + βm b Ct-22:t-1 + β j b Jt-1 + εt HAR-TCJ: RV t:t+h-1 = β0 + β d d T Ct-1 + βw d T Ct-5:t-1 + βm d T Ct-22:t-1 + β j c T Jt-1 + εt RVt RV 1/
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Weekly (h = 5) S&P500 Regressions HAR: 

RV t:t+h-1 = β0 + β d RVt-1 +βw RVt-5:t-1 +βm RVt-22:t-1 +εt HAR-CJ: RV t:t+h-1 = β0 + β d b Ct-1 + βw b Ct-5:t-1 + βm b Ct-22:t-1 + β j b Jt-1 + εt HAR-TCJ: RV t:t+h-1 = β0 + β d d T Ct-1 + βw d T Ct-5:t-1 + βm d T Ct-22:t-1 + β j c T Jt-1 + εt RVt:t+4 RV 1/

Individual stocks

We analyze a sample of six individual stocks, chosen among the most liquid stocks of S&P500. The 6 for the logarithmic model. We report results for α = 99% and α = 99.9%.

Despite the smaller sample size and increased idiosyncratic noise, jumps still have a substantial impact in determining future volatility which can be revealed by using threshold bipower variation.

The t statistics of the β j coefficient is always larger for the HAR-TCJ model than for the HAR-CJ model, and always significant. On the whole sample, the performance of the two models is virtually the same but, conditioned on the occurrence of a jump, there is significant advantage in using the HAR-TCJ model, especially when significance is evaluated by the robust QLIKE. Thus, the results obtained on the S&P500 portfolio are qualitatively replicated on its most liquid constituents, indicating that the impact of jumps on future volatility is not peculiar to the S&P500 returns considered in the previous Section, and suggesting that it may simply come from aggregation, at the portfolio level, of the same effect at the individual stock level. The first thing we note on bond data is a surprisingly high number of jumps. At the 99.9% confidence level, the C-Tz statistics detects 570 jumps, corresponding to the 17.6 % of our sample.

Bond data and the no-trade bias

Visual inspection of time series data reveals that in most of these days there are many intervals with zero return instead.

The problem hinges from what we could call the no-trade bias of bipower variation. This can be explained as follows. Suppose that data are not recorded continuously but, more realistically, that they are recorded discretely. Denote by δ the minimum distance between two subsequent observations. By construction, if δ < δ, then MPV δ = 0 identically! Clearly, also TMPV δ = 0.

This simple reasoning also explains why the presence of null returns caused by absence of trading (stale price) in that interval induces a downward bias in multipower variation measures. Note that realized variance is immune from this bias instead. Moreover, this bias has a larger impact on the jump detecting statistics, pointing toward rejection of the null. For example, when considering the z statistics, this bias lowers both the BPV and TriPV measure, with the joint effect of increasing the numerator and decreasing the denominator, thus increasing the statistics considerably.

In our paper, this problem does not affect the S&P500 index, neither the stocks considered in our empirical analysis. However, it may affect US bond data, which are largely less liquid. Indeed, the percentage of zero 5-minutes return in bond data is very high, nearly 30%. We accommodate this problem as follows: for bond data, we compute the C-Tz statistics using only returns different from zero. Clearly, this biases the test toward the null, meaning that the detected jumps are those which have a larger impact for the statistics. With this correction the number of significant jumps with α = 99.9% reduced to 112 representing 3.4% of the sample. Further analysis and different possible corrections for this problem are discussed in [START_REF] Schulz | Robust estimation of integrated variance and quarticity under flat price and no trading bias[END_REF].

Relevant estimation results for bond data when forecasting daily, weekly and monthly volatility are shown in Table 7 for α = 99.9%. We find that the HAR-TCJ model outperforms the HAR-CJ model (significantly after a jumps) while both significantly outperform the HAR model. Also the impact of the jump on future volatility in the HAR-TCJ model is generally insignificant, but nevertheless not negatively significant as for the HAR-CJ estimates. An explanation for this finding might be that jumps in the bond market are less "surprising" with respect to those in the stock markets, since most of them are related to scheduled macroeconomic announcements. Indeed, related studies, for example [START_REF] Bollerslev | Intraday periodicity, long memory volatility and macroeconomic announcement effects in the US Treasury bond market[END_REF], find two intraday spikes at hours in which announcements are released.

Summarizing, our empirical findings further corroborate the theoretical and simulation results in the previous sections on the superior performance of the threshold method in separating and estimating the continuous and jump components of the price process. Moreover, they show that, once the two components are correctly measured and separated, the impact of past jumps on future realized variance is positive and significant, and the ability to forecast volatility increases significantly.

Conclusions

This paper shows that dividing volatility into jumps and continuous variation yields a substantial improvement in volatility forecasting, because of the positive impact of past jumps on future volatility. This important result has been obscured in the literature since, in finite samples, measures based on multipower variation are largely biased in the presence of jumps. We uncover this effect by modifying bipower variation with the help of threshold estimation techniques. We show that the newly defined estimator is robust to the presence of jumps and quite inelastic with respect to the choice of the threshold. The class of TMPV estimators introduced in this paper admits a central limit theorem in presence of jumps.

Our empirical results, obtained on US stock index, individual stocks and Treasury bond data, also

show that jumps can be effectively detected using the newly proposed C-Tz statistics, which is based on TMPV estimators. The models we propose provide a significantly superior forecasting ability, especially in days which follow the occurrence of a jump. Clearly, these findings can be of great importance for risk management and other financial applications involving volatility estimation.

Moreover, the correlation between jumps and future volatility can be helpful not only for practical applications, but also for a deeper comprehension of the asset price dynamics. We consider this line of research as an interesting direction for future studies. 

  simulating model (4.1). The estimators we compare are: the bipower variation used by ABD (BPV) and its staggered version (stag -BPV); the threshold estimator of[START_REF] Mancini | Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps[END_REF] (TRV) and its corrected version (C-TRV); threshold bipower variation (TBPV) proposed in this paper and defined in equation (2.14), and its correction (C-TBPV); and the corresponding estimators for quarticity, see Appendix A. For all estimators, the usual small-sample correction N/(N -(M -1)k) is applied, where N = [T /δ] and k is the number of excluded addends because of the threshold. In parenthesis, the standard error of the mean is reported.

Figure 1 :

 1 Figure 1: Relative bias of the different estimators of R σ 2 s ds in the presence of a single jump as a function of the threshold parameter cϑ.

(

  Panel A), a single jump per day (Panel B), and two consecutive jumps per day (Panel C), for different significance levels. The C-Tz statistics is computed with cϑ = 3.

Figure 2 :

 2 Figure 2: Jump detection power for the model (4.1) in the presence of a single jump, as a function of the threshold parameter cϑ.

Figure 3 :

 3 Figure 3: Rescaled time series (top) and 5-minutes logarithmic returns (bottom) of the S&P500 on 4th December 1990. The solid and the dashed line are our estimated threshold with cϑ = 3 and cϑ = 5 respectively. The jump statistics are z = -0.2545, C-Tz = 4.5055 with cϑ = 3, C-Tz = 4.4745 with cϑ = 5.

Figure 4 :

 4 Figure 4: Number of days which contain jumps in the S&P500 sample obtained with the C-Tz statistics (3.5), as a function of the confidence level α. The total number of days is 3, 736.

Figure 5 :

 5 Figure 5: Reports the t statistics of the coefficient βj measuring the impact of jumps on future volatility, the R 2 and the HRM SE for the three models estimated on S&P 500 data for daily forecasting, for both the HAR-CJ and HAR-TCJ versions, as a function of the confidence level used for detecting jumps with the C-Tz statistics.

  stocks are Alcoa (aa), Citigroup (c), Intel (intc), Microsoft (msft), Pfeizer (pfe) andExxon-Mobil (xom). Our sample starts on 2 January 2001 and ends on 30 December 2005, containing 1, 256 days per stock. Since these stocks are traded very actively, we still use a sampling frequency of δ = 5 minutes, corresponding to 78 returns per day. To save space, we focus on the most important quantities (the significance of the jump and the R 2 , HRM SE and QLIKE of the forecasting model conditional to days after the occurrence of a jump), which are reported in Table

Finally, we

  use a sample of 30-years US Treasury Bond futures from January 1990 to October 2003 for a total of 3, 231 daily data points. All the relevant volatility and jump measures are computed again with five-minutes returns, corresponding to 84 returns per day.

Table 7 :

 7 OLS (partial) estimates for daily (h = 1), weekly (h = 5), monthly (h = 22) HAR, HAR-CJ and HAR-TCJ volatility forecast regressions for US Bond fromJanuary 1990 to December 2004 (3,736 observations). The significant daily jumps are computed using a critical value of α = 99.9% and the C-Tz statistics. Reported in parenthesis are the t-statistics based on Newey-West correction. Performance measures are the Mincer-Zarnowitz R 2 , the HRMSE as in equation (5.10) and the QLIKE as in (5.11), computed unconditionally, conditionally on having had a jump at time t -1 (J-R 2 , J-HRMSE, J-QLIKE) and conditionally on no jump at time t -1 (C-R 2 , C-HRMSE, C-QLIKE). Using the Diebold-Mariano test at the 5% confidence level, a * denotes significant improvement in the forecasting performance with respect to the HAR model, and a † with respect to the HAR-CJ model.A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Table 1 :

 1 which is our estimation target. Reports the mean percentage relative error in estimating

	Quantity	Estimator		Relative bias (%)	
				no jumps	one jump	two jumps two consecutive jumps
			BPV	-1.00 ( 0.53)	48.04 ( 1.74)	102.03 ( 3.36)		595.57 ( 21.07)
			stag -BPV TRV	-1.20 ( 0.53) -5.56 ( 0.49)	47.60 ( 1.72) -5.95 ( 0.52)	114.77 ( 6.32) -7.00 ( 0.53)		97.07 ( 2.43) -6.93 ( 0.52)
	R	σ 2 s ds	C-TRV	-1.39 ( 0.46)	9.40 ( 0.55)	18.69 ( 0.61)		18.94 ( 0.61)
			TBPV	-4.15 ( 0.56)	-4.83 ( 0.60)	-5.65 ( 0.58)		-4.70 ( 0.58)
			C-TBPV	-0.58 ( 0.53)	7.87 ( 0.62)	15.26 ( 0.66)		24.57 ( 0.74)
			QPV	-1.53 ( 1.33)	101.90 ( 5.41) 272.32 ( 22.79)	1601.81 ( 88.71)
			TQV -16.32 ( 0.91)	-15.98 ( 0.94)	-16.47 ( 1.00)		-16.31 ( 1.00)
			C-TQV	-4.10 ( 1.01)	37.75 ( 1.53)	75.96 ( 2.00)		77.10 ( 2.06)
	R	σ 4 s ds	TQPV	-7.39 ( 1.28)	-8.92 ( 1.36)	-12.04 ( 1.32)		-9.10 ( 1.36)
			C-TQPV	-1.18 ( 1.33)	16.52 ( 1.71)	30.44 ( 1.94)		57.50 ( 2.88)
			TriPV	-1.66 ( 1.24) 210.32 ( 11.64) 687.56 ( 94.69)	7841.87 ( 468.15)
			TTriPV	-7.94 ( 1.21)	-8.47 ( 1.28)	-10.76 ( 1.25)		-8.87 ( 1.28)
			C-TTriPV	-1.41 ( 1.25)	18.12 ( 1.69)	34.42 ( 1.95)		77.61 ( 3.16)
						R	σ 2 s ds and	R	σ 4 s ds
		in the case of no jumps, one jump, two jumps and two consecutive jumps when

Table 2 :

 2 Percentage of detected jumps in the case of trajectories with a no jumps

		50% 95% 99% 99.99%	50% 95% 99% 99.99%	50% 95% 99% 99.99%
	z	53.0	5.7	1.4	0.1	93.4 81.2 77.6	68.6	98.1 79.1 64.4	42.4
	C-Tz 54.0	6.0	1.6	0.1	93.7 83.6 80.6	74.6	99.2 97.3 96.3	93.1

Table 4 :

 4 OLS estimate for weekly (h = 5) HAR, HAR-CJ and HAR-TCJ volatility

	2 t:t+4	log RVt:t+4

Table 5 :

 5 OLS estimate for monthly (h = 22) HAR, HAR-CJ and HAR-TCJ volatility

	forecast regressions for S&P500 futures from January 1990 to December 2004 (3,736
	observations). The significant daily jumps are computed using a critical value of α =
	99.9%. Reported in parenthesis are the t-statistics based on Newey-West correction
	with order 44. Performance measures are the Mincer-Zarnowitz R 2 , the HRMSE as in
	equation (5.10) and the QLIKE as in (5.11), computed unconditionally, conditionally
	on having had a jump at time t -1 (J-R 2 , J-HRMSE, J-QLIKE) and conditionally on no jump at time t -1 (C-R 2 , C-HRMSE, C-QLIKE). Using the Diebold-Mariano test at the 5% confidence level, a * denotes significant improvement in the forecasting performance with respect to the HAR model, and a † with respect to the HAR-CJ model.

Table 6 :

 6 Reports number of jumps, t-stat on βj, J QLIKE for daily (h = 1) logarithmic version of HAR, HAR-CJ and HAR-TCJ volatility forecast regressions on six individual stocks . The significant daily jumps are computed using a critical value of α = 0.99 and α = 0.999 as reported, with the C-Tz statistics. Using the Diebold-Mariano test at the 5% confidence level, a * denotes significant improvement in the forecasting performance with respect to the HAR model, and a † with respect to the HAR-CJ model. US Bond Regressions (C-Tz statistics) HAR: RV t:t+h-1 = β0 + β d RVt-1 +βw RVt-5:t-1 +βm RVt-22:t-1 +εt HAR-CJ: RV t:t+h-1 = β0 + β d b Ct-1 + βw b Ct-5:t-1 + βm b Ct-22:t-1 + β j b Jt-1 + εt HAR-TCJ: RV t:t+h-1 = β0 + β d d

	J-QLIKE	HAR-CJ HAR-TCJ	-1.623* -1.665* †	-1.627* -1.685* †	-2.073* -2.104* †	-2.127* -2.164* †	-1.506* -1.535* †	-1.443* -1.485* †	-2.060* -2.087* †	-2.058* -2.102* †	-1.988* -2.013* †	-2.001 -2.033* †	-2.324* -2.360* †	-2.348* -2.394* †	
		HAR	-1.589	-1.582	-2.045	-2.091	-1.472	-1.401	-2.030	-2.020	-1.956	-1.953	-2.296	-2.305	
															-
	J-HRM SE	HAR-CJ HAR-TCJ	0.466* 0.450*	0.416* 0.399*	0.520 0.486	0.435* 0.418* †	0.485 0.463*	0.460* 0.430	0.547 0.506	0.673 0.602	0.570 0.560	0.564 0.551	0.475* 0.464*	0.479* 0.454* †	, J -HRM SE and J
		HAR	0.495	0.455	0.538	0.457	0.512	0.474	0.604	0.755	0.655	0.715	0.500	0.523	-R 2
	J-R 2	HAR-CJ HAR-TCJ	0.560 0.546	0.628 0.614	0.830 0.835	0.847 0.851	0.786 0.784	0.827 0.821	0.813 0.815	0.805 0.810	0.617 0.609	0.628 0.612	0.735 0.721	0.702 0.695	
		HAR	0.551	0.607	0.827	0.842	0.784	0.831	0.807	0.799	0.600	0.591	0.732	0.695	
	β j t-stat	HAR-CJ HAR-TCJ	0.829 3.378	0.373 2.671	0.746 3.677	-0.410 3.967	3.471 5.572	3.112 4.935	-0.305 2.899	0.252 2.190	0.524 2.469	0.391 2.979	1.424 3.224	0.472 2.656	
	α (%) Jumps		99.0 242	99.9 121	99.0 196	99.9 105	99.0 155	99.9 78	99.0 202	99.9 92	99.0 239	99.9 131	99.0 193	99.9 98	
	Stock		aa		c		intc		msft		pfe		xom		
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CONCLUSIONS

A Quarticity estimators and jump detection statistics

For estimation of the integrated quarticity t+T t σ 4 s ds, the literature focused on the following quantities:

where µ 4 3 ≃ 0.8309, and

where Θ(δ) satisfies (2.9). We propose the counterparts

10), and their corrected version

We also define a corrected version of (A.3):

A feasible jump test can be constructed using multipower estimators of the integrated quarticity given by equations (A.1)-(A.2). In their study, ABD use the test:

B Auxiliary estimation of local variance

We estimate local variance with a non-parametric filter of length 2L + 1 [START_REF] Fan | Nonlinear time series[END_REF] adapted for the presence of jumps by iterating in Z:

with the starting value V 0 = +∞, which corresponds to using all observations in the first step, and c V = 3. At each iteration, large returns are eliminated by the condition

each estimate of the variance is multiplied by c 2 V to get the threshold for the following step. For estimation of the local variance at time t, we do not use the adjacent observations (i = -1, 0, 1). The iterations stop when no further large returns are removed. With high frequency data, this typically happens with Z = 2, 3 iterations. The bandwidth parameter L determines the number of adjacent returns included in the estimation of the local variance around point t. In our application, its choice is not crucial and we set L = 25. We use a Gaussian kernel K

Alternatively, one may use the approach proposed by [START_REF] Lee | Jumps in financial markets: A new nonparametric test and jump dynamics[END_REF] to detect and remove individual jumps and subsequently estimate the local variance with the remaining observations. [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] use instead a GARCH(1,1) process.