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This work deals with the approximate reduction of a non-autonomous two time scales ordinary

differential equations system with periodic coefficients. We illustrate this technique with the analysis

of a two patches periodic Lotka-Volterra predator-prey type model with a refuge for prey. Considering

migrations between patches to be faster than local interaction allows us to study a three dimensional

system by means of a two dimensional one.

1. Introduction.

The description of ecological systems in terms of mathematical models makes those

latter to be complex and thus requiring some reduction to be analytically tractable. This

complexity arises from the fact that a detailed model necessarily includes observations and

processes each of them related to a specific scale. A simplification of this situation needs

to translate model processes from one to another scale by transferring information between

them, what it is called scaling. Hierarchy theory provides the conceptual framework of how

processes and components of an ecological system interrelate and how they can be ordered

( [8, 10]).

In mathematical terms a system including several interacting organization levels can be

seen as a system with different time scales. Each organization level consists of interacting

entities with their own dynamics, and those entities of a given level with strong or fast inter-

actions can be grouped giving rise to the entities at next level. Mathematically the process

of up-scaling consists in deriving global variables and their dynamics from the lower level

based on the existence of different time scales. This is roughly done by considering those

events occurring at the fastest scale as being instantaneous with respect to the slower ones,

what entails a reduction of the number of variables and parameters needed to describe the

evolution of the system at the upper level.

An example of this general framework are the so-called aggregation methods which

study the relationship between a large class of two-time scales complex systems and their

corresponding aggregated or reduced ones. A review on these methods in different math-

ematical settings with updated bibliography can be found in Ref. [1, 2]. Aggregation tech-

niques are particularly well developed for autonomous ordinary differential equations, be-

ing their mathematical basis the Fenichel center manifold theorems [5] and the geometric

singular perturbation theory [12, 13]. In short, an autonomous system of ordinary differen-
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tial equations with two scales can be expressed in the following form

dn

dτ
= f(n) + ǫs(n) (1.1)

with state variables n = (n1, · · · , nm), where f = (f1, · · · , fm) and s = (s1, · · · , sm)

are sufficiently regular functions describing the fast and slow dynamics, respectively, and ǫ

is the small positive parameter measuring the time scales ratio. To perform its approximate

aggregation, system (1.1) is firstly converted into slow-fast form by means of an appropriate

change of variables n ∈ R
m −→ (x, y) ∈ R

m−k × R
k:











dx

dτ
= F(x,y) + ǫS(x,y)

dy

dτ
= ǫG(x,y)

(1.2)

where x represents the fast variables and y the slow variables. Finding the transformation

n 7→ (x, y) which yields the slow-fast form (1.2) of system (1.1) could be a difficult

task and the construction of general algorithms solving this problem is presently an active

research line. On the other hand, in some applications, as we will see later, the context gives

a natural way to define the so-called global variables y and thus to express system (1.1) in

slow-fast form.

The reduction process now consists in taking ǫ = 0 in the first equation of the slow-fast

form ((1.2)), dx/dτ = F(x,y), and assuming, for constant y, that there exist asymptoti-

cally stable equilibria x∗(y), in building up an aggregated system for the global variables

with the following form:

dy

dt
= G(x∗(y),y) (1.3)

where t = ǫτ represents the slow time variable. Under certain hypotheses the asymptotic

behaviour of system (1.1) can be studied through system (1.3).

The purpose of this work is showing how to extend these reduction techniques to sys-

tems of non-autonomous ordinary differential equations. These systems represent more re-

alistic population models compared with autonomous ones due to the flexibility to include

time-varying features of the environment (light, temperature, relative humidity or resources

availability) as well as demographic characteristics of the involved populations (migrations

or reproduction) which are usually subjected to daily or seasonal variations. A particular

and very relevant case of non-autonomous system is the periodic one, which is frequently

found as model of natural systems.

We develop in section 2 the approximate reduction of a general class of two time scales

systems of periodic ordinary differential equations of the form:

dn

dτ
= f(n) + ǫs(ǫτ,n) (1.4)

where function s is periodic in time. To our knowledge the only result of approximate ag-

gregation of a non-autonomous system is found in [9]. In this work, the fast dynamics is

considered non-autonomous and assumed to tend to stationary periodic solutions depend-

ing on global variables; averaging techniques together with the aforementioned Fenichel
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center manifold theorems allow to proceed to the reduction of the system. There is no over-

lap with our results since we introduce periodic time dependent slow dynamics and we use

Hoppensteadt theorems on singular perturbations [7] to justify the suggested reduction.

In Section 3 we illustrate the aggregation techniques developed in Section 2 applying

them to a two patches prey-predator model: prey can migrate between the patch where

predators are and a refuge, local predator-prey interactions are described through a particu-

lar form of Beddington-DeAngelis [3] functional response with periodic coefficients, and,

finally, prey migrations are assumed to be fast when compared with predator-prey interac-

tions. We obtain the reduced system and study with its help the asymptotic behaviour of

solutions of the initial system. Section 4 is devoted to conclusions and an appendix con-

taining a proof completes the paper.

2. Reduction theorem.

In this section we present the reduction of system (1.4), dn/dτ = f(n) + ǫs(ǫτ,n),

which slow part depends on time at the slow time scale. We firstly suppose that (1.4) admits

a slow-fast form:










dx

dτ
= F(x,y) + ǫS(ǫτ,x,y)

dy

dτ
= ǫG(ǫτ,x,y)

(2.1)

where (x,y) ∈ R
m−k × R

k. The goal of this section is applying the results in Hopppen-

steadt [7] by imposing mild assumptions on F, S and G, so that system (1.4) can be studied

through a reduced system. For this purpose, we make appear the slow time variable t = ǫτ ,

obtaining:











ǫ
dx

dt
= F(x,y) + ǫS(t,x,y)

dy

dt
= G(t,x,y)

(2.2)

which, letting ǫ = 0, yields the following system:







0 = F(x,y),

dy

dt
= G(t,x,y)

(2.3)

We find in system (2.3) the key to decouple slow and fast dynamics of system (2.1) and

to derive the reduced system. Solving for x, in terms of y, the first equation in (2.3), i.e.,

finding x∗(y) such that 0 = F(x∗(y),y), allows to obtain, by substitution in the second

equation in (2.3), a reduced system for variables y:

dy/dt = G(t,x∗(y),y)

which play the role of aggregated system and contains the information on the asymptotic

behaviour of system (1.4) provided that hypotheses in the next theorem are met.
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The following theorem summarizes the previous digression. From now on, we note

I := [t0,+∞) SR :=
{

(x,y) ∈ R
m−k × R

k; ‖(x0,y0)− (x,y)‖ ≤ R
}

where (x0,y0) are the initial values of system (2.1). Finally, consider the sets

K := {d : [0,∞) → [0,∞); d(0) = 0, strictly increasing and continuous},

S := {σ : [0,∞) → [0,∞); lim
t→∞

σ(t) = 0, strictly decreasing and continuous}.

Theorem 2.1. Consider system (2.1), where F, S, G ∈ C2 and S, G are periodic func-

tions of time. Let us note S|Ry
the projection of S|R on R

k. Assume that

(C1) There exists a continuum of equilibria x∗(β), β ∈ S|Ry
for system (known as the

boundary layer system)

dx

ds
= F(x, β), β ∈ S|Ry

, (2.4)

such that the real part of the eigenvalues of JxF(x
∗(β)) is negative ∀β ∈ S|Ry

(where J stands for the Jacobian matrix).

(C2) The aggregated system






dy

dt
= G(t,x∗(t,y),y),

y(t0) = y0,
(2.5)

where x∗ is that of condition (C1), has a solution y∗(t) defined for all t ∈ I

which is uniformly-asymptotically stable. We mean that for any other solution

Φ(t, t0, ȳ0) of system (2.5), there exist functions d ∈ R and σ ∈ S such that

‖y∗(t, t0,y0)− Φ(t, t0, ȳ0)‖ ≤ d (‖y0 − ȳ0‖)σ(t− t0). (2.6)

Then, there exists R > 0 such that for each ǫ > 0 small enough and each (x̄0, ȳ0) ∈ SR

the corresponding solution (xǫ(t, t0, x̄0), yǫ(t, t0, ȳ0)) of the original system (2.1) verifies

lim
ǫ→0

(xǫ(t, t0, x̄0), yǫ(t, t0, ȳ0)) = (x∗(y∗(t)),y∗(t))

uniformly on closed subset of [t0,∞).

Proof.– Hoppensteadt’s theorem is a general one and deals with systems of the form










ǫ
dx

dt
= ̟(t,x,y, ǫ),

dy

dt
= ϕ(t,x,y, ǫ).

(2.7)

Keeping in mind the precise form of system (2.2)











ǫ
dx

dt
= F(x,y) + ǫS(t,x,y),

dy

dt
= G(t,x,y),
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and the fact that F, S, G are periodic functions of t, it is straightforward checking that

Theorem 2.1 fulfills the hypothesis if the main Theorem in [7].

�

Remark 2.1. In condition (C1) we have assumed the existence of a continuum of equilibria

x∗(β), ∀β ∈ S|Ry
, of system (2.4). Consider that there exist x∗

1(β) and x∗
2(β), such that

F(x∗
i (β), β) = 0 for i = 1, 2, β ∈ S|Ry

and that x∗
1(β̄) 6= x∗

2(β̄) for certain β̄ ∈ S|Ry
;

that is, there exist two different continuum of such an equilibria. Then it is needed that

x∗
1(β) 6= x∗

2(β) ∀β ∈ S|Ry
for theorem 2.1 to hold.

Remark 2.2. If functions S(t, ·, ·), G(t, ·, ·) were not periodic functions of time, the fol-

lowing regularity conditions are needed:

(C3) The following regularity conditions hold

(a) F, S, G, Fx + ǫSx, Fy + ǫSy, Ft + ǫSt, Gx, Gy ∈ C(I × S|R × [0, ǫ0)),

for certain ǫ0 > 0.

(b) Function G is continuous at x∗(y) uniformly in (t,y) ∈ I × S|Ry
.

(c) Function F + ǫG is continuous at ǫ = 0 uniformly in (t,x,y) ∈ I × S|R.

Moreover F, Ft, Fx, Fy are bounded on I × S|Ry

Corollary 2.1. The existence of a bounded compact simply connected positively invariant

region R for system (2.5) implies the existence of a periodic solution for system (2.5).

Once we have a periodic solution for the aggregated system, checking condition (2.6)

could be difficult. In this sense, the following result provide us with easy-to-check condi-

tions

Corollary 2.2. Assume that the aggregated system (2.5) posseses a periodic solution y∗(t).

Consider the linearization of system (2.5) around y∗

z′ = Gy(t,x
∗(y∗),y∗)z. (2.8)

Then, any of the following conditions assures that y∗(t) is uniformly asymptotically stable

in the sense of condition (C2):

(1) The characteristic multipliers of system (2.8) are in modulus less than one.

(2) Condition (2.6) holds for solution y∗(t) of system (2.8).

Proof.– It follows from the considerations done at Section 4.2 (in particular, Theorem

4.2.1.) in [4].

�

3. Periodic predator-prey model with fast migrations.

This section begins with the construction of an spatially distributed two time scales

predator-prey model with functional response of DeAngelis type [3]. Then, a reduced

model is derived to simplify the study of the original one. After doing so, we perform a

detailed analysis of the aggregated system.
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3.1. Construction and reduction of the system.

We consider a predator-prey model in a two patches environment. Prey population at

patch i = 1, 2 is noted by ni. Prey can migrate from patch i at constant rate mi. Predators p

stay confined at the second region. Migrations are considered to be much faster than local

dynamics which, in addition, are supposed to be periodic functions of time. The first patch

is a refuge for prey, where its density evolves under a logistic growth law. In the second

patch we let prey and predators interact. These interactions are described by a classical

predator-prey system with intra-specific competition for prey and functional response given

by

f1(t, n2, p) =
a(t)n2

1 + b(t)n2 + c(t) p
(3.1)

where a measures the effect of capture rate, b stands for the time used for processing each

capture (handling time) and, finally c is the time elapsed engaging with other predators. See

DeAngelis [3] (where all coefficients were considered to be constant) and [11]. Therefore,

the complete interaction term is

f1(t, n2, p)p =
a(t)n2p

1 + b(t)n2 + c(t)p
(3.2)

and assuming b = 0 (i.e., considering the time used for processing each capture to be

negligible), it becomes

f1(t, n2, p)p =
a(t)n2p

1 + c(t)p
. (3.3)

We let t = ǫτ , meaning that the coefficients describing the interactions slowly change with

τ ; that is, these coefficients evolve at the slow time scale. All those settings are represented

by means of the following system of non-autonomous ordinary differential equations:














































dn1

dτ
= −m1n1 +m2n2 + ǫr1(ǫτ)n1

(

1−
n1

K1(ǫτ)

)

,

dn2

dτ
= m1n1 −m2n2 + ǫ

(

r2(ǫτ)n2

(

1−
n2

K2(ǫτ)

)

−
φ2(ǫτ) n2

1 + c(ǫτ)p
p

)

,

dp

dτ
= ǫ

(

−λ3(ǫτ)p+
φ3(ǫτ) n2

1 + c(ǫτ)p
p

)

,

(3.4)

where the functions rj , λ3, c, φj+1, Kj ∈ C0, for j = 1, 2, are positive, bounded away

from zero and periodic with the same period T . These functions depend on the slow unit

time t = ǫτ . On the other hand, ǫ is a small positive parameter representing the ratio be-

tween the time scales. As usual, ri (i=1,2) and λ3 stand for the respective net growth rates,

Ki (i=1,2) is the carrying capacity, φi (i=1,2) measures the effect of captures in prey and

predator populations and c is the time elapsed engaging with other predators. We will set

c = 1, so that we keep the effect of interferences between predators but simplify the system

(which already depends on many parameters).
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It is apparent that, at ǫ = 0, there exists an stable manifold of equilibria for the fast

dynamics which are not asymptotically stable. Thus, condition (C1) fails. In this context,

according with [1], using the global variable

p(τ) = n1(τ) + n2(τ), (3.5)

allow us to write system (3.4) in the appropriate slow fast form. Let us now introduce

frequencies as

νi(τ) = pi(τ)/p(τ), i = 1, 2. (3.6)

In terms of the frequencies, system (3.4) reads as follows























































ǫ
dν1
dt

= m2 − (m1 +m2)ν1 + ǫ(1− ν1)

[

r1(t)

(

1−
ν1 p

K1(t)

)

ν1 − r2(t)

(

1−
(1− ν1) p

K2(t)

)

+
φ2(t)p

1 + p

]

,

dn

dt
=

[

r1(t)

(

1−
ν1 n

K1(t)

)

ν1 + r2(t)

(

1−
(1− ν1)n

K2(t)

)

(1− ν1)−
φ2(t)(1− ν1)p

1 + p

]

n,

dp

dt
=

[

−λ3(t) +
φ3(t)(1− ν1)n

1 + p

]

p,

n1(t0) = n10, n2(t0) = n20, p(t0) = p0
(3.7)

provided t = ǫτ . The following result is straightforward:

Lemma 3.1. Consider the boundary layer problem (2.4) associated with system (3.7). It

holds that

ν∗1 :=
m2

m1 +m2
= ν∗1 (n, p), (3.8)

fulfills condition (C1) in Theorem 2.1.

From now on, we note z′ = dz/dt. Thus, the aggregated system reads:











n′ = (a(t)− b(t)n)n−
c(t)n

1 + p
p,

p′ = −λ(t)p+
f(t)n

1 + p
p,

(3.9)

where






a(t) = r1(t)ν
∗
1 + r2(t)ν

∗
2 , b(t) =

r1(t)(ν
∗
1 )

2

K1(t)
+

r2(t)(ν
∗
2 )

2

K2(t)
,

c(t) = φ2(t)ν
∗
2 , λ(t) = λ3(t), f(t) = φ3(t)ν

∗
2 .

(3.10)

3.2. Analysis of the aggregated system.

We carry on with the study of system (3.9). For further purposes, we recall that the func-

tions defined in (3.10) are periodic, positive and bounded away from zero. Thus, achieve
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strictly positive minimum and maximum, which we will note as







aL ≤ a(t) ≤ aM bL ≤ b(t) ≤ bM
cL ≤ c(t) ≤ cM λL ≤ λ(t) ≤ λM

fL ≤ f(t) ≤ fM

(3.11)

System (3.9) always admits the trivial solution (n(t), p(t)) = (0, 0) for all t ≥ t0.

Moreover, if we let p(t) = 0, then system (3.9) simplifies in

n′ = (a(t)− b(t)n)n, n(t0) = n0, (3.12)

which was studied in [6]. In this paper, it was shown that if a(t) > 0 and b(t) > 0 are

periodic functions with common period T , then there exists an unique positive periodic

solution n∗
0(t) for (3.12) which is globally asymptotically stable. We will refer to (n∗

0(t),0)

as the semi-trivial solution of system (3.9). Later on, we will relate the existence of an

asymptotically stable positive periodic solution of problem (3.9) with the stability of the

semi-trivial solution. Both positive semi-axes are invariant sets for system (3.9).

Proposition 3.1. Let us assume that condition

0 <
λM

fL
<

aL
bM

(3.13)

holds. Then, there exist ǫ0 > 0 and δ > 0 such that for each ǫ ∈ (0, ǫ0)

lim
ǫ→0

(nǫ
1(t), n

ǫ
2(t), p(t)) = (ν∗1n

∗(t), (1− ν∗1 )n
∗(t), p∗(t))

uniformly on closed subintervals of [t0,∞), where ν∗1 is that of (3.8), (n∗(t), p∗(t)) is a

positive periodic solution of the aggregated system (3.9) and (nǫ
1(t), n

ǫ
2(t), p(t)

ǫ(t)) is the

solution of (3.4) with initial values (n̄10, n̄,20, p̄) such that

‖(n̄10, n̄20, p̄)− (n10, n20, p0)‖ < δ.

Proof.– The proof is decomposed in several steps. First, the following result will be needed

in the proof:

Lemma 3.2. Let bij(t) > 0, where i, j = 1, 2, be strictly positive periodic functions with

period T . The, the zero solution of system

{

z′1 = −b11(t)z1 − b12(t)z2
z′2 = b21(t)z1 − b22(t)z2

is asymptotically stable uniformly in the sense of Hoppensteadt.

Proof.– See the Appendix

Next, we will find a convex invariant region R for system (3.9). Applying a fixed point

theorem yields the existence of at least a positive periodic solution for system (3.9) within

R. Finally, we will show that such a solution is uniformly-asymptotically stable in the sense

of Hoppensteadt.
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Step 1. Existence of a positive periodic solution.

With the help of bounds (3.11), direct calculations yield curves bounding regions of the fist

quadrant where the sign of n′ and p′ are constant. Namely


















































n <
1

bM

[

aL − cM
p

1 + p

]

⇒ 0 < n′

n >
1

bL

[

aM − cL
p

1 + p

]

⇒ 0 > n′

p <
fL
λM

n− 1 ⇒ 0 < p′

p >
fM
λL

n− 1 ⇒ 0 > p′

(3.14)

Figure 1 shows such a curves.

nn

p p

aL−cM
bM

aL
bM

aM
bL

aM−cL
bL

λL
fM

λM
fL

−1

Fig. 1. Left and right: regions where the sign of n′ and p′ is constant. The curves are noted, from left to right,

n′

+
(n), n′

−
(n), p′

−
(n) and p′

+
(n).

Depending on the relative position of the nulclines of the bounding equations (3.14) we

can find different scenarios. We seek for a positively invariant, convex region R bounded

away from the axes. We will build a rectangular region R thus, we shall find ri ∈ R,

i = 1, · · · , 4 such that R := [r1, r2] × [r3, r4]. Keeping in mind that n = (aL − cm)/bM
is an asymptotic (vertical) line to n′

+(n), we can place r1 anywhere in (0, (aL − cm)/bM ).

Moreover, as n′
+(n) < n′

−(n) < aM/bL, we can choose r2 ≥ aM/bL. On the other hand,

we recall that 0 < λM/fL < aL/bM holds. Thus, the curve p = p′+(n) meets the vertical

line n = aL/bM at p̄ > 0 and we can let r3 ∈ (0, p̄). Finally, as p′−(n) > p′+(n) for n ≥ 0,

if ¯̄p is the intersection between p′−(n) and n = aM/bL, choosing r4 ≥ ¯̄p yields R. We have

found lower and upper bounds for the vertex ri ∈ R, i = 1, · · · , 4 of R. From now on,

we will refer to R as the minimal of such a rectangles. From the bounds for the derivatives

of (n(t), p(t)) given by equation (3.14), the comparison theorem and its construction, it

follows that R = [r1, r2] × [r3, r4] is the region we where looking for. Figure 2 shows an

rectangular closed invariant region R.

Let us consider the T -operator ϕT : R → R defined by

ϕT (n, p) = ϕ(T, 0, n, p)
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Fig. 2. The invariant region R.

which maps each initial value on the region R into the value at time t = T of the solution

of problem (3.9) which starts at the initial values (n, p), namely ϕ(T, 0, n, p). This is a con-

tinuous map and R is convex (it is rectangular) and by the Brouwer’s fixed point theorem

this operator has a fixed point, which means that there exists a solution y∗ of the problem

(3.9) such that

ϕ(T, 0, n, p) = ϕ(0, 0, n, p)

that is, the (3.9) problem has, at least, a positive periodic solution, which is globally de-

fined.

Step 2. The periodic solution is stable in the sense of condition (C2).

In order to assure the attraction of the periodic solution, according to Corollary 2.2 we will

study the stability of the zero solution of the variational problem of (3.9) at y∗ (i.e., we

linearize the problem at the periodic solution, see [4]). Thus, we will deal with the system

X ′ = A(t)X (3.15)

where

A(t) =









a(t)− 2b(t)n0(t)−
c(t)p0(t)

1 + p0(t)

−c(t)n0(t)

(1 + p0(t))2

f(t)p0(t)

1 + p0(t)
−λ(t) +

f(t)n0(t)

(1 + p0(t))2









(3.16)

and ϕ(t) = (n0(t), p0(t)) are the components of the periodic solution. Keeping in mind

the fact that














n′
0(t)/n0(t) = a(t)− b(t)n0(t)−

c(t)p0(t)

1 + p0(t)

p′0(t)/p0(t) = −λ(t) +
f(t)n0(t)

1 + p0(t)
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the change of variables y1 = x1/n0, y2 = x2/p0 transforms the system (3.16) into

Y ′ = B(t)Y (3.17)

where

B(t) = (bij(t)) =









−b(t)n0(t)
−c(t)p0(t)

(1 + p0(t))2

f(t)n0(t)

1 + p0(t)

−f(t)p0(t)n0(t)

(1 + p0(t))2









, (3.18)

which is equivalent to (3.16). Applying Lemma 3.2 finishes the proof.

�

The following two results (Corollary 3.1 and Proposition 3.2) concern the aggregated sys-

tem, but can not be translated to the general system. We include them by the shake of

completeness.

Corollary 3.1. All positive solutions of system (3.9) are bounded.

Proof.– As the axes are invariant regions for system (3.9), this statement refers to solutions

with positive initial values (n(t0), p(t0)) = (n0, p0). Keeping in mind the construction

of the invariant rectangle R (see step 1 in the proof of Proposition 3.1), if n0 ≤ aM and

p0 ≤ ¯̄p, then this Corollary holds. Other possible cases (i.e., if n0 > aM or p0 > ¯̄p) are

straightforward.

�

Proposition 3.2. If condition 0 <
λM

fL
<

aL
bM

holds, then there exists an unique T -

periodic positive solution of problem (3.9) within region R.

Proof.– The proof follows an application of the topological degree. Consider the ϕT oper-

ator defined in the proof of the previous Proposition. Let us define

F := I − ϕ : R2
+ → R

2
+

(r, s) 7→ F (r, s) := (r − n(T, r, s), s− p(T, r, s))

where n and p stand for the solutions of the (P0) problem such that n(0) = r and p(0) = s.

We already know that ϕT maps ∂R into Int(R), therefore F (r, s) 6= (0, 0) for all (r, s) ∈

∂R. Moreover, for (r1, s1) ∈ Int(R) we define

N(r, s, ξ) := (r1 + ξ [n(T, r, s)− r1] ; s1 + ξ [p(T, r, s)− s1]) , (r, s) ∈ R̄

As N(r, s, 0) = (r1, s1) ∈ Int(R), N(r, s, 1) = (n(T, r, s), p(T, r, s) ∈ Int(R) and R is

convex, it is clear that

(r, s, )−N(r, s, ξ) 6= (0, 0), ∀(r, s) ∈ ∂R, ξ ∈ [0, 1].

Therefore, N establishes an admissible homotopy between

F (r, s) = (r, s)−N(r, s, 0) and (r − r1, s− s1) = (r, s)−N(r, s, 1)
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and

d [F,R2, 0] = d [(r − r1, s− s1), R2, 0] = 1.

We must show that |JF (P0, p0)| > 0 for each positive T -periodic solution (n0, p0):

|JF (P0, p0)| =

∣

∣

∣

∣

1− n′
n(T, n0, p0) −n′

p(T, n0, p0)

−p′n(T, n0, p0) 1− p′p(T, n0, p0)

∣

∣

∣

∣

and the eigenvalues of the matrix
(

n′
n(T, n0, p0) n

′
p(T, n0, p0)

p′n(T, n0, p0) p′p(T, n0, p0)

)

are the characteristic multipliers λ1 and λ2 of the aggregated system (3.9). We already

know that such a solution is attractive, which implies that |λi| < 1 for i = 1, 2. Now, it is

clear that

|JF (n0, p0)| = (1− λ1)(1− λ2) > 0,

which concludes with the proof of the uniqueness.

�

The following results concern the stability of the semi-trivial solution of the aggre-

gated system which, in some cases, implies the exclusion (extinction) of predators at low

population densities.

Proposition 3.3. The semi-trivial solution (n∗
0, 0) of the aggregated system (3.9) is asymp-

totically stable if
∫ t0+T

t0

(−λ(t) + f(t)n∗
0(t)) dt < 0 (3.19)

Proof.– Linearizing the aggregated system (3.9) around the semi-trivial solution yields
(

x′
1

x′
2

)

=

(

a(t)− 2b(t)n∗
0(t) −c(t)n∗

0(t)

0 −λ(t) + f(t)n∗
0(t)

)(

x1

x2

)

(3.20)

This is a linear periodic system and we need calculate the Floquet exponents in order to

study its stability. System (3.20) is a diagonal one and can be explicitly solved. The second

equation in (3.20) is

x′
2 = (−λ(t) + f(t)n∗

0(t))x2

and its solution is given by

x2(t) = x2(t0) exp

(∫ t

t0

−λ(s) + f(s)n∗
0(s)ds

)

.

Replacing this expression into the first equation and solving it we get a fundamental system:

Φ(t) =





exp
(

∫ t

t0
(a(s)− 2b(s)n∗

0(s))ds
)

Φ12(t)

0 exp
(

∫ t

t0
−λ(s) + f(s)n∗

0(s)ds
)




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where Φ12(t) is a complex expression. Moreover, the Floquet exponents are given by

λ1 = exp

(

∫ t0+T

t0

(a(s)− 2b(s)n∗
0(s))ds

)

λ2 = exp

(

∫ t0+T

t0

−λ(s) + f(s)n∗
0(s)ds

)

On the one hand, |λ2| < 1 because of condition (3.19). On the other hand, |λ1| < 1 because

b(s)n∗
0(s) > 0 and

∫ t0+T

t0

(a(s)− b(s)n∗
0(s))ds = 0.

�

Proposition 3.4. Let us assume that condition

aM
bL

<
λL

fM
, (3.21)

holds. Then, there exist ǫ0 > 0 and δ > 0 such that for each ǫ ∈ (0, ǫ0)

lim
ǫ→0

(nǫ
1(t), n

ǫ
2(t), p

ǫ(t)) = (ν∗1n
∗
0(t), (1− ν∗1 )n

∗
0(t), 0)

uniformly on closed subintervals of [t0,∞), where ν∗1 is that of (3.8), (n∗
0(t), 0) is the

semi-trivial solution of the aggregated system (3.9) and (nǫ
1(t), n

ǫ
2(t), p(t)) is the solution

of (3.4) with initial values (n̄10, n̄,20, p̄) such that

‖(n̄10, n̄20, p̄)− (n10, n20, 0)‖ < δ.

Proof.– It follows from the proof of Proposition 3.3. Using the bounds (3.11) for the coef-

ficients we get bounds for the solution

xL
2 (t) := x2(t0)e

(−λM+fLn∗

0L
)(t−t0) ≤ x2(t) ≤ x2(t0)e

(−λL+fMn∗

0M
)(t−t0) =: xM

2 (t).

The fact that
aL
bM

≤ n∗
0(t) ≤

aM
bL

finishes the proof.

�

Corollary 3.2. The semi-trivial solution (n∗
0, 0) is a global attractor for the aggregated

system (3.9) if

aM
bL

<
λL

fM
.

Proof.– We recall from the proof of Proposition 3.2 that aL/bM ≤ n∗
0(t) ≤ aM/bL for all

t ≥ 0 and that (n∗
0(t), 0) is uniformly asymptotically stable. Thus, there exists ǫ0 > 0 such

that for each 0 < ǫ < ǫ0 every solution of (3.9) with initial values within

Wǫ := [aL/bM − ǫ, aM/bL + ǫ]× [0, ǫ]

is attracted by the semi-trivial solution. Let ρ be a positive constant such that 0 < ρ <

min {ǫ, (aL − cM )/bM} and n′
+,ρ(n) = n′

+(n) − ρ. For a fixed ǫ, we note the region
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bounded by the curves n′
+,ρ(n) and n = aM/bL by Q (including those points on the

curves). Moreover, we define

Q2 := Q ∪Wǫ

Q1 =
{

(n, p) ∈ R
2; 0 < n < aL/bM ; 0 < p

}

\Q2,

Q3 =
{

(n, p) ∈ R
2; aM/bL < n; 0 < p

}

\Wǫ.

As λL/fM ≥ aM/bL, from equations (3.14) we notice that there exist constants positive

δ1 and δ3 such that n′(t) < −δ3 < 0 in Q3 and n′(t) > δ1 > 0 in Q1. Thus, solutions

starting in both regions Q1 and Q3 will leave them (and so, reach Q2 and stay in) after

a transient time. The same reason implies that solutions starting within Q2 will remain in

Q2. Moreover, there exits δ2 > 0 such that p′(t) < −δ2 < 0 in Q2. Thus, every positive

solution (n(t), p(t)) in Q2 is strictly decreasing and

lim
t→+∞

(n(t), p(t)) ∈ Wǫ,

which finishes the proof.

�

Corollary 3.3. The semi-trivial solution of the aggregated system (3.9) is unstable if

λM

fL
<

aL
bM

.

�

Conditions (3.13) and (3.21) state whether predator population is excluded or not. Nev-

ertheless, these conditions do not cover all the possible cases. Thus, we turn out attention

to the uncovered cases, namely, we consider that

aL
bM

<
λM

fL
and

λL

fM
<

aM
bL

.

This cases can not be analyzed analytically. Numerical experiments show that, within this

case, we can have either a positive solution (coexistence) or a semi-trivial omega limit

(predators exclusion) for system (3.4). Thus, either coexistence or exclusion of predators

population can happen. Let us illustrate this fact though the following numerical simula-

tions.

Case 1: coexistence. - We consider a set of parameter (see next figure) which leads to

condition:

λM

fL
>

aL
bM

and
λL

fM
<

aM
bL

.

For these parameters, we represent, on the one hand, the state variables versus time showing

that a positive periodic orbit exists and, on the other hand, a phase portrait illustrating the
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positive periodic orbit. In addition we have included a comparison of the total prey/predator

density simulated with the full and the aggregated model.
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Fig. 3. Left: state variables vs time: a positive periodic orbit exists. Right: phase portrait of the aggregated model

illustrating the positive periodic orbit. Parameter values m1 = 1 m2 = 1, r1L = 1, r2L = 0.1, r1M = 3,

r2M = 2.1, φ2L = 0.1, φ3L = 0.8 ∗ φ2L, φ2M = 2.1, φ3M = φ2M ∗ 0.8, λ3L = 0.01, λ3M = 1.01,

T = 5, ǫ = 0.02, K1L = 5, K2L = 1 ,K1M = 9, K2M = 5,

Let us assume that there exists a positive solution for the aggregated system (3.9) for

the parameter values listed above. We can go through step two in the proof of proposition

3.1 to ensure that, in fact, every positive periodic solution is uniformly-asymptotically sta-

ble. Thus, condition (2.6) in (C2) holds and Theorem 2.1 holds. The following simulation

(keeping the parameter values in Figure 4) illustrates this fact:
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Fig. 4. Comparison of the total prey density (left) and total predator density (right) simulated with the full and the

aggregated model. Parameter values are these of Figure 4

Case 2: predators exclusion. - We consider now the parameter set values in Figure 5,

which yield:

λM

fL
>

aL
bM

and
λL

fM
<

aM
bL

.

Again, for these parameter values, we represent the state variables in front of time showing

that the predator can be excluded. On the other hand, the corresponding phase portrait illus-

trates the exclusion scenario. In this case, we could not establish analytically the stability

of the semi-trivial. Nevertheless, the following simulation shows that results obtained with

the parameter values stated in Figure 5 for the general and aggregated system are coherent:

4. Conclusions.

We have extended the approximate aggregation techniques for two time scales systems

described by Auger et al. (see [1] and references therein) to non autonomous periodic cases.

Namely, we consider non autonomous two time scales systems depending on the slow time

unit. Instead of using Fenichel center manifold Theorems, our results are based upon a
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Fig. 5. Left: state variables vs time: prey permanence; predators extinction. Right: phase portrait of the aggregated

model illustrating predators exclusion. Parameter values: m1 = 1, m2 = 1, r1L = 1, r2L = 0.1, r1M = 3,

r2M = 2.1, φ2L = 0.1, φ3L = 0.2 ∗ φ2L, φ2M = 2.1, φ3M = 0.2 ∗ φ2M , λ3L = 0.6, λ3M = 1.6, T = 5,

ǫ = 0.02, K1L = 5, K2L = 1, K1M = 9, K2M = 5.

theorem due to F.C. Hoppensteadt [7] concerning singular perturbations on the infinite in-

terval. This theorem is a general one and, as a counterpart, the corresponding hypothesis

are rather restrictive and complicated to be checked. Nevertheless, as we have shown, when

dealing with periodic systems the Hoppensteadt Theorem’s hypothesis become much sim-

pler, as collected in conditions (C1) and (C2). On the other hand, because of the nature of

this theorem, we can translate results concerning only periodic uniformly-asymptotically

stable solutions of the aggregated system to the general one.

With the help of these results, we have studied a two time scales spatially distributed

predator prey system by means of a less dimensional (aggregated) one:











n′ = (a(t)− b(t)n)n−
c(t)n

1 + p
p,

p′ = −λ(t)p+
f(t)n

1 + p
p.
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Fig. 6. Comparison of the total prey density (left) and total predator density (right) simulated with the full and the

aggregated model. Parameter values are these stated in Figure 5.

Our results state thresholds for coexistence and predator’s exclusion in terms of the relative

shape of certain ”vital parameters” of the aggregated system, namely, the maximum and

the minimum of

a(t)

b(t)
and

λ(t)

f(t)
. (4.1)

Lets interpret the meaning of these quotients. In a non spatially distributed system,

a(t)/b(t) stands for the carrying capacity of the corresponding ecosystem. According to

(3.10), it follows that

a(t)

b(t)
=

(r1(t)ν
∗
1 + r2(t)ν

∗
2 )K1(t)K2(t)

r1(t)(ν∗1 )
2K2(t) + r2(t)(ν∗2 )

2K1(t)
.

which is the carrying capacity for the spatially distributed prey population when we con-

sider fast migrations and periodic coefficients at each region. On the other hand,

λ(t)

f(t)

stands for the ratio between predator’s mortality rate and benefits of captures for predators.

Thus, we have stated conditions ensuring the existence of a coexistence state (condition
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(3.13)) and the exclusion of predators at low population densities (condition (3.21)) in

terms of (4.1). Summing up:

• There exists an attracting periodic coexistence state if
λM

fL
<

aL
bM

.

• Predators die out at low population densities when
aM
bL

<
λL

fM
.

• There exist a range of intermediate cases

λM

fL
>

aL
bM

and
λL

fM
<

aM
bL

which are indefinite meaning that both predators exclusion or coexistence can

arise.

In the context of the system we are dealing with, coefficients a(t), b(t) and f(t) depend

on ν∗1 , which is related with prey migrations. In fact, from Corollary 3.2 and the definition

of the coefficients (3.11), small changes in ν∗1 may entail a change in the stability of the

semi-trivial solution of the aggregated system and thus, induce the extinction of predators

at low predator population density.
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5. Appendix A: proof of Lemma 3.2.

We recall that bij(t), for i, j = 1, 2, are periodic positive functions. Let us note the

minimum and the maximum of each bij(t), for i, j = 1, 2, as 0 < bLij and 0 < bMij ,

respectively. Before proceeding, we recall a simple fact.

Remark 5.1. Consider system

Z ′(t) = BZ(t), (5.1)

where B is given by
(

−b11 −b12
b21 −b22

)

, (5.2)

with bij > 0, i, j = 1, 2 positive real numbers. It is straightforward that the real part

of the eigenvalues of (5.2) is strictly negative. Thus, the zeroth solution of system (5.1)

is asymptotically stable uniformly with respect to the initial values. We mean that, given

initial values Z0, there exist positive constants K, α ∈ R+ such that

‖eBtZ0‖ ≤ Ke−αt ∀Z0; Z0 ≤ K. (5.3)

Getting back to our problem, let us note

Y (t) =

(

y1(t)

y2(t)

)

Z(t) =

(

z1(t)

z2(t)

)

.

The study of the stability of the zeroth solution of system (3.17) is carried out by means of

a comparison method. Namely, given a solution of system (3.17) we build up appropriate

bounding linear systems with constant coefficient similar to (5.2). The solutions of these

bounding systems are upper and lower bounds for the solution of system (3.17).

For this purpose, we use appropriate choices of bLij and bMij for constructing each bound-

ing system, depending on the sign of y1 and y2. Without lost of generality, let us begin

assuming that y1(t0) = y01 > 0 and y2(t0) = y02 > 0. Then, in a neighborhood of t0, it

follows that

−bM11y1(t)− bM12y2(t) ≤ y′1(t) = −b11(t)y1(t)− b12(t)y2(t) ≤ −bL11y1(t)− bL12y2(t)

bL21y1(t)− bM22y2(t) ≤ y′2(t) = b21(t)y1(t)− b22(t)y2(t) ≤ bM21y1(t)− bL22y2(t)
(5.4)

Let us consider the following bounding systems






Z ′(t) = BLZ(t),

z1(t0) = y01 ,

z2(t0) = y02 ,







Y ′(t) = B(t)Y (t),

y1(t0) = y01 ,

y2(t0) = y02 ,







W ′(t) = BMW (t),

w1(t0) = y01 ,

w2(t0) = y02 ,

(5.5)
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where B(t) is that of equation (3.18) and BL and BM are given by

BL =

(

−bM11 −bM12
bL21 −bM22

)

BM =

(

−bL11 −bL12
bM21 −bL22

)

(5.6)

the Comparison Theorem yields

z1(t) ≤ y1(t) ≤ w1(t), z2(t) ≤ y2(t) ≤ w2(t), t ≥ t0 (5.7)

at least while z1(t), z2(t), w1(t), w2(t) are kept positive, lets say, in an interval I0 :=

[t0, t
∗), with t∗ > t0 (it may happen that t∗ = +∞).

Having in mind Remark 5.1, it follows that Z(t) and W (t) decrease exponentially fast,

and so does Y (t) in I0. It may happen that one of the components become zero after a

transient time, that is, t∗ < +∞. Let us assume, without lost of generality, that y1(t
∗) = 0

and y2(t
∗) > 0. We recall that ‖Y (t∗)‖ < ‖Y (t0)‖. To carry on approaching the zeroth

solution, let us replace the bounding systems (5.5) by another ones from t∗ on.

It is straightforward that there exists ǫ > 0 such that y1(t) < 0, y2(t) > 0 and ‖Y (t)‖ <

‖Y (t0)‖ for all t ∈ [t∗, t∗ + ǫ/2]. Thus, let us note

t1 = t∗ + ǫ/2 y11 = y1(t1) y12 = y2(t1).

Considering






Z ′(t) = BLZ(t)

z1(t1) = y11 ,

z2(t1) = y12 ,







Y ′(t) = B(t)Y (t)

y1(t1) = y11 ,

y2(t1) = y12 ,







W ′(t) = BMW (t)

w1(t1) = y11 ,

w2(t1) = y12 ,

(5.8)

where B(t) is that of equation (3.18) and BL and BM are now given by

BL =

(

−bL11 −bM12
bM21 −bM22

)

BM =

(

−bM11 −bL12
bL21 −bL22

)

(5.9)

Despite of the change in the coefficients corresponding with z1 and w1, the left and right

hand side systems (5.8) fit in Remark 5.1. Therefore, we can repeat the previous argument,

so that Y (t) keeps approaching zero for t ∈ [t∗, t∗ + K) for certain K > 0. Remark 5.1

is general enough to hold whatever super-index M or L we use in the bij coefficient for

i, j = 1, 2.

Summing up, previous argument is independent on the sign of y1(t) and y2(t), so that it

holds whatever the sign of y1(t) and y2(t) is. On the other hand, Y (t) approaches uniformly

exponentially fast the zero solution because of the nature of the bounding solutions.
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