
HAL Id: hal-00741605
https://hal.science/hal-00741605v1

Submitted on 14 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation and Comparison of Heuristics for the
Vertex Cover Problem on Huge Graphs

Eric Angel, Romain Campigotto, Christian Laforest

To cite this version:
Eric Angel, Romain Campigotto, Christian Laforest. Implementation and Comparison of Heuristics
for the Vertex Cover Problem on Huge Graphs. 11th International Symposium on Experimental
Algorithm (SEA 2012), Jun 2012, Bordeaux, France. pp.39–50, �10.1007/978-3-642-30850-5_5�. �hal-
00741605�

https://hal.science/hal-00741605v1
https://hal.archives-ouvertes.fr

Implementation and Comparison of Heuristics

for the Vertex Cover Problem on Huge Graphs⋆

Eric Angel1, Romain Campigotto2 and Christian Laforest3

1 Laboratoire IBISC, EA 4526 – Université d’Évry-Val d’Essonne
IBGBI, 23 boulevard de France, 91 037 Évry Cedex, France

eric.angel@ibisc.univ-evry.fr
2 LAMSADE, CNRS UMR 7243 – Université Paris-Dauphine

Place du Maréchal de Lattre de Tassigny, 75 775 Paris Cedex 16, France
romain.campigotto@lamsade.dauphine.fr

3 LIMOS, CNRS UMR 6158 – Université Blaise Pascal, Clermont-Ferrand
Campus des Cézeaux, 24 avenue des Landais, 63 173 Aubière Cedex, France

christian.laforest@isima.fr

Abstract. We present in this paper an experimental study of six heuris-
tics for a well-studied NP-complete graph problem: the vertex cover.
These algorithms are adapted to process huge graphs. Indeed, executed
on a current laptop computer, they offer reasonable CPU running times
(between twenty seconds and eight hours) on graphs for which sizes are
between 200 · 106 and 100 · 109 vertices and edges.
We have run algorithms on specific graph families (we propose genera-
tors) and also on random power law graphs. Some of these heuristics can
produce good solutions. We give here a comparison and an analysis of
results obtained on several instances, in terms of quality of solutions and
complexity, including running times.

Key words: implementation of algorithms, experimental analysis, huge

graphs, low memory, vertex cover

1 Introduction

The vertex cover problem [14] is a well-known classical NP-complete op-
timization graph problem that has received a particular attention these last
decades. In particular, it occurs in many concrete situations [17], in fields such
as biology, meteorology, finance, etc. where amount of data is more and more
important. This leads to the problem of designing algorithms well suited to cope
with such large instances.

Notations. Graphs G = (V,E) considered throughout this paper are undirected,
simple, unweighted and represent the instance to be treated here. We denote by
n the number of vertices (n = |V |) and by m the number of edges (m = |E|).
For any vertex u ∈ V , we denote by N(u) = {v | uv ∈ E} the set of neighbors
of u and we call degree the number of neighbors of vertex u.

⋆ Work partially supported by the French Agency for Research under the DEFIS
program TODO, ANR-09-EMER-010.

2 Eric Angel, Romain Campigotto and Christian Laforest

Definition of the Vertex Cover Problem. A cover C of G is a subset of vertices
such that every edge contains (or is covered by) at least one vertex of C, that
is C ⊆ V and ∀e = uv ∈ E, one has u ∈ C or v ∈ C (or both). The vertex

cover problem is to find a cover of minimum size. We denote by OPT the size
of an optimal cover for a given graph.

Related Work. Several studies focused on massive data sets these last decades [3].
In particular, for the max clique problem [9], experiments on graphs with
53 · 106 vertices and 170 · 106 edges have been performed [2]. But no such study
has been done for the vertex cover problem. However, it has been extensively
studied theoretically: many exact (exponential) algorithms, approximation algo-
rithms, online algorithms, etc. have been proposed (due to space limitations, we
do not give references about these works: some of them can be found in the intro-
ductions of [8] and [13]). Several experimental studies have already been made,
often to compare the quality of several algorithms [12, 15] or validate specific
methods [5, 7]. Nevertheless, no one achieved the huge graph sizes we consider
in this paper (in these studies, the largest graphs has 10,000 vertices).

Our General Model of Treatment. To the intrinsicNP-completeness is added the
difficulty to manipulate graphs and run algorithms with severe constraints. In-
deed, with respect to their huge sizes, the processing unit (we consider a standard
computer) cannot load them entirely in its memory. Moreover, the graph, which
is stored on an external disk, must not be modified, since it often comes from
experimentations and can be used by different users for different goals. Specifi-
cally, the important cost of graph creation forces us to preserve its integrity, in
order to be able to run several algorithms on it.

Organization of the Paper. We give in the next section a general description
of our experiments. We present, analyze and compare in Sect. 3 results obtained
by executing the six algorithms on several instances. Finally, in Sect. 4, we
conclude and give some perspectives.

2 General Description

In this section, we describe elements used for experiments. Programs (executa-
bles, with source code) are available at [1].

Technical Characteristics. The “Processing Unit” is a laptop computer with a
Dual Core processor running at 2.8 GHz, 6 Mb cache memory and 4 Gb RAM.
Graphs and Covers are stored on the same external hard drive, which is a USB
2.0 hard disk of 2 Tb, running at 7200 revolutions/minute and equipped with 8
Mb cache memory. Programs are written in language C, C99 standard, in order
to use specific data type unsigned long long and associated functions to read
and write binary files.

Heuristics for Vertex Covering on Huge Graphs 3

Storage and Reading of Graphs. There exist many ways to store a graph:
with an adjacency matrix, an adjacency list, etc. We use the method described
in [4] (for more details, report to the Sect. 3.2 page 20). More precisely, our
graphs are stored with two files:

.list file which contains 2m + 1 values: the number of vertices in the graph
(which is needed by several algorithms to create an n bits array) and the list
of the neighbors of vertices in the graph;

.deg file which contains n+1 values, which are needed to access to the neighbors
of a vertex and compute its degree.

The n vertices are labeled from 0 to n−1. The .list file contains first the value
n, then vertices of set N(0), then vertices of set N(1), etc. (however, neighbors
of each vertex can be stored in any order, not necessarily following the order
of labels). The .deg file contains, for each vertex (and by increasing order of
labels), the place of its first neighbor (in the .list file). It contains n+1 values,
in order to compute the degree of the last vertex (the last value of the .deg file
points to the end of the .list file). Indeed, to compute degree of vertex i, we
subtract the ith value from the (i+ 1)th.

Figure 1 shows an example on a small graph.

b

0

b

b

b

b
1

23

4

2 1 3 4 0 2 3 1 0 0 4 2 3 15

.list

1 74 10 13

.deg

15

Fig. 1. Storage of a graph with 5 vertices and 7 edges

Algorithms scan graphs by reading the two files described previously. First,
the .list file is read to know the number of vertices. Then, the .deg file is read
to know the place of the first neighbor of the first vertex and the place of the first
neighbor of the second vertex. Thereby, there are two pointers (the first one is
followed by the second one) which delimit the set of neighbors of a vertex. Once
these places are known, the reading process continues in the .list file, where
neighbors of the first vertex are retrieved. If the treatment unit does not need to
get all of them, it can “step over” the remaining neighbors and go immediatly to
the neighbors of the second vertex. It proceeds in the same way for the following
vertices.

If algorithms need to know degrees of neighbors, they read independently the
.deg file with another playhead, which can be moved at a precise place to get
the two successive values needed to compute the degree.

4 Eric Angel, Romain Campigotto and Christian Laforest

All the algorithms read the .list file in a sequential way, but they can “step
over” values that are not needed. Algorithms which do not need to compute
degrees of neighbors read the .deg file also in a sequential way.

Algorithms Implemented. We have implemented six algorithms adapted to
the treatment of huge graphs: LR, ED, S-Pitt, LL, SLL and ASLL.

LR has been proposed in [11]. ED is the 2-approximative algorithm which re-
turns vertices of a maximal matching. S-Pitt is a probabilistic algorithm inspired
by the algorithm presented in [18]: it has an expected approximation ratio equal
to 2. The authors have done a theoretical study of LL, SLL and ASLL in [6].

We present now a basic description of the six algorithms, by giving conditions
to put vertices of the input graph into the solution.

Let G = (V,E) be a graph. Let C be the cover under construction. For each
vertex u ∈ V , we have

LR: if u 6∈ C, {v | uv ∈ E ∧ v 6∈ C} is put in C;

ED: if u 6∈ C and if u has a neighbor v 6∈ C, u and v are put in C;

S-Pitt: if u 6∈ C and if u has a neighbor v 6∈ C, either u or v is put in C with
equiprobability assumption;

LL: u is put in C if it has at least one neighbor v such that v > u (their labels are
compared);

SLL: u is put in C if it has at least one neighbor v such that d(v) < d(u) or
d(v) = d(u) and v > u;

ASLL: u is put in C if it has at least one neighbor v such that d(v) > d(u) or
d(v) = d(u) and v < u.

Now, we can describe how we have implemented these algorithms, in relation
with the way that the graphs are stored on the external hard disk.

As described above, the algorithms scan graphs vertex by vertex and, for
each current vertex u, scan its neighbors one by one. If an algorithm decides
that u belongs to the solution (applying the conditions given in the descriptions
of the algorithms above), u is put immediately and definitively into the cover.
Then, the algorithm steps over its remaining neighbors and goes to the next
vertex. Otherwise, it gets the next neighbor of u (and, at the end, requires the
next vertex like in the previous case). Also, when an algorithm scans a vertex
u which is already in the cover, it goes immediately to the next vertex, without
scanning its neighbors.

It is worth noticing that LR, ED and S-Pitt need to allocate an n bits array
to mark vertices sent to the solution (reading on the external hard drive during
the execution would take too long); SLL and ASLL need to compute degrees of
neighbors.

Heuristics for Vertex Covering on Huge Graphs 5

Writing the Covers on the Disk. A cover is written as a list of vertex labels into
a file, which is built piece by piece: once an algorithm decides to put a vertex
into the solution, it writes it into the cover file. A vertex cannot appear twice,
because algorithms have been designed to produce no duplicates.

Example of Execution of Algorithm LR. We consider the graph given in Fig. 2.
The execution of LR on it works as follows.

0
b

1

2

3

4

6

.list

b

b

b

b

b

5

3 1 4 0 3 2 5 1 41 0 1 3 5 4 2

Fig. 2. Graph with 6 vertices and 8 edges

At the beginning, the cover C (which is materialized by an 6 bits array in the
internal memory of the computer) is empty (i.e. all the binary flags are lowered).

1. C = ∅. We consider the vertex 0. We get its neighbor, 3: we put it in C (it
is written on the disk and the corresponding flag in the memory is raised).
Then, we get its neighbor, 1: we put it in C.

2. C = {1, 3}. The vertex 1 is not treated since it is already in C.
3. C = {1, 3}. We treat the vertex 2. We get its neighbor, 5: it is put in C.

Then, we get its neighbor, 1: nothing is done since it is already in C.
4. C = {1, 3, 5}. The vertex 3 is not treated since it is already in C.
5. C = {1, 3, 5}. We treat the vertex 4. Its neighbors (1, 3 and 5) are retrieved

but not considered, because they are already in C.
6. C = {1, 3, 5}. The vertex 5 is not treated since it is already in C.

Hence, we have just scanned seven vertices in the .list file (which contains
sixteen labels) and the cover produced by LR contains three vertices: 1, 3 and 5.

Graph Families Used. We have executed our algorithms on different graphs:

– on sparse graphs (wherem ∈ O(n)): ButterFly graphs [21], de Bruijn graphs [10]
and grid graphs;

– on dense graphs (where m ∈ Θ(n2)): hypercubes, complete bipartite graphs
and complete split graphs4.

4 A complete split graph is a complete bipartite graph in which the vertices subset of
lowest size is changed to a clique.

6 Eric Angel, Romain Campigotto and Christian Laforest

We have chosen these graphs because they can be easily generated (we can pro-
duce huge size graphs with a standard computer). In that sense, we have designed
generators to construct these specific graphs. For example, CPU running times
for the instances generation of size 100 · 109 are between 5 hours than 7 hours.
Also, the size of their optimal solutions is known (we can give exact sizes, ex-
cepted for de Bruijn graphs where we can only give lower bounds). Thus, it is
possible to present results on the quality of algorithms.

We have also chosen to execute algorithms on random power law graphs,
where degree sequences follow a power law. We have used generator described
in [19], which is based on the Molloy and Reed model [16].

This generator is able to produce random power law graphs, but it cannot
create them in an online way: a memory space linear to the graph size is needed.
However, on our computer, we can still create graphs with more than 10 · 106

vertices and edges, with CPU running times less than 3 hours.

Graph Sizes. The size of a graph is given by its number of vertices and edges.
Hence, we denote by graph size the value n+m.

The huge size notion is relative: it depends on context considered (e.g. the size
limits for algorithms with exponential complexity are lower than for algorithms
with linear complexity). So, we have defined several levels for graph sizes.

1st level. The graphs size is about 200 · 106 (several Gb on disk). This is the
largest random power law graphs size that can be generated on our computer.

2nd level. The graphs size is about 30 · 109 (more than 100 Gb on disk). The
algorithms SLL and ASLL begin to reach their limits in terms of running
times on our computer.

3rd level. The graphs size is about 100 · 109 (around 1.5 Tb on disk). With our
computer, we cannot allocate an n bits array if the number of vertices is
bigger than 30 · 109.

Experimentations. For the first level, we have executed algorithms S-Pitt, LL,
SLL and ASLL five times on each instance (algorithms LR and ED are determin-
istics). From second level, we simulated a user having limited resources (time
and disk space). So, for each graph, we have executed the six algorithms once.
Based on results obtained and resources already spent, we have executed again
several algorithms (often one time).

A total of thirty-four executions was made: thirteen in the first level, six in
the second level and two in the third level. We have also executed our algorithms
on thirteen instances for which sizes are between 106 and 4 · 106. But, due to
space limitations, we do not give details on results obtained for these instances.
We can however indicate that they are broadly similar to the results obtained
in the first level.

Heuristics for Vertex Covering on Huge Graphs 7

3 Results and Observations

Evaluated Criteria. We have focused on quality of solutions produced by al-
gorithms and complexities, expressed by the number of requests made to the
instance, i.e. the number of neighbors read in the .list file. We have also consid-
ered running times. For that, we have used the UNIX command /usr/bin/time,
which gives the time used by the processor during a program execution.

Results Presentation. We give one table per criterion. For algorithms that
have been executed more than once, we give values corresponding to the best
solution (in terms of quality).

For each instance, the best value (among the set of values presented for the
six algorithms) is in bold font. Conversely, when values are bad (e.g. an algorithm
which returns almost all the vertices or performs more thanm requests), numbers
are in italics font.

Table 1 (resp. 2) gives quality of solutions (resp. complexity in number of
requests) obtained in the first level on graphs created by our generators and
on random graphs. For random power law graphs, the last digit given in the
instance name (starting by rg) denotes the minimum degree of the graph.

Table 1. Quality of solutions obtained in the first level, expressed in percentage of n
(sizes of optimal covers for random power law graphs cannot be estimated)

Instance n OPT LR ED S-Pitt LL SLL ASLL

butterfly-21 46,137,344 50 50 100 78.16 90.91 85.06 90.91

debruijn-25 33,554,432 > 50 66.67 88.89 77.56 66.78 72.71 82.39

grid-6000.9000 54,000,000 50 50 99.99 81.41 99.99 99.99 99.99

hypercube-23 8,388,608 50 50 99.97 99.26 99.99 99.99 99.99

compbip-7000.15000 22,000 31.82 68.18 63.64 62.98 31.82 31.82 68.18

split-7500.12000 19,500 38.46 99.99 61.67 61.39 38.46 38.46 99.99

rg-20m 1 20,000,000 – 9.94 19.65 13.41 49.30 10.42 99.99

rg-20m 2 20,000,000 – 34.12 62.89 45.60 49.30 36.89 99.88

rg-25m 1 25,000,000 – 14.19 28.09 18.91 41 14.89 99.95

rg-25m 2 25,000,000 – 38.76 69.99 51.29 48.13 42.12 99.65

rg-30m 1 30,000,000 – 43.48 76.61 57.17 59.02 47.44 97.57

rg-30m 2 30,000,000 – 15.68 31.05 21.10 30.98 16.46 99.93

rg-35m 2 35,000,000 – 43.12 76.16 56.79 53.70 46.98 99.12

For the first level, expected running times of each algorithm are between
twenty seconds and two minutes.

Tables 3 and 4 give respectively quality of solutions and number of requests
obtained for the second and third levels. Table 5 gives CPU running times. For
the third level, we only give values for algorithms that have been executed until
the end.

8 Eric Angel, Romain Campigotto and Christian Laforest

Table 2. Number of requests performed in the first level (in percentage of m)

Instance m LR ED S-Pitt LL SLL ASLL

butterfly-21 88,080,384 100 60.51 91.94 103.30 104.76 80.16

debruijn-25 67,108,861 66.67 61.11 87.03 113.87 106.84 100.48

grid-6000.9000 107,985,000 100 49.93 86.24 91.66 91.66 75.03

hypercube-23 96,468,992 100 11.83 23.57 17.54 17.58 17.51

compbip-7000.15000 105,000,000 100 53.34 54.31 100.01 100.01 100.02

split-7500.12000 118,121,250 0.02 47.47 47.82 76.20 76.20 0.17

rg-20m 1 59,624,494 49.12 47.99 55.20 34.29 59.22 57.73

rg-20m 2 90,808,193 40.23 36.92 48.73 38.20 56.57 34.27

rg-25m 1 70,911,180 45.44 44.57 53.13 36.23 58.19 47.08

rg-25m 2 87,837,432 45 40.93 55.45 51.81 65.50 41.84

rg-30m 1 82,356,722 50.09 45.04 62.78 57.89 75.78 52.29

rg-30m 2 81,819,916 44.86 44.02 52.84 39.76 58.28 45.23

rg-35m 2 96,555,269 50.14 45.11 62.70 62.52 75.62 53.31

Table 3. Quality of solutions obtained in the second and third levels, expressed in
percentage of n

Instance n OPT LR ED S-Pitt LL SLL ASLL

butterfly-28 7,784,628,224 48.28 48.28 96.55 78.76 93.24 93.10 96.55

debruijn-33 8,589,934,592 > 50 66.67 88.89 77.56 96.55 99.99 99.99

grid-75000.90000 6,750,000,000 50 50 99.99 81.41 99.99 99.99 99.99

hypercube-30 1,073,741,824 50 50 99.99 99.78 99.99 99.99 99.99

compbip-35000.500000 535,000 6.54 93.46 13.08 13.11 6.54 6.54 93.46

split-70000.180000 250,000 28 99.99 48.19 48.01 28 28 99.99

butterfly-30 33,285,996,544 48.28 – – – 98.26 – –

compbip-250000.380000 630,000 39.68 60.32 79.37 79.46 84.39 – –

Table 4. Number of requests performed in the second and third levels, expressed in
percentage of m

Instance m LR ED S-Pitt LL SLL ASLL

butterfly-28 15,032,385,540 99.99 61.91 91.59 103.50 101.79 72.62

debruijn-33 17,179,869,183 66.67 61.11 87.03 108.91 108.33 91.67

grid-75000.90000 13,499,835,000 100 49.98 86.24 91.67 91.67 75

hypercube-30 16,106,127,360 100 9.10 18.22 13.42 13.33 13.33

compbip-35000.500000 17,500,000,000 100 93 92.97 100.01 100.01 100.02

split-70000.180000 15,049,965,000 0.002 60.24 60.45 83.72 83.72 0.02

butterfly-30 64,424,509,440 – – – 102.18 – –

compbip-250000.380000 95,000,000,000 100 34.21 34.05 25.88 – –

Heuristics for Vertex Covering on Huge Graphs 9

Table 5. CPU running times obtained in the second and third levels (number of
executions are given in parenthesis: we give the average time here)

Instance LR ED S-Pitt LL SLL ASLL

butterfly-28 1:11:55 1:15:53 1:18:41 (2) 1:20:35 (2) 5:10:47 3:38:43

debruijn-33 1:20:37 1:24:10 1:26:14 (2) 1:29:35 (2) 7:43:53 5:08:37

grid-75000.90000 1:02:47 1:08:57 1:09:58 (2) 1:11:35 (2) 3:24:52 3:01:32

hypercube-30 0:41:06 0:33:21 0:36:02 (3) 0:33:19 (3) 1:07:46 (2) 1:07:38 (2)

compbip-35000.500000 0:23:15 0:22:23 0:22:28 (4) 0:22:13 (4) 6:11:51 6:12:03

split-70000.180000 0:00:17 0:15:21 0:15:36 (5) 0:16:11 (5) 4:27:39 0:00:29 (8)

butterfly-30 – – – 5:47:43 – –

compbip-250000.380000 2:02:16 1:01:19 1:01:21 0:32:17 – –

Observations on Quality of Solutions. As we can see on Tables. 1 and 3, the
algorithm LR is almost always the best. Moreover, it often returns the optimal
solution. However, it can be very bad on complete bipartite and split graphs.

In general, SLL offers good performance, especially on random power law
graphs (its performance is close to LR). Nevertheless, it is less efficient on regular
graphs5.

The global performance of algorithms S-Pitt and LL is intermediate but, for
LL, it fluctuates more than S-Pitt. Indeed, on one instance, LL can be the best
or the worst, that is not the case for S-Pitt.

Finally, ED and ASLL are overall the worst algorithms (and ED reaches often
its approximation ratio of 2). For ED, these results confirm observations made
by F. Delbot et al. [12].

Observations on the Number of Requests. As we can see on Tables. 2
and 4, the algorithm ED is almost always the best. Furthermore, it always per-
forms less than m requests.

The algorithm LR often reachesm requests (it cannot perform worse), except
on instances on which it returns a bad solution (it is better on them).

The performance of S-Pitt is close to LR: it is often better on specific graphs
(except on complete split graphs) but it is worse on random graphs.

Algorithms LL, SLL and ASLL can perform more than m requests. This ex-
plains the fact that LR is generally the second algorithm in terms of complexity
(even if its upper bound ofm requests is often reached). ASLL is better, especially
on random power law graphs and complete split graphs.

Analysis of Running Times. We focus on values presented for the second
level in Tab. 5 (CPU running times obtained in first level are too similar to
be exploited). To obtain an estimation of real running times (observed on our
computer), one can multiply by 3.2 (resp. 1.6) CPU running times given in Tab. 5
for algorithms LR, ED, S-Pitt and LL (resp. SLL and ASLL).

5 A regular graph is a graph where all the vertices have the same degree.

10 Eric Angel, Romain Campigotto and Christian Laforest

Algorithms SLL and ASLL are different because they have to use another
playhead on .deg file to calculate degrees of neighbors. Therefore, their CPU
running times are bigger. For this reason, we focus primarily on values observed
for algorithms LR, ED, S-Pitt and LL.

On sparse graphs (where n and m are similar), CPU running times are close.
They depend on number of requests performed by algorithms and size of covers
constructed. Indeed, the size of solutions can be as huge as n, and writing on a
disk is longer than reading. Moreover, there is often a trade off between the num-
ber of requests performed and the quality of solutions constructed: algorithms
which produce the best solutions often perform the biggest number of requests
(in any case, on one instance, an algorithm is never both the best in terms of
quality of solution and complexity).

On dense graphs (where n is negligible compared to m), the analysis is less
intricate because the size of covers written is tiny compared to the number
of requets performed. Thus, CPU running times are mainly influenced by the
number of requests done.

But these two criteria are not sufficient to explain CPU running times ob-
served. Another technical aspects, linked to operating systems, are involved.
Indeed, the access to the hard drive is indirect: the processing unit uses buffers.
Also, the atomic unit of access depends on the size of disk sectors. If we read
only one vertex on .list file, the system loads more vertices into its buffers.
Hence, the number of physical access is lower than the number of requests per-
formed. One overtakes in this regard practical considerations highlighted in the
I/O-efficient model (see [20] for a survey).

Limits Encountered on our Machine. In the third level, we have generated
two instances: a complete bipartite graph with 630,000 vertices and a ButterFly
graph of dimension 30. On the complete bipartite graph, we were able to run
algorithms LR, ED, S-Pitt and LL: their real running times do not exceed (on our
computer) eight hours (executions of SLL and ASLL were stopped after twenty
hours). On the ButterFly graph, we can only use LL (its real running time is
about fifteen hours) because, on our computer, we cannot allocate an array of
33 · 109 bits (and executions of SLL and ASLL would take too long).

Therefore, LL is the only algorithm that can be run with our computer on
all instances.

4 General Synthesis

We have implemented six algorithms for the vertex cover problem on huge
graphs. We were able to run these algorithms with a standard laptop computer
on instances of sizes up to 30·109 vertices and edges (about 300 Gb on disk). The
CPU running times we obtained do not exceed eight hours (and corresponding
real running times are lower than ten hours).

Heuristics for Vertex Covering on Huge Graphs 11

We have observed that SLL and ASLL are almost always the slowest, since
they have to compute degrees of neighbors. In this direction, they are “less
adapted”. However, SLL is still interesting, because it can give good solutions.

To test limits of algorithms, we have generated two instances of sizes about
100 · 109 vertices and edges (at least 1 Tb on disk): a complete bipartite graph
with 630,000 vertices and 95 · 109 edges (a dense graph), and a ButterFly graph
of dimension 30, with 33 · 109 vertices and 64 · 109 edges (a sparse graph).

– On the complete bipartite graph, we were able to run LR, ED, S-Pitt and LL
(executions of SLL and ASLL were stopped before the end). For the slowest
(LR), its CPU running time barely reaches two hours (and its corresponding
real running time is about seven hours).

– On the ButterFly graph, we were only able to execute the algorithm LL:
executions of LR, ED and S-Pitt failed because we could not allocate an
array of 33 · 109 bits (and, as for the complete bipartite graph above, SLL
and ASLL were stopped before the end).

General Observations. By summarizing the set of results presented for instances
we used, among the six algorithms, LR is the one which gives the best solutions.
It is closely followed by SLL, while ED and ASLL gives the worst solutions.
However, ED performs the smallest number of requests. Based on that, choosing
an algorithm which satisfies both quality of solutions and complexity in number
of requests is difficult. On sparse graphs, where running times are often similar,
we should promote the quality of solutions. Therefore, LR is a good candidate.
Unfortunately, it needs to allocate an n bits array to be run, that is not always
possible. On dense graphs, running times can change significantly, this makes
choice trickier, since the most efficient algorithms are often the slowest.

Perspectives. We could extend our work by designing efficient algorithms
on large instances for other problems. Then, we could compare our treatment
method with the existing ones, e.g. with the semi-external greedy randomized
adaptive search procedure presented in [2] for the max clique problem.

Acknowledgements

We would like to thank the anonymous referees for their insightful comments
and suggestions, which have helped to improve the presentation of this paper.

References

1. http://todo.lamsade.dauphine.fr/spip.php?article39

2. Abello, J., Pardalos, P.M., Resende, M.G.C.: External Memory Algorithms, DI-
MACS, vol. 50, chap. On Maximum Clique Problems in Very Large Graphs, pp.
119–130. American Mathematical Society (1999)

12 Eric Angel, Romain Campigotto and Christian Laforest

3. Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of Massive Data
Sets, Massive Computing, vol. 4. Springer-Verlag (2002)

4. Ajwani, D.: Design, Implementation and Experimental Study of External
Memory BFS Algorithms. Master’s thesis, Max-Planck-Institut für Informatik,
Saarbrücken, Germany (2005)

5. Alber, J., Dorn, F., Niedermeier, R.: Experimental Evaluation of a Tree
Decomposition-Based Algorithm for Vertex Cover on Planar Graphs. Discrete Ap-
plied Mathematics 145, 219–231 (2004)

6. Angel, E., Campigotto, R., Laforest, C.: Analysis and Comparison of Three Algo-
rithms for the Vertex Cover Problem on Large Graphs with Low Memory Capaci-
ties. Algorithmic Operations Research 6(1), 56–67 (2011)

7. Asgeirsson, E., Stein, C.: Vertex Cover Approximation on Random Graphs. In: 6th
Workshop on Experimental Algorithms. vol. LNCS 4525, pp. 285–296 (2007)

8. Bar-Yehuda, R., Hermelin, D., Rawitz, D.: Minimum Vertex Cover in Rectangle
Graphs. In: 18th Annual European Conference on Algorithms. pp. 255–266 (2010)

9. Bomze, I.M., Budinich, M., Pardalos, P.M., Pedillo, M.: Handbook of Combina-
torial Optimization, chap. The Maximum Clique Problem, pp. 1–74. Kluwer Aca-
demic Publishers (1999)

10. de Bruijn, N.G.: A Combinatorial Problem. Koninklijke Nederlandse Akademie v.
Wetenschappen 49, 758–764 (1946)

11. Delbot, F., Laforest, C.: A Better List Heuristic for Vertex Cover. Information
Processing Letters 107, 125–127 (2008)

12. Delbot, F., Laforest, C.: Analytical and Experimental Comparison of Six Algo-
rithms for the Vertex Cover. ACM Journal of Experimental Algorithmics 15 (2010)

13. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and Approximation Results
for the Connected Vertex Cover Problem in Graphs and Hypergraphs. Journal of
Discrete Algorithms 8, 36–49 (2010)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

15. Gilmour, S., Dras, M.: Kernelization as Heuristic Structure for the Vertex Cover
Problem. In: 5th International Workshop on Ant Colony Optimization and Swarm
Intelligence. vol. LNCS 4150, pp. 452–459 (2006)

16. Molloy, M., Reed, B.: A Critical Point for Random Graphs With a Given Degree
Sequence. Random Structures and Algorithms pp. 161–179 (1995)

17. Pirzada, S., Dharwadker, A.: Applications of Graph Theory. Journal of The Korean
Society for Industrial and Applied Mathematics (KSIAM) 11(4), 19–38 (2007)

18. Pitt, L.: A Simple Probabilistic Approximation Algorithm for Vertex Cover. Tech.
Rep. 404, Yale University, Department of Computer Science (1985)

19. Vigier, F., Latapy, M.: Random Generation of Large Connected Simple Graphs
with Prescribed Degree Distribution. In: 11th International Conference on Com-
puting and Combinatorics. Kunming, Yunnan, Chine (2005)

20. Vitter, J.S.: Algorithms and Data Structures for External Memory, vol. 2. Foun-
dations and Trends in Theoretical Computer Science, Boston – Delft (2009)

21. Weisstein, E.W.: Butterfly graph, from MathWorld – A Wolfram Web Ressource:
http://mathworld.wolfram.com/ButterflyGraph.html

