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Abstract

Let T be an ergodic automorphism of the d-dimensional torus T¢, and f be a continuous function
from T? to R¢. On the probability space T¢ equipped with the Lebesgue-Haar measure, we prove the
weak convergence of the sequential empirical process of the sequence (foT");>1 under some condition
on the modulus of continuity of f. The proofs are based on new limit theorems and new inequalities
for non-adapted sequences, and on new estimates of the conditional expectations of f with respect to
a natural filtration.

1 Introduction

Let d > 2 and T¢ = R?/Z? be the d-dimensional torus. For every € R?, we write Z its class in T<.
We denote by A the Lebesgue measure on R%, and by X the Lebesgue measure on T¢.

On the probability space (T?, \), we consider a group automorphism 7 of T¢. We recall that T is
the quotient map of a linear map 7 : R4 — R4 given by T(x) = S -z, where S is a d X d-matrix with
integer entries and with determinant 1 or -1. The map T preserves the infinite Lebesgue measure A
on R? and T preserves the probability Lebesgue measure ).

We assume that T is ergodic, which is equivalent to the fact that no eigenvalue of S is a root of
the unity. This hypothesis holds true in the case of hyperbolic automorphisms of the torus (i.e. in the
case when no eigenvalue of S has modulus one) but is much weaker. Indeed, as mentionned in [9], the

following matrix gives an example of an ergodic non-hyperbolic automorphism of T* :
-1
S =

o o = O
o~ OO
_ O O O
N O N

When T is ergodic but non-hyperbolic, the dynamical system (T¢, T, \) has no Markov partition. How-
ever, it is possible to construct some measurable partition (see [11]), and to prove some decorrelation
properties for regular functions (see [11, 10]).



Let ¢ be some positive integer, and let f = (f1,...f¢) be a function from T¢ to RY. On the
probability space (T? )), the sequence (f o T*)zez is a stationary sequence of Rf-valued random
variables. When ¢ = 1 and f is square integrable, Le Borgne [9] proved the functional central limit

theorem and the Strassen strong invariance principle for the partial sums

n

S (FoTi = A(f))

i=1

under weak hypotheses on the Fourier coefficients of f, thanks to Gordin’s method and to the partitions
studied by Lind in [11]. In the recent paper [4], we slightly improve on Le Borgne’s conditions, and
we show how to obtain rates of convergence in the strong invariance principle up to n'/* log(n), by
reinforcing the conditions on the Fourier coefficients of f.

Now, for any s € R, define the partial sum

Z ]-foTk<s (S)), (11)
k=1

where as usual 1popricy = 1porics, X -o- X lpoprcy,, and F(s) = AM1pork<,) is the multivariate
distribution function of f.

In this paper, we give some conditions on the modulus of continuity of f for the weak convergence
to a Gaussian process of the sequential empirical process

{S[””(S),te 0,1], s ERZ}. (1.2)
vn

The paper is organized as follows. Our main results are given in Section 2 and proved in Section
5. The proofs require new probabilistic results established in Section 3 combined with a key estimate
for toral automorphisms which is given in Section 4. Let us give now an overview of our results.

In Section 2.1, we consider the case where £ = 1 and S, is viewed as an ILP-valued random variable
for some p € [2,00[ (this is possible because [ [S,(s)[Pds < oo for any p € [2,00[), so that the
sequential empirical process is an element of Dy (][0, 1]) the space of LP-valued cadlag functions. We
prove the weak convergence on Dy ([0,1]) equipped with the uniform metric to a LP-valued Wiener
process, and we give the covariance operator of this Wiener process. The proof is based on a new
central limit theorem for dependent sequences with values in smooth Banach spaces, which is given
in Section 3.1.1.

In Section 2.2, we state the convergence of the sequential empirical process (1.2) in the space
£>°(]0,1] x R*) of bounded functions from [0, 1] x R’ to R equipped with the uniform metric. In that
case, the limiting Gaussian process is a generalization of the Kiefer process introduced by Kiefer in
[8] for the sequential empirical process of independent and identically distributed random variables.
The proof is based on a new Rosenthal inequality for dependent sequences, which is given in Section
3.1.2. The weak convergence of the empirical process {n=1/25,(s),s € R} has also been treated in
[7] and [6]. We shall be more precise on these two papers in Section 2.2.

To prove these results, we shall use a control of the conditional expectations of continuous ob-
servables with respect to the filtration introduced by Lind [11], involving the modulus of continuity
of the observables (See Theorem 18 of Section 4). As far as we know, such controls were known for
Holder observables only (see [10]). The inequalities given in Theorem 18 can be used in many other
situations. Let us give two examples of applications. Let f be a continuous function from T¢ to R
with modulus of continuity w(f,-) (see Section 4, equation (4.1), for the definition).

1/2
/ Mdt < 00,
o tllogt|t/2

1. Weak invariance principle. If



then the series

converges absolutely, and the process

[nt]

{%ZfoTk,te [0,1]}

k=1

converges to a Wiener process with variance o?(f) in the space D([0,1]) of cadlag function
equipped with the uniform metric .

2. Rates of convergence in the strong invariance principle. Let p €]2, 4], and assume that

1 144 -2
Vit app-2) 2
2p

w(f,z) < C|log(x)|™* in a neighborhood of 0 for some a > ,

Then, enlarging T if necessary, there exists a sequence (Z;)i>1 of independent and identically
distributed Gaussian random variables with mean zero and variance o(f) such that, for any
t>2/p,

k k
sup Zf oT" + Z ZZ-’ = o(nl/p(log(n))(t+1)/2) almost surely as n — oo.
Isksn by i=1

In particular, we obtain the rate of convergence n'/*

from Theorem 3.1 in [3].

log(n) as soon as a > 3/2. This follows

2 Empirical central limit theorems

2.1 Empirical central limit theorem in L”

In this section, IL? is the space of Borel-measurable functions g from R to R such that A(|g|?) < oo, A
being the Lebesgue measure on R. If f is a bounded function, then, for any any p € [2, o], the random
variable S,, defined in (1.1) is an LP-valued random variable, and the process {n=1/25,,,t € [0,1]}
is a random variable with values in Dp»([0,1]), the space of LP-valued cadlag functions. In the
next theorem, we give a condition on the modulus of continuity w(f,-) of f under which the process
{n’l/ZS[nt] ,t € [0,1]} converges in distribution to an LP-valued Wiener process, in the space Dy ([0, 1])
equipped with the uniform metric. We refer to Section 4, equation (4.1), for the precise definition of
w(f, )

By an LP-valued Wiener process with covariance operator A,, we mean a centered Gaussian process
W = {W,,t € [0,1]} such that E(||W]|Z,) < oo for all ¢ € [0,1] and, for any g,k in L7 (¢ being the
conjugate exponent of p),

Cov(/Rg(u)Wt(u)du,Ah(u)Ws(u)du) = min(¢, s)Ap(g, ) .

Theorem 1. Let f : T — R be a continuous function, with modulus of continuity w(f,-). Let
p € [2,00[, and let q be its conjugate exponent. Assume that

dt < 0o

/1/2 (w(f, t))l/p
0

t|logt|1/»



Then the process {n~'/2S),,t € [0,1]} converges in distribution in the space Dy»([0,1]) to an LP-
valued Wiener process W, with covariance operator A, defined by

Ay(g,h) = ZCOV(/RQ(S)lfgst,/}Rh(s)lfo;pkgsds) ,  for any g, h in L9. (2.1)

kEZ
The proof of Theorem 1 is based on results of Sections 3 and 4 and is postponed to Section 5.

Remark 2. In particular, if f is Holder continuous, then the conclusion of Theorem 1 holds for any
p € [2,00].

Let us give an application of this theorem to the Kantorovich-Rubinstein distance between the
empirical measure of (f o T")1<i<y and the distribution p of f. Let

. k
i=1 =1

n

The Kantorovich distance between two probability measures 17 and v is defined as
K(vy,v5) = inf { / | — y|A(dz,dy), X € M(Vl,Vg)},

where M(v1,19) is the set of probability measures with margins 14 and vs.

Corollary 3. Let f : T — R be a continuous function, with modulus of continuity w(f,-). Assume

that
/1/2 Vw(f 1)
0

————=dt < c0.

ty/|logt|
Then /nK (pin, i) converges in distribution to |[WillL1, and sup;<j.<,, /K (fin k, 1) converges in dis-
tribution to sup,cio 1) [|WellLr, where W is the L2-valued Wiener process with covariance operator As
defined by (2.1).

Proof of Corollary 3. Applying Theorem 1 with p = 2, we know that {n_l/QS[m},t € [0,1]} converges
in distribution in the space Dy2([0, 1]) to an L?-valued Wiener process W, with covariance operator A,
defined by (2.1). Since f is continuous on T¢, it follows that |f| < M for some positive constant M, so
that Sy (s) = 0 and Wy(s) = 0 for any ¢ € [0, 1] and any [s| > M. Since ||-[|L1 is a continuous function
on the space of functions in .2 with support in [—M, M], it follows that n='/2||S, ||, converges in dis-
tribution to |[Wi (|1, and that sup,cf 17~ "/2|[Spy I, converges in distribution to supsefo 1) [WellL:-
Now, if v; and v» are probabity measures on the real line, with distribution functions £, and F,,
respectively,

K(wnm) = [ 1Fult) = Fa(o)ldr

Hence nK (pin, p) = ||SnllL, and sup <<, nK (fink: 1) = supyepo 1) |y llL,» and the result follows.
O

2.2 Weak convergence to the Kiefer process

Let ¢ be a positive integer. Let f = (fi,..., f¢) be a continuous function from T¢ to R’. The modulus
of continuity w(f,-) of f is defined by

w(f,z) = 1iu1<>lw(fi,x),



where we recall that w(f;, x) is defined by equation (4.1).

As usual, we denote by £>°([0, 1] x R®) the space of bounded functions from [0, 1] x R? to R equipped
with the uniform norm. For details on weak convergence on the non separable space £>°([0,1] x R?),
we refer to [17] (in particular, we shall not discuss any measurability problems, which can be handled
by using the outer probability).

For any positive integer ¢ and any « €]0,1], let

p (p—l)(Qoz-i-p)).

a(l, @) = p—20)’ pa

9e,0(p), where gy o(p) = max <a( (2.2)

min
p>max(0+2,20)
Note that this minimum is reached at p; = max(3,pg), where po is the unique solution in ]2¢, 4¢[ of
the equation

p (p—1)(p+ 2a)

= (2.3)
(p—20) P
(in particular, p; = pg if £ > 1).
We are now in position to state the main result of this section.
Theorem 4. Let f = (f1,..., fo) : T* — RY be a continuous function, with modulus of continuity

w(f,-). Assume that the distribution functions of the f;’s are Holder continuous of order a €]0,1]. If
w(f,z) < Cllog(z)|™* for some a>a(l,a),

then the process {n='/2S},(s),t € [0,1],s € R} converges in distribution in the space £>°([0,1] x R)
to a Gaussian process K with covariance function T defined by: for any (t,t') € [0,1]® and any
(s,8') € R x R,

L(t,t,s,5') = min(t,t)A(s,s") with A(s,s') =Y Cov(Ljor<s, Lorrcy) -
keZ

The proof of Theorem 4 is given in Section 5. It uses results of Sections 3 and 4.

Remark 5. Using the Cardan formulas (see the appendiz) to solve (2.3), we get
{+1— / 1 27
pO:2¥+2\/—%COS <3arccos (—;] W ) )

1
p = —dol + 20 — 200 — §(72€+20¢72)2 <0

with

and
1
¢ = 5o (=204 20 = 2)(2(—2 + 20 — 2)? + 360l — 18¢ + 18a) + 4ol .
For example, for a« =€ =1, we get py ~ 2.903211927 and finally a(1,1) = 10/3.
Recall that, by Theorem 1, if ¢ = 1 and p €]2, 00[, the weak invariance principle holds in Dy»([0,1])

as soon as a > p — 1 without any condition on the distribution function of f.

The weak convergence of the (non sequential) empirical process {n=1/25,(s),s € R’} has been
studied in [7] and [6]. When ¢ = 1, a consequence of the main result of the paper [7] is that the
empirical process converges weakly to a Gaussian process for any Holder continuous function f having
an Holder continuous distribution function. In the paper [6] this result is extended to any dimension
£, under the assumption that the moduli of continuity of the distribution functions of the f;’s are
smaller than C|log(z)|~® in a neighborhood of 0, for some a > 1.



Note that, in our case, one cannot apply Theorem 1 of [6]. Indeed, one cannot prove the multiple
mixing for the sequence (f oT"%);cz by assuming only that w(f,z) < C|log(x)|~® in a neighborhood of
zero (in that case one can only prove that |Cov(f, foT™)| is O(n~*)). However, even if our condition
on the regularity of f is much weaker than in [6], our result cannot be directly compared to that of
[6], because we assume that the distribution functions of the f;’s are Holder continuous of order a,
which is a stronger assumption than the corresponding one in [6].

3 Probabilistic results

In this section, C'is a positive constant which may vary from lines to lines, and the notation a,, < b,
means that there exists a numerical constant C' not depending on n such that an a, < Cb,, for all
positive integers n.

3.1 Limit theorems and inequalities for stationary sequences

Let (2, A4,P) be a probability space, and T :  — € be a bijective bimeasurable transformation
preserving the probability P. For a o-algebra JFy satisfying Fo C T~ !(Fy), we define the nondecreasing
filtration (F;)icz by F; = T~ (Fo). Let F_oo = Nyez Fr and Foo = /ey Fi- Let I be the o-algebra
of T-invariant sets. As usual, we say that (T, P) is ergodic if each element A of Z is such that P(A) =0
or 1.

Let (B, |- |g) be a separable Banach space. For a random variable X with values in B, let || X||, =
(E(|X|E))*/? and LP(B) be the space of B-valued random variables such that || X||, < oo. For X €
L' (B), we shall use the notations Ex(X) = E(X|Fy), Eeo(X) = E(X|Fx), E—oo(X) = E(X|F-w),
and Pk(X) = Ek(X) — ]Ek_l(X). Recall that E(X‘]:n) o™ = IE(X o Tm|.7:n+m).

Let Xy be a random variable with values in B. Define the stationary sequence (X;);cz by X; =
Xo oT?, and the partial sum S, by Sp, = X1 + Xo + -+ + X,,.

3.1.1 Weak invariance principle in smooth Banach spaces

Following Pisier [16], we say that a Banach space (B, |- |g) is 2-smooth if there exists an equivalent
norm || - || such that

1
sup { 13 sup{lla + ) + |}z — tyl] = 2 ] = 1] = 1}} < oo

From [16], we know that if B is 2-smooth and separable, then there exists a constant K such that, for
any sequence of B-valued martingale differences (D;);>1,

E(|Dy + -+ Dul§) < K ) E(Dilg). (3.1)

i=1

From [16], we see that 2-smooth Banach spaces play the same role for martingales as space of type
2 do for sums of independent variables. Note that, for any measure space (T, A,v), LP(T, A,v) is
2-smooth with K = p—1 for any p > 2, and that any separable Hilbert space is 2-smooth with K = 2.

Let Dg([0,1]) be the space of B-valued cadlag functions. In the next theorem, we give a condition
under which the process {n=1/25,,;, ¢ € [0, 1]} converges in distribution to an B-valued Wiener process,
in the space Dg([0,1]) equipped with the uniform metric.

By an B-valued Wiener process with covariance operator Ag, we mean a centered Gaussian process
W = {W,,t € [0,1]} such that E(|W;|3) < oo for all ¢ € [0,1] and, for any g, h in the dual space B*,

Cov(g(Wy), h(Ws)) = min(¢, s)Ar(g, h) .



Proposition 6. Assume that B be a 2-smooth Banach space having a Schauder Basis, that (T,P) is
ergodic, that | Xo||2 < 0o and that E(Xo) = 0. If

D P (X)) < o0 (3.2)

kEZ

then the process {n_l/QS[nt],t € [0,1]} converges in distribution in the space Dg([0,1]) equipped with
the uniform metric to a B-valued Wiener process W, , where Ap is the covariance operator defined by

for any g,h in B*, Ag(g,h) =Y _ Cov(g(Xo), h(Xy)).
keZ

Proof of Proposition 6. Let us prove first that the result holds if E(Xy|F_1) = 0, that is when (Xj)gez
is a martingale difference sequence. As usual, it suffices to prove that:

l.forany 0=ty <t < - <tg=1
1
ﬁ(s[mlps[mz] = Smta]> > Snta] = Sinta_i])

converges in distribution to a the Gaussian distribution y on B? defined by p = p; ® iz - - - @ jua,
where p; is the Gaussian distribution on B with covariance operator Cj:

for any g, h in B*a Oz(ga h) = (tz - ti_l)COV(g(Xo), h(XO)) .

2. For any € > 0,
1
lim lim sup 413( max [Sifs > 2\/55) —0

—0 pooo O \1<k<[né

The first point can be proved exactly as in [18], who proved the result only for ¢; = 1. Let us prove
the second point. For any positive number M, let

X{ = Xi1|Xi\[B§M — ]E(Xi]-\Xi|B§M|fi—l) and Xl{/ = Xi — Xz, .

Let also S, = X{ +---+ X}, and S/ = X{' 4+ --- 4+ X/. Since B is 2-smooth, Burkholder’s inequality
holds (see for instance [15]), in such a way that E(max;<x<n |Sh|E) < K,Mn9/2 for any ¢ > 2. Hence,
applying Markov’s inequality at order g > 2,

1 K. Masla=2)/2
fIE”( max ]‘S“B > \/ﬁs) <4

0 \1<k<[né ed
As a consequence, we get that
lim lim sup 1[?’( max _|S;|p > \/ﬁs) =0 (3.3)
0—0 p—oo 4] 1<k<[nd] miE . .
In the same way, applying Markov’s inequality at order 2
}IP( max _|S!|z > \/ﬁs) < LR X021 o) - (3.4)
0 \1<k<[nd] — g2 olB

The term E(|Xo[31|x,,>n) is as small as we wish by choosing M large enough. The point 2 follows
from (3.3) and (3.4).



We now consider the general case. Since B is 2-smooth, Burkholder’s inequality holds and so
Proposition 4.1 in [4] applies: if (3.2) holds, then, setting d = >, , Pu(X;), we have

k
>
i=1

Since (d;)iez is a stationary martingale differences sequence in L?(B), we have just proved that it
satisfies the conclusion of Proposition 6. From (3.5) it follows that the conclusion of Proposition 6 is
also true for (X;);cz with

i€Z

‘ max

max. L= o(v/n). (3.5)

As(g, h) = Cov(g(do), h(do)). for any g,h in B".

It remains to see that this covariance function can also be written as in Proposition 6. Recall that,
for any g and h in B*,

S [Cov(g(Xo), X < (S I1Ro(g(Xill2) (3 IPo(h(Xi))]lz) < oo
kEZ kEZ kEZ

(see the proof of item 1 of Theorem 4.1 in [4]). Hence, for any g in B*,

1 L5((300000)°) = X Covla(0).0(x2). (3.6)
k=1

keZ

Now, from (3.5), we also know that

tim LE((300x0) ) = B((a(a)?). 1)
k=1

n—oo n
Applying (3.6) and (3.7) with g, h and g + h, we infer that

Cov(g(do), h(do)) = > Cov(g(Xo), h(Xx)),

kEZ

which completes the proof. O

3.1.2 A Rosenthal inequality for non adapted sequences

We begin with a maximal inequality that is useful to compare the moment of order p of the maximum
of the partial sums of a non necessarily adapted process to the corresponding moment of the partial
sum. The adapted version of this inequality has been proven in the adapted case (that is when Xj is
Fo-measurable) in [12]. Notice that Proposition 2 of [12] is stated for real valued random variables,
but it holds also for variables taking values in a separable Banach space (B, |- |p).

Proposition 7. Let p > 1 be a real number and q be its conjugate exponent. Let Xy be a random
variable in LP(B) and Fo a o-algebra satisfying Fo C T~1(Fo). Then, for any integer r, the following
inequality holds:

Héﬂ?%&'s |BH <q||527\|p+q2r/pe§%2 P Bo(Sae)lp + (H”T/p%z P Sy — Bage (Sae)lp -

(3.8)



Remark 8. If we do not assume stationarity, so if we consider a sequence (X;);ez in LP(B) for a
p > 1, and an increasing filtration (F;);cz, our proof reveals that the following inequality holds true:
for any integer r,

r—1 277'—1

| e, 1wl < alSelly+ a3 (3 IBion S = Sia)l)

1<m<2r
1=0 k=1
r o=t 1/p
+(g+1) Z (Z [[Skat = Str—1)20 — Epar (St — S(kﬂ)?)”ﬁ) .
1=0 k=1

Remark 9. Under the assumptions of Proposition 7, we also have that for any integer n,

1/ 1Eo(Se)lp 1/ 1Se — Ee(Se)lp
| s uls] < 20 w1l + ey pz S+ b pz et 69)

where
21+1/Pq ol+1/p

The proof of this remark will be done at the end of this section.

Clp:

In the next results, we consider the case where (B, |- |g) = (R,]|-|). The next inequality is the non
adapted version of the Rosenthal type inequality given in [12] (see their Theorem 6).

Theorem 10. Let p > 2 be a real number and q be its conjugate exponent. Let Xy be a real-valed
random variable in P and Fo a o-algebra satisfying Fo C T—1(Fy). Then, for any positive integer r,
the following inequality holds:

B (Sax) ”p 1S — Ean (Soi)llp \
p s T N=UAPL /1P T
E(lgnax 1S, ) < 2'E(|X,|)P 4 2 (Z i +2 Z o

_ /(26)
L IE(S2IG 0\
T p/2
+2 <§ — , (3.10)

k=0

where § = min(1,1/(p — 2)).

Remark 11. The inequality in the above theorem implies that for any positive integer n,

p 2n p
1
E(lglaé)( 1S; |p) < nE(|X1))? +n <Z REeYn |1E0(Sk)|p> +n <Z i ISk - Ek(sk)p>

n 1 p/(26)
+n (Z k1+25/p||E0<Sk)”p/2> .

k_
To see this, it suffices to use the arguments developed in the proof of Remark 9 together with the
following additional subadditivity property: for any integers i and j, and any § €]0,1]:

o (SZ)115/0 < 2°IBo(SP)llp/2 + 2° 1Bo(S7) /2 -
So, according to the first item of Lemma 37 of [12], for any integer n €]2" 1 27],

r—1 n
par 225k/p s L1+25/p IHO\PE/lIp/2 -




Remark 12. Theorem 10 has been stated in the real case. Notice that if we assume Xo to be in LP(B)
where (B, |- |g) is a separable Banach space and p is a real in ]2, 00[, then a Rosenthal-type inequality
similar as (3.10) can be obtained but with a different 0 for 2 < p < 4. To be more precise, we get that

P r_1 p/(29)
, . . 1| Sak — Eoi (Sar)|l, . [Eo(|S2x )12/
E(linzix 1S;1E ><<2 E(|Xolr)” + 2 (Z oh/p +2 ];)—22%/;; '
(3.11)

where 6 = min(1/2,1/(p — 2)). The proof of this inequality is given later.

As a consequence of (3.10), one can prove the following inequality. This inequality will be used to
prove the tightness of the sequential empirical process (1.2) in the space £>°([0, 1] x R) (see the proof
of Theorem 4, Section 5).

Proposition 13. Let p > 2. Let Xg be a real-valed random wvariable in LP and Fo a o-algebra
satisfying Fo C T~ Y(Fo). For any j > 1, let

A(X, j) = max (2 sup [Eo(XiXj+i)llp/2, S [ Eo(X;X;+i) — E(XijJri)”p/Z) : (3.12)
1> RSV

Then for every positive integer n,

n

1/2 1
< n1/2( Z IE( XOXk)|) + 0! X flp 0Py o (Xl
k=0 k=1
2n

n 1 1/2
+n1/pzk1/puxo EL(Xo)lp + ' (Y rrarrr log K7 A(X.R))
k=1

H max
1<j<n

where v can be taken v =0 for 2 < p <3 and v > p— 3 for p > 3. The constant that is implicitly
involved in the notation < depends on p and v but it depends neither on n nor on the X;’s.

The proof of this proposition is left to the reader since it uses the same arguments as those
developed for the proof of Proposition 20 in [12].

We would like also to pint out that Theorem 10 implies the following Burkholder-type inequality.
This has been already mentioned in the adapted case in [12, Corollary 13].

Corollary 14. Let p > 2 be a real number, Xy be a real random variable in LP and Fy a o-algebra
satisfying Fo C T—1(Fo). Then, for any integer r, the following inequality holds

E( max |S |p) < 2rp/2]E(|X0|p 27";0/2(2 H]EO S2J ”IJ) 2rp/2(z HSQJ E2J SQJ)HP)

1<j<or 2i/2 27/2

The above corollary (up to constants) is then the non adapted version of [13, Theorem 1] when
p > 2. Let us give an application of it for the partial sums associated to continuous functions of the
iterates of an ergodic automorphism of the torus. Let T be a ergodic automorphism of T¢ as defined
in the introduction. Let f be a continuous function from T? to R with modulus of continuity w(f,-)
(see Section 4, equation (4.1), for the definition). Using Corollary 14 together with Theorem 18 (see

also Remark 19), we infer that if
/1/2 W) dt < oo
0

t|log t|1/2

10



then for any p > 2,

k
D_(FoT = A(f)

‘ max

< n'/?.
1<k<n »

Proof of Proposition 7. For any k € {1,...,2"}, we have that

S =S, — Ek(Sk) “FEk(SQT) — Ek(SQr — Sk) .

Consequently
‘ max_ SkhBH gH max |]Ek(SQT)BH +H max |E21~_m(527-—527»_m)|BH
1<k<2r » 1<k<2r P 1<m<2r—1
1182 — Ear (Sor)llp + H max | S — 'BH (3.13)
1<m<2r—1
Following the proof of Proposition 2 in [12], we get that
\ max_|Ex(Sar) |BH +H max \Ez,,_m(syfsg,,v_m)m”
1<k<2r 1<m<2r—1 »

r—1 27 f_1

1/p
< alESe | F)llp + a3 (D0 MBkoe (S = Ska)5) -
(=0 k=1

So, by stationarity,

‘ max |Ej(Sa )|z
1<k<2r

—|— H max  |Eor_p,(Sor — S2hm)hﬂ¥”
1<m<2r—1 P

r—1
For)llp + 277y 27 P|E(Sye | Fo) - (3.14)
£=0

< q[[E(S2r

We now bound the last term in the right hand side of (3.13). For any m € {1,...,2" — 1}, we consider

its binary expansion:
r—1

m= Zbi(m)Qi, where b;(m) =0 or b;(m) =1.
=0

Set m; = Z:;ll b;(m)2¢, and write that for any p > 1,

|Sm - ‘IB < Z |sz - mz+1 - m(sz - sz+1)|Ba (3-15)

since Sy = 0 and m, = 0. Now, since for any [ =0,...,r—1, F,,, C Fp,, the following decomposition
holds:

|Sml - Sml+1 - Em(smz - Sml+l)hB < |Sml - sz+1 - Eml(Sml - sz+1)|1B
+ |]E(Sml - Sml+1 - Emz(sml - sz+1)|}—m»|m

Notice that m; # my41 only if m; = km,l2l with k,,; odd. Then, setting

B, = max |Skat — Stk—1)2t — Egat (Sk2t — S(k—1)21)[B 5
1<k<2"—!k odd

11



it follows that
|Sml - Sml+1 _Em(sml - ml+1)|B < BTZ + “E( T,l‘fm)‘ .

Starting from (3.15), we then get that

+ZHI<% (Bral )|

H e max S - Em(sm)hBH Z B,

Since (E(Byi|Fm))m>1 is a martingale, by using Doob’s maximal inequality, we get that

E(B, m H < q||E(B, . < allB
ngi?é‘;i_l‘ (BralFm)l|| < aIE(BrilFor-1)llp < dall Br,
yielding to

H 1§$§§71‘Sm N |BH (¢+1) Z”Bral

Since
or—l_1 1/p
B, < ( Z |Skat — Stk—1)2t — Egat (St — S(k—1)2l)|§> ,
k=1
we derive that

[S2r — Bar (S + || |_masx 1|5m—Em(sm)me

r—1 277t

1/p
(g+1 Z ( Z 1Skat — Se—1)2t — Epat (Spar — S(kﬂ)%)”i) .

=0 k=1

So, by stationarity,

S~ En(Su)l] < (0 + 1027 3205y — B ()] (3.16)
=0

H 1<m<2’“ 1

Starting from (3.13) and taking into account (3.14) and (3.16), the inequality (3.8) follows.
O

Proof of Theorem 10. Thanks to Proposition 7, it suffices to prove that the inequality (3.10) is satisfied
for E(]S2-|P) instead of E(maxi<j<ar [S;|P). Let a, = || Snl|p. According to the proof of Lemma 11 in
[12], the theorem will follow if we can prove the following recurrence formula: for any positive integer
n?

a,, < 2a8, + 10, ([ Eo(Su)llp + 10 = En(Sn)llp) + c2ah 2 [Eo(SIp 2 (3.17)

where ¢; and ¢y are positive constants depending only on p. To prove (3.17), we denote by S,
Xpi1+ -+ Xo,, and we write that

Son = Sn — En(Sp) + En(Sn) + 5.

Recall first the following algebraic inequality: Let x and y be two positive real numbers and p > 1
any real number. Then
(x+y)P <aP +yP +4P(aP 1y + ayP ). (3.18)

12



(see Inequality (87) in [12]). The above inequality with z = |E,(S,) + S,| and y = |S,, — E,,(S,)]
gives

a127n < NEn(Sn) + 5'n|\§ + 1Sn — En(sn)ng
+ APE(|En (Sn) + SnlP 1 Sn — En(Sn)]) + 4PE(|En(Sn) + SullSn — En(Sa) P71,

which combined with Hoélder’s inequality and stationarity leads to
ab,, < |En(Sn) + Sullh + 20711 + 277 1)al ™S — En(Sn)llp - (3.19)

Starting from (3.19), (3.17) will follow if we can prove that there exist two positive constants ¢ and
co depending only on p such that

IEn(Sn) + Snllb < 208 + cab™ |Eo(Sn)llp + c2ab > [Eo(S7)llp, 2 -

This inequality can be proven by following the lines of the end of the proof of Theorem 6 in [12].
Indeed, it suffices to replace in their proof, x = S,, by © = E, (S,,), and to use the following estimates
(coming from the proof of their lemma 34 and the stationarity assumption): for any reals p and u
such that 0 <u <p— 2,

E(E (Sn)]"[SnlP~") < ab= 24/ =D |, (52)[ 75,

and

E(En (S) [P~ 1S0]) < a2~ |[E, (52) /2.

O

Proof of Remark 12. As it is pointed out in the proof of Theorem 10, the remark will be proven with
the help of Proposition 7, if we can show that

a,, < 2ah, + c1afY|Sn — En(Sn)llp + c2ab > [Bo(|Sal2) 152

where a? = E(|S,, %), ¢1 and ¢, are positive constants depending only on p and § = min(1/2,1/(p—2)).
Indeed, the second term in the right-hand side of (3.8) can be bounded by the last term in the right-
hand side of (3.11). To see this it suffices to use Jensen’s inequality and the fact that 6 < 1/2.
Starting from (3.19) (by replacing the absolute values by the norm |- |g), we see that to prove the
above recurrence formula it suffices to show that there exists a positive constant ¢ depending only on
p such that
I (Sn) + Snllt < 208 + cah™ > | Eo(|SnlE)llp,2

The difference at this step with the proof of Theorem 10 is that the inequality (3.18) is used whatever
p €]2,00[ (in Theorem 10, so in the real case, when p €]2,4[ more precise inequalities can be used as
done in the proof of Theorem 6 in [12]). O

Proof of Corollary 14. To prove the corollary, it suffices to show that for any 0 < § < 1 and any real
p>2,

1 R (S2, p/(20)
or <Z |°()”p/2> < 272|[Eo (XD)[1215 + 2’"1’/2(2 [Eo(S2) ”p) , (3.20)

P 226k/p 2]/2

and to apply Theorem 10. Following the proof of Lemma 12 in [12] and setting b, = |[|[Eo(S2)]|,/2, we
infer that (3.20) will follow if we can prove that, for any integer n,

ban < 2b, + 2652 Eo (S|l + 205/2(1Ss — B (Sn)|lp - (3.21)

13



By using the notation Sp = Xpi1+ -+ X, and the fact that S2, = S2 + 52 + 2E,,(5,,)S,, +2(S,, —
E,.(S,))Sn, we get, by stationarity, that

ban < 2by, + 2||EO (En(sn)En(Sn))Hp/2 + QH]EO((Sn - ]En(Sn))Sn)Hpm .

Hence the inequality (3.21) follows from the following upper bounds: Applying Cauchy-Schwarz in-
equality twice and using stationarity, we get

1o (En(Su)En(5)) lp/2 < IEo(E2(Su)I1Y/2 x [Bo(E2(Sa))II/2

< Eo(S2))12)5 % IE2(S0) 1125 < bL/2[Eo(Sa)llp

and

IEo (S — En(Sn))Sn) /2 < Eo(((Sn — En(Sa))?)I/IE(S2)]12)5
< b:L/QHSn - En(sn)Hp .

O
Proof of Remark 9. Let n and r be integers such that 2"~ < n < 2". Notice first that
rlp < r— < .
| max 1Sulel, < || max, (Sl and Sorl < 21Seillp <2 max 1S, (322
(for the second inequality we use the stationarity). Now, setting Vi, = ||Eo(Sm)|lp, we have by

stationarity that for all n,m > 0, V,,4.,, <V, + Vi, and then, according to the first item of Lemma
37 of [12],

1
r— 1p 21/P2HHP LR (S|
T/ 1% SEEvI
2 PE 27| Eo(Sqe)p < 21+1/p Z k1+1/p
£=0 =
9l+1/p ||E S ||
1/p 0\RPk)llp
<n 1 _9-1/p—1 Z kl+i/p - (3.23)

On an other hand, let W,,, = ||Sy — En(Sm)||p, and note that the following claim is valid:

Claim 15. If F and G are o-algebras such that G C F, then for any X in LP(B) where p > 1,
[X = E(X|F)[l, < 21X — E(X[G)]]p-

The above claim together with the stationarity imply that for all n,m > 0, W, < 2(W,, +W,,).
Therefore, using once again the first item of Lemma 37 of [12], we get that

r 2n

. - 21 +1/p [|Se —Eo(Se)|
27/P E 2 Z/p”Sz@ - E25(521)Hp < in/pl —9-1/p—1 f1+1/p .
£=0 =1

(3.24)

The inequality (3.9) then follows from the inequality (3.8) by taking into account the upper bounds
(3.22), (3.23) and (3.24). O
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3.2 A tightness criterion
We begin with the definition of the number of brackets of a family of functions.

Definition 16. Let P be a probability measure on a measurable space X. For any measurable function
f from X to R, let ||f|lp1 = P(|f]). If ||fl|p.1 is finite, one says that f belongs to LY. Let F be some
subset of L. The number of brackets Np1 (e, F) is the smallest integer N for which there exist some
functions fi < fi,..., fy < fn in F such that: for any integer 1 < i < N we have || f; — f; ||p1 <&,
and for any function f in F there exists an integer 1 < i < N such that f; < f < f;.

The first step in the proof of Theorem 4 is the following proposition, whose proof is based on a
decomposition given in [1] (see also [5]).

Proposition 17. Let (X;);>1 be a sequence of identically distributed random wvariables with val-
ues in a measurable space X, with common distribution P. Let P, be the empirical measure P, =
n~ Y dx,, and let S, be the empirical process S, = n(P, — P). Let F be a class of functions from
XtoRand G ={f —1,(f,1) € F x F}. Assume that there exist r > 2 and p > 2 such that for any
function g of G U F, we have

1<k<n

| max 1501 < Cvmlallys +nt/7). (3.25)

where the constant C' does not depend on g nor on n. If moreover

1
/ eI/ (Np oy (z, F))/Pde < 0o and lir%xp_QNp’l(m,]:) =0,
0 xr—

then

lim limsup]E( max sup n*p/2|5k(g)|p) =0, (3.26)

—0 npn—ooo 1<k<n 9€G,llgllp1<6

1
and o SE( g s ASDF) = 0. @21

Proof of Proposition 17. It is almost the same as that of Proposition 6 in [5]. Let us only give the
main steps.

For any positive integer k, denote by Ny, = Np1(27%, F) and by Fj a family of functions flk’_ <
It fs < [, in F such that || fF — FF7)pa < 27, and for any f in F, there exists an integer
1 <i <N such that fF7 < f < fk.

We follow exactly the proof of Proposition 6 in [5]. One can prove that for any € > 0, there exist
N(e) and m = m(e) such that: for any n > N(e) there exists f, », in F,,, for which

H1Ign13§n ]sctelgn |Sk(f) Sk(f”’m”Hp <e. (3.28)
Now, (3.26) follows from (3.28) as in [1] (see the end of the proof of Proposition 6 in [5]).

Let us prove (3.27). We apply (3.28) with e = 1: for n > §~1N(1), we infer from (3.28) that there
exists fins),m in F, for which

~1/2 - <
ngl}f%fiﬂ sup 1Sk(f) Sk(f[né],m)al <.

Hence

nglilgﬁa] ?Egn_l/2|sk(f)‘Hp <Vé+ ngrlrclgf;é] ;ggn_l/glsk(f["é]’m)‘”p' (3.29)
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Now, since F,, contains 2N,,, functions (g¢)seans,, (each g¢ being one of the functions f™ or f;™™ in
Np), it follows that

max |S}.(ge \H

\fH 1<k<[nd)]

—1/2 H
max supmn Sk(
H1<k<[n5] feg 195 (Fnag,m)|

Let K,,, = maxsez,, ||f|lp,1. Applying (3.25), we infer that

H max _supn 1/2|Sk(f[n5],m)|H < 20N (KY™V6 4 n=(=2/2051/p) (3.30)
1<k<[nd] fer D

Since m = m(1) is fixed, (3.27) follows from (3.29) and (3.30) and the fact that p > 2. O

4 TInequalities for ergodic torus automorphisms

In this section, we keep the same notations as in the introduction. Let us denote by E,, F. and F;
the S-stable vector spaces associated to the eigenvalues of S of modulus respectively larger than one,
equal to one and smaller than one. Let d,,, d. and ds be their respective dimensions. Let vy, ..., vq be
a basis of R¢ such that v, .y Vg, are in E,, vg, 41, ...,Vd,+d. are in E. and vq, 44,41, ..., Vq are in Ej.
We suppose moreover that det(vy|vs|---|vg) = 1. Let || - || be the norm on R? given by

E L3V

and dy(-,-) the metric induced by || - || on R?. Let also d; be the metric induced by dy on T¢ namely,

= max |acZ|

di(z,y) = inf do(x+ 2,y).
z€Z4

We define now B, (8) :={y € Ey, : ||[y|]| <}, Be(6) :={y € E. : |ly|]| <} and Bs(§) = {y € F;
lly|| < 6}. For every f: T¢ — R, we consider the moduli of continuity defined, for every § > 0, by

w(f,0) := sup £ (@) = (@), (4.1)

z,5€T : d1 (2,5)<6

Wis,e)(f,0) = sup{|f(2) = f(z + hs + he)l, T € T, hy € By(0), he € Be(9)}

and
W) (£,6) = sup{|f(Z) — f(Z +Pu)|, € T, hy € Bu(0)}.

Let r, be the spectral radius of S‘E . For every p, € (ry, 1), there exists K > 0 such that, for every

integer n > 0, we have
Vhy € Buy 1S hll < Kpll[hll (4.2)

and
V(he,hs) € Eo x Eg,  ||S™(he + hs)|| < Kn®/||he + hy]] . (4.3)

The following inequality is an extension to continuous functions of a result for Holder functions
established in [10].
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Theorem 18. Let p, € (ry,1) and ¢ € (pil/(g(dﬂ)(dﬁd‘“)), 1). There exist C >0, N >0, £ € (0,1),
a sequence of measurable sets (Vy)n>0 and a o-algebra Fy such that Fo C T—'Fy and such that, for
every bounded ¢ : T* — R and every integer n > N, we have

|E[p|Fn] = ¢llo < Cwiuy(e, py) s (4.4)
on Vo, |E[p|F_n] — E[@]| < C(l|¢llcc€™ + wis,e) (¢, ™)) (4.5)

and
AT\ V,) < €™, (4.6)

where Fj, := T *Fy for every k € Z.

Remark 19. With the notations of Theorem 18, (4.5) and (4.6) implies that, for every p > 1 and
every (pu,C) as in Theorem 18, there exists c, such that, for every bounded ¢ : T¢ — R and every
integer n > 0, we have

Vi >0, [E[plF_n] —Elplll, < cpllellct” +wise (. ¢")- (4.7)

The remainder of this section is devoted to the proof of Theorem 18 and to the statements and the
proofs of some preliminary results. Let p, € (r,,1) and K satisfying (4.2) and (4.3). Let my,,, me, ms
be the Lebesgue measure on FE, (in the basis vy, ...,vq4,), Fe (in the basis vg, 11, ..., V4, +d.) and Es (in
the basis vg, 1d.+1, ---, V4) respectively. We observe that dA(hy, + he + hs) = dmy, (hy)dme(he)dmg(hs).

The properties satisfied by the filtration considered in [11, 9] and enabling the use of Gordin’s
method will be crucial here. Given a finite partition P of T?, we define the measurable partition Pg°
by :

vz eT!, P(z) =) TFP(T "))
E>0

and, for every integer n, the o-algebra F,, generated by

vzeT!, Px,(z):= () T"P(T*(x)) =T (P (T"(2)).

k>—n

We obviously have F,, = T "Fy C Fny1 = T 'F,. Let ro > 0 be such that (hy,he,hs) —
hy + he + hg defines a diffeomorphism from B, (1) x Be(rg) x Bs(rg) on its image in T¢. Observe
that, for every € T¢, on the set Z + B, (ro) + Be(ro) + Bs(ro), we have d\(Z + hy, + he + hy) =
dmy,(hy)dme(he)dms(hs).

Proposition 20 ([11, 9] applied to T~!, see also [3]). There exist some Q > 0 and some finite
partition P of T¢ whose elements are of the form Zle L,v; where the I; are intervals with diameter
smaller than min(rg, K) such that, for almost every T € T¢,
o the local leaf P (T) of PS° containing T is a bounded convex set T + Fy, with 0 € Fy C E,, F;
having non-empty interior in E,,

e we have, for alln € Z,
1
E[f|F.)(Z) = —————— T + hy) dmy(hy),
IFN®) = ogmgy fop TR AR

‘T

o for every v > 0, we have
mu(0(Fz) (7)) < Q7,

where

AC(B):={y € F : dy(y,dC) < B}.
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Recall now an exponential decorrelation result for Lipschitz continuous functions.

Proposition 21 ([11] and also section 4.1 of [14]). Let & € (p,l/371). There ezists Cy > 0 such

that, for every monnegative integer n and every Lipschitz continuous functions f,g : T¢ — C with
Jpa gdX =0, we have

[ (0T @] < Collflelalo + 1l inta) + ol Lin )G

where Lip(h) is the Lipschitz constant of h.

Let @ be the constant appearing in Proposition 20. The following result is an adaptation of
Proposition 1.3 of [10].

Proposition 22. Let (; € (pi/(?’(d”)(dﬁds)),l). There exist C1 > 0, Ny > 1 and & € (0,1) such
that, for every \-centered bounded function ¢ : T® — R, every z € T?, every n > N; and every
bounded convezr set C C E, with diameter smaller than ro, satisfying m, (0C(8)) < QB (for every
8 >0), we have

o(z + }TU) dmy(hy)

’mu(gnc) /S"C my(C)

Proof. Let & be as in Proposition 21 with {; > §é/((d+2)(de+ds)). Let r := 5071/(‘”2). We take ¢, = o™
with o € (0,1) such that ¢; > o > £/ (D) > o1 Lot 7 .= T-"2 + C + By(en) + Be(en)-
We have T"(U) = Z + S™C 4+ S"B;(e,,) + S?Be(ey,). We have

/1TnU.<de\ = / P(T™(T7"% + hu + he + hy)) dmy (ha)dme (he)dms (hs)
Td CxBe(en)*xBs(en)
_ /so(fc+h7+hi+h7)dmu(hu)dme(he)dms(hs>’
Vn

with V,, := S™C X S"B,(e,,) X S"Bs(ey,). Moreover we have

T+ h, = ! T m. m m
/nc“p(“h“)dm“(h“)_ms(Sn(Bs(en))me(Sn(Be(an))/ P&+ u) dmu(hu)dme (he)dms (ho)

n

Hence, due to (4.3), we have

‘/ lTnU.apdj\—ms(S”(Bs(En))me(S"(Be(sn))/ ©(Z + hy,) dmy (hy)
Td ne

<AU)ws ey (0, Kneey) .

Since A(U) = m,,(S™"C)ms(S™(Bs(en))me(S™(Be(cy)), we get, for n large enough (that is, such that
Kne, < (1),

1 _ 1 .
_— 17n d\ — — T+ hy) dmy, (hy,
‘A(U) / ropdh - e /snc“’(“ ) dma(h)

IN

W(s,e) (907 Kndagn)

IN

W(s,e) (4107 C{L) .
For every n > 0 and z € T%, we define x, (%) := (d + 1)2=%"4+Vq,(z,T¢\ B(0,7~™)), where

B(0,r~") = {z € T, d;(0,z) < r~"}. Let us observe that x,, is a nonnegative (d + 1)r™(4+12=d
Lipschitz continuous function supported in B(0,r~™), uniformly bounded by (d + 1)2~% "¢ and such
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that de Xnd\ = 1. We will denote by # the usual convolution product with respect to A. We will
estimate

/ lyoT ".pd\— / (Xn *1y) o T ™. (xn * cp))d)\‘ .
T4 Td

First observe that

[ #1000 T 10 = ) 03] < e AD). (18)
Second, we have
/d(xn * 1U - 1U) e} T_"(pCD\’ S H(p”oo /d ‘Xn * lU — 1U|d§\7 (49)
T T
and let us prove that
/ IXn * 1y — 1y |dXA < 30U (r™™)). (4.10)
Td

To see this, observe that x,(£)1y(z —t) — 1y(Z) = (xn(t) — 1)1y (Z) except if 1y (Z — ) # 1y (T) and
if t € B(0,r~™). Hence x, * 1y (Z) # 1y () implies either that £ € AU (r~™) or that T belongs to the
set U’ of points such that T ¢ U but there exists ty € B(0,7~") such that z — ¢, € U.

On the one hand, we have

Jugon et =201s < [ ([ oi0rete =050 ) o+ ow)

< 2OUET) [ xa®aX) + XEUET)
< 2NOU(r ™)), (4.11)

using the fact that x,, is nonnegative with unit integral. On the other hand, we have

A

IXn * 1y — 1| dX

i < [ ([ wowe-na0) aw

< / d ( /8 o XnlE 9 dMs)) dA(x)
< /BU( . (/T Xo(E — 5) dX@)) dX(s) = MOU (™)), (4.12)

using again the properties of x,. Now, (4.11) and (4.12) directly give (4.10). Due to (4.8), (4.9) and
(4.10), we have

1

MU)

1
(U

/ 1y oT”.gad)\‘ < (’/ (xn*lU)oT*".(xn*cp))dS\‘
Td Td

+ AV, 17 + 3l AOU (™)),

>l

Now, the hypothesis on m, (0C(3)) implies that there exists Q1 (depending on @ and on T) such that

Vn >0, AOU(r ™)) <Qur ™.
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Moreover, applying Proposition 21 with f = x,, * ¢ and g = x,, * 1y and using the following facts

HXn * 90”00 S H‘PHOO» HXn * ]-Ulloo S 17 Lip(Xn * 1U) S Lip(Xn) and Lip(Xn * (P) S ||90||00L2p(Xn)7

we get the existence of Cy (depending on Cy and on Q) such that we have

1 _ < ~ P 4 (14 D) B
-— 1yoT ™pd\ < C o + s
o | Lot \ < Collll G )
) n/(d+2)
< 3Col|¢l]co 2 + w(ip, CT),
< 3Collel| o T (¢, (1)
since =1 = pdt1gy = €3/ We conclude by taking & = £/ T2 g~ (detds) < 1. O

In the next result (which is an adaptation of Proposition 1.4 of [10]), we prove that Proposition
22 holds true with the stable-neutral continuity modulus w, . instead of w.

Proposition 23. Let (; € (pu »/(B(d+2)(detda)) ,1). There exist C3 > 0, Ny > 1 and & € (0,1) such
that, for every A-centered bounded function ¢ : T® — R, every T € T?, every n > Ny and every
bounded convex set C C E,, with diameter smaller than ro and satisfying mu(acw)) < Qv , we have

O(Z + hy) dmy(hy)

1 llelloo
_— < K. .
'mu(sn(c)) Ln,c = 2<mu( )52 JFW(se)(@aCl)
Proof. We consider a finite cover of T¢ by sets P; = @; + By(ro) + Be(ro) + Bs(ro) for i = 1,.... 1,
7; being fixed points of T¢. We consider a partition of the unity Hi, ..., H; (i.e. Zle H; = 1) such
that each H; is infinitely differentiable, with support in P;. Let ¢ : T* — R be a bounded centered
function. For every i =1, ..., I, we define ¢; := H;p. We have

/nc (7 o ) i () Z/ #i(T + hu) dim (hu). (4.13)

We also consider a continuously differentiable function ¢ : E,, — [0, +00) with support in B, (r¢) and
such that [ g(hy)dmy(h,) = 1. We approximate now each ¢; by a regular function v; by setting,
for every (hy, he, hs) € By(ro) X Be(ro) x Bs(ro),

(i + w4+ Tro Ty = g(hu>/ i(fs + T+ Too +Toy) dmu (B,
By (ro0)

1; being null outside of P;. We observe that

/widiz/ o1,
P; P;

that ||1i|leo < [¢]lool|glloccmu(Bu(ro)) and that, for every 6 > 0,

w(¥i,0) < mu(Bu(ro)) [llellecLin(9)d + [lgllccw(s,e)(#i, )]
< mu(Bu(ro)) [||¢llec Lip(9)d + llglloolllloc Lip(H:)d + ||gllocw(s.e) (0, D) Hillo] -

Now, applying Proposition 22 to v, for every n > N, we have

Vi(Z + hy) dmy (hy,)

<K, (”*""”5 T (.G + ||¢||oc<?) L ()

‘mu (S"C) Jsne my(C)
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We observe that the connected components of (z+S"C)NP; are Z+C; ;, where C; ; are some connected
subsets of F,. We have

/ ©i (T + hy) dmy (hy) Z/ ©i (T + hy) dmy (hay)
sne

and

$i(Z + h) dmy (ha) Z/ $i(@ + ha) dmy(hy) -

sne

Now, if C; ; does not contain any point of J(S"C), then there exists hY) € B.(r¢) and h) e Bs(ro)
such that

T+C;, = {Qi+@+@+h7; Ry, eBu(m)} :

Using the definition of v;, we get
v+ T dma(h) = [ sl h® 4 h T dmah)
Bu(ro)

= / 0i(Gi + b + hY + hg) dmy(h),
Bu(ro)

1 — J— myu(9(S"C)(r0))
— < A S AR YA
mu(S"C) /nc(wz(l"i‘hu) @z(x“‘hu))dmu(hu) > 2”‘:0”00 mu(S”C)
My, (OC(K plro))
< EECAS e Sl TR VA
QRKplirg
< _— .
We conclude thanks to (4.13), (4.14) and (4.15), by taking & := max(&1, (1, pu)- O

Proof of Theorem 18. The first point comes from the expression of E[p|F,] given in Proposition 20
and from (4.2).

Let (1, Co, & and N, as in Proposition 23 with ¢; < {. Let 8 € (£2,1) and V,, := {m,(F) > " }.
We take £ = max(&/ﬁﬁﬁ). To prove the second point, we use again the expression of E[p|F_,)]
given in Proposition 20 and we apply Proposition 23 with C = Fp-»(z) with the notation of Proposition
20.

Now, the last point comes from the fact (proved in Proposition II.1 of [9]) that

SL>0, Wi 20, Mma(F) < ") < L%
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5 Proof of Theorems 1 and 4

In this section, C'is a positive constant which may vary from lines to lines, and the notation a,, < b,
means that there exists a numerical constant C' not depending on n such that an a, < Cb,, for all
positive integers n.

Proof of Theorem 1. The proof is based on Proposition 6 of Section 3, which gives sufficient conditions
for the weak invariance principle in 2-smooth Banach spaces.

Let Yi(s) = 1ori<s — F'(s) and let F; be the filtration introduced in Section 4. Note first that,
for 2 < p < oo, the space P is 2-smooth and p-convex (see [16]). Moreover it has a Schauder basis
(and even an unconditional basis).

Hence it suffices to check (3.2) of Proposition 6. As in [2], there exists a positive constant C such
that

o0 oo

S P-4 (Y0) ol < Z( Pl l8) " <03

k=1 k=1 i=k k=1 7
(oo}
“2 k.

nd 3 ||||P_k<Yo>||m||2ch(%ZHHPM W)lel)” <
i=k

k=—00 k=1

3

Since L, is p-convex, it follows that

D MIP-i(Yo)leollf < KNIEYalFo)lee Il and Y [I1P1(Yo)lee If < KINY-n —EQY 0| Fo)lleolp -
i i=k

Hence (3.2) is true as soon as

> 1/,, NEYalFo)leellp < oo and - w, Y= = E(Y_n|Fo)llelp < o0

n>1 n>1

Let us have a look to
» 1/p
NECIFEDslly = (B [ 1Frormiz,®) = FOFat)

1/p
< (B [ 1Fperz 0 - Poa)

Now

E(go foT"|Fo) —E(go f)f,

[ 1Frorai )= F(0lde = sup
R gEA
where A; is the set of 1-lipschitz functions. Hence, since w(, (g o f,-) is smaller than w(, ¢ (f,), it
follows from (4.5) and (4.6) of Theorem 18 that

/
INEiFD el < (E( sup [B(go £o TH0) ~E(go 1)) < Cllwtn(f. 012 + I7147€77)

geEM

by noticing that we can replace A; by the set of g € Ay such that g o f(0) = 0. In the same way, due
0 (4.4) of Theorem 18, we have

Y= = E(Y=n|Fo) e llp < Clwqu (f, 05

The result follows. O
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Proof of Theorem 4. Our aim is to apply the tightness criterion given in Proposition 17. Let X; =
foT?" and let F; be the filtration defined in Section 4. We need the following upper bounds.

Lemma 24. Let gs(v) = ly<t — ly<s, and let P be the image measure of A by f. Under the
assumptions of Theorem 4, we have, for any 8 > 1,

- (B+a—1)/(B+a) N 1
kZ:O |Cov(gs,t(Xo), gs,t (X)) < 1gs,ellpy kZ:O (k + 1)ae/(ra) °

Lemma 25. Let p > 2. Under the assumptions of Theorem 4, we have
IBo(gs.¢(Xi) — E(gss(Xi))|lp < k07 (@FP)
195,6(X0) — Ei(gs.¢(Xo))|lp < k—a/ (@)
and, for the coefficient A(gs(X) — E[gs(X)], j) defined in (3.12),
A(gs1(X) — Elgss(X)], ) < j—200/(Za+p)

Let us continue the proof of Theorem 4 with the help of these lemmas. From Proposition 13 and
Lemma 25, we derive that, for p > 2,

n n k—2ao¢/(2o¢+p) 1/2
og 'Y) ;

1/2 (B+a—=1)/(B+a) 1/2 1/p
| s, 5t < 2 (1w > rarmear) (e

where 7 can be taken v =0 for 2 < p < 3 and 7 > p — 3 for p > 3. Therefore if
& (p—l)(2a+p)>

a > max <1+
« pa

then setting r = 2(8 + a) /(8 + o — 1), we get that

1/2 1/r nl/p

’ max |Sk(gs.t |H <L n ' gstll oy

1<k<n
We shall apply the tightness criterion given in Proposition 17. Since Np(z,F) < Cz~* for the class
F ={uwr 1,<,t € RY}, we get that

1 1
/ 2 (N (2, F))Pda < C/ 2=/r =Py < o, (5.1)
0

0
as soon as p > 20(3+ «)/(8 + a — 1). Moreover

lim 2P 2Np 1 (x, F) =0 (5.2)

as soon as p > 2 + /.
Hence if p €]2,20(1 + a™1)], we take 3 = (2af + (1 — a)p) /(p — 2¢) + € for some positive and small
enough ¢ (so that § > 1), and we infer that (5.1) and (5.2) hold provided that p > max(¢+ 2,2¢) and

P (p—1)(2c+p)
@ > gea(p) = max (a(p —20)’ pa ) '

Taking the minimum in p > max(¢ + 2,2¢) on the right hand, we obtain that (5.1) and (5.2) hold
provided that a > a(¢, ), where a(¢, &) has been defined in (2.2).

We infer that (3.26) and (3.27) of Proposition 17 hold for this choice of a, which prove the tightness
of the empirical process (see [17], page 227).

Note that the weak convergence of the finite dimensional distributions holds as soon as a >
(o + 2) /2« (this can be proved as in [5] by using Lemma 25).

O
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Proof of Lemma 24. We prove the results for £ = 2. The general case can be proved in the same way.
For u € R, let hy () = 14<,. By definition of g, ,

gst = htl & htz - h’sl & h52 )

with the notation (G1 ® Ga)(u1,us) := G1(u1)Ga(uz). For e > 0, let hyo(z) = 1<y —e o —u —
€)lu<z<ute and note that h, . is Lipshitz with Lipschitz constant e~!. We have the decomposition
htl X ht2 = htl,e (024 htz,e + Rtﬁ, Where

Ric=(hty —ht,e) @by + hiy o @ (Rey — hiye) -

Setting
9s,t,e = htl,a (29 th,E - hsl,e by h52,s )

we obtain the decomposition
st = Gsjpe + Hopeo with Hgpo= Ry — Ry (5.3)
On the other hand, we have that
Cov(gs,t(XO)vgs,t(Xk)) = E((gs,t(Xo)*]E(gs,t(Xo)|]'—[k/2]))gs,t(Xk))+COV(E(9s,t(X0)|]'—[k/2])7gs,t(Xk))-
Using (5.3), we have that
E((gs,t(Xo0) — E(gs,:(X0)|Fry21)) 95,6 (Xk)) = E((gs.t,e(Xo) — E(gs,t.« (X0)| Firy21))gs,t (X))
+ E((Hs,t,e(Xo) — E(Hs 1, (X0) | Firy2))) 95,6 ( X)) - (5.4)
Applying (4.4) of Theorem 18, we infer that
|]E((gs,t,s(X0) - E(Qs,t,e(Xo)|7:[k/2]))9s,t(Xk))| < OHgs,t“P,lEilw(u)(fa PLMZ])~ (5-5)

Applying Hoélder’s inequality, and using the fact that the distributions functions of f; and fy are
Holder continuous of order «, we get that

IE((He 1, (Xo) — E(Hy 1.0 (X0)|Fir ) 950 (X)| < Clgslloy V/Pe/?. (5.6)

Using (5.3) again, we also have that

COV(E(gs,t(XO)‘]:[k/Q])ags,t(Xk)) = COV(E(gs,t(XOHJ:[k/Q])’gs,t,e(Xk))
+ Cov(E(gs,:(Xo)|Firs2)s Hst.e(Xk)) - (5.7)

Let V,, be the set introduced in Theorem 18. Applying (4.5) of Theorem 18, we have that

|Cov(E(gs.¢(Xo) | Firs2)): gs.t.e (Xi))| < CE(E(gs e (X—i) | Firoy2—n)Lve_, )+

Cllgs el pa(€/? + e wie e (£,¢H2).
Since X(Vg_[k/Q]) < C¢lR/2 applying Holder’s inequality, we get that
a—1 a «
E(E(gs s (X ) | Fppz—i)|Lvp_, ) < Cllgadll5y oD/ Crele/2/ ) (5.8)

Applying Holder’s inequality again, and using that the distributions functions of f; and fo are Holder
continuous of order «, we get that

|Cov (E(gs,t (X0)| Finyap)s Ho e (Xi))| < Cllgs,ellsr D/ Pe/8 (5.9)
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Gathering the bounds (5.4), (5.5), (5.6), (5.7), (5.8) and (5.9), we get that

1 (B—
cka + ||gs,t||P’1

|COV(gs,t(XO)ugs,t(Xk))| S C(”gs,t”P,l 1)/ﬁ€a/ﬁ + ||gs,t

(B+a—1)/(B+a) £[k/2]/(B+a)
|p,1 5 '

Taking e = ||gs7t||}3{§a+6)k*“ﬁ/(a+3), we get that

_ 1
|Cov(gat(Xo), gt (Xp))| < Cllgael| oy @D/ (W + §[k/2]/(’8+a)) :

The result follows by summing in k. O

Proof of Lemma 25. Using the same notations as in the proof of Lemma 24, and using that the
distribution functions of fi; and f> are Holder continuous of order «, we obtain that

o (9o, (Xk) = E(gs,t (Xi))lp < [Bo(gs,t.e(Xi) = E(Gs . (X))l + Ce*/P.

Recall that the V), introduced in Theorem 18 is such that A\(V¢) < C¢™. Applying Theorem 18 (see
(4.7)), we obtain that

||E0(gs,t,€(Xk) - E(gs,t,e(Xk:>)||p S C(E_lw(s,e) (f7 Ck) + é—k/p) .
Consequently
1 a/p k/p
1Bo(g.0(Xe) ~ E(gse (X))l < O o +°/7 +67).

Choosing ¢ = k~%/(+P) we obtain that

+ k),

1
1Eo(gs.(X) = E(gst XiDllp < C( ooy

proving the first inequality.
In the same way

195,6(X0) = Ex(gs.e(Xo))llp < 195, (X0) = Er(gs,1.e(X0))[lp + Ce*/P.
Applying (4.4) of Theorem 18, we obtain that
195,6(X0) = Ex(gs,6(X0))llp < Ce™ wewy (f, ) + /7).

Since wy,)(f, pE) < Ck=?, the choice ¢ = k~/(@+P) gives the second inequality.
Let h(9(X;) = h(X;) — E(h(X;)). To prove the third inequality, we have to bound up

sup [Bo(l%) (Xi)gi%? (Xsa)) /> and sup |Bo(9 (X3)0110 (Xj40)) = Blowd (X3)01% (X500 oy

>0 <i<j

Using the decomposition (5.3), and the fact that the distibution functions of f; and fo are Holder
continuous of order «, we get that

I1Eo (9 (X:)a ) (Xiv)) o2 < IBo(98 o (X) gl L (Xj4i)) 2 + C2/P (5.10)

and

0 0 0 0
1Eo (9% (X)L (X;40)) — E(a(X) 9L (X1 lpa
0 0 0 0 o
< B0 (X9 c(Xj10)) — E(9') (X098 c(Xji))lpja + Ce2/P . (5.11)
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Writing
Eo(9% .(X:)g\% (X4 <|E X;)—E X)) Fisti )0 (X
1Bo(s.i,e(Xi)gs,t.e (Xj+i)llps2 < NBo((gs,t.e(Xi) — E(gs,t.e (Xi) | Fir(j/2)))9s, 0.6 (Xjwi) /2
0
o 1B (Bgs.1.e(Xe) | Fitij/) 0t (XisiDlpy2 - (5:12)
and arguing as in Lemma 24, we infer that
0 0 1 ;
B0 (0l (X092 (X4 gy < €3z +€777) (5.13)
From (5.10) and (5.13), we obtain the bound
1 o .
IE0(gl? (X)gd (X))o < Oz +</7 4 €0771)
Taking e = j~9/(22+P) e obtain that

sup|[Eo (90 (X0)9) (X))l < Cj~200/ atr) (5.14)

Let ¢ := gstec 0 f — Mgs.t.c o f). Applying Theorem 18 (see (4.7)), for i < 7,
0 0 0 0 7 7
IEo (9L . (X1)980 (Xj44)) — E(9{D c(X1)9 c (Xjs) lpsa = IIE(p.p 0 TV F_;) — E(pp 0 Tl 2
< C(E9P 4w, o) (pp o T, (1)) .
By (43)7 W(s,e) (9090 o Tia Cj) < w(s,e)(cpa ngjde)) < w(s,e)((pv LC[j))) , so that
0 0 0 0 i 1
IEo(9' . (X1)98) c(Xj44)) — E(9{R e (X)) 9% e (Xj4i))lpjo < CEY/P + wiy oy (0, LG)) . (5.15)

Since w(s ey (0, L) < e wis,e)(f, LE) < Ce™'j7%, we obtain from (5.11) and (5.15) that
0 0 0 0 1 ;
[0 (0l2 (X)9L (X40)) — B0l (X)L (XDl < O g + 277 4 €277
Taking e = j—9/(22+P)  we obtain that

0 0 0 0 -—2a0 /(2
sup B (957 (X3)0:7 (X)) = Blosd (X))l (X540) 2 < CF200/C0) . (5.16)
Y

The third inequality of Lemma 25 follows from (5.14), (5.16) and from the definition of A(gs.(X) —
E[gs,+(X)], ) given in Proposition 13. O

6 Appendix

In this section, we prove Remark 5, so we give the solutions of the equation (2.3). We first write

(2.3) under the following form p* + bp? + cp + d = 0. Following the classical Cardan method, we set

p = —% +cand g := = (2b% — 9¢) + d (this leads to the formulas for p’ and ¢ as given in Remark 5).

Observe that p3 + bp? + cp + d = 0 means that z = p + % satisfies 23 + p’z + ¢ = 0. We then compute
as usual A := ¢ + 5-(p)%. We get
A = ((64/27)0 — (64/27)0* —16/27)a’ + (—(128/27)¢3
+ (128/27)0% — (32/9)0)a> + ((32/27)€ — (64/27)0* + (16/27)0* — 16/27 — (128/27)03)a?
+ (—(32/9)¢ — (32/27)0* — (64/27)¢* — (32/9)¢3)a — (16/27)¢* — (16/27)¢* < 0.
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Since A is negative, we use the usual expression of the solutions z with cos and arccos (to which we
substract b/3). So the solutions are

(4+1—a [ p 1 q 27 2km
pk:2f+2 —Scos<3arccos<—2 W +T

for k € {0,1,2}. Clearly p; < p2 < pp. The unique solution in ]2¢, 4¢[ is then py.
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