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Université Joseph Fourier / Grenoble 1 / CNRS
Laboratoire LIG - Bâtiment CE4

38610 Gières FRANCE
clement.grimal@imag.fr, gilles.bisson@imag.fr

Résumé : En classification, les données se présentent souvent sous la forme d’une ma-
trice de données unique [objets/caractéristiques]. Cependant, dans de nombreuses ap-
plications, plusieurs types d’objets liés par des relations peuvent exister, ce qui conduit
à avoir plusieurs matrices représentant chacune une vue particulière sur les données.
C’est le cas dans l’étude des réseaux sociaux ou les différents nœuds d’un graphe d’in-
teraction font intervenir des utilisateurs, des documents, des termes, etc. Dans ce papier,
nous introduisons une architecture permettant d’étendre les capacités de l’algorithme de
calcul de co-similarité χ -SIM (Hussain et al., 2010) afin de le rendre apte à travailler
sur des collections de matrices décrivant les relations entre plusieurs paires d’objets
différents (multi-view clustering). Nous montrons que cette architecture offre un cadre
formel intéressant et permet de délivrer souvent des résultats supérieurs ou égaux aux
approches classiques mono-relation tout en permettant, grâce à une parallélisation pos-
sible des calculs, de réduire la complexité en temps et en espace des problèmes traités.
Mots-clés : Classification multi-vue, Co-clustering, Co-similarité, Parallélisation.

1. Introduction

Most of the clustering methods in the literature focus on datasets described
by a unique data matrix, which can either be a feature matrix (objects des-
cribed by their characteristics), or a relation matrix (intensity of the relation
between instances of two types of objects, such as [documents/terms] matrix
in natural language processing). In the latter case, both types of objects can
be clustered ; methods dealing with this task are referred as co-clustering ap-
proaches and have been extensively studied during the last decade. However,
in many applications, datasets involving more than two types of interacting
objects, or simply related, are also frequent. For instance, in a social network
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we can have simultaneously relations between pairs of users, users and do-
cuments, documents and terms, ... each relation providing a different view on
the data. A simple way to represent such datasets is to use as many matrices
as there are relations between the objects. Then, one could use classical (co)-
clustering methods to separately cluster the objects occurring in the different
matrices but, in this way, interactions between objects are not taken into ac-
count, thus leading to a loss of information (under the hypothesis that the
views are not self-contradictory). Therefore, handling the views together, re-
ferenced as the multi-view clustering task, is an interesting challenge in the
learning domain. The present work is an extension to the multi view problem
of an existing algorithm, named χ -SIM Hussain et al. (2010), which obtai-
ned good results on the co-clustering task. We selected this approach for two
complementary reasons. First, it builds similarity matrices rather than clusters
between rows and columns of a data matrix ; this is useful in the multi-view
context since it allows us to combine easily the set of similarity measures
computed from the different relation matrices of the dataset. Second, in this
algorithm, the similarity matrices between objects can be externally initiali-
zed, allowing us to easily inject some a priori knowledge about the data ; the-
reby, it becomes possible to iteratively transfer the similarities computed from
one view to the others. The rest of the paper is structured as follows. In Sect. 2
we present some related work about multi-view clustering. In Sect. 3 we pro-
vide a rapid insight about the χ -SIM method and then, in Sect. 4, we present
and analyze the MVSIM architecture allowing to adapt this algorithm to the
multi-view context. In Sect. 5, experimental results are reported to quantify
the improvements achieved by our approach with respect to single and multi-
view approaches. Finally, in Sect. 6, we present conclusions and future work.

2. Definitions and related work

The co-clustering task has been intensively explored in many domains,
such as information retrieval, to deal with documents Dhillon (2001); Long
et al. (2005) ; bioinformatics, to analyze gene expression data and in social
networks, to detect community of users. As emphasized by Long et al. (2005),
co-clustering comes along with the advantages of improving the cluster qua-
lity when dealing with large dimensional sparse data, and of highlighting si-
milarities between objects described by sets of different features.

Following the case of co-clustering, the idea behind multi-view approaches
is to take into account all the objects and relations of the dataset, to improve
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the quality of the clusters. An example of a simple multi-view dataset can be
found when considering a movies database, in which movies are described
both by their actors and by their keywords. When considering such a dataset,
two equivalent representation paradigms can be used : a collection of ma-
trices, and a k-partite graph Long et al. (2006). In the latter, each subset of
nodes contains the instances of one type of objects, and a link between two
nodes of different subsets represents the relation between them. Alternatively,
when working with a collection of matrices, each matrix describes a relation
between two types of objects corresponding to the rows and the columns of
the matrix. In the previous example, we would have two matrices : a [mo-
vies/actors] matrix and a [movies/keywords] one. Note that in the remaining
of this paper, we will mostly use the collection of matrices paradigm to re-
present the datasets, as it is better suited to explain our algorithm.

Multi-view setting became highly popular with the seminal work of Blum
& Mitchell (1998), in which the authors trained two algorithms on two dif-
ferent views, introducing semi-supervised learning. Since then, several exten-
sions of classical clustering methods have been proposed to deal with multi-
view data. For example, Drost et al. (2006) and Bickel & Scheffer (2004)
describe an extension of the classical k-means (MVKM) and of EM algo-
rithms for the multi-view setting. Some approaches such as Chaudhuri et al.
(2009), are built upon the canonical correlation analysis, a statistics method
to find linear combinations of variables from different highly correlated sets,
to extract relevant features from multiple views, and then to apply classical
clustering algorithms to it. In addition, the framework of spectral clustering
has also been investigated de Sa (2005); Kumar & Daume III (2011); Long
et al. (2006); Zhou & Burges (2007), where most approaches consider a multi-
partite graph describing the relations between objects and aim at finding the
optimal cut of this graph. In Kumar & Daume III (2011), the similarities com-
puted in one view are used to constrain the similarities computed in the other
views through the eigenvectors of the Laplacian matrix (MVSC). Finally, in-
formation theory can also be used to separately cluster the objects on each
view, but by simultaneously maximizing a unique objective function based on
the mutual information between clusters, as in Bekkerman et al. (2005).

Multi-view clustering can also be tackle by consensus clustering methods
which aims at combining the results of multiple clusterings (coming from dif-
ferent views or different methods) into one Azimi & Fern (2009); Fred & Jain
(2002); Li & Ding (2008); Strehl & Ghosh (2003). In Strehl & Ghosh (2003),
one present three different approaches to combine clusters based on graph-
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partitioning. The first method, similarly to Fred & Jain (2002), produces a
meta-similarity matrix based on how many times objects appear in the same
cluster, and then perform the final clustering from this matrix. In Azimi &
Fern (2009); Li & Ding (2008), the authors deal with the clustering ensemble
selection problem, which aims at choosing the best clustering among a large
set of partitions. Li & Ding (2008) build a weighted consensus clustering me-
thod ; whereas Azimi & Fern (2009) adapt their selection strategy according
to the stability of the clusterings. Alternatively, closer to our approach, some
works aim at combining multiple similarity matrices to perform a given lear-
ning task de Carvalho et al. (2012); Frigui et al. (2007); Tang et al. (2009).
So, in Tang et al. (2009), information coming from distinct sources, descri-
bing different relations between the same instances of objects, are merged
using Linked Matrix Factorization. Similarly de Carvalho et al. (2012) builds
clusters from multiple similarity matrices computed along different views ;
the algorithm then learns a matrix of “relevance weights” between clusters
and views, taking into account that some views are better at describing some
clusters. Finally, in Pedrycz (2002), fuzzy clustering is used in the multi-view
setting, by first computing membership matrices for all objects in the views,
and next modifying these matrices through collaboration between views. The
end goal is quite different from the other approaches though, as this method
produces as many clusterings as views, and does not build a sole clustering.

Throughout this paper, we use the classical notations : matrices (in capital
letters) and vectors (in small letters) are in bold ; variables are in italic.

Type of objects : let N be the number of types of objects in the dataset.
∀i ∈ 1..N, Ti is the type of object i (i.e. users, documents, words, etc.) For the
sake of simplicity, we assume that each Ti has the same number of ni instances
across the collection of matrices.

Relation matrices : let M be the number of relations between objects in the
dataset, and thus the number of matrices in the collection. Then Ri j is the re-
lation matrix describing connections between objects Ti and Tj, of size ni×n j.
The element [Ri j]ab of a matrix expresses the link “intensity” between the ath

instance of Ti and the bth instance of Tj. For example, in a [documents/terms]
matrix it can be expressed as the frequency of the bth term in the ath document.

Similarity matrices : thus, we consider N square and symmetrical simila-
rity matrices S1 . . .SN , each Si containing the similarities between all the pairs
of instances of Ti. The values of the similarity measure must be in [0,1].



Apprentissage multi-vue de co-similarités

3. The χ -SIM Algorithm

We present the main aspects of the χ -SIM co-similarity measure Hussain
et al. (2010) which is a basic component of our MVSIM architecture (Sect. 4.).
As this algorithm processes one matrix at a time, we simplify the notations by
just considering two types of objects T1 and T2, linked together by the relation
matrix R12. Moreover, we will assume that R12 is a [documents/words] ma-
trix and that the task is to compute the similarity matrices S1 (documents) and
S2 (words). The main idea behind χ -SIM is to make use of the duality bet-
ween documents and words : each one being a descriptor of the other. This is
achieved by simultaneously calculating similarities between documents on the
basis of the similarities between their words, and similarities between words
on the basis of the similarities between the documents in which they appear.
A similar idea has also been used for supervised leaning in Liu et al. (2004).
With such approaches, documents (resp. words) can be seen as similar even
if they do not explicitly share words (resp. documents). This is an interesting
feature to deal with some language difficulties like terminological variability :
two authors writing about the same topic may used different vocabulary, lea-
ding classical measure to underestimate similarity between documents of this
topic. Once the similarity matrices have been generated with χ -SIM, they can
be used by any clustering algorithm (for example k-means) to organize docu-
ments and/or words into clusters. However, due to the interleaved way these
similarities have been computed, the resulting clusters are similar to those
obtained with a genuine co-clustering algorithm. In practice, the similarity
matrix S1 between documents is evaluated in two steps :

S1 = R◦k
12×S2×

(
R◦k

12
)T (1)

∀a,b [S1]ab←

(
[S1]ab√

[S1]aa× [S1]bb

)1/k

(2)

First, Eq. (1) defines the similarity matrix S1 according both to the data ma-
trix R12 and to the similarity matrix between words S2, with

[
R◦k

12
]

ab = [R12]
k
ab

being the element-wise exponentiation of M to the power of k. Second, Eq. (2)
allows to normalize the elements of S1 in [0,1]. The k parameter is analogous
to the one used in the Lk-norm (Minkowski distance), the idea being to ad-
just this parameter as suggested in Aggarwal et al. (2001) to deal with high
dimensional spaces. The similarity matrix S2 is defined in a similar way, by
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just “toggling” the role of matrices S1 and S2 in Eq. (1) and (2). Finally, these
equations lead to a set of equations solved with this iterative approach :

Algorithm 1 χ -SIM algorithm
Input: R12, It , k, p

Let S1 and S2 the similarity matrices
Initialize S[0]

1 and S[0]
2 with I

for t = 1→ It do
Compute S[t]

1 with S[t−1]
2 using Eq. (1) and (2)

Compute S[t]
2 with S[t−1]

1

Pruning of S[t]
1 and S[t]

2
end for

Thus, inputs of this algorithm are the matrix R12, the number It of iterations
to compute the values of S1 and S2 and two numerical parameters k and p. We
already discussed the meaning of k. Variable p indicates the percentage of the
smallest similarity values in the matrices S1 and S2 to set to zero at the end of
each iteration ; this allows to deal with noise in the data. One can notice that
with parameters It = 1, k = 1 and p = 0, χ -SIM is strictly equivalent to the
Cosine similarity. Here, S[0]

1 and S[0]
2 are both initialized to the identity matrix,

expressing the fact that, without any prior knowledge, an object is similar to
itself. However, other initializations can be used (and thus these matrices can
be seen as input parameters as well) to provide some information about the
similarity values between documents and between words. This possibility will
be used in the next section to deal with multi-view similarity learning.

To illustrate this algorithm, let us consider the toy dataset in Fig. 1 extrac-
ted from Hussain et al. (2010). At the first iteration, documents d1 and d4 do
not share any words and thus their similarity is equal to 0, as with any clas-
sical similarity measure. However, as words w3 and w4 are both appearing
in d3, they have a non-null similarity value in S[1]

2 (and the same for w2 and

d1 d2 d3 d4

w1 w2 w3 w4 w5 w6

Documents

Words

FIGURE 1: Example of a documents-words bi-partite graph.
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w4 through d2) ; therefore, at the second iteration as d1 contains word w3 and
d4 contains word w4, the similarity between documents d1 and d4 in S[2]

1 will
become not null. Practically, each iteration t consists in evaluating the simila-
rities brought by the order-t paths in the documents/words bipartite graph.

4. The MVSIM Architecture

In this section, we introduce the MVSIM architecture to deal with datasets
having multiple relation matrices, that are seen as different views. This ap-
proach is both simple and scalable through the processes parallelization. As
we saw in Section 3., from a functional point of view, χ -SIM can be gene-
ralized in the following way (Fig. 2) in which Si, S j are the input similarity
matrices and S(i, j)

i , S(i, j)
j those learned using the dataset Ri j. This diagram is

the basic component we are using to deal with the multi-view setting.

S
(i,j)
j

S
(i,j)
i

χ-Simi,j

Si

Sj

Ri,j

FIGURE 2: Functional diagram of χ -SIM.

4.1. General learning architecture

Now, we consider again a very general model in which the dataset is com-
posed of M relation matrices Ri j, describing the connections between N dif-
ferent kind of objects Ti. Our goal is then to compute a co-similarity matrix Si
for each of these kinds of objects taking into account all the information ex-
pressed in the relations. The idea behind our learning architecture is to create a
learning network isomorphic to the relational structure of the dataset (Fig. 3).
In this model, an instance of χ -SIM is associated to each relation matrix Ri j
of the dataset. This instance is denoted χ -SIM (i, j) and it computes the si-
milarity matrices S(i, j)

i and S(i, j)
j . For the sake of simplicity, we consider that

parameters k, p, and It are set to the same values for every χ -SIM (i, j) ins-
tances. For a given type of object Ti, as each χ -SIM(i, .) instance produces a
similarity matrix, we then obtain a set of similarity matrices : {S(i,1)

i ,S(i,2)
j ...}.

We thus need to introduce an aggregation function, denoted Σi, to compute a
consensus similarity matrix merging the elements of this set with the current
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matrix Si. These consensus matrices, in turn, are used as input of the χ -SIM

(i, j) instances, thus creating feedback loops. The dynamic of the network and
the computation complexity will be discussed in the remaining of this section.

•••

•••

•••S1 S2 SN

Σ3Σ1

R1,3 R2,3 Ri,j

χ-Simi,j

ΣN

S3

χ-Sim1,3
χ-Sim2,3

Σ2

R1,2

χ-Sim1,2

FIGURE 3: Functional diagram of MVSIM. In this figure, we have only three
objects T1, T2 and T3 and a complete linkage between them.

In the topology presented in Fig. 3, we assume a complete linkage between
the objects Ti (i.e. T1 and T2 are linked through R1,2, T1 and T3 through R1,3
and T2 and T3 through R2,3) but, in practice, many other situations may arise.

First of all, in many cases, relationships among several objects are missing.
For instance, taking back our movie database example (Sect. 2.) : movies
are described by two matrices, [movies/actors] and [movies/keywords], but
there is no [actors/keywords] relation ; in such case, the corresponding χ -
SIM (i, j) and Σi instances and their associated links, will simply be absent
of the network. However, the outputs of χ -SIM(i, j) are nevertheless always
connected to the co-similarity matrix Si through the Σi and Σ j functions ; this
constraint will become obvious after detailing the network dynamic.

Secondly, in some datasets, several relation matrices exist between two ob-
jects Ti and Tj. For example, if you consider a dataset containing a collection
of emails, one can easily defines two matrices [users/words], the first one des-
cribing the word occurrences in the subjects of the email and the second in
their bodies ; in such cases, there will be two instances of χ -SIM(i, j) in the
network, one for each relationship but the overall structure will be the same.

Third, a relation can link an object Ti with itself as for a [users/users] matrix
denoting the relation “has sent an email to”. Here, two cases can be conside-
red : first, if the link is asymmetrical, we would create two similarity matrices
to differentiate the sender (Si→) from the receiver (Si←), second, when the
link is seen as symmetric, only one occurrence of Si would exist, connected
to both inputs of the instance χ -SIM (i, i). To conclude, MVSIM is generic
enough to deal with all these special cases without any modification.
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4.2. Dynamic of the network and algorithm

As we saw in Fig. 3, the similarity matrices Si are connected to the inputs of
each corresponding χ -SIM(i, .), allowing the system to spread the information
within the network. Various scheduling policies may be considered, about the
order in which the instances of χ -SIM (i, j) and Σi must be fired. One may
consider mainly two opposite policies, both of them allowing to parallelize
computation, since each instance could be executed on a different core.

– Asynchronous : χ -SIM(i, j) instances are run in a static or dynamic order
and Si are updated immediatly. The problem with this approach is that
the order matters : the last instance χ -SIM(i, j) fired will tend to shift Si
and S j toward the implicit similarities expressed by its relation matrix
Ri j leading to increase the “weight” of this node. Thus, without any prior
knowledge about the relative interest of the data matrices, this approach
seems difficult to optimize. In the rest of the paper we do not use it.

– Synchronous : χ -SIM(i, j) instances are run in parallel, then the simila-
rity matrices Si are simultaneously updated with Σi aggregation function.
This policy offers two benefits. First, all the instances of χ -SIM (i, j)
have the same influence (that could be adjusted by adding some weigh-
ting parameters in Σi but for sake of simplicity we will not consider this
possibility). Second, it becomes possible to study the convergence crite-
ria of the system according to the way Σi functions are defined.

It is worth to notice that the synchronous approach can be seen as a gene-
ralization of χ -SIM in the sense that the iteration loop used in Algorithm 1 to
compute the Si and S j matrices can be done at the level of the network. In this
way, it becomes possible to set the parameter It of each χ -SIM(i, j) to 1 and to
introduce a more general parameter, denoted IG, indicating the global number
of iterations to perform within the network. The meaning of IG remains the
same as in χ -SIM : each iteration t allows us to take into account the order-t
paths of the bipartite graph associated to each matrix Ri j.

4.3. Aggregation function and algorithm

The Σi functions have two roles : first, they aggregate the similarity ma-
trices produced by the χ -SIM (i, j) instances into one unique similarity ma-
trix ; second, the way they are defined must ensure the convergence along
the iterations. Concerning the first aspect, in an unsupervised learning fra-
mework and without any prior knowledge, relatively few strategies exist to
merge several similarity matrices. For a given set {S(i,1)

i ,S(i,2)
j ...} of simila-
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rity matrices, we can mainly consider the element-wise operations minimum,
maximum and average. Concerning the convergence problem, we can first de-
fine each Σi in such a way that it does not replace the current similarity matrix
Si by the new consensus one, but rather that it adds this one to the previously
computed Si, this sum being weighted by a damping factor. To ensure the
convergence of the computation, let λ ∈ [0,1[ be a damping parameter, let
F be a merging function (minimum, maximum, average, etc.) combining the
matrices {S(i,1)

i ,S(i,2)
j ...} into a new matrix whose elements belong to [0,1],

and let S[t−1]
i be the previously computed similarity matrix of instances of Ti.

Here is the formula used to compute the aggregated matrix at iteration t :

Σi =
1

1+λ t

(
S[t−1]

i +λ
t×F(S(i,1)

i ,S(i,2)
i ...)

)
(3)

As the F function is bounded and the damping factor λ t is exponentially
decreasing with t, this formula ensures the convergence of the sequence com-
posed of the successive similarity matrices computed by the Σi functions. This
explains why a Σi function must always exist in the network even if there is
just one instance of χ -SIM(i, .). We can also notice that such damping mecha-
nism does not exist in χ -SIM. The complete algorithm for MVSIM follows :

Algorithm 2 The MVSIM algorithm
Input: A collection of relational matrices {Ri, j}
Input: Parameters IG, λ , k, p

Let {Si} the similarity matrices
foreach i : Si← I
for t = 1→ IG do

Execute every χ -SIM(i, j) with It=1, k, p
Update every Si with Σi using Eq. (3).

end for

4.4. Complexity and parallelization

The complexity of the MVSIM architecture is obviously closely related
to the one of χ -SIM (see Algorithm 1). Let us consider a relational matrix
Ri j of size n by m, as this algorithm consists in multiplying three matrices,
the overall complexity to compute a similarity matrix of size n2 (rows) is
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O(nm2+n2m), that is identical to the complexity to compute a similarity ma-
trix of size m2 (columns). In the MVSIM, as each instance of χ -SIM(i, j) can
easily run on an independent core, this method can easily be parallelized, thus
keeping the global complexity unchanged. In a single core implementation,
we need to multiply the complexity by a factor M corresponding to the size of
the collection (assuming the Ri j matrices have similar sizes). The complexity
of the Σi functions being equal to O(m2) or O(n2), it can be ignored.

Until now, we considered multi-view clustering as a way to combine dif-
ferent sources of data. However, the MVSIM can be also interesting to split a
large problem into a collection of smaller ones. For example, let us consider a
problem with one [documents/words] matrix of size n by m in which we just
want to cluster the documents. If the number of words is huge with respect
to the number of documents, we can divide the problem into a collection of
h matrices of size n by m/h. Thus, by using a distributed version of MVSIM

on h cores, we will gain both in time and space complexity : indeed, the time
complexity decreases from O(nm2 +n2m) to O(1/h2(nm2)+1/h(n2m)) lea-
ding to an overall gain of 1/h2 when n < m. In the same way, the memory
needed to store the similarity matrices between words will decrease by a 1/h
factor (not 1/h2 since we have now h similarity matrices to compute).

5. Experiments

In this section, we present the experiments conducted to assess the perfor-
mance of our multi-view architecture on real-world datasets. More precisely,
we tried to answer two questions discussed in two separated sections :

1. Does the co-similarity based multi-view architecture allow to provide
better results than the classical co-clustering methods working on only
one relation matrix ? (section 5.1.)

2. Is the splitting approach, proposed in section 4.4., an efficient way to
deal with large matrices in the same amount of runtime and memory
space thanks to the parallelization of the algorithm ? (section 5.2.)

As we are in the clustering context, our evaluation is classically based on
the following method. First, we select some dataset in which labeled clusters
already exist and then we evaluate the correlation degree between the learned
and known clusters by the analysis of the confusion matrix using for instance
the micro-averaged precision (Pr) from Dhillon et al. (2003).
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5.1. Evaluation of the multi-view approaches

Test dataset. We used seven databases, the quantitative characteristics of
them being described in Table 1. The first dataset is extracted from the IMDb 1

website. Some pre-processing steps has been done in order to remove the
rarest actors and keywords. We have three types of objects : movies, actors
and keywords ; and two relation matrices : the [movies/actors] matrix and the
[movies/keywords] matrix. In addition, we built a third matrix which is the
concatenation of the two previous matrices, referred to as [Key+Act], in order
to provide the single-view approach with a dataset containing all the data.

The six other databases concern Web data and are all constructed on the
same structure with two types of objects (Documents and Words) and four re-
lations matrices. The [documents/words] matrix describes the content of the
documents using a classical bag of words representation, and the three other
[documents/documents] matrices corresponding to the inbound, outbound and
citation links between documents. However, on the one hand the outbound is
just a transposition of the inbound matrices and on the other hand, the ci-
tation matrix is just the sum of the two others. Therefore, in the multi-view
architecture used here we just have two relation matrices.

TABLE 1: Description of the databases. The Links column gives the number
of relations occurring in the [Documents/Documents] matrices.

Dataset Movies Keywords Actors Clusters
IMDb 617 1878 1398 17

Dataset Documents Words Links Clusters
Cora 2708 1433 5429 7

Citeseer 3312 3703 4732 6
Cornell 195 1703 569 5
Texas 187 1703 578 5

Washington 230 1703 783 5
Winconsin 265 1703 938 5

More precisely, we used the Cora and CiteSeer dataset (Bickel & Scheffer,
2005; Drost et al., 2006; Sen et al., 2008) and four datasets coming from the
WebKB 2 describing the pages of four universities (Cornell, Texas, Washing-
ton and Wisconsin), classified in five classes (student, project, staff, course, fa-

1. http://www.imdb.com/interfaces/
2. http://www.cs.umd.edu/projects/linqs/projects/lbc/
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culty). On the basis of these seven benchmarks, we compared our multi-view
architecture based on χ -SIM with : Cosine, LSA (Deerwester et al., 1990),
SNOS (Liu et al., 2004), CTK (Yen et al., 2009) and χ-Simk

p (Hussain et al.,
2010) that are five classical similarity or co-similarity measures ; ITCC (Dhil-
lon et al., 2003) a well-known co-clustering system ; MVKM (Drost et al.,
2006) which is an adaptation of k-means to the multi-view context.

Test methodology. For the similarity measures : Cosine, LSA, SNOS, CTK
and χ -SIM, the clusters has been generated by an Agglomerative Hierarchi-
cal Clustering (AHC) method on the similarity matrices along with Ward’s
linkage. Then, we cut the clustering tree at the level corresponding to the
number of document clusters we are waiting for. We used the classical micro-
averaged precision (Pr) (Dhillon et al., 2003) for comparing the accuracy of
the document clustering for which the higher value, the better performance.
For MVKM, as we don’t have a running implementation, we directly quote
the best values for the CiteSeer dataset from Drost et al. (2006). It is worth
noticing that many of the these methods have some setting parameters. Thus,
in order to keep a fair comparison, we sought for the better values for these
parameters either by testing several values and reporting the best precision
and/or by using the values recommended by the authors.

TABLE 2: Results of the experiments performed on the 7 dataset. The best
results obtained for each dataset is written in bold

Dataset Single-view algorithms Multi-view approachView Best Pr Second Pr
Movie Key+Act CTK 33.2% χ -SIM 30.6% 34.7%
Cora Citation χ -SIM 63.4% LSA 49.8% 69.7%

Citeseer Content χ -SIM 60.8% ITCC 46.8% 63.5%
Cornell Content χ -SIM 63.1% LSA 57.9% 69.2%
Texas Content χ -SIM 72.2% LSA 66.3% 61.5%

Washington Content LSA 65.2% χ -SIM 63.5% 61.7%
Wisconsin Content χ -SIM 67.5% LSA 60.4% 67.5%

Table 2 reports the results obtained by the different clustering methods.
We tested every mono-view algorithms on all the seven datasets, however,
in order to easy the reading of the results we just report for each dataset :
the name of the view providing the best result and the precision of the best
and second methods on this view. As we can see, MVSIM obtains the best
micro-averaged precision in all the datasets but two : Texas (best : χ -SIM)
and Washington (best : LSA). We are investing the reason why our algorithm
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partially fails on these two datasets. But, in many cases this architecture which
can be seen as a generalization of the χ -SIM method, is better that this one.
Moreover, we observe the multi-view architecture is far less sensible to the
value of the pruning parameter, providing a more robust approach.

Finally, we compare (table 3) our architecture with MVKM (Drost et al.,
2006). As the authors provided a measure of entropy of their resulting cluste-
ring, we simply quote their best result. The lower the entropy is, the better the
clustering, as it measure disagreement between the known clusters, and the
learnt one. Here too, our approach achieves better results that MVKM.

TABLE 3: Comparison between MVKM, χ-Simk
p and our architecture.

CiteSeer MVKM χ-Simk
p Multi-view arch.

Entropy 1.60 1.27 1.07

5.2. Evaluation of the splitting approach

Here, we analyze the performance of our multi-view architecture when a
relational matrix is splitted into a collection of smaller matrices. As explained
in Section 4.4., with such approach, we can process larger datasets with the
same running time and a smaller memory footprint. For this test we use the
classical NG20 dataset consisting of approximately 20,000 newsgroup articles
collected from 20 different Usenet groups. We create subsets of NG20 named
M2, M5 and M10 (Dhillon et al., 2003), as well as the subsets NG1, NG2,
and NG3 (Long et al., 2006). The results of our experiment are provided in
Table 4, two configurations being tested : in the first one, we generate three
datasets of 1, 2 and 4 matrices, each matrix containing 500 different words ;
in the second one, the matrices contain 1000 different words. The words have
been selected by running k-medoids to get the most representative ones. It is
important to emphasize that each configuration needs the same time to run for
a parallelized version of MVSIM, independently of the number of matrices.
For the simpler dataset (M2, NG1), the better results are obtained when there
is only one matrix. This result can be explained by the fact that smaller dataset
contains less different words, thus the added words have a high probability
to be not relevant. When the dataset becomes bigger (M5, NG2, NG3) the
datasets containing several views achieve the best results.
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TABLE 4: Results of the splitting approach

Dataset M2 M5 M10 NG1 NG2 NG3
Multi-view (1×500) 74.5 73.8 50.7 78.2 64.2 50.9
Multi-view (2×500) 71.0 74.6 47.4 62.9 66.8 60.9
Multi-view (4×500) 65.3 75.6 46.3 54.6 68.1 59.5
Multi-view(1×1000) 74.5 73.8 50.7 80.9 68.0 58.2
Multi-view (2×1000) 71.9 76.9 49.9 64.9 71.8 63.3
Multi-view (4×1000) 64.3 78.4 49.1 57.3 68.9 63.1

6. Conclusion

In this article, we proposed a multi-view architecture to tackle the problem
of learning co-similarities from a collection of matrices describing interrela-
ted types of objects. Our approach is an extension of the χ-Simk

p co-similarity
(Hussain et al., 2010) to the multi-view clustering problem. This new archi-
tecture provides some interesting properties both in term of convergence and
scalability and it allows an simple parallelization of the processes. The experi-
ments shown this method outperform in several tests the classical approaches
dealing with one matrix at a time.
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