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Abstract

In this paper, we derive two shrinkage estimators for minimum-variance portfolios

that dominate the traditional estimator with respect to the out-of-sample variance

of the portfolio return. The presented results hold for any number of assets d ≥ 4

and number of observations n ≥ d + 2. The small-sample properties of the shrinkage

estimators as well as their large-sample properties for fixed d but n → ∞ and n, d → ∞
but n/d → q ≤ ∞ are investigated. Furthermore, we present a small-sample test for

the question of whether it is better to completely ignore time series information in

favor of naive diversification.
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1 Motivation

When implementing portfolio optimization according to Markowitz (1952), one needs to

estimate the expected asset returns as well as the corresponding variances and covari-

ances. If the parameter estimates are based only on time series information, the suggested

portfolio tends to be far removed from the optimum. For this reason, there is a broad

literature which addresses the question of how to reduce estimation risk in portfolio op-

timization. In a recent study, DeMiguel et al. (2009) compare portfolio strategies which

differ in the treatment of estimation risk. It turns out that none of the strategies suggested

in the literature is significantly better than naive diversification, i.e., taking the equally

weighted portfolio. Further, the study conducted by DeMiguel et al. (2009) confirms that

the considered strategies perform better than the traditional “plug-in” implementation of

Markowitz optimization, which means replacing the unknown parameters by their sample

counterparts.

Constrained and unconstrained minimum-variance portfolios have been frequently advo-

cated in the literature (Frahm, 2008; Jagannathan and Ma, 2003; Kempf and Memmel,

2006; Ledoit and Wolf, 2003) because they are completely independent of the expected

asset returns, which have been found to be the principal source of estimation risk (Chopra

and Ziemba, 1993; Merton, 1980). In fact, many empirical studies indicate that minimum-

variance portfolios in general lead to a better out-of-sample performance than stock index

portfolios (Haugen, 1990; Haugen and Baker, 1991, 1993; Winston, 1993).

The portfolio which minimizes the portfolio return variance only with respect to the budget

constraint is called the global minimum-variance portfolio. We present two estimators

for the global minimum-variance portfolio which dominate the traditional estimator with

respect to the out-of-sample variance of the portfolio return. However, the same conclusion

can be drawn for estimating local minimum-variance portfolios, i.e., minimum-variance

portfolios where the portfolio weights are subject to other linear equality constraints besides

the budget constraint (Frahm, 2008). This means local minimum-variance portfolios and

even mean-variance optimal portfolios can be seen as “global” minimum-variance portfolios

after a suitable transformation of the asset universe (Frahm, 2008; Memmel, 2004, p. 121).

The latter can be achieved by expressing the profitability constraint of the mean-variance

optimal portfolio as a linear equality constraint. Hence, in the following discussion we will

omit the adjective “global” and use only the term “minimum-variance portfolio” (MVP),
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since our methodology can be applied to a much broader spectrum of portfolio optimization

problems.

Okhrin and Schmid (2006), Kempf and Memmel (2006) as well as Frahm (2008) all explore

the properties of the traditional MVP estimator by assuming jointly normally distributed

asset returns. They derive the small-sample distribution of the estimated portfolio weights

and give a closed-form expression for the out-of-sample variance of the portfolio return. By

contrast, Bayesian and shrinkage approaches have a long tradition in the implementation

of modern portfolio optimization. Jobson and Korkie (1979) and Jorion (1986) introduce

shrinkage estimators for the expected returns. Frost and Savarino (1986) generalize these

estimators by including also the variances and covariances. Furthermore, DeMiguel et al.

(2009), Garlappi et al. (2007), Golosnoy and Okhrin (2007) as well as Kan and Zhou (2007)

present some shrinkage estimators for the weights of mean-variance optimal portfolios,

whereas Ledoit and Wolf (2003) introduce a shrinkage estimator for the covariance matrix

of stock returns and apply their results to the estimation of the MVP.

Our work is related to these shrinkage approaches but it differs in three important aspects:

(i) our estimators are feasible by construction,

(ii) our dominance results are valid in small samples, and

(iii) we focus on the problem of minimizing the out-of-sample variance.

ad i. The shrinkage estimators presented by the aforementioned authors are determined

by unknown quantities, which have to be estimated (see, e.g., Kan and Zhou, 2007). For

estimating the weights of an optimal portfolio, i.e., for making these shrinkage estima-

tors feasible, the unknown quantities are substituted by the corresponding estimates. By

contrast, our estimators do not contain unknown quantities.

ad ii. The potential benefit of shrinking the portfolio weights might be eventually de-

stroyed by estimating the unknown quantities. From a theoretical point of view it is not

clear to what extend the methods which have been presented in the literature outper-

form the traditional “plug-in” approach or any other strategy. Substituting the unknown

quantities by some estimates can only be justified for a large number of observations (pro-

vided the given estimators are consistent). However, the dominance results of Stein-type

estimation theory are derived under a small-sample assumption. Indeed, in large samples
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the shrinkage estimates are not substantially different from the corresponding maximum-

likelihood estimates.1 Moreover, as pointed out by Frahm (2008), large-sample results can

be misleading in the context of portfolio optimization. Even if the sample size (n) is large,

the number of observations relative to the number of assets (d) can be small. In fact, the

results presented here suggest that large-sample approximations work only if n/d is a large

number. Our shrinkage estimators are not affected by the aforementioned drawbacks, since

the presented dominance results hold for almost every combination of n and d .

ad iii. In contrast to Ledoit and Wolf (2003) we do not seek to obtain a better covariance

matrix estimator but instead to reduce the out-of-sample variance of the portfolio return.

This seems to be the major goal when searching for an MVP. Thus our approach focuses

on the portfolio optimization problem itself rather than solving another problem, where

the optimal portfolio weights appear only as a by-product. However, that does not stop

us from deriving shrinkage estimators for the covariance matrix as a by-product of our

shrinkage estimators for the MVP.

Another method of alleviating the impact of estimation risk is to impose certain restrictions

on the estimated covariance matrix or portfolio weights. Examples for restrictions on the

covariance matrix are the single index model of Sharpe (1963) and the constant correlation

model suggested by Elton and Gruber (1973). Jagannathan and Ma (2003) show that

imposing short-selling constraints on the MVP is equivalent to assuming a special structure

of the covariance matrix. Frahm (2008) analyzes linear equality constraints on the portfolio

weights and proves that linear restrictions reduce estimation risk. All these approaches have

in common the fact that the restrictions may be binding and so the true MVP does not

need to be attained if the length of the time series approaches infinity. Nevertheless, in

an empirical study presented by Chan et al. (1999) it has been shown that the reduction

of estimation risk typically outweighs the loss caused by applying “wrong” constraints.

Shrinkage estimators reduce the estimation risk as well. However, in addition they have

the appealing property of converging towards the optimal portfolio as the sample size grows

to infinity.

Above we justified the analysis of the MVP – instead of the tangency portfolio or some other

mean-variance optimal portfolio – by its out-of-sample performance in empirical studies. In

addition, there are some more reasons in favor of this portfolio: (i) If all expected returns

1Maximum-likelihood estimators are asymptotically efficient under the usual regularity conditions.
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were the same in the cross section, the tangency portfolio and the MVP would coincide.

In fact, the null hypothesis that all expected returns are equal often cannot be rejected

in empirical studies (see, e.g., Memmel, 2004, p. 89). We believe that in a large part the

typical variation in the cross section of historical means is due to estimation errors but not

to actual differences in expected returns. (ii) In practice, expected returns are often derived

from fundamental analysis, whereas time series data are only used for the estimation of

return variances and covariances. Due to the arguments set forth by Frahm (2008), our

shrinkage approach of estimating the MVP can be extended to incorporate both sources

of information. (iii) As already mentioned, after a suitable transformation of the asset

universe, every mean-variance optimal portfolio can be expressed as an MVP under the

condition of a given estimate for the expected asset returns.

It is worth pointing out that we make the assumption of jointly normally distributed and

serially independent asset returns, although there exist by far more advanced time series

models, especially for high-frequency data. However, we choose the normal distribution

assumption for two reasons. (i) Generally it is difficult to derive small-sample results with-

out the normal distribution assumption. This might be the reason why other researchers

have made the same assumption (see, e.g., Frost and Savarino, 1986; Jorion, 1986; Kan

and Zhou, 2007; Okhrin and Schmid, 2006). (ii) In asset allocation it is common to use

low-frequency data, for example monthly asset returns. For these data, the assumption of

normality and serial independence is not so farfetched. For instance, McNeil et al. (2005,

p. 122) write that “As we progressively increase the interval of the returns by moving from

daily to weekly, monthly, quarterly and yearly data, [...] volatility clustering decreases

and returns begin to look both more i.i.d. and less heavy-tailed.”. Moreover, Aparicio and

Estrada (2001) conclude that “normality does seem a reasonable assumption for monthly

stock returns.”.2

Our contribution to the literature is threefold. First, we derive two shrinkage estimators

for the MVP that dominate the traditional estimator with respect to the out-of-sample

variance of the portfolio return. Second, we present not only the small-sample properties of

the shrinkage estimators and some related quantities, but also their large-sample properties

for fixed d and n → ∞ as well as n, d → ∞ and n/d → q ≤ ∞ . The latter kind

2The aforementioned authors refer to asset log-returns. Similar conclusions can be drawn for discrete

asset returns if the investment horizon is not too large.
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of asymptotic behavior becomes relevant when analyzing the estimators in large asset

universes. Third, backed by the results of DeMiguel et al. (2009), we derive a small-sample

test for the naive-diversification hypothesis, i.e., for deciding the question of whether or

not it is better to completely ignore time series information in favor of naive diversification.

2 Preliminaries

2.1 Notation and Assumptions

Suppose that the investment universe consists of d assets and the investor is searching for

a buy-and-hold portfolio which will be liquidated after one period. We will consider the

asset excess returns Rt = (R1t, . . . , Rdt) for t = 1, . . . , n ,3 i.e., the asset returns minus

the corresponding risk-free interest rates. Nevertheless we will drop the prefix “excess” for

convenience and make the following assumptions:

A1. The asset returns are jointly normally distributed, i.e., Rt ∼ Nd(µ,Σ) for t = 1, . . . , n

with µ ∈ Rd and positive-definite matrix Σ ∈ Rd×d.

A2. The mean vector µ and the covariance matrix Σ are unknown.

A3. The asset returns are serially independent.

A4. There exist at least four assets, i.e., d ≥ 4 .

A5. The sample size exceeds the number of assets, more precisely n ≥ d + 2 .

The MVP w is defined as the solution of the minimization problem

min
v∈Rd

v′Σ v , s.t. v ′1 = 1 . (1)

Here 1 denotes a vector of ones. Since Σ is positive definite, the MVP is unique and the

solution of this minimization problem corresponds to w = Σ−11/(1′Σ−11) . The traditional

estimator ŵT for the MVP consists in replacing the unknown covariance matrix Σ with

the sample covariance matrix Σ̂ , i.e.,

Σ̂ =
1
n

n∑

t=1

(
Rt − R̄

)(
Rt − R̄

)′
, (2)

3In the following “(x1, . . . , xd)” indicates a d-tuple, i.e., a d-dimensional column vector.
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where R̄ = 1/n
∑n

t=1 Rt represents the sample mean vector of R1, . . . , Rn . The variance

of the MVP return corresponds to σ2 = w′Σ w = 1/(1′Σ−11) and its traditional estimator

is given by σ̂2
T = ŵ′

TΣ̂ ŵT = 1/(1′Σ̂−11) .

Since the portfolio weights always add up to 1, it is possible to omit one element of the

portfolio weights vector without losing information. We choose to omit the first element

and define wex := (w2, . . . , wd) . For convenience we introduce the (d − 1) × d matrix

∆ := [1 −Id−1 ] . By using the operator ∆, we can easily switch between the two notations.

For instance, note that (v1 −v2) = −∆′(vex
1 −vex

2 ) for all vectors v1, v2 ∈ Rd whose elements

add up to 1. Moreover, the following relationship will be useful in the subsequent discussion:

(v1 − v2)′A (v1 − v2) = (vex
1 − vex

2 )′B (vex
1 − vex

2 ) (3)

with B := ∆A∆′ for any d × d matrix A . A key note of the present work is that

v′Σ v = σ2 + (v − w)′Σ (v − w) = σ2 + (vex − wex)′Ω (vex − wex) (4)

for every vector v ∈ Rd with v ′1 = 1, where Ω is defined as Ω := ∆Σ∆′. The first equality

in (4) can be obtained by noting that Σw = 1/(1′Σ−11) and thus v′Σ w = 1/(1′Σ−11) =

σ2. The second equality follows from the arguments given above.

In the following χ2
k(λ) denotes a noncentral χ2-distributed random variable with k ∈ N

degrees of freedom and noncentrality parameter λ ≥ 0 . This means χ2
k(λ) ∼ X ′X with

X ∼ Nk(θ, Ik) and θ ∈ Rk, where the noncentrality parameter is defined as λ := θ′θ/2 .

By contrast, χ2
k stands for a central χ2-distributed random variable (that is λ = 0) and we

also define χr
k(λ) :=

{
χ2

k(λ)
}r/2

for any r ∈ Z .

Moreover, let χ2
k1

(λ) and χ2
k2

(k1, k2 ∈ N) be stochastically independent. Then Fk1,k2(λ) ∼
(k2/k1)

(
χ2

k1
(λ)/χ2

k2

)
has a noncentral F -distribution with k1 and k2 degrees of freedom as

well as noncentrality parameter λ ≥ 0 . Now suppose that X1, . . . ,Xm are m independent

copies of X ∼ Nq(0 ,Σ), where 0 denotes a vector of zeros and Σ is a positive-definite q × q

matrix. Then the q × q random matrix Wq(Σ,m) ∼ ∑m
i=1 XiX

′
i possesses a q-dimensional

Wishart distribution with covariance matrix Σ and m degrees of freedom.

In the following tk(a,B, ν) stands for the k-variate t-distribution with ν > 0 degrees of

freedom, location vector a (k × 1), and positive-definite dispersion matrix B (k × k). This

means a + ζ/
√

χ2
ν/ν ∼ tk(a,B, ν), where ζ ∼ Nk(0, B) is stochastically independent of

χ2
ν . Furthermore, x+ := max{x, 0} denotes the positive part and x− := − min{x, 0} the

7
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negative part of x ∈ R . Let A be some positive-definite q × q matrix. Then A
1
2 represents

the unique symmetrical q × q matrix such that A = A
1
2 A

1
2 . Finally, x ∝ y means “x is

proportional to y” and ‖ · ‖ denotes the Euclidean norm.

2.2 Important Theorems

Let us now provide some important theorems which will come in handy in the following

sections. First, we present some elementary small-sample properties of the traditional

estimator for the MVP and its related quantities. The proofs can be found in Frahm

(2008) as well as Kempf and Memmel (2006).

Lemma 1 (Frahm (2008); Kempf and Memmel (2006))

Under the assumptions A1 to A3 and n > d , the sample covariance matrix Ω̂ of ∆R ,

the traditional estimator ŵex
T for the MVP (except for the first portfolio weight), and the

traditional estimator σ̂2
T for the minimum variance σ2 satisfy the following properties:

P1. n Ω̂ ∼ Wd−1(Ω, n − 1), where Ω̂ := 1
n

∑n
t=1

(
∆R − ∆R̄

)(
∆R − ∆R̄

)′
.

P2. ŵex
T | Ω̂ ∼ Nd−1

(
wex, σ2Ω̂−1/n

)
.

P3. ŵex
T ∼ td−1

(
wex, σ2Ω−1/(n − d + 1), n − d + 1

)
.

P4. nσ̂2
T/σ2 ∼ χ2

n−d .

P5. σ̂2
T is stochastically independent of Ω̂ and ŵex

T .

The following theorem will play the central role in the development of the shrinkage esti-

mators and their dominance properties.

Theorem 1

Consider a q ×q random matrix W ∼ Wq

(
Ω,m

)
, where Ω is a positive-definite q ×q matrix,

q ≥ 3 and m ≥ q +2 , a q-dimensional random vector X with X | W ∼ Nq

(
ω,W −1

)
, where

ω ∈ Rq is an unknown parameter, and a random variable χ2 ∼ χ2
k with k ≥ 2 , which

is stochastically independent of W and X. Furthermore, consider a non-stochastic vector

x ∈ Rq. For all 0 < c < 2 (q − 2)/(k + 2), the shrinkage estimator

XS = x +
(

1 − c χ2

(X − x)′W (X − x)

)
(X − x)

8
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dominates the estimator X with respect to the loss function

Lω,Ω

(
ω̂
)

=
(
ω̂ − ω

)′Ω
(
ω̂ − ω

)
, (5)

i.e., E
{
(XS − ω)′Ω (XS − ω)

}
< E

{
(X − ω)′Ω (X − ω)

}
. In case x = ω the expected loss

of the shrinkage estimator becomes minimal if and only if c = (q − 2)/(k + 2) .

Proof: See the appendix.

Theorem 1 states that X is inadmissible (Judge and Bock, 1978, p. 14), since the expected

loss of XS is smaller than the expected loss of X. Note that Theorem 1 coincides with

the well-known result developed by Stein (1956) if W is substituted by the identity matrix

Iq . Other extensions of Stein’s theorem, which can be found in the literature, require that

W corresponds to a non-stochastic but observable matrix Ω , or that W is stochastic but

independent of X, where Ω is unobservable (Judge and Bock (1978, p. 177); Srivastava and

Bilodeau (1989); Press (2005, p. 189)). By contrast, we allow X to depend on a Wishart-

distributed random matrix W , but the matrix Ω given in Theorem 1 remains unobservable.

To the best of our knowledge this is a novel result and might be useful in its own right.

For example, consider the linear regression model yi = α + β′xi + ui (α ∈ R, β ∈ Rm−1,

and i = 1, . . . , n ≥ m + 2), where (yi, xi) is a normally distributed m-dimensional random

vector with m ≥ 4 and the covariance matrix of xi is denoted by Ω. It is well-known that,

under the standard assumptions of linear regression theory, β̂OLS | X ∼ Nm−1(β, σ2W −1)

with σ2 = Var(ui) > 0 and W ∼ Wm−1(Ω, n−1) is n times the sample covariance matrix of

xi . Here X denotes the n×m regressor matrix. It follows that β̂OLS ∼ tm−1(β, σ2Ω−1/(n−
m+1), n − m+1). Finally, the sum of squared residuals is given by û′û ∼ σ2χ2

n−m , which

is stochastically independent of W and β̂OLS . A natural choice for the loss function of an

estimator β̂ for β is Lβ,Ω(β̂) = (β̂ − β)′Ω (β̂ − β). Theorem 1 states that for any b ∈ Rm−1

the shrinkage estimator

β̂S = b +

(
1 − m − 3

n − m + 2
· û′û

(β̂OLS − b)′W (β̂OLS − b)

)
(β̂OLS − b)

dominates the OLS estimator with respect to the chosen loss function.

Theorem 1 also clarifies why the shrinkage constant c = (q − 2)/(k +2) is a natural choice.

Although any constant within the interval given in Theorem 1 would lead to a dominant

estimator, only c = (q − 2)/(k + 2) turns out to be the best choice if the reference vector

9
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x corresponds to the unknown parameter ω. The same value for c remains optimal in the

variants of Stein’s theorem where W is non-stochastic or stochastically independent of X.

2.3 Out-of-Sample Variance

The out-of-sample variance of the return of a stochastic portfolio v̂ is defined as

Var
(
v̂ ′R

)
= E

{
Var(v̂ ′R | v̂)

}
+ Var

{
E(v̂ ′R | v̂)

}
= E

(
v̂′Σ v̂

)
+ µ′Var

(
v̂
)
µ .

This means the total variance of the portfolio v̂ can be split into a within part E
(
v̂′Σ v̂

)

and a between part µ′Var
(
v̂
)
µ . Due to (4), it holds that

Var
(
v̂ ′R

)
= σ2 + E

{
(v̂ − w)′Σ (v̂ − w)

}
+ µ′Var

(
v̂
)
µ . (6)

Hence, the minimum variance σ2 is a lower bound for the out-of-sample variance of any

given portfolio v̂ . Interestingly, the between variance µ′Var
(
v̂
)
µ vanishes whenever the

expected asset returns are equal to each other, i.e., µ = η 1 for any η ∈ R . This can be

seen by noting that Var(v̂) = ∆′Var(v̂ex)∆ and ∆µ = 0 if µ = η 1 .

Kempf and Memmel (2006) showed that – concerning the traditional estimator ŵT for the

MVP – the second part of (6) corresponds to

E
{
(ŵT − w)′Σ (ŵT − w)

}
=

d − 1
n − d − 1

· σ2 .

The factor (d − 1)/(n − d − 1) is large whenever the sample size n is small relative to the

number d of assets. For n, d → ∞ but n/d → q with 1 < q ≤ ∞, this factor tends to

1/(q−1) . Hence, even in large samples the contribution of the estimation risk to the out-of-

sample variance is not negligible if the “effective sample size” q is small. For instance, given

an investment universe with d = 50 assets and a history of n = 100 monthly observations,

the additional variance caused by the estimation risk is 1/(100/50 − 1) = 100% .

From the small-sample distribution of the traditional MVP estimator ŵT presented by

Frahm (2008), it follows that the third part of (6) corresponds to

µ′Var
(
ŵT

)
µ =

r2
TP − r2

MVP

n − d − 1
· σ2 ,

10
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where rTP denotes the Sharpe ratio of the tangency portfolio Σ−1µ /(1′Σ−1µ) and rMVP

the Sharpe ratio of the MVP.4 This means it holds that

Var
(
ŵ′

TR
)

=

(
1 +

d − 1
n − d − 1

+
r2
TP − r2

MVP

n − d − 1

)
· σ2 .

Hence, the additional out-of-sample variance due to estimation errors amounts to

σ2

n − d − 1
·
{
(d − 1) + (r2

TP − r2
MVP)

}
. (7)

The tangency portfolio is the portfolio with the maximal Sharpe ratio. In the literature,

the Sharpe ratio of this portfolio is often approximated by the empirical Sharpe ratio of

a well diversified stock index, using long estimation horizons (up to 100 years). For the

period 1900 to 2002, Dimson et al. (2003) find for the world stock portfolio a realized

annualized equity premium of 5.7% and a return standard deviation of 16.5%, yielding an

annualized Sharpe ratio of about 35%.5 After dividing it by
√

4 = 2 , the quarterly Sharpe

ratio becomes about 0.173. Even if it is assumed that the Sharpe ratio of the MVP is zero,

the second summand in Eq. 7 is only about 0.030, compared with the first summand of,

say, d − 1 = 9 in case of a relatively small portfolio of ten stocks.

In other words, in the last example the within part of the additional out-of-sample variance

is roughly 300 times as large as the between part. For data of higher frequency (for instance

monthly data) or larger portfolios, the proportion of the between part would be even

smaller. Note that these analytical results are derived for the traditional MVP estimator

with normally, serially independent and identically distributed asset returns. However,

there is no reason to assume qualitatively different results if one uses other estimators or

if the assumptions about the return distribution is different.

Hence we believe that the between variance µ′Var
(
v̂
)
µ for any portfolio v̂ is negligible

in most practical situations and thus we will concentrate in the following on reducing

the within variance E
(
v̂′Σ v̂

)
.6 Note that each realization of v̂′Σ v̂ represents the actual

4The Sharpe ratio of a portfolio is the expected excess return divided by the standard deviation.

5The corresponding estimates for the UK and the US are 29% and 36%, respectively. Using US data

for the period 1872 to 2002, Cogley and Sargent (2008) get an estimate of the US Sharpe Ratio of 24%.

Kan and Zhou (2007) use in their study 20% and 40%.

6Kan and Zhou (2007) a priori forgo the between variance in their analytical expressions.

11



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

variance of the return belonging to the portfolio v̂, which has been chosen on the basis of

historical observations, for instance. Then due to (4), each realization of

(v̂ − w)′Σ (v̂ − w) = v̂′Σ v̂ − σ2

represents that part of the actual variance which is caused by estimation risk. This quantity

will be referred to as the loss of v̂. Now, it turns out that reducing the within variance

is equivalent to reducing the expected loss E{(v̂ − w)′Σ (v̂ − w)} of the portfolio v̂. This

leads immediately to an application of Stein-type estimation theory.

3 The Dominant Estimators

3.1 Small-Sample Properties

We now present the shrinkage estimators for the MVP that dominate the traditional esti-

mator. Kempf and Memmel (2006) show that the traditional estimator is the best unbiased

estimator in the case of jointly normally distributed asset returns.7 However, as already

discussed earlier, this estimator can lead to a huge out-of-sample variance of the portfolio

return compared to σ2, i.e., the smallest of all possible portfolio return variances.

In this section we will use the following notation. Let ŵA be an arbitrary portfolio. Then

σ2
A = ŵ′

AΣ ŵA is the actual variance of the portfolio return, whereas σ̂2
A = ŵ′

AΣ̂ ŵA denotes

the corresponding estimator. This notation will be used both for stochastic and non-

stochastic portfolios, i.e., if wA is a non-stochastic portfolio, it holds that σ2
A = w′

AΣ wA

and σ̂2
A = w′

AΣ̂wA .

Theorem 2

Suppose that the assumptions A1 to A5 are satisfied. Let ŵT be the traditional estimator

for the MVP w, whereas wR ∈ Rd with w′
R1 = 1 denotes an arbitrary reference portfolio.

Consider the shrinkage estimator

ŵS = κSwR +
(
1 − κS

)
ŵT (8)

with

κS =
d − 3

n − d + 2
· 1
τ̂R

,

7An estimator is called best if its covariance matrix attains the Rao-Cramér lower bound.
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where τ̂R =
(
σ̂2

R − σ̂2
T

)
/σ̂2

T is the estimated relative loss of the reference portfolio wR .

The shrinkage estimator ŵS dominates ŵT with respect to the loss function Lw,Σ(v̂) =

(v̂ − w)′Σ (v̂ − w), i.e.,

E
{
(ŵS − w)′Σ (ŵS − w)

}
< E

{
(ŵT − w)′Σ (ŵT − w)

}
.

Proof: See the appendix.

The estimator suggested in Theorem 2 exhibits the typical structure of James-Stein type

shrinkage estimators. It is a weighted average of a given reference portfolio and the tradi-

tional estimator for the MVP. The better the reference portfolio fits the actual MVP, the

smaller the out-of-sample variance of the shrinkage estimator will be. When it comes to

portfolio diversification without any subjective or empirical information as well as restric-

tions on the portfolio weights, the naive portfolio wN := 1/d can be viewed as a natural

choice for the reference portfolio. Due to the arguments given by DeMiguel et al. (2009),

there are even doubts as to whether time series information can add useful information at

all, and so wR = wN might serve as a rule. We will come back to this point in Section 4.

Theorem 3

Under the assumptions of Theorem 2, the distribution of the relative loss

τ S =
σ2

S − σ2

σ2

of the shrinkage estimator for the MVP given by (8) depends only on the number of

observations n , the number of assets d , and the relative loss τR = (σ2
R − σ2)/σ2 of the

reference portfolio. More precisely, τ S can be represented stochastically by

τ S =
∥∥κSθ −

(
1 − κS

)
V − 1

2 ξ
∥∥2

, (9)

with any θ ∈ Rd−1 such that θ′θ = τR , ξ ∼ Nd−1(0, Id−1) , V ∼ Wd−1(Id−1, n − 1) , and

κS =
d − 3

n − d + 2
· χ2

n−d(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
) .

Here ξ , V , and χ2
n−d are supposed to be mutually independent.

Proof: See the appendix.
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Due to Theorem 2, the shrinkage estimator is dominant in the sense that E
(
τ S

)
< E

(
τT

)
,

where τT = (σ2
T − σ2)/σ2 represents the relative loss of the traditional estimator for the

MVP. It can be shown that the expected relative loss of the shrinkage estimator is a strictly

increasing function of τR and its infimum is attained if and only if τR = 0 . Note that

τR = 0 or, equivalently, θ = 0 holds if and only if wR = w , since Σ is positive definite. In

that case it turns out that

E
(
τ S

)
=
(

1 − d − 3
d − 1

· n − d

n − d + 2

)
d − 1

n − d − 1
.

By contrast, E
(
τ S

)
→ E(τT) for τR → ∞ .

Following the arguments given by Judge and Bock (1978, p. 182), we can try to reduce the

out-of-sample variance of the suggested estimator by restricting κS to values smaller than

or equal to 1, i.e., by taking the shrinkage weight κM := min{κS, 1} instead of κS . Then

the corresponding shrinkage estimator is given by

ŵM := κMwR +
(
1 − κM

)
ŵT . (10)

The shrinkage weight κM can only attain values between 0 and 1, which prevents ŵM from

having the opposite sign of ŵT whenever τ̂R is small, i.e., whenever the traditional estimate

of the MVP is close to the reference portfolio. The next theorem states that the modified

shrinkage estimator does, in fact, lead to a better out-of-sample performance.

Theorem 4

Under the assumptions of Theorem 2 and with the notation of Theorem 3, the distribution

of the relative loss

τM =
σ2

M − σ2

σ2

of the modified shrinkage estimator for the MVP given by (10) depends only on the number

of observations n , the number of assets d , and the relative loss τR of the reference portfolio.

More precisely, τM can be represented stochastically by

τM =
∥∥κMθ −

(
1 − κM

)
V − 1

2 ξ
∥∥2

, (11)

with κM = min{κS, 1}, and it holds that

E
(
τM

)
< E

(
τ S

)
< E

(
τT

)
.
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Proof: See the appendix.

The stochastic representations (9) and (11) can be used, for instance, for evaluating the out-

of-sample performances of the presented shrinkage estimators by Monte Carlo simulation.

Theorem 4 asserts that the modified shrinkage estimator dominates not only the traditional

estimator but also the simple shrinkage estimator given by (8). Moreover, it can be shown

that the expected relative loss of ŵM corresponds to

E
(
τM

)
= E

[{(
1 − d − 3

n − d + 2
· χ2

n−d

χ2
d+1

)+}2
]

d − 1
n − d − 1

in the event that τR = 0 .

Our results about the superiority of the presented shrinkage estimators require the asset

universe to consist of at least four assets. By contrast, if there are only two or three assets,

one should draw on the traditional estimator. It is worth pointing out that the methodology

presented here can be easily applied to the estimation of local minimum-variance portfolios.

As has been shown by Frahm (2008), any d-dimensional asset universe can be transformed

into a (d − q)-dimensional asset universe such that q linear equality constraints (besides the

budget constraint) are implicitly satisfied for each portfolio of the d − q available assets.

In that case assumptions A4 and A5 have to be changed to n ≥ d − q + 2 and d ≥ q + 4 .

Furthermore, the chosen reference portfolio must satisfy the given linear restrictions.

3.2 Large-Sample Properties

In the previous section, we investigated the small-sample properties of the relative losses

of the shrinkage estimators ŵS and ŵM . Due to Theorem 3 and Theorem 4, it can be

seen that the expected relative losses of the shrinkage estimators as well as the traditional

estimator tend to zero if the number of assets d is fixed but n → ∞ . However, that does

not mean that the presented shrinkage estimators are always asymptotically equivalent to

the traditional estimator. This is confirmed by the next theorem.

Theorem 5

Under the assumptions A1 to A4 and τR > 0 it holds that

√
n




ŵT − w

ŵS − w

ŵM − w




d−→ Λξ , n −→ ∞ ,
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where Λ is a d × (d − 1) matrix such that ΛΛ′ = σ2Σ−1 − ww′ and ξ ∼ Nd−1

(
0, Id−1

)
. In

case τR = 0 it turns out that

√
n




ŵT − w

ŵS − w

ŵM − w




d−→




Λξ(
1 − d−3

ξ′ξ

)
Λξ

(
1 − d−3

ξ′ξ

)+
Λξ




, n −→ ∞ .

Proof: See the appendix.

For instance, from the last theorem it follows that

√
n
(
ŵT − w

) d−→ Nd

(
0, σ2Σ−1 − ww′) , n −→ ∞ ,

and the shrinkage estimators are asymptotically equivalent to the traditional estimator,

i.e.,
√

n
(
ŵT − ŵS

) p−→ 0 and
√

n
(
ŵT − ŵM

) p−→ 0 , n −→ ∞ , (12)

only if wR 6= w .8 The last theorem also implies that if wR = w and the sample size is large

(relative to the number of assets), the modified shrinkage estimate corresponds to the true

MVP roughly with probability Fχ2
d−1

(
d − 3

)
. Admittedly, this might be regarded as purely

theoretical, since it has to be assumed that wR 6= w in most practical situations, with ŵM

then being asymptotically equivalent to ŵT in the sense given above.

So far we have focused on the expected relative losses of the estimators for the MVP but,

as already mentioned, these quantities vanish if the sample size tends to infinity. However,

due to the next theorem it is possible to make statements about the relative loss itself if d

is fixed but n tends to infinity.

Theorem 6

Under the assumptions A1 to A4 and τR > 0 it holds that

n




τT

τ S

τM




d−→ χ2
d−1 , n −→ ∞ .

8Actually, the proof of Theorem 5 reveals that (12) can be even strengthened to almost sure convergence.
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Relative loss of the naive portfolio
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Figure 1: Expected relative losses of the traditional (blue), simple (red) and modified

(dashed green) shrinkage estimator for n = 200 and d = 100 as well as the relative loss of

the reference portfolio (black) and the asymptotic loss function L(τR; 2) (yellow).

In case τR = 0 it turns out that

n




τT

τ S

τM




d−→




χ2
d−1(

1 − d−3
χ2

d−1

)2
χ2

d−1
{(

1 − d−3
χ2

d−1

)+}2
χ2

d−1




, n −→ ∞ .

Proof: See the appendix.

This theorem asserts that the relative losses are super-consistent. It is worth pointing

out that, even if the expected relative losses of the shrinkage estimators presented here

are always smaller than the expected loss of the traditional estimator (which follows from

Theorem 3 and Theorem 4), a given realization of τ S may turn out to be greater than

τT . Surprisingly, Theorem 6 implies that, only if wR = w, the probability of this event

does not vanish (even asymptotically) but tends to Fχ2
d−1

{
(d − 3)/2

}
> 0 . For example, if

there exist d = 5 assets, this adverse effect occurs with a probability of approximately 9%.

However, the same theorem confirms that τM > τT is asymptotically impossible. This is

another advantage of the modified shrinkage estimator over the simple one.
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In many practical applications of portfolio theory, the number of observations is small

relative to the number of assets. In the following we will investigate the asymptotic dis-

tribution of the relative loss assuming that n, d → ∞ but n/d → q with 1 < q ≤ ∞ .

Here the relative loss of the reference portfolio is assumed to be constant; recall that the

number q can be interpreted as the effective sample size. The following theorem asserts

that if the asset universe is large, the relative losses of all MVP estimators are no longer

super-consistent.

Theorem 7

Under the assumptions A1 to A3 it holds that

τT
a.s.−→ 1

q − 1

as n, d → ∞ but n/d → q with 1 < q ≤ ∞ . Moreover, concerning the shrinkage estimators

for the MVP it holds that

κS , κM
a.s.−→ 1

1 + qτR

as well as

τ S , τM
a.s.−→ L

(
τR; q

)
:=

τR

(1 + qτR)2
+
(

1 − 1
1 + qτR

)2 1
q − 1

as n, d → ∞ but n/d → q with 1 < q ≤ ∞ .

Proof: See the appendix.

It can be shown that the asymptotic loss function L(· ; q) is strictly increasing in τR and

it holds that L
(
τR; q

)
< 1/(q − 1) whenever q < ∞ . This means the traditional estimator

is inadmissible (with respect to the asymptotic loss) even if the number of observations

tends to infinity but the effective sample size remains finite.

Moreover, it turns out that L
(
τR; q

)
< τR if and only if

τR >
1
q

· 2 − q

q − 1
. (13)

Hence, the shrinkage estimators dominate the reference portfolio uniformly if q ≥ 2 (see

Figure 1). This means not only the traditional estimator but also any arbitrary reference

portfolio wR 6= w becomes inadmissible if n, d → ∞ with n/d → q ≥ 2 .

Conversely, in terms of the asymptotic loss, ŵS and ŵM become uniformly worse than wR

as q tends to 1 from above, since the right-hand side of (13) then tends to infinity. The

large-sample properties of the relative losses of the MVP estimators ŵT , ŵS , and ŵM are

summarized in Table 1.
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n → ∞ , d < ∞ n → ∞ , d → ∞ , n/d → q

q = ∞ q < ∞ q = ∞
τR = 0 τR > 0 τR = 0 τR > 0 τR ≥ 0

τT 0 0 1
q−1 > 0 1

q−1 > 0 0

τ S 0 0 0 0 < L(τR, q) < 1
q−1 0

τM 0 0 0 0 < L(τR, q) < 1
q−1 0

nτT χ2
d−1 χ2

d−1 ∞ ∞ ∞

nτ S

(
1 − d−3

χ2
d−1

)2
χ2

d−1 χ2
d−1 0 ∞ ∞

nτM

{(
1 − d−3

χ2
d−1

)+}2
χ2

d−1 χ2
d−1 0 ∞ ∞

Table 1: Large-sample properties of the relative losses of ŵT, ŵS, and ŵM .

3.3 Covariance Matrix Estimation

Jagannathan and Ma (2003) analyze short-selling constraints as a means of lessening the

impact of estimation errors on the sample covariance matrix. They show that using short-

selling constraints is equivalent to transforming the sample covariance matrix and taking

this quantity for calculating the MVP on the basis of the unconstrained traditional esti-

mator for the MVP. The following theorem states that a similar argument holds for our

shrinkage estimators.

Theorem 8

For any reference portfolio wR there exists a positive-definite d × d matrix Σ−1
R such that

wR ∝ Σ−1
R 1 as well as 1′Σ−1

R 1 = 1′Σ̂−11 , where Σ̂ is the sample covariance matrix given

by Eq. 2 and it is assumed that n > d . The shrinkage estimators for the MVP can be

calculated by using

Σ̂−1
S := κSΣ−1

R +
(
1 − κS

)
Σ̂−1 and Σ̂−1

M := κMΣ−1
R +

(
1 − κM

)
Σ̂−1

for the traditional MVP estimator, i.e.,

ŵS =
Σ̂−1

S 1

1′Σ̂−1
S 1

and ŵM =
Σ̂−1

M 1

1′Σ̂−1
M 1

.

Proof: See the appendix.
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The random matrices Σ̂S and Σ̂M can be interpreted as shrinkage estimators for the un-

known covariance matrix Σ . However, Σ̂M is positive definite, a trait that does not hold

for Σ̂S in general. Any other matrix which is proportional to Σ̂S or Σ̂M would lead to the

same shrinkage estimators for the MVP, but the expressions given in Theorem 8 satisfy a

convenient scaling condition, i.e., 1′Σ̂−1
S 1 = 1′Σ̂−1

M 1 = 1′Σ−1
R 1 = 1′Σ̂−11 = 1/σ̂2

T .

Similar shrinkage estimators for the covariance matrix have been already suggested by

Ledoit and Wolf (2001, 2003). However, the estimators given in Theorem 8 differ from the

estimators introduced by Ledoit and Wolf in two aspects:

(i) Their shrinkage weights depend on unobservable quantities which have to be es-

timated from empirical data. Even if the suggested covariance matrix estimators

dominate the sample covariance matrix asymptotically, it is not clear why the dom-

inance result should be valid in small samples. By contrast, our shrinkage approach

focuses on the small-sample properties of the resulting portfolio weights.

(ii) Ledoit and Wolf shrink the covariance matrix itself, whereas our approach is based

on shrinking its inverse. By shrinking the covariance matrix, it is possible to allow

for n ≤ d , i.e., the aforementioned authors are able to apply their approach to asset

universes where the number of assets exceeds the number of observations.

So far our methodology consists of shrinking the traditional MVP estimator towards some

non-stochastic reference portfolio wR . However, all the presented results remain valid

if wR is a stochastic portfolio satisfying the budget constraint and being stochastically

independent of the historical observations which are used for calculating ŵT .9 Nevertheless,

in the following we will concentrate on the special case wR = wN = 1/d .

4 Naive Diversification vs. Portfolio Optimization

4.1 A Small-Sample Simulation Study

DeMiguel et al. (2009) raise the question of whether optimizing a portfolio using time

series information is worthwhile to begin with. They do not even refer to the fact that

9For example, wR could be interpreted as a portfolio which has been suggested by somebody who

completely refuses statistical methods and whose decision is independent of historical observations.
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Figure 2: Expected relative losses of the traditional (blue), simple (red) and modified

shrinkage (dashed green) estimator for n = 20 and d = 10 as well as the relative loss of

the naive portfolio (black) and the asymptotic loss function L(τR; 2) (yellow).

asset returns typically exhibit structural breaks, serial correlations in the higher moments,

and heavy tails. According to these authors, the estimation error outweighs the potential

gain of portfolio optimization, even if the asset returns are normally distributed and serially

independent. In this section we address a similar question: does it pay to strive for the

MVP by using time series information or is it better to renounce parameter estimation

altogether and put the money straight away into the naive portfolio?

In order to revisit this question, we may focus on the expected relative loss which is caused

by a given MVP estimator. Due to Theorem 4 and the arguments given in Section 3.2, we

will concentrate on the modified shrinkage estimator ŵM and choose the naive portfolio wN

as a reference portfolio. Although closed-form expressions for τM in large samples and asset

universes have been already presented in Section 3.2, the relative loss can only be simulated,

e.g., by using Equations 9 and 11, if the sample is small. Figure 2 contains the expected

relative losses of the four different portfolio strategies, i.e., traditional estimation, simple

and modified shrinkage estimation as well as naive diversification for n = 20 observations

and d = 10 assets. The x-axis denotes the relative loss τN of the naive portfolio, whereas

the y-axis accounts for the expected relative losses of the different portfolio strategies
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depending on τN . Note that (according to Theorem 3) the expected relative loss of the

traditional estimator does not depend on τN but only on the number n of observations and

the number d of assets.

It can be seen that the expected relative loss of the traditional estimator corresponds to

100%. Due to Theorem 3 and Theorem 4 it is clear that the expected relative losses

of the shrinkage estimators are always below the expected relative loss of the traditional

estimator. This is also confirmed by Figure 2. Particularly if τN is small, i.e., the true MVP

does not differ too greatly from the naive portfolio (which serves as an anchor point for ŵS

and ŵM), the shrinkage estimators are more favorable than the traditional estimator.

Figure 2 also indicates the critical relative loss τ ∗
N of the naive portfolio with respect to

the modified shrinkage estimator ŵM . This is that point on the x-axis where the modified

shrinkage estimator leads to the same expected relative loss as naive diversification. As

indicated by Figure 2, this critical value is about 63%. For example if there are 5 years of

quarterly asset returns and 10 stocks on the market, naive diversification would be better

as long as τN < 63% . Suppose that the standard deviation of the MVP return corresponds

to σ = 10% , whereas its counterpart related to the naive portfolio amounts to 11% (per

quarter). In that case, the relative loss of naive diversification is τN = (0.11/0.10)2 − 1 =

21% , whereas the expected relative loss caused by the modified shrinkage estimator roughly

amounts to E
(
τM

)
= 43% . Therefore, it would not pay to use the modified shrinkage

estimator in that case. By contrast, if the naive portfolio leads to a standard deviation

of 13% , it holds that τN = (0.13/0.10)2 − 1 = 69% > τ ∗
N and so the modified shrinkage

estimator is slightly better than the naive portfolio. Note that traditional estimation is

always worse than naive diversification in all such cases.

Table 2 lists some critical relative losses of naive diversification for different combinations

of n and d . For example, if 10 years of monthly asset return observations are available

(that is n = 120) and the stock market consists of d = 50 assets, one should use the

modified shrinkage estimator if and only if the variance of the naive portfolio return is at

least 21% greater than the variance of the MVP return. Depending on the length of the

time series and the number of assets, the modified shrinkage estimator is able to reduce the

relative loss of naive diversification. However, the table also indicates that, if the number

of observations is very small relative to the number of assets (see the entries in Table 2

where n/d < 2), naive diversification is apparently the best strategy, which reconfirms the
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n \ d 5 10 25 50 100

12 52%
(550%)

847%
(99261%)

— — —

24 16%
(111%)

40%
(334%)

— — —

36 9%
(59%)

19%
(132%)

152%
(1809%)

— —

60 5%
(30%)

9%
(58%)

28%
(209%)

420%
(7806%)

—

120 2%
(13%)

4%
(24%)

8%
(57%)

21%
(161%)

377%
(5202%)

Table 2: Critical relative losses of the naive portfolio with respect to the modified shrinkage

estimator for different combinations of n and d . The parentheses under the critical relative

losses contain the critical thresholds of τ̂N for testing the naive-diversification hypothesis

on a significance level of α = 5% .

naive-diversification hypothesis of DeMiguel et al. (2009).

4.2 Testing for the Naive-Diversification Hypothesis

For applying the decision rule discussed above, one needs two numbers, i.e.,

1. the critical relative loss of the naive portfolio with respect to the modified shrinkage

estimator and

2. the relative loss of the naive portfolio.

The critical relative loss can be calculated by Monte Carlo simulation (as it was done to

obtain Table 2), whereas the actual relative loss of the naive portfolio is not observable

and needs to be estimated from the history. The next theorem provides the distribution

of its empirical counterpart τ̂N or, more generally, τ̂R (see also Theorem 2).

Theorem 9

Under the assumptions A1 to A3 and n > d , the estimator τ̂R =
(
σ̂2

R − σ̂2
T

)
/σ̂2

T for the

relative loss of the reference portfolio is conditionally noncentrally F -distributed, more

precisely

τ̂R ∼ d − 1
n − d

· Fd−1,n−d

(
τRχ2

n−1/2
)
.
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Proof: See the appendix.

With Theorem 9, it is possible to test whether one should invest in the naive portfolio or

to apply an MVP estimator, i.e.,

H0 : τN ≤ τ ∗
N vs.

H1 : τN > τ ∗
N .

The test statistic is given by τ̂N =
(
σ̂2

N − σ̂2
T

)
/σ̂2

T and according to Theorem 9, H0 can be

rejected whenever the realization of τ̂N exceeds the upper α-quantile (0 < α < 1
2) of the

cumulative distribution function of

d − 1
n − d

· Fd−1,n−d

(
τ ∗

Nχ2
n−1/2

)
,

which can be also calculated by Monte Carlo simulation.10

Critical thresholds for this hypothesis test on a significance level of α = 5% are presented in

Table 2. For instance, suppose that the asset universe consists of 50 assets and the investor

can observe 10 years of monthly asset returns. Then the naive-diversification hypothesis

can be only rejected if τ̂N > 161% . Note that this is by far greater than the theoretical

value of the critical relative loss τ ∗
N = 21% , since the distribution of τ̂N is considerably

skewed to the right.

We consciously formulate the hypothesis test in such a way that the naive portfolio has

to be rejected but not the portfolio based on some MVP estimator. Therefore, for typical

significance levels like α = 1%, 5%, 10% , our decision rule favors naive diversification.

More precisely, if H0 can be rejected, the considered MVP estimator significantly leads to

a better out-of-sample performance but if H0 is not rejected, from a statistical point of

view it cannot be assumed that naive diversification is better. However, in that case the

naive portfolio can be justified either empirically, e.g., because of the well-known stylized

facts of financial data, or due to the arguments given by DeMiguel et al. (2009). In other

words: if it is not possible to guarantee that a statistical method will lead to a better result

but it is likely that the outcome will become worse, the naive portfolio can be justified by

the principle of insufficient reason (against naive diversification).

10This hypothesis test can be adapted to any MVP estimator if its expected relative loss E(τ ) < ∞
depends only on n, d, and τN and provided τN 7→ E(τ ) has only one intersection point with τN 7→ τN .
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5 Empirical Study

For the following empirical study we use monthly historical returns of 7 MSCI stock market

indices, namely for USA, UK, Germany, France, Italy, Canada, and Japan. The indices

are adjusted for dividends, splits, etc. We use the monthly closing prices quoted in US

$ from September 1970 to August 2009. From these data we calculate the excess returns

with respect to the average monthly interest rate of the 3-month US treasury bill. Finally,

we obtain N = 468 monthly excess returns.

First of all we apply the naive-diversification hypothesis test which has been derived in

Section 4 to the empirical data. Note that the naive hypothesis test consists of two parts.

The first one is the determination of the critical relative loss τ ∗
N of the naive portfolio. In

our case we choose the parameters n = 60 and d = 7. This means we assume that the

investor calculates the modified shrinkage estimator on the basis of the past 5 years of

observations. The second one is about the distribution of the test statistic. In contrast to

Section 4, we choose different parameter values for the number of observations in the two

parts: as stated above, n = 60 for the first part but n = N = 468 for the second part,

where the distribution of the test statistic is approximated by Monte Carlo simulation. We

do so, because we want to make use of the full sample of N = 468 observations and, at the

same time, we want to be in line with our empirical study which follows below.

We find that the critical relative loss of the naive portfolio is τ ∗
N = 0.064 and the critical

threshold on a significance level of α = 0.05 amounts to 0.125 (for α = 0.01 the critical

threshold is given by 0.149). By contrast, the estimated relative loss of the naive portfolio

corresponds to τ̂N = 0.273 . This means we can clearly reject the naive-diversification

hypothesis and hence the modified shrinkage estimator turns out to be significantly better

(with respect to the out-of-sample variance) than the naive portfolio if the investor makes

use of 5 years of historical observations.

Now we apply a circular moving-blocks bootstrap (Politis and Romano, 1992) to validate

our results on the shrinkage estimators. Our goal is to show that the presented shrinkage

estimators indeed reduce the out-of-sample variance compared to the traditional estimator

and the naive portfolio. We also compute the short-selling constrained MVP estimator

(ŵC), i.e., the vector v = (v1, . . . , d) which minimizes v′Σ̂ v under the additional constraint

v1, . . . , vd ≥ 0 . Moreover, we take the “three-fund optimal portfolio” estimator (ŵKZ) into

consideration, which has been proposed by Kan and Zhou (2007). The aforementioned
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authors allow for the risk-free investment. So we have to choose a normalized version

where the portfolio weights sum up to 1,11 which makes the different investment strategies

comparable.

The estimators are calculated on rolling windows with length n = 60 (that is 5 years).

For example, the portfolios are constructed at first in time t = 60 on the basis of the

60 monthly returns contained in R1, . . . , R60 . These portfolios are held constant up to

time t = 61 and the corresponding portfolio returns are calculated with R61 . Then the

window is switched to R2, . . . , R61 and the out-of-sample returns of the different strategies

are calculated with R62 , etc., until the end of the available data is reached. Therefore we

obtain N − n = 408 out-of-sample returns for each of the considered strategies. These

out-of-sample returns are used to estimate the out-of-sample variances of each strategy.

Because the observation periods are overlapping, each time series of out-of-sample returns

exhibits a serial dependence structure. Hence, traditional hypothesis tests which require

stochastically independent data would be inadequate. This is the reason why we apply the

circular moving-blocks bootstrap.12 Block-bootstrap procedures guarantee that the con-

sidered hypothesis tests remain asymptotically valid even for serially dependent time series

(Politis, 2003) and have become popular instruments in financial data analysis (Ledoit and

Wolf, 2008). These procedures are non-parametric and so they work under mild regularity

conditions. This means no parametric assumption regarding the stationary distribution

or the serial dependence structure of the considered time series is necessary. Hence, the

results of our bootstrap study are not subject to model misspecification, which could be

the normality assumption or the serial independence assumption.

Table 3 gives the estimated out-of-sample variances and their differences between each

strategy. For example, the differences between the estimated out-of-sample variance of the

traditional estimator and the shrinkage estimators amount to 1.301 · 10−5.13 The given

one-sided p-values are always understood to be in favor of the strategy which produces the

smaller out-of-sample variance. This means, e.g., the null hypotheses that the true out-of-

sample variance of the traditional estimator is smaller than the true out-of-sample variances

11So the Kan-Zhou estimator reduces to a “two-fund portfolio estimator” and represents a linear combi-

nation of the traditional “plug-in” estimator for the tangential portfolio and the traditional MVP estimator.

12The number of bootstrap replications in our empirical study is 10 000 and the block length corresponds

to 120 (Politis and Romano, 1992).

13In our study the realizations of ŵS and ŵM were identical in each rolling window.
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Strategy ŵT ŵS ŵM ŵC ŵKZ

Variance 1.595 · 10−3 1.582 · 10−3 1.582 · 10−3 1.676 · 10−3 4.293 · 10−2

Standard error 1.426 · 10−4 1.344 · 10−4 1.344 · 10−4 1.165 · 10−4 2.245 · 10−2

ŵS 1.301 · 10−5

(0.1798)
— — — —

ŵM 1.301 · 10−5

(0.1798)
0

(0.5000)
— — —

ŵC −8.145 · 10−5

(0.2231)
−9.447 · 10−5

(0.1574)
−9.447 · 10−5

(0.1598)
— —

ŵKZ −4.133 · 10−2

(0.0330)
−4.135 · 10−2

(0.0327)
−4.135 · 10−2

(0.0333)
−0.413 · 10−2

(0.0320)
—

wN −5.502 · 10−4

(0.0103)
−5.632 · 10−4

(0.0062)
−5.632 · 10−4

(0.0065)
−4.687 · 10−4

(0.0003)
0.408 · 10−2

(0.0347)

Table 3: Estimated out-of-sample variances and their differences between each strategy.

The indices “T”, “S”, “M”, “C”, “KZ”, and “N” denote the traditional estimator, the shrinkage

estimator, the modified shrinkage estimator, the constrained estimator for the MVP as well

as the Kan-Zhou estimator and the naive portfolio, respectively. The one-sided p-values

are provided in parentheses in favor of the respective strategy which produces the smaller

out-of-sample variance.

of each shrinkage estimator could be rejected on a significance level of 20%. In particular,

the out-of-sample variance of the naive portfolio is significantly larger than the out-of-

sample variances of the shrinkage estimators and all other strategies – except for the Kan-

Zhou estimator – on a significance level of almost 1%. The constrained estimator for the

MVP is outperformed by the unconstrained traditional MVP estimator and the shrinkage

estimators, but the results are not very significant. By contrast, the constrained estimator

significantly outperforms the Kan-Zhou estimator and the naive portfolio. Finally, the Kan-

Zhou estimator is significantly outperformed by all other investment strategies. However,

it is worth emphasizing that the Kan-Zhou estimator is not designed for minimizing the

out-of-sample variance but for maximizing the out-of-sample Sharpe ratio (Kan and Zhou,

2007) and so this result is not surprising.

Table 3 reveals that the shrinkage estimators outperform all other strategies. However,

the results are significant on a level of 5% only with respect to the Kan-Zhou estimator

and the naive portfolio. Admittedly it is difficult to obtain always significant results in

the context of financial time series all the more because non-parametric block-bootstrap

procedures per se require a large number of observations.
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6 Conclusion

We present two shrinkage estimators for the MVP that dominate the traditional estimator

under the assumption of serially independent and identically normally distributed asset

returns. Their small-sample and their large-sample properties alike are investigated. The

presented shrinkage estimators considerably reduce the out-of-sample variance of the port-

folio return compared to the traditional estimator, especially if the asset universe is large.

In addition, we provide a hypothesis test to decide whether one should invest in a portfolio

based on estimators for the MVP or in the naive portfolio. This decision depends only on

three quantities: the number of observations, the number of assets, and the relative loss

(compared to the true MVP) caused by naive diversification. An empirical study for 7

major stock markets demonstrates the superiority of the shrinkage estimators with respect

to naive diversification, the Kan-Zhou estimator, and – to some extent – with respect to

the constrained and unconstrained traditional MVP estimators.

Appendix

Lemma 2

For any λ ≥ 0 it holds that

E
{
χ−2

q

(
λ
)}

= q E
{

χ−4
q+2

(
λ
)}

+ 2λE
{

χ−4
q+4

(
λ
)}

, (14)

and if q ≥ 3 ,

(q − 2)E
{
χ−2

q

(
λ
)}

= (q − 2λ)E
{

χ−2
q+2

(
λ
)}

+ 2λE
{

χ−2
q+4

(
λ
)}

. (15)

Proof: Eq. 14 follows immediately from Theorem 2 in Judge and Bock (1978, p. 322) by

setting φ(x) = x−2, A = Iq , and θ ∈ Rq such that λ = θ′θ/2 . Similarly, with φ(x) = x−1,

1 = q E
{
χ−2

q+2

(
λ
)}

+ 2λE
{
χ−2

q+4

(
λ
)}

= (q − 2)E
{

χ−2
q

(
λ
)}

+ 2λE
{

χ−2
q+2

(
λ
)}

for any q ≥ 3 , which leads to (15). Q.E.D.

Lemma 3

Consider a q × q random matrix V ∼ Wq

(
Iq,m

)
with q ≥ 3 and m ≥ q+2 . Further, define

λ := θ′θ/2 and λ̂ := θ′V θ/2 for some θ ∈ Rq. Then it holds that

E

[(
trV −1 − λ

λ̂
· q

)
E
{
χ−2

q+2

(
λ̂
)

| V
}]

=
q − 1

m − q − 1
· E

[
(q − 2) · λ

λ̂
· E
{
χ−2

q

(
λ̂
)

| V
}]
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and

E

[(
tr V −1 − λ

λ̂
· q

)
E
{
χ−4

q+2

(
λ̂
)

| V
}]

=
q − 1

m − q − 1
· E

[
λ

λ̂
· E
{

χ−2
q

(
λ̂
)

| V
}]

−

q − 1
m − q − 1

· E

[
2λE

{
χ−4

q+2

(
λ̂
)

| V
}]

.

Proof: Consider the function h
(
2λ̂
)

= E
{
χ−2

q+2(λ̂) | V
}

and note that, after rotating θ, it

holds that 2λ̂ = θ′θχ2 for some random variable χ2 ∼ χ2
m . Then, due to Theorem 6 in

Judge and Bock (1978, p. 324),

E
{(

tr V −1
)
h
(
2λ̂
)}

=
q (m − 2)
m − q − 1

· E

{
h
(
2λ̂
)

χ2

}
+

2 (q − 1)
m − q − 1

· E
{

θ′θ h′(2λ̂
)}

,

where h′ denotes the first derivative of h with respect to 2λ̂ . Since λ/λ̂ = 1/χ2,

E

{(
trV −1 − λ

λ̂
· q

)
h
(
2λ̂
)}

=
q − 1

m − q − 1
·
[
q E

{
h
(
2λ̂
)

χ2

}
+ 2 θ′θ E

{
h′(2λ̂

)}
]

, (16)

where

h′(2λ̂
)

=
1
2

·
dE
{
χ−2

q+2(λ̂) | V
}

dλ̂
=

1
2

·
[
E
{
χ−2

q+4(λ̂) | V
}

− E
{
χ−2

q+2(λ̂) | V
}]

,

which follows from the derivative rule on page 327 in Judge and Bock (1978). After

substituting h′(2λ̂) in (16) and some re-arrangement, we obtain

E

[(
tr V −1 − λ

λ̂
· q

)
E
{

χ−2
q+2

(
λ̂
)

| V
}]

=

q − 1
m − q − 1

· E

[
λ

λ̂

[
(q − 2λ̂)E

{
χ−2

q+2

(
λ̂
)

| V
}

+ 2λ̂E
{
χ−2

q+4

(
λ̂
)

| V
}]]

.

Now the first statement of the lemma appears immediately after applying (15). Similarly,

by allowing for the function h
(
2λ̂
)

= E
{
χ−4

q+2(λ̂) | V
}

and using (14), the second statement

of the lemma becomes valid. Q.E.D.

Proof of Theorem 1

The loss function Lω,Ω can be re-formulated as

Lω,Ω

(
ω̂
)

=
(
ω̂ − ω

)′Ω
(
ω̂ − ω

)
=
(
θ̂ − θ

)′(
θ̂ − θ

)
= Lθ

(
θ̂
)
,

where θ̂ := Ω
1
2 (ω̂−x) and θ := Ω

1
2 (ω−x) . Accordingly, the random vector X is transformed

into Y := Ω
1
2 (X − x) | V ∼ Nq

(
θ, V −1

)
with V := Ω− 1

2 WΩ− 1
2 ∼ Wq

(
Iq,m

)
and similarly

YS := Ω
1
2 (XS − x) =

(
1 − c χ2

Y ′V Y

)
Y .
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After some elementary transformations, it turns out that

Lθ(YS) = Lθ(Y ) −
{

2cχ2 · Y ′(Y − θ)
Y ′V Y

− c2χ4 · Y ′Y
(Y ′V Y )2

}
.

This means the random variable YS dominates Y if and only if

E
{

Lθ(Y ) − Lθ(YS)
}

= 2ckE1 − c2k (k + 2) E2 > 0 , (17)

where

E1 := E

{
Y ′(Y − θ)

Y ′V Y

}
and E2 := E

{
Y ′Y

(Y ′V Y )2

}
.

Hence, the dominance result is satisfied for all c with 0 < c < 2/(k + 2) · E1/E2 and, to

prove the theorem, it has to be shown that E1/E2 ≥ (q − 2) . Now we define Z := V
1
2 Y

and ζ := V
1
2 θ so that Z | V ∼ Nq(ζ, Iq) . Then it holds that

Y ′(Y − θ)
Y ′V Y

| V ∼ Z ′V −1(Z − ζ)
Z ′Z

| V and
Y ′Y

(Y ′V Y )2
| V ∼ Z ′V −1Z

(Z ′Z)2
| V .

By setting φ(x) = x−1 in Theorem 1 and Theorem 2 of Judge and Bock (1978, pp. 321–322)

and allowing for λ = θ′θ/2 and λ̂ = θ′V θ/2 it follows that

E

{
Y ′(Y − θ)

Y ′V Y
| V

}
=
(
trV −1

)
E
{
χ−2

q+2

(
λ̂
)

| V
}

+2λE
{
χ−2

q+4

(
λ̂
)

| V
}

−2λE
{

χ−2
q+2

(
λ̂
)

| V
}

.

Similarly, by setting φ(x) = x−2 in Theorem 2 given by Judge and Bock (1978, p. 322),

we find that

E

{
Y ′Y

(Y ′V Y )2
| V

}
=
(
tr V −1

)
E
{

χ−4
q+2

(
λ̂
)

| V
}

+ 2λE
{
χ−4

q+4

(
λ̂
)

| V
}

.

After some re-arrangement and an application of (15) we obtain

E

(
Y ′(Y − θ)

Y ′V Y
| V

)
= (q − 2) · λ

λ̂
· E
{
χ−2

q

(
λ̂
)

| V
}

+
(

tr V −1 − λ

λ̂
· q

)
E
{

χ−2
q+2

(
λ̂
)

| V
}

.

Moreover, with an application of (14) it also turns out that

E

(
Y ′Y

(Y ′V Y )2
| V

)
=

λ

λ̂
· E
{

χ−2
q

(
λ̂
)

| V
}

+
(

trV −1 − λ

λ̂
· q

)
E
{

χ−4
q+2

(
λ̂
)

| V
}

.

Now, from Lemma 3 it follows that E1 = (q − 2) E2 + ε with

ε :=
(q − 1)(q − 2)

m − q − 1
· 2λE

[
E
{
χ−4

q+2

(
λ̂
)

| V
}]

≥ 0 .

Since E1 ≥ (q − 2) E2 with E2 > 0 it follows that E1/E2 ≥ (q − 2) . For x = ω it holds

that λ = 0 and thus E1 = (q − 2) E2 . This means the optimal constant c of the quadratic

function given by (17) does not depend on E1 or E2 . Further, it is unique and corresponds

to c = (q − 2)/(k + 2) . Q.E.D.
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Proof of Theorem 2

Lemma 1 and Theorem 1 can be brought together by the following substitutions: m = n−1 ,

q = d − 1 , W = n Ω̂/σ2 , X = ŵex
T , χ2 = n σ̂2

T/σ2, k = n − d , and x = wex
R . Then the

constant

c =
q − 2
k + 2

=
d − 3

n − d + 2

leads to a dominating shrinkage estimator ŵex
S for wex, viz

ŵex
S = wex

R +

(
1 − d − 3

n − d + 2
· σ̂2

T

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R )

)
(
ŵex

T − wex
R

)
.

Note that

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R ) = (ŵT − wR)′Σ̂ (ŵT − wR)

and thus

σ̂2
T

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R )
=

σ̂2
T

(ŵT − wR)′Σ̂ (ŵT − wR)
=

σ̂2
T

σ̂2
R − σ̂2

T

=
1

τ̂R
.

Due to ŵS = e1 − ∆′ŵex
S it follows that

ŵS = wR +
(

1 − d − 3
n − d + 2

· 1
τ̂R

)(
ŵT − wR

)
= κS wR +

(
1 − κS

)
ŵT .

Q.E.D.

Proof of Theorem 3

After some calculations we find that

τ S = τR − 2
(
1 − κS

)
a +

(
1 − κS

)2
b ,

where

κS =
d − 3

n − d + 2
· nσ̂2

T/σ2

(ŵex
T − wex

R )′(nΩ̂/σ2)(ŵex
T − wex

R )
,

a =
(ŵex

T − wex
R )′Ω (wex − wex

R )
σ2

and b =
(ŵex

T − wex
R )′Ω (ŵex

T − wex
R )

σ2
.

With θ = Ω
1
2 /σ (wex − wex

R ) , ξ ∼ Nd−1(0, Id−1) , and V ∼ Wd−1(Id−1, n − 1) , the shrinkage

weight κS can be represented by

κS =
d − 3

n − d + 2
· χ2

n−d(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
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as well as a = θ′(θ + V − 1
2 ξ
)

and b =
(
θ + V − 1

2 ξ
)′(

θ + V − 1
2 ξ
)
, where ξ , V , and χ2

n−d are

mutually independent. Hence, τ S is equal to the expression given on the right hand side

of (9). Moreover, it holds that

τ S =
∥∥O
{
κSθ −

(
1 − κS

)
V − 1

2 ξ
}∥∥2 =

∥∥κSη −
(
1 − κS

)
OV − 1

2 ξ
∥∥2

with η := Oθ for any orthogonal (d − 1) × (d − 1) matrix O; note also that κS is a function

of V − 1
2 ξ only through the quadratic form

(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)

=
(
η + OV − 1

2 ξ
)′(OV O ′)(η + OV − 1

2 ξ
)
.

The random matrix V has a radial distribution, i.e., OV O ′ ∼ V as well as OV −1O ′ ∼ V −1.

Similarly, ξ has a spherical distribution, i.e., Oξ ∼ ξ . It follows that OV − 1
2 O ′ ∼ V − 1

2 and

thus OV − 1
2 ξ ∼ V − 1

2 ξ . This means for any rotation η of θ it holds that

τ S ∼
∥∥κSη −

(
1 − κS

)
V − 1

2 ξ
∥∥2

.

Ergo, the distribution of τ S depends only on n, d, and τR = θ′θ. Q.E.D.

Proof of Theorem 4

From the proof of Theorem 3 it follows that the distribution of τM, too, is only a function

of n, d, and τR . To prove that E(τM) < E(τ S), the relative loss of the simple shrinkage

estimator can be written as

τ S = τR − 2 θ′V − 1
2
(
1 − κS

)(
V

1
2 θ + ξ

)
+
(
1 − κS

)2 ‖V
1
2 θ + ξ‖2

V .

Since
(
1− κS

)
=
(
1− κS

)+ −
(
1− κS

)−
, the relative loss of the modified shrinkage estimator

becomes

τM = τ S − 2 θ′V − 1
2
(
1 − κS

)−(
V

1
2 θ + ξ

)
−
{(

1 − κS

)−}2 ‖V
1
2 θ + ξ‖2

V .

Here it holds that

E
[{(

1 − κS

)−}2 ‖V
1
2 θ + ξ‖2

V

]
> 0

and from Theorem 1 given by Judge and Bock (1978, pp. 321) it follows that

E
{

θ′V − 1
2
(
1 − κS

)−(
V

1
2 θ + ξ

)}
= τRE

[{
1 − d − 3

n − d + 2
· χ2

n−d

χ2
d+1(τRχ2

n−1/2)

}−]
≥ 0 .

This means E
(
τM

)
< E

(
τ S

)
. The second inequality E

(
τ S

)
< E

(
τT

)
is a direct consequence

of Theorem 2. Q.E.D.
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Proof of Theorem 5

The traditional estimator for the MVP without the first portfolio weight can be represented

by ŵex
T = wex + σ Ω− 1

2 V − 1
2 ξ , where V ∼ Wd−1(Id−1, n − 1) is stochastically independent

of ξ ∼ Nd−1(0, Id−1) . Since
√

n V − 1
2 =

(
V/n

)− 1
2

a.s.→ Id−1 as n → ∞ , it holds that

√
n
(
ŵex

T − wex
) a.s.−→ σ Ω− 1

2 ξ , n −→ ∞ .

The presented expression for the asymptotic normality of ŵT = e1 −∆′ŵex
T follows from the

relationship σ2∆′Ω−1∆ = σ2Σ−1 − ww′ (Frahm, 2008). Further, the shrinkage estimator

can be represented by

ŵex
S = wex

R +

{
1 − d − 3

n − d + 2
· χ2

n−d(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
}{(

wex − wex
R

)
+ σ Ω− 1

2 V − 1
2 ξ
}

,

where θ = Ω
1
2 /σ (wex − wex

R ) and θ′θ = τR . Following the proof of Theorem 3 it can be

assumed that θ =
(√

τR ,0
)

without loss of generality. Since

θ′V θ

n
= τR · χ2

n−1

n

a.s.−→ τR ,
2θ′V

1
2 ξ

n
= 2θ′(V/n)

1
2 ξ/

√
n

a.s.−→ 0 ,
ξ′ξ
n

a.s.−→ 0 , n −→ ∞ ,

it follows that
(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

a.s.→ τR as well as χ2
n−d/n

a.s.→ 1 as n → ∞ .

Hence, in the event that τR > 0 it holds that

√
n · d − 3

n − d + 2
·

χ2
n−d/n(

θ + V − 1
2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

·
(
wex

R − wex
) a.s.−→ 0 , n −→ ∞ .

Further, as already mentioned above,
√

nσ Ω− 1
2 V − 1

2 ξ
d→ σ Ω− 1

2 ξ and so

{
1 − d − 3

n − d + 2
· χ2

n−d/n(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

}
√

n σ Ω− 1
2 V − 1

2 ξ
a.s.−→ σ Ω− 1

2 ξ , n −→ ∞ .

By contrast, if τR = 0 and thus θ = 0 as well as wex = wex
R ,

d − 3
n − d + 2

· χ2
n−d(

θ + V − 1
2 ξ
)′

V
(
θ + V − 1

2 ξ
) =

d − 3
n − d + 2

· χ2
n−d

ξ′ξ

and since χ2
n−d/(n − d + 2) a.s.→ 1 as n → ∞ ,

√
n
(
ŵex

S − wex
) a.s.−→

(
1 − d − 3

ξ′ξ

)
σ Ω− 1

2 ξ , n −→ ∞ .

Similar arguments hold for the modified shrinkage estimator, since

min

{
√

n · d − 3
n − d + 2

· χ2
n−d/n(

θ + V − 1
2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

,
√

n

}
a.s.−→ 0 , n −→ ∞ ,
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if τR > 0 and otherwise

min

{
d − 3

n − d + 2
· χ2

n−d

ξ′ξ
, 1

}
a.s.−→ min

{
d − 3
ξ′ξ

, 1
}

, n −→ ∞ .

Q.E.D.

Proof of Theorem 6

Due to Eq. 3 it will suffice to concentrate on the MVP estimators without the first portfolio

weight for calculating the relative losses, e.g.,

nτT =
√

n (ŵex
T − wex)′Ω

√
n (ŵex

T − wex)
σ2

.

Now the theorem follows immediately by applying the continuous mapping theorem to the

results which are given in the proof of Theorem 5 and noting that

[
11{τ R=0}X + 11{τ R> 0}

]2
= 11{τ R=0}X2 + 11{τ R> 0}

for any random variable X. Q.E.D.

Proof of Theorem 7

Due to the proof of Theorem 5 it holds that

τT =
(ŵex

T − wex)′Ω (ŵex
T − wex)

σ2
= ξ′V −1ξ =

χ2
d−1

χ2
n−d+1

with χ2
d−1 := ξ′ξ and χ2

n−d+1 := χ2
d−1/ξ

′V −1ξ . Note that (n − d) → ∞ as n, d → ∞ and

n/d → q . This means

τT =
d

n − d
· χ2

d−1/d

χ2
n−d+1/(n − d)

a.s.−→ 1
q − 1

, n, d −→ ∞ , n/d −→ q .

For proving the almost sure convergence of the shrinkage weights κS and κM , consider

θ =
(√

τR ,0
)

and suppose that V
1
2 is the Cholesky root of V , i.e.,

θ′V
1
2 ξ =

√
τR χn−1ξ1 .

Furthermore, note that (d − 3)/(n − d + 2) → 1/(q − 1) , χ2
n−d/(n − d) a.s.→ 1 ,

θ′V θ

n − d
= τR · χ2

n−1

n
· n

n − d
a.s.−→ qτR

q − 1
,

2θ′V
1
2 ξ

n − d
= 2

√
τR · χn−1ξ1

n − d
a.s.−→ 0
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as well as
ξ′ξ

n − d
=

ξ′ξ
d

· d

n − d
a.s.−→ 1

q − 1
, n, d −→ ∞ , n/d −→ q .

Now, by applying the continuous mapping theorem, we obtain κS , κM
a.s.→ 1/(1 + qτR) as

n, d → ∞ and n/d → q . Similarly, note that

2θ′V − 1
2 ξ = 2

√
τR · ξ1

χn−d+1
= 2

√
τR · n − d

χn−d+1
· ξ1

n
· n

n − d

a.s.−→ 0

and ξ′V −1ξ
a.s.→ 1/(q − 1) as n, d → ∞ and n/d → q . By relying on (9) and (11) it turns

out that

τ S , τM
a.s.−→ τR

1 + qτR
−
(

1 − 1
1 + qτR

)
τR +

(
1 − 1

1 + qτR

)2(
τR +

1
q − 1

)
.

After a little calculation it can be found that the limit corresponds to the asymptotic loss

function L
(
τR; q

)
which is given in the theorem. Q.E.D.

Proof of Theorem 8

Since w′
R1 = 1 > 0, the angle between wR and 1 is acute. Therefore, there exists an

orthogonal d×d matrix O such that OwR and O1 belong to the set {x ∈ Rd : x > 0} . This

means there also exists a positive-definite diagonal d × d matrix Λ such that O1 = ΛOwR ,

i.e., wR = A1 with A := O ′Λ−1O being positive definite. The matrix Σ−1
R can be obtained

by re-scaling A such that the condition 1′Σ−1
R 1 = 1′Σ̂−11 > 0 is satisfied. Now the rest of

the theorem can be verified by substituting Σ̂−1 by the given expressions for Σ̂−1
S and Σ̂−1

M

within the traditional MVP estimator. Q.E.D.

Proof of Theorem 9

Due to the proof of Theorem 3 it can be seen that

τ̂R =

(
V

1
2 θ + ξ

)′(
V

1
2 θ + ξ

)

χ2
n−d

and note that θ′V θ = τRχ2
n−1 . Q.E.D.
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