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New global stability estimates for monochromatic inverse acoustic scattering

We give new global stability estimates for monochromatic inverse acoustic scattering. These estimates essentially improve estimates of [P. Hähner, T. Hohage, SIAM J. Math. Anal., 33(3), 2001, 670-685] and can be considered as a solution of an open problem formulated in the aforementioned work.

Introduction

We consider the equation ∆ψ + ω 2 n(x)ψ = 0, x ∈ R 3 , ω > 0, (

where (1 -n) ∈ W m,1 (R 3 ) for some m > 3,

Im n(x) ≥ 0, x ∈ R 3 , supp (1 -n) ⊂ B r1 for some r 1 > 0, (1.2) where W m,1 (R 3 ) denotes the standart Sobolev space on R 3 (see formula (2.11) of Section 2 for details), B r = {x ∈ R 3 : |x| < r}.

We interpret (1.1) as the stationary acoustic equation at frequency ω in an inhomogeneous medium with refractive index n.

In addition, we consider the Green function G + (x, y, ω) for the operator ∆ + ω 2 n(x) with the Sommerfeld radiation condition: ∆ + ω 2 n(x) G + (x, y, ω) = δ(x -y),

lim |x|→∞ |x| ∂G + ∂|x| (x, y, ω) -iωG + (x, y, ω) = 0,
uniformly for all directions x = x/|x|,

x, y ∈ R 3 , ω > 0.

(1.

3)

It is know that, under assumptions (1.2), the function G + is uniquely specified by (1.3), see, for example, [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF], [START_REF] Kress | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF]. We consider, in particular, the following near-field inverse scattering problem for equation (1.1): Problem 1.1. Given G + on ∂B r × ∂B r for some fixed ω > 0 and r > r 1 , find n on B r1 .

We consider also the solutions ψ + (x, k), x ∈ R 3 , k ∈ R 3 , k 2 = ω 2 , of equation (1.1) specified by the following asymptotic condition:

ψ + (x, k) = e ikx -2π 2 e i|k||x| |x| f k, |k| x |x| + o 1 |x| as |x| → ∞ uniformly in x |x| , (1.4) 
with some a priory unknown f . The function

f on M ω = {k ∈ R 3 , l ∈ R 3 : k 2 = l 2 = ω 2 } arising in (1.4
) is the classical scattering amplitude for equation (1.1).

In addition to Problem 1.1, we consider also the following far-field inverse scattering problem for equation (1.1): Problem 1.2. Given f on M ω for some fixed ω > 0, find n on B r1 .

In [START_REF] Yu | The uniqueness theorem in the inverse problem of spectral analysis for the Schrodinger equation[END_REF] it was shown that the near-field data of Problem 1.1 are uniquely determined by the far-field data of Problem 1.2 and vice versa.

Global uniqueness for Problems 1.1 and 1.2 was proved for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]; in addition, this proof is constructive. For more information on reconstruction methods for Problems 1.1 and 1.2 see [START_REF] Alexeenko | Solution of threedimensional acoustical inverse scattering problem,II: modified Novikov algorithm[END_REF], [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF], [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF] and references therein.

Problems 1.1 and 1.2 can be also considered as examples of ill-posed problems: see [START_REF] Lavrentev | Ill-posed problems of mathematical physics and analysis[END_REF], [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF] for an introduction to this theory.

The main results of the present article consist of the following two theorems:

Theorem 1.1. Let C n > 0, r > r 1 be fixed constants. Then there exists a positive constant C (depending only on m, ω, r 1 , r and C n ) such that for all refractive indices n 1 , n 2 satysfying 1 -

n 1 W m,1 (R 3 ) , 1 -n 2 W m,1 (R 3 ) < C n , supp (1 -n 1 ), supp (1 -n 2 ) ⊂ B r1
, the following estimate holds:

||n 1 -n 2 || L ∞ (R 3 ) ≤ C ln 3 + δ -1 -s , s = m -3 3 , (1.5) 
where δ = ||G + 1 -G + 2 || L 2 (∂Br×∂Br ) and G + 1 , G + 2 are the near-field scattering data for the refractive indices n 1 , n 2 , respectively, at fixed frequency ω.

Remark 1.1. We recall that if n 1 , n 2 are refractive indices satisfying (1.2), then

G + 1 -G + 2 is bounded in L 2 (∂B r × ∂B r )
for any r > r 1 , where G + 1 and G + 2 are the near-field scattering data for the refractive indices n 1 and n 2 , respectively, at fixed frequency ω, see, for example, Lemma 2.1 of [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF]. Theorem 1.2. Let C n > 0 and 0 < ǫ < m-3 3 be fixed constants. Then there exists a positive constant C (depending only on m, ǫ, ω, r 1 and C n ) such that for all refractive indices n 1 , n 2 satysfying 1 -

n 1 W m,1 (R 3 ) , 1 -n 2 W m,1 (R 3 ) < C n , supp (1 -n 1 ), supp (1 -n 2 ) ⊂ B r1
, the following estimate holds:

||n 1 -n 2 || L ∞ (R 3 ) ≤ C ln 3 + δ -1 -s+ǫ , s = m -3 3 , (1.6) 
where δ = ||f 1 -f 2 || L 2 (Mω) and f 1 , f 2 denote the scattering amplitudes for the refractive indices n 1 , n 2 , respectively, at fixed frequency ω.

For some regularity dependent s but always smaller than 1 the stability estimates of Theorems 1.1 and 1.2 were proved in [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF]. Possibility of estimates (1.5), (1.6) with s > 1 was formulated in [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF] as an open problem, see page 685 of [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF]. Our estimates (1.5), (1.6) with s = m-3 3 give a solution of this problem. Apparently, using the methods of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] estimates (1.5), (1.6) can be proved for s = m -3. For more information on stability estimates for Problems 1.1 and 1.2 see [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF], [START_REF] Isaev | Exponential instability in the inverse scattering problem on the energy interval[END_REF], [START_REF] Stefanov | Stability of the inverse problem in potential scattering at fixed energy[END_REF] and references therein. In particular, as a corollary of [START_REF] Isaev | Exponential instability in the inverse scattering problem on the energy interval[END_REF] estimates (1.5), (1.6) can not be fulfilled, in general, for s > 5m

3 . The proofs of Theorem 1.1 and 1.2 are given in Section 3. These proofs use, in particular:

1. Properties of the Faddeev functions for equation (1.1) considered as the Schrödinger equation at fixed energy E = ω 2 , see Section 2.

2. The results of [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF] consisting in Lemma 3.1 and in reducing (via Lemma 3.2) estimates of the form (1.6) for Problem 1.2 to estimates of the form (1.5) for Problem 1.1.

In addition in the proofs of Theorem 1.1 and 1.2 we combine some of the aforementioned ingredients in a similar way with the proof of stability estimates of [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF].

Faddeev functions

We consider (1.1) as the Schrödinger equation at fixed energy E = ω 2 :

-∆ψ + v(x)ψ = Eψ, x ∈ R 3 , (2.1) 
where v = ω 2 (1 -n), E = ω 2 .
For equation (2.1) we consider the Faddeev functions G, ψ, h (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

G(x, k) = e ikx g(x, k), g(x, k) = -(2π) -3 R 3 e iξx dξ ξ 2 + 2kξ , (2.2) 
ψ(x, k) = e ikx + R 3 G(x -y, k)v(y)ψ(y, k)dy, (2.3) 
where

x ∈ R 3 , k ∈ C 3 , k 2 = E, Im k = 0, h(k, l) = (2π) -3 R 3 e -ilx v(x)ψ(x, k)dx, (2.4) 
where 

k, l ∈ C 3 , k 2 = l 2 = E, Im k = Im l = 0. ( 2 
v ∈ L ∞ (B r1 ), v ≡ 0 on R 3 \ B r1 . (2.7)
We recall that (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

• The function G satisfies the equation

(∆ + E)G(x, k) = δ(x), x ∈ R 3 , k ∈ C 3 \ R 3 , E = k 2 ;
(2.8)

• Formula (2.3) at fixed k is considered as an equation for

ψ = e ikx µ(x, k), (2.9) 
where µ is sought in L ∞ (R 3 );

• As a corollary of (2.3), (2.2), (2.8), ψ satisfies (2.1) for E = k 2 ;

• The Faddeev functions G, ψ, h are (non-analytic) continuation to the complex domain of functions of the classical scattering theory for the Schrödinger equation (in particular, h is a generalized "'scattering"' amplitude).

In addition, G, ψ, h in their zero energy restriction, that is for E = k 2 = 0, were considered for the first time in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. The Faddeev functions G, ψ, h were, actually, rediscovered in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF].

Let

Σ E = k ∈ C 3 : k 2 = k 2 1 + k 2 2 + k 2 3 = E , Θ E = {k ∈ Σ E , l ∈ Σ E : Im k = Im l} , |k| = (|Re k| 2 + |Im k| 2 ) 1/2 . (2.10) Let W m,q (R 3 ) = {w : ∂ J w ∈ L q (R 3 ), |J| ≤ m}, m ∈ N ∪ 0, q ≥ 1, J ∈ (N ∪ 0) 3 , |J| = 3 i=1 J i , ∂ J v(x) = ∂ |J| v(x) ∂x J1 1 ∂x J2 2 ∂x J3 3 , ||w|| m,q = max |J|≤m ||∂ J w|| L q (R 3 ) .
(2.11)

Let the assumptions of Theorems 1.1 and 1.2 be fulfilled:

(1 -n) ∈ W m,1 (R 3 ) for some m > 3, Im n(x) ≥ 0, x ∈ R 3 , supp (1 -n) ⊂ B r1 , 1 -n m,1 ≤ C n .
(2.12)

Let v = ω 2 (1 -n), N = ω 2 C n , E = ω 2 .
(2.13)

Then we have that:

µ(x, k) → 1 as |k| → ∞ (2.14)
and, for any σ > 1,

|µ(x, k)| ≤ σ for |k| ≥ λ 1 (N, m, σ, r 1 ), (2.15) 
where

x ∈ R 3 , k ∈ Σ E ; v(p) = lim (k, l) ∈ ΘE , k -l = p |Im k| = |Im l| → ∞ h(k, l) for any p ∈ R 3 , (2.16 
)

|v(p) -h(k, l)| ≤ c 1 (m, r 1 )N 2 (E + ρ 2 ) 1/2 for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ λ 2 (N, m, r 1 ), p 2 ≤ 4(E + ρ 2 ), (2.17) 
where v(p) = (2π) -3

R 3 e ipx v(x)dx, p ∈ R 3 . (2.18)
Results of the type (2.14), (2.15) go back to [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. For more information concerning (2.15) see estimate (4.11) of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]. Results of the type (2.16), (2.17) (with less precise right-hand side in (2.17)) go back to [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]. Estimate (2.17) follows, for example, from formulas (2.3), (2.4) and the estimate

Λ -s g(k)Λ -s L 2 (R d )→L 2 (R d ) = O(|k| -1 ) as |k| → ∞, k ∈ C 3 \ R 3 , (2.19) 
for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel g(x -y, k) and Λ denotes the multiplication operator by the function (1 + |x| 2 ) 1/2 . Estimate (2.19) was formulated, first, in [START_REF] Lavine | On the inverse scattering transform of the n-dimensional Schrödinger operator Topics in Soliton Theory and Exactly Solvable Nonlinear Equations[END_REF]. This estimate generilizes, in particular, some related estimate of [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for k 2 = E = 0. Concerning proof of (2.19), see [START_REF] Weder | Generalized limiting absorption method and multidimensional inverse scattering theory[END_REF].

In addition, we have that:

h 2 (k, l) -h 1 (k, l) = (2π) -3 R 3 ψ 1 (x, -l)(v 2 (x) -v 1 (x))ψ 2 (x, k)dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, and v 1 , v 2 satisfying (2.6), (2.20) 
and, under the assumptions of Theorems 1.1 and 1.2,

|v 1 (p) -v2 (p) -h 1 (k, l) + h 2 (k, l)| ≤ c 2 (m, r 1 )N v 1 -v 2 L ∞ (Br 1 ) (E + ρ 2 ) 1/2 for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ λ 3 (N, m, r 1 ), p 2 ≤ 4(E + ρ 2 ), (2.21)
where h j , ψ j denote h and ψ of (2.4) and (2.3) 

for v j = ω 2 (1 -n j ), j = 1, 2, N = ω 2 C n , E = ω 2 .
Formula (2.20) was given in [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]. Estimate (2.21) was given e.g. in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF].

3 Proofs of Theorem 1.1 and Theorem 1.2

3.1. Preliminaries. In this section we always assume for simplicity that r 1 = 1. We consider the operators Ŝj , j = 1, 2, defined as follows

( Ŝj φ)(x) = ∂Br G + j (x, y, ω)φ(y)dy, x ∈ ∂B r , j = 1, 2. (3.1) Note that Ŝ1 -Ŝ2 L 2 (∂Br) ≤ G + 1 -G + 2 L 2 (∂Br)×L 2 (∂Br ) . (3.2)
To prove Theorems 1.1 and 1.2 we use, in particular, the following lemmas (see Lemma 3.2 and proof of Theorem 1.2 of [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF]):

Lemma 3.1. Assume r 1 = 1 < r < r 2 . Moreover, n 1 , n 2 are refractive indices with supp (1 -n 1 ), supp (1 -n 2 ) ⊂ B 1 .
Then, there exists a postive constant c 3 (depending only on ω, r, r 2 ) such that for all solutions

ψ 1 ∈ C 2 (B r2 ) ∩ L 2 (B r2 ) to ∆ψ + ω 2 n 1 ψ = 0 in B r2 and all solutions ψ 2 ∈ C 2 (B r2 ) ∩ L 2 (B r2 ) to ∆ψ + ω 2 n 2 ψ = 0 in B r2 the following estimate holds: B1 (n 1 -n 2 )ψ 1 ψ 2 dx ≤ c 3 Ŝ1 -Ŝ2 L 2 (∂Br ) ψ 1 L 2 (Br 2 ) ψ 2 L 2 (Br 2 ) . (3.3) 
Note that estimate (3.3) is derived in [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF] using an Alessandrini type identity, where instead of the Dirichlet-to-Neumann maps the operators Ŝ1 , Ŝ2 are used, see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF].

Lemma 3.2. Let r > r 1 = 1, ω > 0, C n > 0, µ > 3/2 and 0 < θ < 1. Let n 1 , n 2 be refractive indices such that (1 -n j ) H µ (R 3 ) ≤ C n , supp(1 -n j ) ⊂ B 1 , j = 1, 2
, where H µ = W µ,2 . Then there exist positive constants T and η such that

G + 1 -G + 2 2 L 2 (∂B2r ×∂B2r ) ≤ η 2 exp --ln f 1 -f 2 L 2 (Mω) T η θ (3.4) 
for sufficiently small f 1 -f 2 L 2 (Mω ) , where G + j , f j are near and far field scattering data for n j , j = 1, 2, at fixed frequency ω.

Proof of Theorem

1.1. Let L ∞ µ (R 3 ) = {u ∈ L ∞ (R 3 ) : u µ < +∞}, u µ = ess sup p∈R 3 (1 + |p|) µ |u(p)|, µ > 0. (3.5) Note that w ∈ W m,1 (R 3 ) =⇒ ŵ ∈ L ∞ µ (R 3 ) ∩ C(R 3 ), ŵ µ ≤ c 4 (m) w m,1 for µ = m, (3.6) 
where W m,1 , L ∞ µ are the spaces of (2.11), (3.5),

ŵ(p) = (2π) -3 R 3 e ipx w(x)dx, p ∈ R 3 . (3.7) 
Let

N = ω 2 C n , E = ω 2 , v j = ω 2 (1 -n j ), j = 1, 2. (3.8)
Using the inverse Fourier transform formula

w(x) = R 3 e -ipx ŵ(p)dp, x ∈ R 3 , (3.9) 
we have that 

v 1 -v 2 L ∞ (D) ≤ sup x∈ B1 R 3 e -ipx (v 2 (p) -v1 (p)) dp ≤ ≤ I 1 (κ) + I 2 (κ)
|v 2 (p) -v1 (p)| ≤ 2c 4 (m)N (1 + |p|) -m , p ∈ R 3 . (3.12) 
Using (3.11), (3.12), we find that, for any κ > 0,

I 2 (κ) ≤ 8πc 4 (m)N +∞ κ dt t m-2 ≤ 8πc 4 (m)N m -3 1 κ m-3 .
(3.13)

Due to (2.21), we have that

|v 2 (p) -v1 (p)| ≤ |h 2 (k, l) -h 1 (k, l)| + c 2 (m)N v 1 -v 2 L ∞ (B1) (E + ρ 2 ) 1/2 , for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ λ 3 (N, m), p 2 ≤ 4(E + ρ 2 ). (3.14) 
Let r 2 be some fixed constant such that r 2 > r, 

δ = ||G + 1 -G + 2 || L 2 (∂Br×∂Br ) , c 5 = (2π) -3
|h 2 (k, l) -h 1 (k, l)| ≤ ≤ c 3 c 5 ω 2 ψ 1 (•, -l) L ∞ (Br 2 ) δ ψ 2 (•, k) L ∞ (Br 2 ) , (k, l) ∈ Θ E , |Im k| = |Im l| = 0. (3.16)
Using (2.15), we find that

ψ j (•, k) L ∞ (Br 2 ) ≤ σ exp |Im k|r 2 , j = 1, 2, k ∈ Σ E , |k| ≥ λ 1 (N, m, σ).
(3.17)

Here and bellow in this section the constant σ is the same that in (2.15). Combining (3.16) and (3.17), we obtain that

|h 2 (k, l) -h 1 (k, l)| ≤ c 3 c 5 ω 2 σ 2 e 2ρr2 δ, for (k, l) ∈ Θ E , ρ = |Im k| = |Im l|, E + ρ 2 ≥ λ 2 1 (N, m, σ). (3.18) 
Using (3.14), (3.18), we get that

|v 2 (p) -v1 (p)| ≤ c 3 c 5 ω 2 σ 2 e 2ρr2 δ + c 2 (m)N v 1 -v 2 L ∞ (B1) (E + ρ 2 ) 1/2 , p ∈ R 3 , p 2 ≤ 4(E + ρ 2 ), E + ρ 2 ≥ max{λ 2 1 , λ 3 }. (3.19) Let ε = 3 8πc 2 (m)N 1/3 (3.20)
and λ 4 (N, m, σ) > 0 be such that 

E + ρ 2 ≥ λ 4 (N, m, σ) =⇒        E + ρ 2 ≥ λ 2 1 (N, m, σ), E + ρ 2 ≥ λ 3 (N, m), ε(E + ρ 2 ) 1 6 2 ≤ 4(E + ρ 2 ).
I 1 (κ) ≤ 4 3 πκ 3 c 3 c 5 ω 2 σ 2 e 2ρr2 δ + c 2 (m)N v 1 -v 2 L ∞ (B1) (E + ρ 2 ) 1/2 , κ > 0, κ 2 ≤ 4(E + ρ 2 ), E + ρ 2 ≥ λ 4 (N, m, σ). ( 3 
v 1 -v 2 L ∞ (B1) ≤ c 6 (N, m, ω, σ) E + ρ 2 e 2ρr2 δ+ +c 7 (N, m)(E + ρ 2 ) -m-3 6 + 1 2 v 1 -v 2 L ∞ (B1) , E + ρ 2 ≥ λ 4 (N, m, σ). (3.23) 
Let τ ∈ (0, 1) and

β = 1 -τ 2r 2 , ρ = β ln 3 + δ -1 , (3.24) 
where δ is so small that E + ρ 2 ≥ λ 4 (N, m, σ). Then due to (3.23), we have that = m-3 3 -ǫ, and (3.28), we obtain (1.6) for sufficiently small f 1 -f 2 L 2 (Mω) (analogously with the proof of Theorem 1.2 of [START_REF] Hähner | New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications[END_REF]). Using also (3.27) and (3.8), we get estimate (1.6) in the general case.

  for any κ > 0, (3.10) where I 1 (κ) = |p|≤κ |v 2 (p) -v1 (p)|dp, I 2 (κ) = |p|≥κ |v 2 (p) -v1 (p)|dp. (3.11) Using (3.6), we obtain that

(3. 21 )

 21 Using(3.11),(3.19), we get that

. 22 ) 1 6

 221 Combining (3.10), (3.13),(3.22) for κ = ε(E + ρ 2 ) and (3.21), we get that

1 2 v 1 - 6 == c 6 ( 6 ,( 3 . 25 ) 3 ( 3

 166632533 v 2 L ∞ (D) ≤ ≤ c 6 (N, m, ω, σ) E + β ln 3 + δ -1 2 1/2 3 + δ -1 2βr2 δ+ +c 7 (N, m) E + β ln 3 + δ -1 2 -m-3 N, m, ω, σ) E + β ln 3 + δ -1 2 1/2 (1 + 3δ) 1-τ δ τ + + c 7 (N, m) E + β ln 3 + δ -1 2 -m-3where τ, β and δ are the same as in(3.24). Using (3.25), we obtain thatv 1 -v 2 L ∞ (B1) ≤ c 8 (N, m, ω, σ, τ ) ln 3 + δ -1 -m-3 .26) for δ = ||G + 1 -G + 2 || L 2 (∂Br ×∂Br) ≤ δ 1 (N, m, ω, σ, τ ), where δ 1 is a sufficiently small positive constant. Estimate(3.26) in the general case (with modified c 8 ) follows from (3.26) for δ ≤ δ 1 (N, m, ω, σ, τ ) and the property thatv j L ∞ (B1) ≤ c 9 (m)N, j = 1, 2.(3.27)Taking into account (3.8), we obtain (1.5).3.2. Proof of Theorem 1.2. According to the Sobolev embedding theorem, we have thatW m,1 (R 3 ) ⊂ H m-3/2 (R 3 ),(3.28)where H µ = W µ,2 . Combining (1.2), (1.5), (3.4) with θ satisfying θ m-3 3
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