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Response: To the first referee

Composite marginal likelihoods to the normal Bradley-Terry model
Authors: M-L. Feddag
Manuscript: LSSP − 2010 − 0324

Many thanks for your valuable and interesting comments on our submitted
paper.

Please find in red color in the new version of the document the response
to all your comments.

Compared with original submitted paper, in this revised ver-
sion, the author added some necessary illustrations which make
the paper more understandable and clear. Exept for some minor
remarks, which I have listed in the following, I have no further
comments for the major part of this paper.

1. On page 3, for the Bradley-Terry model (4). According to
the author’s response, I know that Yij is not logit(P (yi > yj)),
but another new continuous random variable. In addition,
Yij 6= Yji. I suggest adding one sentence here in the paper to
clarify the above two points in case that the similar notations
in model (3) and model (4) make confusion.

PLease find the following comments in page 3, just after the model (4).

Up to our knowledge, there is no work on this defined model where Yij

is continuous random variable and is different from Yji. This model is
obviously different from the model (3) which is defined only for binary
random variable.

2. On page 3, for the pairwise likelihood (6). I suggest adding
one or two sentences after the proposed likelihood in order
to demonstrate why the pairwise likelihood is constructed in
this format. I think the author’s responses to the two referees’
related questions are good enough.

PLease find the following comments in page 4, just after the pairwise
likelihood (6).

1

Page 2 of 15

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
The first order log-likelihood ℓ1 as defined by Cox and Reid [3] and
Varin [11] considers all the N(N −1) univariate marginal distributions
of the matrix Y = (yij)1<i6=j<N . In the second order loglikelihood ℓ2

defined by Eq. (6), the first part involves all the pairs (N(N−1)(N−2)
2

)
sharing the random effects Ui and the second part involves all the pairs
(N(N−1)(N−2)

2
) sharing the random effects Uj. In total N(N −1)(N −2)

pairs of observations.

3. On page 4, in the middle. The pairwise likelihood ℓ2(σ
2; y) is

re-written in the form of SSW and SSB. I didn’t check the
rigorous proof for N >= 3, but I believe your derivation is
correct.

It is the generalization of the one given in Cox and Reid [3]

4. On page 8, for Figure 1. The words in the figure title is
upsidedown.

The problem deals with the style I am using which is different from the
style of this journal, so it will be solved in the last step

Response: To the second referee

Composite marginal likelihoods to the normal Bradley-Terry model
Authors: M-L. Feddag
Manuscript: LSSP − 2010 − 0324

Many thanks for your valuable and interesting comments on our submitted
paper.

Please find in red color in the new version of the document the response
to all your comments.

You have given exhaustive explanations to my remarks, but
you did not added them in your paper. Therefore, I suggest to add
these explanations directly in it. More precisely:

1. you should underline that the normal version of Bradley-Terry
model is introduced for the first time in your contribution

2
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Please find the following comments in page 3, after the model (4).

Up to our knowledge, there is no work on this defined model where Yij

is continuous random variable and is different from Yji. This model is
obviously different from the model (3) which is defined only for binary
random variable.

2. insert your remarks on points 2, 3 and 4 (second paragraph
from “For the logit” to the end) in the paper.

• Point 2

Please find the following comments given in the end of page 3.

In fact, let write the likelihood for N = 3. We denote by y =
(y12, y13, y23, y21, y31, y32)

′, then we can write the following trans-
formation:

y =

















1 −1 0
1 0 −1
0 1 −1
−1 1 0
−1 0 1
0 −1 1





















u1

u2

u3



 +

















e12

e13

e23

e21

e31

e32

















= AU + e

Hence the density of y is a normal with mean 0 and variance
σ2AA′+I6. For this case, the likelihood has an explicite expression.
It’s clear that for an arbitray N , it is not easy to calculate the
transformation matrix A associated to the random variable y, so
the likelihood associated to the model is complex to evaluate.

• Point 3

Please find the following comments given in page 4, after the pair-
wise likelihood (6).

The first order log-likelihood ℓ1 as defined by Cox and Reid [3]
and Varin [11] considers all the N(N − 1) univariate marginal
distributions of the matrix Y = (yij)1<i6=j<N . In the second order
loglikelihood ℓ2 defined by Eq. (6), the first part involves all the

pairs (N(N−1)(N−2)
2

) sharing the random effects Ui and the second

part involves all the pairs (N(N−1)(N−2)
2

) sharing the random effects
Uj. In total N(N − 1)(N − 2) pairs of observations.

• Point 4

3

Page 4 of 15

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Please find the following comments given in the end of the discus-
sion.

Finally, this approach could be generalized to the logit version of
the model including covariates, which is given by (3). One should
evaluate the pairs of probabilities (yij, yik) = (1, 1), (yij, yik) =
(1, 0), (yij, yik) = (0, 1) and (yij, yik) = (0, 0), which has an ana-
lytical expression for the probit version of the model. For the logit
version, the scale mixture approximation of Monahan and Stefan-
ski [7] are needed.
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Composite marginal likelihoods to the normal

Bradley-Terry model

M-L. Feddag

EA 4275 “Biostatistique, Recherche Clinique et Mesures Subjectives en Sante”, Faculte de

Pharmacie, Universite de Nantes, France

Abstract

Inference in Generalized linear mixed models with crossed random effects is often
made cumbersome by the high-dimensional intractable integrals involved in the
marginal likelihood. This article presents two inferential approaches based on
the marginal composite likelihood for the normal Bradley-Terry model. The two
approaches are illustrated by a simulation study to evaluate their performance.
Thereafter, the asymptotic variances of the estimated variance component are
compared.

Keywords: Asymptotic variance; Bradley-Terry model; Marginal composite
likelihood; Monte Carlo; Variance component.

1. Introduction

In paired comparisons, one considers a set of N treatments or players which
are presented in pairs, where N ≥ 3. It is assumed that the responses to the
treatments may be described in terms of an underlying continuum on which the
worth or ability of the treatments can be relatively located. Let πi denotes the
worth, an index of relative preference of the ith treatment such that πi > 0, and
∑N

i=1 πi = 1.Let denote by Y the binary random variable and by yi and yj its
response values. The Bradley-Terry model [2] postulates that, if yi and yj are
the response to treatments i and j respectively, then

P (yi > yj) =
πi

πi + πj

, (1)

in the comparison of treatments i and j. One interprets yi > yj as indicative
of preference for treatment i over treatment j. If i and j are players, then this
event is replaced by player i beats player j. The model can alternatively be
expressed in the logit-linear form

logit (P (yi > yj)) = λi − λj , (2)

where λi = ln(πi) for all i.

Preprint submitted to Elsevier April 20, 2011
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The more general model which includes the covariates and random effects

is given by λi =
∑q

r=1 xirβr + Ui, where β = (β1, . . . , βq) are the regression
parameters, and Ui are the random effects supposed independent and identically
distributed with N(0, σ2). Hence the model can be expressed as

logit (P (yi > yj)) =

q
∑

r=1

(xir − xjr)βr + Ui − Uj . (3)

This model without random effects has been widely studied, see for example
Firth [5].
Thurstone [9, 10] introduced a model for paired comparisons for continuous
preference with several stimuli. It is defined via the threshold latent variables,
with applications for example in marketing or psychometry. This model has been
extended by Takane [8], where random error is added in the linear predictor.
From now on, we will focus on the normal version of the Bradley-Terry model
without covariates and given by

Yij = Ui − Uj + eij , 1 ≤ i 6= j ≤ N (4)

where Yij is the results between the treatments (or players) i and j, and eij are
the residual errors supposed independent and identically distributed as normal
with mean 0 and variance 1. They are also supposed independent from the
random effects Ui, i = 1, . . . , N . Let lower cases letters yij denotes realization
of Yij . Up to our knowledge, there is no work on this defined model where Yij

is continuous random variable and different from Yji. This model is obviously
different from the model (3) which is defined only for binary random variable.

This model belongs to the linear mixed model with complex random effects,
thus the statistical inference on the variance components σ2 by the classical like-
lihood is not straightforward and cumbersome. In fact, let write the likelihood
for N = 3. We denote by y = (y12, y13, y23, y21, y31, y32)

′, then we can write the
following transformation:

y =

















1 −1 0
1 0 −1
0 1 −1
−1 1 0
−1 0 1
0 −1 1





















u1

u2

u3



 +

















e12

e13

e23

e21

e31

e32

















= AU + e

Hence the density of y is a normal with mean 0 and variance σ2AA′ + I6.
For this case, the likelihood has an explicite expression.
It’s clear that for an arbitray N , it is not easy to calculate the transformation
matrix A associated to the random variable y, so the likelihood associated to
the model is complex to evaluate.

As an alternative, we propose the marginal composite likelihood proposed
by Cox and Reid [3].

3
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This paper is structured as follows. In Section 2, we define the two composite

marginal likelihood approaches. Section 3 is devoted to the simulation study for
four different sample sizes. The asymptotic variances of the estimated parameter
provided by the two approaches are compared in Section 3. We conclude in
Section 4.

2. Composite marginal likelihood

We are interested by the first and second order loglikelihoods defined respec-
tively

ℓ1(σ
2; y) =

N
∑

i=1

∑

j 6=i

ln f(yij ; σ
2) (5)

ℓ2(σ
2; y) =

N
∑

i=1

∑

1≤j<k≤N

ln f(yij , yik; σ2) +

N
∑

j=1

∑

1≤i<k≤N

ln f(yij , ykj ; σ
2) (6)

The first order log-likelihood ℓ1 as defined by Cox and Reid [3] and Varin
[11] considers all the N(N − 1) univariate marginal distributions of the matrix
Y = (yij)1<i6=j<N . In the second order loglikelihood ℓ2 defined by Eq. (6), the

first part involves all the pairs (N(N−1)(N−2)
2 ) sharing the random effects Ui and

the second part involves all the pairs (N(N−1)(N−2)
2 ) sharing the random effects

Uj. In total N(N − 1)(N − 2) pairs of observations.
The functions ℓ1 and ℓ2 are marginal composite likelihood of order one and two,
which are example of the general composite likelihood defined by Lindsay [6].
The pseudo likelihood ℓ2 is called also pairwise loglikelihood (see Cox and Reid
[3], Bellio and Varin [1], Feddag and Bacci [4] and Varin [11]).

These loglikelihoods are given respectively by

ℓ1(σ
2; y) = −

N(N − 1)

2
ln(2σ2 + 1) −

1

2(2σ2 + 1)

N
∑

i=1

N
∑

j=1,j 6=i

y2
ij ,

ℓ2(σ
2; y) = −

N(N − 1)(N − 2)

2
ln(3σ4 + 4σ2 + 1)

−
1

2(3σ4 + 4σ2 + 1)





N
∑

i=1

∑

1≤j<k≤N

{

(1 + 2σ2)y2
ij − 2σ2yijyik + (1 + 2σ2)y2

ik

}





−
1

2(3σ4 + 4σ2 + 1)





N
∑

j=1

∑

1≤i<k≤N

{

(1 + 2σ2)y2
ij − 2σ2yijykj + (1 + 2σ2)y2

kj

}





4
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Using the paper of Cox and Reid [3], this pairwise likelihood could be ex-

pressed as follows:

ℓ2(σ
2; y) = −

N(N − 1)(N − 2)

2
ln(3σ4 + 4σ2 + 1)

−
1

2

N − 2 + (2N − 3)σ2

3σ4 + 4σ2 + 1
(SSW + SS⋆

W )

−
1

2

N − 2

N − 1

1 + σ2

3σ4 + 4σ2 + 1
(SSB + SS⋆

B) ,

where SSW =
∑N

i=1

∑

j 6=i(yij − ȳi)2, SSB =
∑N

i=1

(

∑

j 6=i yij

)2

, ȳi =

1
N−1

∑

j 6=i yij , SS⋆
W =

∑N

j=1

∑

i6=j(yij−ȳj)2, SS⋆
B =

∑N

j=1

(

∑

i6=j yij

)2

, ȳj =
1

N−1

∑

i6=j yij

We define pseudo-score functions by loglikelihood derivatives in the usual
way

U1(σ
2; y) =

∂ℓ1(σ
2; y)

∂σ2
(7)

U2(σ
2; y) =

∂ℓ2(σ
2; y)

∂σ2
(8)

After classical derivations, we obtain these pseudo-score given by

U1(σ
2; y) = −

N(N − 1)

2σ2 + 1
+

1

(2σ2 + 1)2

N
∑

i=1

N
∑

j=1,j 6=i

y2
ij , (9)

U2(σ
2; y) = −N(N − 1)(N − 2)

3σ2 + 2

3σ4 + 4σ2 + 1

+
1

2

3(2N − 3)σ4 + 6(N − 2)σ2 + 2N − 5

(3σ4 + 4σ2 + 1)2
(SSW + SS⋆

W )

+
3

2

N − 2

N − 1

1

(3σ2 + 1)2
(SSB + SS⋆

B) (10)

The estimating equations Ui(σ̂
2; y) = 0, i = 1, 2 are under usual regularity

conditions, unbiased. The resulting estimator is for large N asymptotically
normal with mean σ2 and variance

E
(

U2
i (σ2)

)

[

E(−U
(1)
i (σ2))

]2 (11)

The first derivative of these pseudo-scores with respect to the parameter σ2

are given by

5
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U

(1)
1 (σ2; y) =

2N(N − 1)

(2σ2 + 1)2
−

4

(2σ2 + 1)3

N
∑

i=1

N
∑

j=1,j 6=i

y2
ij (12)

U
(1)
2 (σ2; y) = N(N − 1)(N − 2)

9σ4 + 12σ2 + 5

(3σ4 + 4σ2 + 1)2

−
1

2

18(2N − 3)σ6 + 54(N − 2)σ4 + (36N − 90)σ2 + 10N − 28

(3σ4 + 4σ2 + 1)3
×

(SSW + SS⋆
W ) − 9

N − 2

N − 1

1

(3σ2 + 1)3
(SSB + SS⋆

B) (13)

3. Simulation study

The maximum marginal composite likelihood estimation is performed for
two pseudo-score methods where we have considered four sizes N = 10, 20, 30
and 50 and four values of σ2: 0.5, 1, 2 and 4.
We evaluate the performance of the two approaches with a simulation study
which is based on 500 data sets. The different results are given in Table 1 for
the four sizes considered. For both approaches, these two tables show that there
is a small bias for all the value of σ2 for the three first sizes. The bias is negligible
for the size N = 50. As expected, the standard deviation decreases when the
size N increases. We note that for the value of the variance component equal
to 4, the standard deviation is more considerable: greater than 1 for the three
first sizes and equal to 0.805 for N = 50. According to the estimates and to
the standard deviation, it is clearly shown that there is no significant difference
between the two approaches.

4. Asymptotic variance

In this section we compare the asymptotic variance provided by U1 and U2

and given by (11). It needs the calculation of the expectation E

(

−U
(1)
i (σ2)

)

and E
(

U2
i (σ2)

)

, i = 1, 2.
If the evaluation of the first quantity is straightforward, however the second
quantity is more tedious and complex. In fact, It is easier to prove that we have
the following expectations:

E(SSW ) = E(SS⋆
W ) = N(N − 2)(σ2 + 1),

E(SSB) = E(SS⋆
B) = N(N − 1)(Nσ2 + 1).

By replacing E(Y 2
ij) = 2σ2 + 1 in (12) and the two previous expectations in

the expression (13), we derive the following quantities

6
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Table 1: Parameter estimate (mean) for σ2 and its standard deviation (sd) for N = 10, 20, 30
and 50.

ℓ1 ℓ2 ℓ1 ℓ2

N = 10 N = 20

σ2 mean sd mean sd mean sd mean sd

0.5 0.510 0.282 0.511 0.281 0.509 0.181 0.510 0.181
1 1.014 0.514 1.015 0.514 1.017 0.344 1.017 0.344
2 2.022 0.983 2.022 0.983 2.031 0.673 2.031 0.673
4 4.035 1.925 4.034 1.924 4.058 1.329 4.057 1.328

N = 30 N = 50

σ2 mean sd mean sd mean sd mean sd

0.5 0.512 0.139 0.512 0.139 0.500 0.102 0.500 0.102
1 1.024 0.269 1.024 0.269 0.999 0.202 0.999 0.202
2 2.048 0.531 2.048 0.531 1.996 0.403 1.996 0.403
4 4.098 1.053 4.098 1.052 3.989 0.805 3.991 0.805

E

(

−U
(1)
1 (σ2)

)

=
2N(N − 1)

(2σ2 + 1)2
,

E

(

−U
(1)
2 (σ2)

)

= N(N − 1)(N − 2)
9σ4 + 12σ2 + 5

(3σ4 + 4σ2 + 1)2

− N(N − 2)
18(2N − 3)σ6 + 54(N − 2)σ4 + (36N − 90)σ2 + 10N − 28

(3σ4 + 4σ2 + 1)2(3σ2 + 1)

− 18N(N − 2)
1

(3σ2 + 1)3
(

Nσ2 + 1
)

. (14)

The two quantities E
(

U2
i (σ2)

)

, i = 1, 2, of the asymptotic variance given
by the expression (11), are approximated by Monte Carlo, with the following
formula:

Let write the two expectations as follows:

E
(

U2
i (σ2)

)

=

∫ +∞

−∞

U2
i (σ2; y)fσ(y)dy; i = 1, 2,

where fσ(y) is the density distribution of the variable y obtained from the model
defined by (4).

Thus the Monte Carlo approximation of these two integrals are given by

1

M

M
∑

j=1

U2
i (σ2; yj); i = 1, 2,
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where y1, . . . , yM are random sample from the density distribution fσ(.) and M

fixed to 100000.
Figure 1, gives the asymptotic variance of σ̂2 as function of σ2 provided by

the two approaches ℓ1 and ℓ2 for the four sizes considered in the simulation
study: N = 10, 20, 30 and 50.

Figure 1 shows that the four graphics has the same shape: the two asymp-
totic variances are the same for approximatively σ2 ≤ 1.4 and for σ2 > 1.4, the
one provided by ℓ2 is slightly greater than the asymptotic variance provided by
ℓ1. Both curves are increasing from the value of σ2 equal 0 to almost 2 and
slightly decreasing from the value 2.

5. Discussion

The aim of this paper was to present the first order and a pairwise marginal
likelihoods estimation in the normal Beadley-Terry model. These two approaches
belonging to the broad class of composite likelihood provide simple estimation
of the variance component comparatively to the classical maximum likelihood
which is more complex.

The conducted simulation study indicates that the two proposed approaches
can estimate the variance component of the model even for moderate sizes. We
find little bias in the estimation of the parameter and its standard deviation
decreases when the sample size increases.

In terms of asymptotic variance, the two approaches provide the same vari-
ance for moderate variance component whereas for large value, the first order
likelihood method is slightly better than the pairwise likelihood one.

It would be intersting to find a data for applications to this model with the
two proposed approaches. Possible applications could be as for the Thurstone’s
model in marketing or psychometry for continuous preference with different
stimuli.

Finally, this approach could be generalized to the logit version of the model
including covariates, which is given by (3). One should evaluate the pairs
of probabilities (yij , yik) = (1, 1), (yij , yik) = (1, 0), (yij , yik) = (0, 1) and
(yij , yik) = (0, 0), which has an analytical expression for the probit version of
the model. For the logit version, the scale mixture approximation of Monahan
and Stefanski [7] are needed.
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