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Let T be an ergodic automorphism of the d-dimensional torus T d , and f be a continuous function from T d to R . On the probability space T d equipped with the Lebesgue-Haar measure, we prove the weak convergence of the sequential empirical process of the sequence (f • T i ) i≥1 under some condition on the modulus of continuity of f . The proofs are based on new limit theorems and new inequalities for non-adapted sequences, and on new estimates of the conditional expectations of f with respect to a natural ltration.

Introduction

Let d ≥ 2 and T d = R d /Z d be the d-dimensional torus. For every x ∈ R d , we write x its class in T d . We denote by λ the Lebesgue measure on R d , and by λ the Lebesgue measure on T d .

On the probability space (T d , λ), we consider a group automorphism T of T d . We recall that T is the quotient map of a linear map T : R d → R d given by T (x) = S • x, where S is a d × d-matrix with integer entries and with determinant 1 or -1. The map T preserves the innite Lebesgue measure λ on R d and T preserves the probability Lebesgue measure λ.

We assume that T is ergodic, which is equivalent to the fact that no eigenvalue of S is a root of the unity. This hypothesis holds true in the case of hyperbolic automorphisms of the torus (i.e. in the case when no eigenvalue of S has modulus one) but is much weaker. Indeed, as mentionned in [START_REF] Le Borgne | Limit theorems for non-hyperbolic automorphisms of the torus[END_REF], the following matrix gives an example of an ergodic non-hyperbolic automorphism of T 4 :

S :=     0 0 0 -1 1 0 0 2 0 1 0 0 0 0 1 2     .
When T is ergodic but non-hyperbolic, the dynamical system (T d , T, λ) has no Markov partition. However, it is possible to construct some measurable partition (see [START_REF] Lind | Dynamical properties of quasihyperbolic toral automorphisms[END_REF]), and to prove some decorrelation properties for regular functions (see [START_REF] Lind | Dynamical properties of quasihyperbolic toral automorphisms[END_REF][START_REF] Le Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF]).

Let be some positive integer, and let f = (f 1 , . . . f ) be a function from T d to R . On the probability space (T d , λ), the sequence (f • T k ) k∈Z is a stationary sequence of R -valued random variables. When = 1 and f is square integrable, Le Borgne [START_REF] Le Borgne | Limit theorems for non-hyperbolic automorphisms of the torus[END_REF] proved the functional central limit theorem and the Strassen strong invariance principle for the partial sums

n i=1 (f • T i -λ(f ))
under weak hypotheses on the Fourier coecients of f , thanks to Gordin's method and to the partitions studied by Lind in [START_REF] Lind | Dynamical properties of quasihyperbolic toral automorphisms[END_REF]. In the recent paper [START_REF] Dedecker | Rates in the strong invariance principle for ergodic automorphisms of the torus[END_REF], we slightly improve on Le Borgne's conditions, and we show how to obtain rates of convergence in the strong invariance principle up to n 1/4 log(n), by reinforcing the conditions on the Fourier coecients of f . Now, for any s ∈ R , dene the partial sum

S n (s) = n k=1 (1 f •T k ≤s -F (s)) , (1.1) 
where as usual

1 f •T k ≤s = 1 f1•T k ≤s1 × • • • × 1 f •T k ≤s , and 
F (s) = λ(1 f •T k ≤s )
is the multivariate distribution function of f . In this paper, we give some conditions on the modulus of continuity of f for the weak convergence to a Gaussian process of the sequential empirical process

S [nt] (s) √ n , t ∈ [0, 1], s ∈ R . (1.
2

)
The paper is organized as follows. Our main results are given in Section 2 and proved in Section 5. The proofs require new probabilistic results established in Section 3 combined with a key estimate for toral automorphisms which is given in Section 4. Let us give now an overview of our results.

In Section 2.1, we consider the case where = 1 and S n is viewed as an L p -valued random variable for some p ∈ [2, ∞[ (this is possible because |S n (s)| p ds < ∞ for any p ∈ [2, ∞[), so that the sequential empirical process is an element of D L p ([0, 1]), the space of L p -valued càdlàg functions. We prove the weak convergence on D L p ([0, 1]) equipped with the uniform metric to a L p -valued Wiener process, and we give the covariance operator of this Wiener process. The proof is based on a new central limit theorem for dependent sequences with values in smooth Banach spaces, which is given in Section 3.1. 1. In Section 2.2, we state the convergence of the sequential empirical process (1.2) in the space ∞ ([0, 1] × R ) of bounded functions from [0, 1] × R to R equipped with the uniform metric. In that case, the limiting Gaussian process is a generalization of the Kiefer process introduced by Kiefer in [START_REF] Kiefer | Skorohod embedding of multivariate random variables and the sample distribution function[END_REF] for the sequential empirical process of independent and identically distributed random variables. The proof is based on a new Rosenthal inequality for dependent sequences, which is given in Section 3.1.2. The weak convergence of the empirical process {n -1/2 S n (s), s ∈ R } has also been treated in [START_REF] Durieu | Empirical invariance principle for ergodic torus automorphisms; genericity[END_REF] and [START_REF] Dehling | Empirical processes of multidimensional systems with multiple mixing properties[END_REF]. We shall be more precise on these two papers in Section 2.2.

To prove these results, we shall use a control of the conditional expectations of continuous observables with respect to the ltration introduced by Lind [START_REF] Lind | Dynamical properties of quasihyperbolic toral automorphisms[END_REF], involving the modulus of continuity of the observables (See Theorem 18 of Section 4). As far as we know, such controls were known for Hölder observables only (see [START_REF] Le Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF]). The inequalities given in Theorem 18 can be used in many other situations. Let us give two examples of applications. Let f be a continuous function from T d to R with modulus of continuity ω(f, •) (see Section 4, equation (4.1), for the denition).

Weak invariance principle. If

1/2 0 ω(f, t) t| log t| 1/2 dt < ∞ , then the series

σ 2 (f ) = λ((f -λ(f )) 2 ) + 2 k>0 λ((f -λ(f )) • f • T k )
converges absolutely, and the process

1 √ n [nt] k=1 f • T k , t ∈ [0, 1]
converges to a Wiener process with variance σ 2 (f ) in the space D([0, 1]) of càdlàg function equipped with the uniform metric .

2. Rates of convergence in the strong invariance principle. Let p ∈]2, 4], and assume that

ω(f, x) ≤ C| log(x)| -a in a neighborhood of 0 for some a > 1 + 1 + 4p(p -2) 2p + 1 - 2 p .
Then, enlarging T d if necessary, there exists a sequence (Z i ) i≥1 of independent and identically distributed Gaussian random variables with mean zero and variance σ 2 (f ) such that, for any t > 2/p,

sup 1≤k≤n k i=1 f • T i + k i=1 Z i = o n 1/p (log(n)) (t+1)/2
almost surely as n → ∞.

In particular, we obtain the rate of convergence n 1/4 log(n) as soon as a ≥ 3/2. This follows from Theorem 3.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle for non-adapted sequences. Application to ergodic automorphisms of the torus[END_REF].

2 Empirical central limit theorems 2.1

Empirical central limit theorem in L p

In this section, L p is the space of Borel-measurable functions g from R to R such that λ(|g| p ) < ∞, λ being the Lebesgue measure on R. If f is a bounded function, then, for any any p ∈ [2, ∞[, the random variable S n dened in (1.1) is an L p -valued random variable, and the process {n

-1/2 S [nt] , t ∈ [0, 1]} is a random variable with values in D L p ([0, 1]
), the space of L p -valued càdlàg functions. In the next theorem, we give a condition on the modulus of continuity ω(f, •) of f under which the process {n -1/2 S [nt] , t ∈ [0, 1]} converges in distribution to an L p -valued Wiener process, in the space D L p ([0, 1]) equipped with the uniform metric. We refer to Section 4, equation (4.1), for the precise denition of ω(f, •). By an L p -valued Wiener process with covariance operator Λ p , we mean a centered Gaussian process

W = {W t , t ∈ [0, 1]} such that E( W t 2 L p ) < ∞ for all t ∈ [0, 1]
and, for any g, h in L q (q being the conjugate exponent of p),

Cov R g(u)W t (u)du, R h(u)W s (u)du = min(t, s)Λ p (g, h) . Theorem 1. Let f : T d → R be a continuous function, with modulus of continuity ω(f, •). Let p ∈ [2, ∞[,
and let q be its conjugate exponent. Assume that

1/2 0 ω(f, t) 1/p t| log t| 1/p dt < ∞ .
Then the process {n -1/2 S [nt] , t ∈ [0, 1]} converges in distribution in the space D L p ([0, 1]) to an L pvalued Wiener process W , with covariance operator Λ p dened by

Λ p (g, h) = k∈Z Cov R g(s)1 f ≤s ds, R h(s)1 f •T k ≤s ds , for any g, h in L q . (2.1)
The proof of Theorem 1 is based on results of Sections 3 and 4 and is postponed to Section 5.

Remark 2. In particular, if f is Hölder continuous, then the conclusion of Theorem 1 holds for any

p ∈ [2, ∞[.
Let us give an application of this theorem to the Kantorovich-Rubinstein distance between the empirical measure of (f • T i ) 1≤i≤n and the distribution µ of f . Let

µ n = 1 n n i=1 δ f •T i and µ n,k = 1 n (n -k)µ + k i=1 δ f •T i .
The Kantorovich distance between two probability measures ν 1 and ν 2 is dened as

K(ν 1 , ν 2 ) = inf |x -y|λ(dx, dy), λ ∈ M(ν 1 , ν 2 ) ,
where M(ν 1 , ν 2 ) is the set of probability measures with margins ν 1 and ν 2 .

Corollary 3. Let f : T d → R be a continuous function, with modulus of continuity ω(f, •). Assume that

1/2 0 ω(f, t) t | log t| dt < ∞ . Then √ nK(µ n , µ) converges in distribution to W 1 L 1 , and sup 1≤k≤n √ nK(µ n,k , µ) converges in dis- tribution to sup t∈[0,1] W t L 1 ,
where W is the L 2 -valued Wiener process with covariance operator Λ 2 dened by (2.1).

Proof of Corollary 3. Applying Theorem 1 with p = 2, we know that {n -1/2 S [nt] , t ∈ [0, 1]} converges in distribution in the space D L 2 ([0, 1]) to an L 2 -valued Wiener process W , with covariance operator Λ 2 dened by (2.1). Since f is continuous on T d , it follows that |f | ≤ M for some positive constant M , so that S [nt] (s) = 0 and W t (s) = 0 for any t ∈ [0, 1] and any |s| > M . Since • L 1 is a continuous function on the space of functions in L 2 with support in [-M, M ], it follows that n -1/2 S n L1 converges in distribution to W 1 L 1 , and that sup t∈[0,1] n -1/2 S [nt] L1 converges in distribution to sup t∈[0,1] W t L 1 . Now, if ν 1 and ν 2 are probabity measures on the real line, with distribution functions F ν1 and F ν2 respectively,

K(ν 1 , ν 2 ) = R |F ν1 (t) -F ν2 (t)|dt . Hence nK(µ n , µ) = S n L1 and sup 1≤k≤n nK(µ n,k , µ) = sup t∈[0,1] S [nt] L1
, and the result follows.

2.2

Weak convergence to the Kiefer process Let be a positive integer. Let f = (f 1 , . . . , f ) be a continuous function from

T d to R . The modulus of continuity ω(f, •) of f is dened by ω(f, x) = sup 1≤i≤ ω(f i , x) ,
where we recall that ω(f i , x) is dened by equation (4.1).

As usual, we denote by ∞ ([0, 1]×R ) the space of bounded functions from [0, 1]×R to R equipped with the uniform norm. For details on weak convergence on the non separable space ∞ ([0, 1] × R ), we refer to [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF] (in particular, we shall not discuss any measurability problems, which can be handled by using the outer probability).

For any positive integer and any α ∈]0 

then the process {n -1/2 S [nt] (s), t ∈ [0, 1], s ∈ R } converges in distribution in the space ∞ ([0, 1] × R )
to a Gaussian process K with covariance function Γ dened by: for any (t, t ) ∈ [0, 1] 2 and any

(s, s ) ∈ R × R , Γ(t, t , s, s ) = min(t, t )Λ(s, s ) with Λ(s, s ) = k∈Z Cov(1 f •T ≤s , 1 f •T k ≤s ) .
The proof of Theorem 4 is given in Section 5. It uses results of Sections 3 and 4.

Remark 5. Using the Cardan formulas (see the appendix) to solve (2.3), we get

p 0 = 2 + 1 -α 3 + 2 - p 3 cos 1 3 arccos - q 2 
27 -(p ) 3 ,

with p := -4α + 2 -2α - 1 3 (-2 + 2α -2) 2 < 0 and q := 1 27 (-2 + 2α -2)(2(-2 + 2α -2) 2 + 36α -18 + 18α) + 4α .
For example, for α = = 1, we get p 0 ∼ 2.903211927 and nally a(1, 1) = 10/3. Recall that, by Theorem 1, if = 1 and p ∈]2, ∞[, the weak invariance principle holds in D L p ([0, 1]) as soon as a > p -1 without any condition on the distribution function of f . The weak convergence of the (non sequential) empirical process {n -1/2 S n (s), s ∈ R } has been studied in [START_REF] Durieu | Empirical invariance principle for ergodic torus automorphisms; genericity[END_REF] and [START_REF] Dehling | Empirical processes of multidimensional systems with multiple mixing properties[END_REF]. When = 1, a consequence of the main result of the paper [START_REF] Durieu | Empirical invariance principle for ergodic torus automorphisms; genericity[END_REF] is that the empirical process converges weakly to a Gaussian process for any Hölder continuous function f having an Hölder continuous distribution function. In the paper [START_REF] Dehling | Empirical processes of multidimensional systems with multiple mixing properties[END_REF] this result is extended to any dimension , under the assumption that the moduli of continuity of the distribution functions of the f i 's are smaller than C| log(x)| -a in a neighborhood of 0, for some a > 1.

Note that, in our case, one cannot apply Theorem 1 of [START_REF] Dehling | Empirical processes of multidimensional systems with multiple mixing properties[END_REF]. Indeed, one cannot prove the multiple mixing for the sequence (f • T i ) i∈Z by assuming only that ω(f, x) ≤ C| log(x)| -a in a neighborhood of zero (in that case one can only prove that |Cov(f, f • T n )| is O(n -a )). However, even if our condition on the regularity of f is much weaker than in [START_REF] Dehling | Empirical processes of multidimensional systems with multiple mixing properties[END_REF], our result cannot be directly compared to that of [START_REF] Dehling | Empirical processes of multidimensional systems with multiple mixing properties[END_REF], because we assume that the distribution functions of the f i 's are Hölder continuous of order α, which is a stronger assumption than the corresponding one in [START_REF] Dehling | Empirical processes of multidimensional systems with multiple mixing properties[END_REF].

Probabilistic results

In this section, C is a positive constant which may vary from lines to lines, and the notation a n b n means that there exists a numerical constant C not depending on n such that an a n ≤ Cb n , for all positive integers n.

3.1

Limit theorems and inequalities for stationary sequences Let (Ω, A, P) be a probability space, and T : Ω → Ω be a bijective bimeasurable transformation preserving the probability P. For a σ-algebra F 0 satisfying F 0 ⊆ T -1 (F 0 ), we dene the nondecreasing ltration 

(F i ) i∈Z by F i = T -i (F 0 ). Let F -∞ = k∈Z F k and F ∞ = k∈Z F k . Let I be
< ∞. For X ∈ L 1 (B), we shall use the notations E k (X) = E(X|F k ), E ∞ (X) = E(X|F ∞ ), E -∞ (X) = E(X|F -∞ ), and P k (X) = E k (X) -E k-1 (X). Recall that E(X|F n ) • T m = E(X • T m |F n+m ).
Let X 0 be a random variable with values in B. Dene the stationary sequence (X i ) i∈Z by X i = X 0 • T i , and the partial sum S n by

S n = X 1 + X 2 + • • • + X n .

Weak invariance principle in smooth Banach spaces

Following Pisier [START_REF] Pisier | Martingales with values in uniformly convex spaces[END_REF], we say that a Banach space (B, | • | B ) is 2-smooth if there exists an equivalent norm • such that

sup t>0 1 t 2 sup{ x + ty + x -ty -2 : x = y = 1} < ∞ .
From [START_REF] Pisier | Martingales with values in uniformly convex spaces[END_REF], we know that if B is 2-smooth and separable, then there exists a constant K such that, for any sequence of B-valued martingale dierences

(D i ) i≥1 , E(|D 1 + • • • + D n | 2 B ) ≤ K n i=1 E(|D i | 2 B ) . (3.1) 
From [START_REF] Pisier | Martingales with values in uniformly convex spaces[END_REF], we see that 2-smooth Banach spaces play the same role for martingales as space of type 2 do for sums of independent variables. Note that, for any measure space (T, A, ν), L p (T, A, ν) is 2-smooth with K = p -1 for any p ≥ 2, and that any separable Hilbert space is 2-smooth with K = 2.

Let D B ([0, 1]) be the space of B-valued càdlàg functions. In the next theorem, we give a condition under which the process {n -1/2 S [nt] , t ∈ [0, 1]} converges in distribution to an B-valued Wiener process, in the space D B ([0, 1]) equipped with the uniform metric.

By an B-valued Wiener process with covariance operator Λ B , we mean a centered Gaussian process

W = {W t , t ∈ [0, 1]} such that E(|W t | 2 B ) < ∞ for all t ∈ [0, 1] and, for any g, h in the dual space B * , Cov(g(W t ), h(W s )) = min(t, s)Λ B (g, h) .
Proposition 6. Assume that B be a 2-smooth Banach space having a Schauder Basis, that (T,

P) is ergodic, that X 0 2 < ∞ and that E(X 0 ) = 0. If k∈Z P 0 (X i ) 2 < ∞ (3.2)
then the process {n -1/2 S [nt] , t ∈ [0, 1]} converges in distribution in the space D B ([0, 1]) equipped with the uniform metric to a B-valued Wiener process W Λ B , where Λ B is the covariance operator dened by

for any g, h in B * , Λ B (g, h) = k∈Z Cov(g(X 0 ), h(X k )) .
Proof of Proposition 6. Let us prove rst that the result holds if E(X 0 |F -1 ) = 0, that is when (X k ) k∈Z is a martingale dierence sequence. As usual, it suces to prove that:

1. for any

0 = t 0 < t 1 < • • • < t d = 1 1 √ n (S [nt1] , S [nt2] -S [nt1] , • • • , S [nt d ] -S [nt d-1 ] ) converges in distribution to a the Gaussian distribution µ on B d dened by µ = µ 1 ⊗ µ 2 • • • ⊗ µ d ,
where µ i is the Gaussian distribution on B with covariance operator C i :

for any g, h in B * , C i (g, h) = (t i -t i-1 )Cov(g(X 0 ), h(X 0 )) . 2. For any ε > 0, lim δ→0 lim sup n→∞ 1 δ P max 1≤k≤[nδ] |S k | B > 2 √ nε = 0
The rst point can be proved exactly as in [START_REF] Woyczy«ski | A central limit theorem for martingales in Banach spaces[END_REF], who proved the result only for t 1 = 1. Let us prove the second point. For any positive number M , let

X i = X i 1 |Xi| B ≤M -E(X i 1 |Xi| B ≤M |F i-1 ) and X i = X i -X i .
Let also

S n = X 1 + • • • + X n and S n = X 1 + • • • + X n .
Since B is 2-smooth, Burkholder's inequality holds (see for instance [START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF]), in such a way that E(max 1≤k≤n |S k | q B ) ≤ K q M q n q/2 for any q ≥ 2. Hence, applying Markov's inequality at order q > 2,

1 δ P max 1≤k≤[nδ] |S k | B > √ nε ≤ K q M q δ (q-2)/2 ε q .
As a consequence, we get that

lim δ→0 lim sup n→∞ 1 δ P max 1≤k≤[nδ] |S k | B > √ nε = 0. (3.3)
In the same way, applying Markov's inequality at order 2

1 δ P max 1≤k≤[nδ] |S k | B > √ nε ≤ K 2 ε 2 E(|X 0 | 2 B 1 |X0| B >M ) . (3.4)
The term

E(|X 0 | 2 B 1 |X0| B >M
) is as small as we wish by choosing M large enough. The point 2 follows from (3.3) and (3.4).

We now consider the general case. Since B is 2-smooth, Burkholder's inequality holds and so Proposition 4.1 in [START_REF] Dedecker | Rates in the strong invariance principle for ergodic automorphisms of the torus[END_REF] applies: if (3.2) holds, then, setting

d k = i∈Z P k (X i ), we have max 1≤k≤n k i=1 X i - k i=1 d i B 2 = o( √ n). (3.5) 
Since (d i ) i∈Z is a stationary martingale dierences sequence in L 2 (B), we have just proved that it satises the conclusion of Proposition 6. From (3.5) it follows that the conclusion of Proposition 6 is also true for (X i ) i∈Z with

Λ B (g, h) = Cov(g(d 0 ), h(d 0 )), for any g, h in B * .
It remains to see that this covariance function can also be written as in Proposition 6. Recall that, for any g and

h in B * , k∈Z |Cov(g(X 0 ), h(X k ))| ≤ k∈Z P 0 (g(X k )) 2 k∈Z P 0 (h(X k )) 2 < ∞ .
(see the proof of item 1 of Theorem 4.1 in [START_REF] Dedecker | Rates in the strong invariance principle for ergodic automorphisms of the torus[END_REF]). Hence, for any g in B * ,

lim n→∞ 1 n E n k=1 g(X k ) 2 = k∈Z Cov(g(X 0 ), g(X k )) . (3.6) 
Now, from (3.5), we also know that

lim n→∞ 1 n E n k=1 g(X k ) 2 = E((g(d 0 )) 2 ) . (3.7) 
Applying (3.6) and (3.7) with g, h and g + h, we infer that

Cov(g(d 0 ), h(d 0 )) = k∈Z Cov(g(X 0 ), h(X k )) ,
which completes the proof.

A Rosenthal inequality for non adapted sequences

We begin with a maximal inequality that is useful to compare the moment of order p of the maximum of the partial sums of a non necessarily adapted process to the corresponding moment of the partial sum. The adapted version of this inequality has been proven in the adapted case (that is when X 0 is F 0 -measurable) in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF]. Notice that Proposition 2 of [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF] is stated for real valued random variables, but it holds also for variables taking values in a separable Banach space (B, | • | B ).

Proposition 7. Let p > 1 be a real number and q be its conjugate exponent. Let X 0 be a random variable in L p (B) and F 0 a σ-algebra satisfying F 0 ⊆ T -1 (F 0 ). Then, for any integer r, the following inequality holds:

max 1≤m≤2 r |S m | B p ≤ q S 2 r p + q2 r/p r-1 =0 2 -/p E 0 (S 2 ) p + (q + 1)2 r/p r =0 2 -/p S 2 -E 2 (S 2 ) p . (3.8)
Remark 8. If we do not assume stationarity, so if we consider a sequence (X i ) i∈Z in L p (B) for a p > 1, and an increasing ltration (F i ) i∈Z , our proof reveals that the following inequality holds true: for any integer r,

max 1≤m≤2 r |S m | B p ≤ q S 2 r p + q r-1 l=0 2 r-l -1 k=1 E k2 l (S (k+1)2 l -S k2 l ) p p 1/p + (q + 1) r l=0 2 r-l k=1 S k2 l -S (k-1)2 l -E k2 l (S k2 l -S (k-1)2 l ) p p 1/p .
Remark 9. Under the assumptions of Proposition 7, we also have that for any integer n,

max 1≤k≤n |S k | B p ≤ 2q max 1≤k≤n S k p + a p n 1/p n =1 E 0 (S ) p 1+1/p + b p n 1/p 2n =1 S -E (S ) p 1+1/p , (3.9) 
where

a p = 2 1+1/p q 1 -2 -1-1/p and b p = 2(q + 1) 2 1+1/p 1 -2 -1-1/p .
The proof of this remark will be done at the end of this section.

In the next results, we consider the case where

(B, | • | B ) = (R, | • |).
The next inequality is the non adapted version of the Rosenthal type inequality given in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF] (see their Theorem 6).

Theorem 10. Let p > 2 be a real number and q be its conjugate exponent. Let X 0 be a real-valed random variable in L p and F 0 a σ-algebra satisfying F 0 ⊆ T -1 (F 0 ). Then, for any positive integer r, the following inequality holds:

E max 1≤j≤2 r |S j | p 2 r E(|X 0 |) p + 2 r r-1 k=0 E 0 (S 2 k ) p 2 k/p p + 2 r r k=0 S 2 k -E 2 k (S 2 k ) p 2 k/p p + 2 r r-1 k=0 E 0 (S 2 2 k ) δ p/2 2 2δk/p p/(2δ) , (3.10) 
where δ = min(1, 1/(p -2)).

Remark 11. The inequality in the above theorem implies that for any positive integer n,

E max 1≤j≤n |S j | p nE(|X 1 |) p + n n k=1 1 k 1+1/p E 0 (S k ) p p + n 2n k=1 1 k 1+1/p S k -E k (S k ) p p + n n k=1 1 k 1+2δ/p E 0 (S 2 k ) δ p/2 p/(2δ)
.

To see this, it suces to use the arguments developed in the proof of Remark 9 together with the following additional subadditivity property: for any integers i and j, and any δ ∈]0, 1]:

E 0 (S 2 i+j ) δ p/2 ≤ 2 δ E 0 (S 2 i ) p/2 + 2 δ E 0 (S 2 j ) p/2 .
So, according to the rst item of Lemma 37 of [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF], for any

integer n ∈]2 r-1 , 2 r ], r-1 k=0 E 0 (S 2 2 k ) δ p/2 2 2δk/p n k=1 1 k 1+2δ/p E 0 (S 2 k ) δ p/2 .
Remark 12. Theorem 10 has been stated in the real case. Notice that if we assume X 0 to be in L p (B) where (B, | • | B ) is a separable Banach space and p is a real in ]2, ∞[, then a Rosenthal-type inequality similar as (3.10) can be obtained but with a dierent δ for 2 < p < 4. To be more precise, we get that

E max 1≤j≤2 r |S j | p B 2 r E(|X 0 | B ) p + 2 r r k=0 S 2 k -E 2 k (S 2 k ) p 2 k/p p + 2 r r-1 k=0 E 0 (|S 2 k | 2 B ) δ p/2 2 2δk/p p/(2δ) , (3.11) 
where δ = min(1/2, 1/(p -2)). The proof of this inequality is given later.

As a consequence of (3.10), one can prove the following inequality. This inequality will be used to prove the tightness of the sequential empirical process (1.2) in the space ∞ ([0, 1] × R ) (see the proof of Theorem 4, Section 5). Proposition 13. Let p > 2. Let X 0 be a real-valed random variable in L p and F 0 a σ-algebra satisfying

F 0 ⊆ T -1 (F 0 ). For any j ≥ 1, let A(X, j) = max 2 sup i≥0 E 0 (X i X j+i ) p/2 , sup 0≤i≤j E 0 (X j X j+i ) -E(X j X j+i ) p/2 .
(3.12)

Then for every positive integer n,

max 1≤j≤n |S j | p n 1/2 n-1 k=0 |E(X 0 X k )| 1/2 + n 1/p X 1 p + n 1/p n k=1 1 k 1/p E 0 (X k ) p + n 1/p 2n k=1 1 k 1/p X 0 -E k (X 0 ) p + n 1/p n k=1 1 k (2/p)-1 (log k) γ A(X, k) 1/2 .
where γ can be taken γ = 0 for 2 < p ≤ 3 and γ > p -3 for p > 3. The constant that is implicitly involved in the notation depends on p and γ but it depends neither on n nor on the X i 's.

The proof of this proposition is left to the reader since it uses the same arguments as those developed for the proof of Proposition 20 in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF].

We would like also to pint out that Theorem 10 implies the following Burkholder-type inequality. This has been already mentioned in the adapted case in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF]Corollary 13].

Corollary 14. Let p > 2 be a real number, X 0 be a real random variable in L p and F 0 a σ-algebra satisfying F 0 ⊆ T -1 (F 0 ). Then, for any integer r, the following inequality holds

E max 1≤j≤2 r |S j | p 2 rp/2 E(|X 0 | p ) + 2 rp/2 r-1 j=0 E 0 (S 2 j ) p 2 j/2 p + 2 rp/2 r j=1 S 2 j -E 2 j (S 2 j ) p 2 j/2 p .
The above corollary (up to constants) is then the non adapted version of [13, Theorem 1] when p > 2. Let us give an application of it for the partial sums associated to continuous functions of the iterates of an ergodic automorphism of the torus. Let T be a ergodic automorphism of T d as dened in the introduction. Let f be a continuous function from T d to R with modulus of continuity ω(f, •) (see Section 4, equation (4.1), for the denition). Using Corollary 14 together with Theorem 18 (see also Remark 19), we infer that if

1/2 0 ω(f, t) t| log t| 1/2 dt < ∞ , then for any p > 2, max 1≤k≤n k i=1 (f • T i -λ(f )) p n 1/2 .
Proof of Proposition 7. For any k ∈ {1, . . . , 2 r }, we have that

S k = S k -E k (S k ) + E k (S 2 r ) -E k (S 2 r -S k ) . Consequently max 1≤k≤2 r |S k | B p ≤ max 1≤k≤2 r |E k (S 2 r )| B p + max 1≤m≤2 r -1 |E 2 r -m (S 2 r -S 2 r -m )| B p + S 2 r -E 2 r (S 2 r ) p + max 1≤m≤2 r -1 |S m -E m (S m )| B p . (3.13)
Following the proof of Proposition 2 in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF], we get that

max 1≤k≤2 r |E k (S 2 r )| B p + max 1≤m≤2 r -1 |E 2 r -m (S 2 r -S 2 r -m )| B p ≤ q E(S 2 r |F 2 r ) p + q r-1 =0 2 r--1 k=1 E k2 (S (k+1)2 -S k2 ) p p 1/p .
So, by stationarity,

max 1≤k≤2 r |E k (S 2 r )| B p + max 1≤m≤2 r -1 |E 2 r -m (S 2 r -S 2 r -m )| B p ≤ q E(S 2 r |F 2 r ) p + q2 r/p r-1 =0 2 -/p E(S 2 |F 0 ) p . (3.14)
We now bound the last term in the right hand side of (3.13). For any m ∈ {1, . . . , 2 r -1}, we consider its binary expansion:

m = r-1 i=0 b i (m)2 i , where b i (m) = 0 or b i (m) = 1 . Set m l = r-1 i=l b i (m)2 i
, and write that for any p ≥ 1,

|S m -E m (S m )| B ≤ r-1 l=0 |S m l -S m l+1 -E m (S m l -S m l+1 )| B , (3.15) 
since S 0 = 0 and m r = 0. Now, since for any l = 0, . . . , r -1, F m l ⊆ F m , the following decomposition holds:

|S m l -S m l+1 -E m (S m l -S m l+1 )| B ≤ |S m l -S m l+1 -E m l (S m l -S m l+1 )| B + E S m l -S m l+1 -E m l (S m l -S m l+1 )|F m ) B . Notice that m l = m l+1 only if m l = k m,l 2 l with k m,l odd. Then, setting B r,l = max 1≤k≤2 r-l ,k odd |S k2 l -S (k-1)2 l -E k2 l (S k2 l -S (k-1)2 l )| B , it follows that |S m l -S m l+1 -E m (S m l -S m l+1 )| B ≤ B r,l + |E(B r,l |F m )| .
Starting from (3.15), we then get that

max 1≤m≤2 r -1 |S m -E m (S m )| B p ≤ r-1 l=0 B r,l p + r-1 l=0 max 1≤m≤2 r -1 |E(B r,l |F m )| p .
Since (E(B r,l |F m )) m≥1 is a martingale, by using Doob's maximal inequality, we get that

max 1≤m≤2 r -1 |E(B r,l |F m )| p ≤ q E(B r,l |F 2 r -1 ) p ≤ q B r,l p , yielding to max 1≤m≤2 r -1 |S m -E m (S m )| B p ≤ (q + 1) r-1 l=0 B r,l p . Since B r,l ≤ 2 r-l -1 k=1 |S k2 l -S (k-1)2 l -E k2 l (S k2 l -S (k-1)2 l )| p B 1/p , we derive that S 2 r -E 2 r (S 2 r ) p + max 1≤m≤2 r -1 |S m -E m (S m )| B p ≤ (q + 1) r-1 l=0 2 r-l -1 k=1 S k2 l -S (k-1)2 l -E k2 l (S k2 l -S (k-1)2 l ) p p 1/p
. So, by stationarity, Proof of Theorem 10. Thanks to Proposition 7, it suces to prove that the inequality (3.10) is satised

max 1≤m≤2 r -1 |S m -E m (S m )| B q ≤ (q + 1)2 r/p r-1 l=0 2 -l/p S 2 l -E 2 l (S 2 l ) p . ( 3 
for E |S 2 r | p instead of E max 1≤j≤2 r |S j | p . Let a n = S n p .
According to the proof of Lemma 11 in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF], the theorem will follow if we can prove the following recurrence formula: for any positive integer n,

a p 2n ≤ 2a p n + c 1 a p-1 n E 0 (S n ) p + S n -E n (S n ) p + c 2 a p-2δ n E 0 (S 2 n ) δ p/2 . (3.17)
where c 1 and c 2 are positive constants depending only on p. To prove (3.17), we denote by Sn = X n+1 + • • • + X 2n , and we write that

S 2n = S n -E n (S n ) + E n (S n ) + Sn .
Recall rst the following algebraic inequality: Let x and y be two positive real numbers and p ≥ 1 any real number. Then (x + y) p ≤ x p + y p + 4 p (x p-1 y + xy p-1 ) .

(see Inequality (87) in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF]). The above inequality with

x = |E n (S n ) + Sn | and y = |S n -E n (S n )| gives a p 2n ≤ E n (S n ) + Sn p p + S n -E n (S n ) p p + 4 p E |E n (S n ) + Sn | p-1 |S n -E n (S n )| + 4 p E |E n (S n ) + Sn ||S n -E n (S n )| p-1 ,
which combined with Hölder's inequality and stationarity leads to

a p 2n ≤ E n (S n ) + Sn p p + 2 p-1 (1 + 2 2p+1 )a p-1 n S n -E n (S n ) p . (3.19) 
Starting from (3.19), (3.17) will follow if we can prove that there exist two positive constants c and c 2 depending only on p such that

E n (S n ) + Sn p p ≤ 2a p n + c a p-1 n E 0 (S n ) p + c 2 a p-2δ n E 0 (S 2 n ) δ p/2
. This inequality can be proven by following the lines of the end of the proof of Theorem 6 in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF]. Indeed, it suces to replace in their proof, x = S n by x = E n (S n ), and to use the following estimates (coming from the proof of their lemma 34 and the stationarity assumption): for any reals p and u such that 0 ≤ u ≤ p -2,

E(|E n (S n )| u | Sn | p-u ) ≤ a p-2u/(p-2) n E n ( S2 n ) u/(p-2) p/2
, and

E(|E n (S n )| p-1 | Sn |) ≤ a p-1 n E n ( S2 n ) 1/2 p/2 .
Proof of Remark 12. As it is pointed out in the proof of Theorem 10, the remark will be proven with the help of Proposition 7, if we can show that

a p 2n ≤ 2a p n + c 1 a p-1 n S n -E n (S n ) p + c 2 a p-2δ n E 0 (|S n | 2 B ) δ p/2 ,
where a p n = E(|S n | p B ), c 1 and c 2 are positive constants depending only on p and δ = min(1/2, 1/(p-2)). Indeed, the second term in the right-hand side of (3.8) can be bounded by the last term in the righthand side of (3.11). To see this it suces to use Jensen's inequality and the fact that δ ≤ 1/2.

Starting from (3.19) (by replacing the absolute values by the norm | • | B ), we see that to prove the above recurrence formula it suces to show that there exists a positive constant c depending only on p such that

E n (S n ) + Sn p p ≤ 2a p n + ca p-2δ n E 0 (|S n | 2 B ) δ p/2
. The dierence at this step with the proof of Theorem 10 is that the inequality (3.18) is used whatever p ∈]2, ∞[ (in Theorem 10, so in the real case, when p ∈]2, 4[ more precise inequalities can be used as done in the proof of Theorem 6 in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF]).

Proof of Corollary 14. To prove the corollary, it suces to show that for any 0 < δ ≤ 1 and any real

p > 2, 2 r r-1 k=0 E 0 (S 2 2 k ) δ p/2 2 2δk/p p/(2δ) 2 rp/2 E 0 (X 2 1 ) p/2 p/2 + 2 rp/2 r-1 j=0 E 0 (S 2 j ) p 2 j/2 p , (3.20) 
and to apply Theorem 10. Following the proof of Lemma 12 in [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF] and setting b n = E 0 (S 2 n ) p/2 , we infer that (3.20) will follow if we can prove that, for any integer n,

b 2n ≤ 2b n + 2b 1/2 n E 0 (S n ) p + 2b 1/2 n S n -E n (S n ) p .
(3.21) By using the notation Sn = X n+1 + • • • + X n and the fact that

S 2 2n = S 2 n + S2 n + 2E n (S n ) Sn + 2(S n - E n (S n )) Sn , we get, by stationarity, that b 2n ≤ 2b n + 2 E 0 E n (S n )E n ( Sn ) p/2 + 2 E 0 (S n -E n (S n )) Sn p/2 .
Hence the inequality (3.21) follows from the following upper bounds: Applying Cauchy-Schwarz inequality twice and using stationarity, we get

E 0 E n (S n )E n ( Sn ) p/2 ≤ E 0 (E 2 n (S n )) 1/2 p/2 × E 0 (E 2 n ( Sn )) 1/2 p/2 ≤ E 0 (S 2 n )) 1/2 p/2 × E 2 n ( Sn ) 1/2 p/2 ≤ b 1/2 n E 0 (S n ) p , and 
E 0 (S n -E n (S n )) Sn p/2 ≤ E 0 (((S n -E n (S n )) 2 ) 1/2 p/2 E 0 ( S2 n ) 1/2 p/2 ≤ b 1/2 n S n -E n (S n ) p .
Proof of Remark 9. Let n and r be integers such that 2 r-1 ≤ n < 2 r . Notice rst that

max 1≤k≤n |S k | B p ≤ max 1≤k≤2 r |S m | B p and S 2 r p ≤ 2 S 2 r-1 p ≤ 2 max 1≤k≤n S k p (3.22)
(for the second inequality we use the stationarity). Now, setting V m = E 0 (S m ) p , we have by stationarity that for all n, m ≥ 0, V n+m ≤ V n + V m and then, according to the rst item of Lemma 37 of [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF],

2 r/p r-1 =0 2 -/p E 0 (S 2 ) p ≤ n 1/p 2 1/p 2 2+1/p 2 1+1/p -1 n k=1 E 0 (S k ) p k 1+1/p ≤ n 1/p 2 1+1/p 1 -2 -1/p-1 n k=1 E 0 (S k ) p k 1+1/p . (3.23)
On an other hand, let W m = S m -E m (S m ) p , and note that the following claim is valid:

Claim 15. If F and G are σ-algebras such that G ⊂ F, then for any X in L p (B) where p ≥ 1, X -E(X|F) p ≤ 2 X -E(X|G) p .

The above claim together with the stationarity imply that for all n, m ≥ 0, W n+m ≤ 2(W n + W m ). Therefore, using once again the rst item of Lemma 37 of [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF], we get that

2 r/p r =0 2 -/p S 2 -E 2 (S 2 ) p ≤ 2n 1/p 2 1+1/p 1 -2 -1/p-1 2n =1 S -E (S ) p 1+1/p . ( 3 

.24)

The inequality (3.9) then follows from the inequality (3.8) by taking into account the upper bounds (3.22), (3.23) and (3.24).

A tightness criterion

We begin with the denition of the number of brackets of a family of functions.

Denition 16. Let P be a probability measure on a measurable space X . For any measurable function f from X to R, let f P,1 = P (|f |). If f P,1 is nite, one says that f belongs to L 1 P . Let F be some subset of L 1 P . The number of brackets N P,1 (ε, F) is the smallest integer N for which there exist some functions f -

1 ≤ f 1 , . . . , f - N ≤ f N in F such that: for any integer 1 ≤ i ≤ N we have f i -f - i P,1 ≤ ε,
and for any function f in F there exists an integer

1 ≤ i ≤ N such that f - i ≤ f ≤ f i .
The rst step in the proof of Theorem 4 is the following proposition, whose proof is based on a decomposition given in [START_REF] Andrews | An introduction to functional central limit theorems for dependent stochastic processes[END_REF] (see also [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF]). Proposition 17. Let (X i ) i≥1 be a sequence of identically distributed random variables with values in a measurable space X , with common distribution P . Let P n be the empirical measure P n = n -1 n i=1 δ Xi , and let S n be the empirical process S n = n(P n -P ). Let F be a class of functions from X to R and G = {f -l, (f, l) ∈ F × F }. Assume that there exist r ≥ 2 and p > 2 such that for any function g of G ∪ F, we have

max 1≤k≤n |S k (g)| p ≤ C( √ n g 1/r P,1 + n 1/p ) , (3.25) 
where the constant C does not depend on g nor on n. If moreover 1 0

x (1-r)/r (N P,1 (x, F)) 

1 ≤ f k 1 , . . . , f k,- N k ≤ f k N k in F such that f k i -f k,- i P,1 ≤ 2 -k
, and for any f in F, there exists an integer

1 ≤ i ≤ N k such that f k,- i ≤ f ≤ f k i .
We follow exactly the proof of Proposition 6 in [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF]. One can prove that for any ε > 0, there exist N (ε) and m = m(ε) such that: for any n ≥ N (ε) there exists f n,m in F m for which

max 1≤k≤n sup f ∈F n -1/2 |S k (f ) -S k (f n,m )| p ≤ ε .
(3.28)

Now, (3.26) follows from (3.28) as in [START_REF] Andrews | An introduction to functional central limit theorems for dependent stochastic processes[END_REF] (see the end of the proof of Proposition 6 in [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF]). Let us prove (3.27). We apply (3.28) with ε = 1: for n ≥ δ -1 N (1), we infer from (3.28) that there exists

f [nδ],m in F m for which max 1≤k≤[nδ] sup f ∈F n -1/2 |S k (f ) -S k (f [nδ],m )| p ≤ √ δ .
Hence max

1≤k≤[nδ] sup f ∈F n -1/2 |S k (f )| p ≤ √ δ + max 1≤k≤[nδ] sup f ∈F n -1/2 |S k (f [nδ],m )| p . (3.29)
Now, since F m contains 2N m functions (g ) ∈2Nm (each g being one of the functions

f m i or f m,- i in N m ), it follows that max 1≤k≤[nδ] sup f ∈F n -1/2 |S k (f [nδ],m )| p ≤ 2Nm =1 1 √ n max 1≤k≤[nδ] |S k (g )| p .
Let K m = max f ∈Fm f P,1 . Applying (3.25), we infer that x i v i = max 

max 1≤k≤[nδ] sup f ∈F n -1/2 |S k (f [nδ],m )| p ≤ 2CN m (K 1/r m √ δ + n -(p-2)/2p δ 1/p ) . ( 3 
ω (s,e) (f, δ) = sup{|f (x) -f (x + h s + h e )|, x ∈ T d , h s ∈ B s (δ), h e ∈ B e (δ)} and ω (u) (f, δ) = sup{|f (x) -f (x + h u )|, x ∈ T d , h u ∈ B u (δ)} .
Let r u be the spectral radius of S -1 |Eu . For every ρ u ∈ (r u , 1), there exists K > 0 such that, for every integer n ≥ 0, we have

∀h u ∈ E u , ||S -n h u || ≤ Kρ n u ||h u || (4.2) and ∀(h e , h s ) ∈ E e × E s , ||S n (h e + h s )|| ≤ Kn de ||h e + h s || . (4.3)
The following inequality is an extension to continuous functions of a result for Hölder functions established in [START_REF] Le Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF].

Theorem 18. Let ρ u ∈ (r u , 1) and ζ ∈ (ρ 1/(3(d+2)(de+ds)) u , 1). There exist C > 0, N ≥ 0, ξ ∈ (0, 1), a sequence of measurable sets (V n ) n≥0 and a σ-algebra F 0 such that F 0 ⊆ T -1 F 0 and such that, for every bounded ϕ : T d → R and every integer n ≥ N , we have

E[ϕ|F n ] -ϕ ∞ ≤ Cω (u) (ϕ, ρ n u ) , (4.4) on V n , |E[ϕ|F -n ] -E[ϕ]| ≤ C( ϕ ∞ ξ n + ω (s,e) (ϕ, ζ n )) (4.5)
and

λ(T d \ V n ) ≤ Cξ n , (4.6) 
where

F k := T -k F 0 for every k ∈ Z.
Remark 19. With the notations of Theorem 18, (4.5) and (4.6) implies that, for every p ≥ 1 and every (ρ u , ζ) as in Theorem 18, there exists c p such that, for every bounded ϕ : T d → R and every integer n ≥ 0, we have

∀n ≥ 0, E[ϕ|F -n ] -E[ϕ] p ≤ c p ( ϕ ∞ ξ n p + ω (s,e) (ϕ, ζ n )) . (4.7)
The remainder of this section is devoted to the proof of Theorem 18 and to the statements and the proofs of some preliminary results. Let ρ u ∈ (r u , 1) and K satisfying (4.2) and (4.3). Let m u , m e , m s be the Lebesgue measure on E u (in the basis v 1 , ..., v du ), E e (in the basis v du+1 , ..., v du+de ) and E s (in the basis v du+de+1 , ..., v d ) respectively. We observe that dλ(h u + h e + h s ) = dm u (h u )dm e (h e )dm s (h s ).

The properties satised by the ltration considered in [START_REF] Lind | Dynamical properties of quasihyperbolic toral automorphisms[END_REF][START_REF] Le Borgne | Limit theorems for non-hyperbolic automorphisms of the torus[END_REF] and enabling the use of Gordin's method will be crucial here. Given a nite partition P of T d , we dene the measurable partition P ∞ 0 by :

∀x ∈ T d , P ∞ 0 (x) := k≥0 T k P(T -k (x))
and, for every integer n, the σ-algebra F n generated by

∀x ∈ T d , P ∞ -n (x) := k≥-n T k P(T -k (x)) = T -n (P ∞ 0 (T n (x)) .
We obviously have

F n = T -n F 0 ⊆ F n+1 = T -1 F n .
Let r 0 > 0 be such that (h u , h e , h s ) → h u + h e + h s denes a dieomorphism from B u (r 0 ) × B e (r 0 ) × B s (r 0 ) on its image in T d . Observe that, for every x ∈ T d , on the set x + B u (r 0 ) + B e (r 0 ) + B s (r 0 ), we have d λ(x + h u + h e + h s ) = dm u (h u )dm e (h e )dm s (h s ).

Proposition 20 ([11, 9] applied to T -1 , see also [START_REF] Dedecker | Rates of convergence in the strong invariance principle for non-adapted sequences. Application to ergodic automorphisms of the torus[END_REF]). There exist some Q > 0 and some nite partition P of T d whose elements are of the form d i=1 I i v i where the I i are intervals with diameter smaller than min(r 0 , K) such that, for almost every x ∈ T d ,

• the local leaf P ∞ 0 (x) of P ∞ 0 containing x is a bounded convex set x + F x, with 0 ∈ F x ⊆ E u , F x having non-empty interior in E u , • we have, for all n ∈ Z, E[f |F n ](x) = 1 m u (S -n F T n x) S -n F T n x f (x + h u ) dm u (h u ) ,
• for every γ > 0, we have

m u (∂(F x)(γ)) ≤ Qγ ,
where ∂C(β) := {y ∈ F : d 0 (y, ∂C) ≤ β} .

Recall now an exponential decorrelation result for Lipschitz continuous functions.

Proposition 21 ([11] and also section 4.1 of [START_REF] Pène | Averaging method for dierential equations perturbed by dynamical systems[END_REF]). Let ξ 0 ∈ (ρ 1/3 u , 1). There exists C 0 > 0 such that, for every nonnegative integer n and every Lipschitz continuous functions f, g :

T d → C with T d g d λ = 0, we have T d (f.g • T n ) d λ ≤ C 0 (||f || ∞ ||g|| ∞ + ||f || ∞ Lip(g) + ||g|| ∞ Lip(f ))ξ n 0 ,
where Lip(h) is the Lipschitz constant of h.

Let Q be the constant appearing in Proposition 20. The following result is an adaptation of Proposition 1.3 of [START_REF] Le Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF].

Proposition 22. Let ζ 1 ∈ (ρ 1/(3(d+2)(de+ds)) u , 1 
). There exist C 1 > 0, N 1 ≥ 1 and ξ 1 ∈ (0, 1) such that, for every λ-centered bounded function ϕ : T d → R, every x ∈ T d , every n ≥ N 1 and every bounded convex set C ⊆ E u with diameter smaller than r 0 , satisfying m u (∂C(β)) ≤ Qβ (for every β > 0), we have

1 m u (S n C) S n C ϕ(x + h u ) dm u (h u ) ≤ K 1 ||ϕ|| ∞ ξ n 1 m u (C) + ω(ϕ, ζ n 1 ) .
Proof. Let ξ 0 be as in Proposition 21 with

ζ 1 > ξ 1/((d+2)(de+ds)) 0 . Let r := ξ -1/(d+2) 0 . We take ε n = α n with α ∈ (0, 1) such that ζ 1 > α > ξ 1/((d+2)(de+ds)) 0 ≥ r -1 . Let U := T -n x + C + B s (ε n ) + B e (ε n ). We have T n (U ) = x + S n C + S n B s (ε n ) + S n B e (ε n ). We have T d 1 T n U .ϕ d λ = C×Be(εn)×Bs(εn) ϕ(T n (T -n x + h u + h e + h s )) dm u (h u )dm e (h e )dm s (h s ) = Vn ϕ(x + h u + h e + h s ) dm u (h u )dm e (h e )dm s (h s ) , with V n := S n C × S n B e (ε n ) × S n B s (ε n ). Moreover we have S n C ϕ(x + h u ) dm u (h u ) = 1 m s (S n (B s (ε n ))m e (S n (B e (ε n )) Vn ϕ(x + h u ) dm u (h u )dm e (h e )dm s (h s ) .
Hence, due to (4.3), we have

T d 1 T n U .ϕ d λ -m s (S n (B s (ε n ))m e (S n (B e (ε n )) S n C ϕ(x + h u ) dm u (h u ) ≤ λ(U )ω (s,e) (ϕ, Kn de ε n ) . Since λ(U ) = m u (S n C)m s (S n (B s (ε n ))m e (S n (B e (ε n )), we get, for n large enough (that is, such that Kn de ε n ≤ ζ n 1 ), 1 λ(U ) T d 1 T n U ϕ d λ - 1 m u (S n C) S n C ϕ(x + h u ) dm u (h u ) ≤ ω (s,e) (ϕ, Kn de ε n ) ≤ ω (s,e) (ϕ, ζ n 1 ) .
For every n ≥ 0 and x ∈ T d , we dene χ n (x) :

= (d + 1)2 -d r n(d+1) d 1 (x, T d \ B(0, r -n )), where B(0, r -n ) = {x ∈ T d , d 1 ( 0, x) ≤ r -n }.
Let us observe that χ n is a nonnegative (d + 1)r n(d+1) 2 -d -Lipschitz continuous function supported in B(0, r -n ), uniformly bounded by (d + 1)2 -d r nd and such that T d χ n d λ = 1. We will denote by * the usual convolution product with respect to λ. We will estimate

T d 1 U • T -n .ϕ d λ - T d (χ n * 1 U ) • T -n .(χ n * ϕ)) d λ .
First observe that

T d (χ n * 1 U ) • T -n .(χ n * ϕ -ϕ) d λ ≤ ω(ϕ, r -n ) λ(U ) . (4.8) 
Second, we have

T d (χ n * 1 U -1 U ) • T -n .ϕ d λ ≤ ϕ ∞ T d |χ n * 1 U -1 U |d λ , (4.9) 
and let us prove that

T d |χ n * 1 U -1 U |d λ ≤ 3 λ(∂U (r -n )) . (4.10) 
To see this, observe that

χ n ( t)1 U (x -t) -1 U (x) = (χ n ( t) -1)1 U (x) except if 1 U (x -t) = 1 U (x) and if t ∈ B(0, r -n ). Hence χ n * 1 U (x) = 1 U (x) implies either that x ∈ ∂U (r -n
) or that x belongs to the set U of points such that x ∈ U but there exists t0 ∈ B(0, r -n ) such that x -t0 ∈ U . On the one hand, we have

∂U (r -n ) |χ n * 1 U -1 U | d λ ≤ ∂U (r -n ) T d χ n ( t)1 U (x -t) d λ(t) d λ(x) + λ(∂U (r -n )) ≤ λ(∂U (r -n )) T d χ n ( t)d λ(t) + λ(∂U (r -n )) ≤ 2 λ(∂U (r -n )), (4.11) 
using the fact that χ n is nonnegative with unit integral. On the other hand, we have

U |χ n * 1 U -1 U | d λ ≤ U T d χ n ( t)1 U (x -t) d λ(t) d λ(x) ≤ T d \U t:x-t∈U χ n ( t) d λ(t) d λ(x) ≤ T d ∂U (r -n ) χ n (x -s) d λ(s) d λ(x) ≤ ∂U (r -n ) T d χ n (x -s) d λ(x) d λ(s) = λ(∂U (r -n )), (4.12) 
using again the properties of χ n . Now, (4.11) and (4.12) directly give (4.10). Due to (4.8), (4.9) and (4.10), we have

1 λ(U ) T d 1 U • T -n .ϕ d λ ≤ 1 λ(U ) T d (χ n * 1 U ) • T -n .(χ n * ϕ)) d λ + λ(U )ω(ϕ, r -n ) + 3||ϕ|| ∞ λ(∂U (r -n )) .
Now, the hypothesis on m u (∂C(β)) implies that there exists Q 1 (depending on Q and on T ) such that

∀n ≥ 0, λ(∂U (r -n )) ≤ Q 1 r -n .
Moreover, applying Proposition 21 with f = χ n * ϕ and g = χ n * 1 U and using the following facts

χ n * ϕ ∞ ≤ ϕ ∞ , χ n * 1 U ∞ ≤ 1, Lip(χ n * 1 U ) ≤ Lip(χ n ) and Lip(χ n * ϕ) ≤ ϕ ∞ Lip(χ n ),
we get the existence of C0 (depending on C 0 and on Q) such that we have

1 λ(U ) T d 1 U • T -n .ϕ d λ ≤ C0 ||ϕ|| ∞ r -n + (1 + r n(d+1) )ξ n 0 ε de+ds n m u (C) + ω(ϕ, r -n ) ≤ 3 C0 ||ϕ|| ∞ ξ n/(d+2) 0 ε de+ds n m u (C) + ω(ϕ, ζ n 1 ), since r -1 = r d+1 ξ 0 = ξ 1/(d+2) 0
. We conclude by taking ξ 1 := ξ 1/(d+2) 0

α -(de+ds) < 1.

In the next result (which is an adaptation of Proposition 1.4 of [START_REF] Le Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF]), we prove that Proposition 22 holds true with the stable-neutral continuity modulus ω (s,e) instead of ω.

Proposition 23. Let ζ 1 ∈ (ρ 1/(3(d+2)(de+ds)) u , 1). There exist C 2 > 0, N 2 ≥ 1 and ξ 2 ∈ (0, 1) such that, for every λ-centered bounded function ϕ : T d → R, every x ∈ T d , every n ≥ N 2 and every bounded convex set C ⊆ E u with diameter smaller than r 0 and satisfying m u (∂C(β)) ≤ Qγ , we have

1 m u (S n (C)) S n C ϕ(x + h u ) dm u (h u ) ≤ K 2 ||ϕ|| ∞ m u (C) ξ n 2 + ω (s,e) (ϕ, ζ n 1 ) .
Proof. We consider a nite cover of T d by sets P i = ȳi + B u (r 0 ) + B e (r 0 ) + B s (r 0 ) for i = 1, ..., I, ȳi being xed points of T d . We consider a partition of the unity H 1 , ..., H I (i.e.

I i=1 H i = 1) such that each H i is innitely dierentiable, with support in P i . Let ϕ : T d → R be a bounded centered function. For every i = 1, ..., I, we dene ϕ i := H i ϕ. We have

S n C ϕ(x + h u ) dm u (h u ) = I i=1 S n C ϕ i (x + h u ) dm u (h u ). (4.13)
We also consider a continuously dierentiable function g : E u → [0, +∞) with support in B u (r 0 ) and such that Eu g(h u ) dm u (h u ) = 1. We approximate now each ϕ i by a regular function ψ i by setting, for every (h u , h e , h s ) ∈ B u (r 0 ) × B e (r 0 ) × B s (r 0 ),

ψ i (ȳ i + h u + h e + h s ) = g(h u ) Bu(r0) ϕ i (ȳ i + h u + h e + h s ) dm u (h u ),
ψ i being null outside of P i . We observe that Pi

ψ i d λ = Pi ϕ i d λ, that ||ψ i || ∞ ≤ ||ϕ|| ∞ ||g|| ∞ m u (B u (r 0 )
) and that, for every δ > 0,

ω(ψ i , δ) ≤ m u (B u (r 0 )) ||ϕ|| ∞ Lip(g)δ + ||g|| ∞ ω (s,e) (ϕ i , δ) ≤ m u (B u (r 0 )) ||ϕ|| ∞ Lip(g)δ + ||g|| ∞ ||ϕ|| ∞ Lip(H i )δ + ||g|| ∞ ω (s,e) (ϕ, δ)||H i || ∞ .
Now, applying Proposition 22 to ψ i , for every n ≥ N 1 , we have

1 m u (S n C) S n C ψ i (x + h u ) dm u (h u ) ≤ K 1 ||ϕ|| ∞ ξ n 1 m u (C) + ω (s,e) (ϕ, ζ n 1 ) + ||ϕ|| ∞ ζ n 1 . (4.14)
We observe that the connected components of (x+S n C)∩P i are x+C i,j , where C i,j are some connected subsets of E u . We have

S n C ϕ i (x + h u ) dm u (h u ) = j Ci,j ϕ i (x + h u ) dm u (h u )
and

S n C ψ i (x + h u ) dm u (h u ) = j Ci,j ψ i (x + h u ) dm u (h u ) .
Now, if C i,j does not contain any point of ∂(S n C), then there exists h

(j)
e ∈ B e (r 0 ) and h

(j) s ∈ B s (r 0 ) such that x + C i,j = ȳi + h (j) e + h (j) s + h u ; h u ∈ B u (r 0 ) .
Using the denition of ψ i , we get Ci,j

ψ i (x + h u ) dm u (h u ) = Bu(r0) ψ i (ȳ i + h (j) e + h (j) s + h u ) dm u (h u ) = Bu(r0) ϕ i (ȳ i + h (j) e + h (j) s + h u ) dm u (h u ),
since Bu(r0) g(h u ) dm u (h u ) = 1 and so Ci,j

ψ i (x + h u ) dm u (h u ) = Ci,j ϕ i (x + h u ) dm u (h u ).
Therefore we have Now, the last point comes from the fact (proved in Proposition II.1 of [START_REF] Le Borgne | Limit theorems for non-hyperbolic automorphisms of the torus[END_REF]) that

1 m u (S n C) S n C (ψ i (x + h u ) -ϕ i (x + h u )) dm u (h u ) ≤ 2||ϕ|| ∞ m u (∂(S n C)(r 0 )) m u (S n C) ≤ 2||ϕ|| ∞ m u (∂C(Kρ n u r 0 )) m u (C) ≤ 2||ϕ|| ∞ QKρ n u r 0 m u (C) (4.
∃L > 0, ∀n ≥ 0, λ(m u (F • ) < β n ) ≤ Lβ n du .
5 Proof of Theorems 1 and 4

In this section, C is a positive constant which may vary from lines to lines, and the notation a n b n means that there exists a numerical constant C not depending on n such that an a n ≤ Cb n , for all positive integers n.

Proof of Theorem 1. The proof is based on Proposition 6 of Section 3, which gives sucient conditions for the weak invariance principle in 2-smooth Banach spaces.

Let Y i (s) = 1 f •T i ≤s -F (s) and let F i be the ltration introduced in Section 4. Note rst that, for 2 ≤ p < ∞, the space L p is 2-smooth and p-convex (see [START_REF] Pisier | Martingales with values in uniformly convex spaces[END_REF]). Moreover it has a Schauder basis (and even an unconditional basis).

Hence it suces to check (3.2) of Proposition 6. As in [START_REF] Dedecker | Invariance principles for linear processes with application to isotonic regression[END_REF], there exists a positive constant C such that

∞ k=1 P -k (Y 0 ) L p 2 ≤ C ∞ k=1 1 k ∞ i=k P -i (Y 0 ) L p p 2 1/p ≤ C ∞ k=1 1 k ∞ i=k P -i (Y 0 ) L p p p 1/p , and 0 k=-∞ P -k (Y 0 ) L p 2 ≤ C ∞ k=1 1 k ∞ i=k P i+1 (Y 0 ) L p p 2 1/p ≤ C ∞ k=1 1 k ∞ i=k P i+1 (Y 0 ) L p p p 1/p . Since L p is p-convex, it follows that ∞ i=k P -i (Y 0 ) L p p p ≤ K E(Y k |F 0 ) L p p p and ∞ i=k P i+1 (Y 0 ) L p p p ≤ K Y -n -E(Y -n |F 0 ) L p p .
Hence (3.2) is true as soon as

n≥1 1 n 1/p E(Y n |F 0 ) L p p < ∞ and n≥1 1 n 1/p Y -n -E(Y -n |F 0 ) L p p < ∞ .
Let us have a look to

E(Y n |F 0 ) L p p = E R |F f •T n |F0 (t) -F (t)| p dt 1/p ≤ E R |F f •T n |F0 (t) -F (t)|dt 1/p . Now R |F f •T n |F0 (t) -F (t)|dt = sup g∈Λ1 E(g • f • T n |F 0 ) -E(g • f ) ,
where Λ 1 is the set of 1-lipschitz functions. Hence, since ω (s,e) (g • f, •) is smaller than ω (s,e) (f, •), it follows from (4.5) and (4.6) of Theorem 18 that

E(Y k |F 0 ) L p p ≤ E sup g∈Λ1 E(g • f • T k |F 0 ) -E(g • f ) 1/p ≤ C((ω (s,e) (f, ζ n )) 1/p + f 1/p ∞ ξ n/p ) ,
by noticing that we can replace Λ 1 by the set of g ∈ Λ 1 such that g • f (0) = 0. In the same way, due to (4.4) of Theorem 18, we have

Y -n -E(Y -n |F 0 ) L p p ≤ C(ω (u) (f, ρ n u )) 1/p .
The result follows.

Proof of Theorem 4. Our aim is to apply the tightness criterion given in Proposition 17. Let X i = f • T i and let F i be the ltration dened in Section 4. We need the following upper bounds.

Lemma 24. Let g s,t (v) = 1 v≤t -1 v≤s , and let P be the image measure of λ by f . Under the assumptions of Theorem 4, we have, for any β > 1,

n k=0 |Cov(g s,t (X 0 ), g s,t (X k ))| g s,t
(β+α-1)/(β+α) P,1 n k=0 1 (k + 1) aα/(β+α) .

Lemma 25. Let p > 2. Under the assumptions of Theorem 4, we have

E 0 (g s,t (X k ) -E(g s,t (X k )) p k -aα/(α+p) g s,t (X 0 ) -E k (g s,t (X 0 )) p k -aα/(α+p) ,
and, for the coecient A(g s,t (X) -E[g s,t (X)], j) dened in (3.12),

A(g s,t (X) -E[g s,t (X)], j) j -2aα/(2α+p)
Let us continue the proof of Theorem 4 with the help of these lemmas. From Proposition 13 and Lemma 25, we derive that, for p > 2,

max 1≤k≤n |S k (g s,t )| p n 1/2 g s,t (β+α-1)/(β+α) P,1 n k=1 1 k aα/(β+α) 1/2 +n 1/p n k=1 k -2aα/(2α+p) k (2/p)-1 (log k) γ 1/2 ,
where γ can be taken γ = 0 for 2 < p ≤ 3 and γ > p -3 for p > 3. Therefore if

a > max 1 + β α , (p -1)(2α + p) pα , then setting r = 2(β + α)/(β + α -1), we get that max 1≤k≤n |S k (g s,t )| p n 1/2 g s,t 1/r P,1 + n 1/p .
We shall apply the tightness criterion given in Proposition 17. Since N P,1 (x, F) ≤ Cx -for the class F = {u → 1 u≤t , t ∈ R }, we get that 1 0

x (1-r)/r (N P,1 (x, F)) 1/p dx ≤ C 1 0

x (1-r)/r x -/p dx < ∞,

as soon as p > 2 (β + α)/(β + α -1). Moreover lim x→0

x p-2 N P,1 (x, F) = 0 (5.2) as soon as p > 2 + . Hence if p ∈]2, 2 (1 + α -1 )], we take β = (2α + (1 -α)p)/(p -2 ) + ε for some positive and small enough ε (so that β > 1), and we infer that (5.1) and (5.2) hold provided that p > max( + 2, 2 ) and

a > g ,α (p) = max p α(p -2 ) , (p -1)(2α + p) pα .
Taking the minimum in p ≥ max( + 2, 2 ) on the right hand, we obtain that (5.1) and (5.2) hold provided that a > a( , α), where a( , α) has been dened in (2.2). We infer that (3.26) and (3.27) of Proposition 17 hold for this choice of a, which prove the tightness of the empirical process (see [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF], page 227).

Note that the weak convergence of the nite dimensional distributions holds as soon as a > (α + 2)/2α (this can be proved as in [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF] by using Lemma 25).

Gathering the bounds (5.4), (5.5), (5.6), (5.7), (5.8) and (5.9), we get that |Cov(g s,t (X 0 ), g s,t (X k ))| ≤ C g s,t P,1 1 εk a + g s,t (β-1)/β P,1 ε α/β + g s,t (β+α-1)/(β+α) p,1 ξ [k/2]/(β+α) .

Taking ε = g s,t 1/(α+β) P,1 k -aβ/(α+β) , we get that |Cov(g s,t (X 0 ), g s,t (X k ))| ≤ C g s,t (β+α-1)/(β+α) P,1 1 k aα/(α+β) + ξ [k/2]/(β+α) .

The result follows by summing in k.

Proof of Lemma 25. Using the same notations as in the proof of Lemma 24, and using that the distribution functions of f 1 and f 2 are Hölder continuous of order α, we obtain that E 0 (g s,t (X k ) -E(g s,t (X k )) p ≤ E 0 (g s,t,ε (X k ) -E(g s,t,ε (X k )) p + Cε α/p .

Recall that the V n introduced in Theorem 18 is such that λ(V c n ) ≤ Cξ n . Applying Theorem 18 (see (4.7)), we obtain that E 0 (g s,t,ε (X k ) -E(g s,t,ε (X k )) p ≤ C(ε -1 ω (s,e) (f, ζ k ) + ξ k/p ) .

Consequently

E 0 (g s,t (X k ) -E(g s,t (X k )) p ≤ C 1 εk a + ε α/p + ξ k/p . Choosing ε = k -ap/(α+p) , we obtain that E 0 (g s,t (X k ) -E(g s,t (X k )) p ≤ C 1 k aα/(α+p) + ξ k/p , proving the rst inequality.

In the same way g s,t (X 0 ) -E k (g s,t (X 0 )) p ≤ g s,t,ε (X 0 ) -E k (g s,t,ε (X 0 )) p + Cε α/p . Applying (4.4) of Theorem 18, we obtain that g s,t (X 0 ) -E k (g s,t (X 0 )) p ≤ C(ε -1 ω (u) (f, ρ k u ) + ε α/p ) .

Since ω (u) (f, ρ k u ) ≤ Ck -a , the choice ε = k -ap/(α+p) gives the second inequality. Let h (0) (X i ) = h(X i ) -E(h(X i )). To prove the third inequality, we have to bound up sup i≥0 E 0 (g (0) s,t (X i )g 

s,t (X j )g

s,t (X j+i )) -E(g

s,t (X j )g

s,t (X j+i )) p/2 .

Using the decomposition (5.3), and the fact that the distibution functions of f 1 and f 2 are Hölder continuous of order α, we get that E 0 (g

(0) s,t (X i )g (0) 
s,t (X j+i )) p/2 ≤ E 0 (g

(0)
s,t,ε (X i )g 

s,t (X j )g (0)

s,t (X j+i )) -E(g (0)

s,t (X j )g (0)

s,t (X j+i )) p/2 ≤ E 0 (g (0) s,t,ε (X j )g (0) s,t,ε (X j+i )) -E(g (0) s,t,ε (X j )g s,t,ε (X i )g (0) s,t,ε (X j+i )) p/2 ≤ E 0 ((g s,t,ε (X i ) -E(g s,t,ε (X i )|F i+[j/2] ))g (0) s,t,ε (X j+i )) p/2 + E 0 (E(g s,t,ε (X i )|F i+[j/2] )g (0) s,t,ε (X j+i )) p/2 , (5.12) and arguing as in Lemma 24, we infer that E 0 (g (0) s,t,ε (X i )g (5.13) From (5.10) and (5.13), we obtain the bound E 0 (g

(0) s,t (X i )g (0) 
s,t (X j+i )) p/2 ≤ C 1 εj a + ε 2α/p + ξ [j/2] .

Taking ε = j -ap/(2α+p) , we obtain that

sup i≥0 E 0 (g (0) s,t (X i )g (0)
s,t (X j+i )) p/2 ≤ Cj -2aα/(2α+p) .

(5.14)

Let ϕ := g s,t,ε • f -λ(g s,t,ε • f ). Applying Theorem 18 (see (4.7)), for i ≤ j,

E 0 (g (0) 
s,t,ε (X j )g (0)

s,t,ε (X j+i )) -E(g

(0)
s,t,ε (X j )g By (4.3), ω (s,e) (ϕ.ϕ • T i , ζ j ) ≤ ω (s,e) (ϕ, Kζ j j de )) ≤ ω (s,e) (ϕ, Lζ j 0 )) , so that

E 0 (g (0) 
s,t,ε (X j )g

s,t,ε (X j+i )) -E(g

s,t,ε (X j )g

s,t,ε (X j+i )) p/2 ≤ C(ξ 2j/p + ω (s,e) (ϕ, Lζ j 0 )) .

(5.15)

Since ω (s,e) (ϕ, Lζ j 0 ) ≤ ε -1 ω (s,e) (f, Lζ j 0 ) ≤ Cε -1 j -a , we obtain from (5.11) and (5.15) that E 0 (g

(0)
s,t (X j )g (0)

s,t (X j+i )) -E(g

(0)
s,t (X j )g (0)

s,t (X j+i )) p/2 ≤ C 1 εj a + ε 2α/p + ξ 2j/p . Taking ε = j -ap/(2α+p) , we obtain that sup 0≤i≤j E 0 (g (0) s,t (X j )g (0) s,t (X j+i )) -E(g (0) s,t (X j )g (0) s,t (X j+i )) p/2 ≤ Cj -2aα/(2α+p) .

(5.16)

The third inequality of Lemma 25 follows from (5.14), (5.16) and from the denition of A(g s,t (X) -E[g s,t (X)], j) given in Proposition 13.

Appendix

In this section, we prove Remark 5, so we give the solutions of the equation (2.3). We rst write (2.3) under the following form p 3 + bp 2 + cp + d = 0. Following the classical Cardan method, we set p := -b 2 3 + c and q := b 27 (2b 2 -9c) + d (this leads to the formulas for p and q as given in Remark 5). Observe that p 3 + bp 2 + cp + d = 0 means that z = p + b 3 satises z 3 + p z + q = 0. We then compute as usual ∆ := q 2 + 4 27 (p ) 

. 16 )

 16 Starting from (3.13) and taking into account (3.14) and (3.16), the inequality (3.8) follows.

2

 2 |S k (f )| p = 0 . (3.27) Proof of Proposition 17. It is almost the same as that of Proposition 6 in [5]. Let us only give the main steps. For any positive integer k, denote by N k = N P,1 (2 -k , F) and by F k a family of functions f k,-

  i=1,...,d |x i | and d 0 (•, •) the metric induced by || • || on R d . Let also d 1 be the metric induced by d 0 on T d namely, d 1 (x, ȳ) = inf z∈Z d d 0 (x + z, y) . We dene now B u (δ) := {y ∈ E u : ||y|| ≤ δ}, B e (δ) := {y ∈ E e : ||y|| ≤ δ} and B s (δ) = {y ∈ E s : ||y|| ≤ δ}. For every f : T d → R, we consider the moduli of continuity dened, for every δ > 0, by ω(f, δ) := sup x,ȳ∈T d : d1(x,ȳ)≤δ |f (x) -f (ȳ)| , (4.1)

15 )

 15 We conclude thanks to (4.13),(4.14) and(4.15), by takingξ 2 := max(ξ 1 , ζ 1 , ρ u ).Proof of Theorem 18. The rst point comes from the expression of E[ϕ|F n ] given in Proposition 20 and from (4.2). Let ζ 1 , C 2 , ξ 2 and N 2 as in Proposition 23 with ζ 1 < ζ. Let β ∈ (ξ 2 , 1) and V n := {m u (F • ) ≥ β n }. We take ξ = max(ξ 2 /β, β 1 du ). To prove the second point, we use again the expression of E[ϕ|F -n ] given in Proposition 20 and we apply Proposition 23 with C = F T -n (x) with the notation of Proposition 20.

  (X j+i )) p/2 and sup 0≤i≤j E 0 (g

  ,ε (X j+i )) p/2 + Cε 2α/p ,

  ,ε (X j+i )) p/2 + Cε 2α/p . (5

  ,ε (X j+i )) p/2 ≤ C 1 εj a + ξ [j/2] .

  ,ε (X j+i )) p/2 = E(ϕ.ϕ • T i |F -j ) -E(ϕ.ϕ • T i ) p/2 ≤ C(ξ 2j/p + ω (s,e) (ϕ.ϕ • T i , ζ j )) .

  Let f = (f 1 , . . . , f ) : T d → R be a continuous function, with modulus of continuity ω(f, •). Assume that the distribution functions of the f i 's are Hölder continuous of order α ∈]0, 1]. If

			, 1], let			
	a( , α) =	min p≥max( +2,2 )	g ,α (p), where g ,α (p) = max	p α(p -2 )	,	(p -1)(2α + p) pα	.	(2.2)
	Note that this minimum is reached at p 1 = max(3, p 0 ), where p 0 is the unique solution in ]2 , 4 [ of
	the equation							
			p (p -2 )	=	(p -1)(p + 2α) p			(2.3)
	(in particular, p 1 = p 0 if > 1).						
	We are now in position to state the main result of this section.		
	Theorem 4. ω(f, x) ≤ C| log(x)| -a for some a > a( , α) ,

  the σ-algebra of T -invariant sets. As usual, we say that (T, P) is ergodic if each element A of I is such that P(A) = 0 or 1.Let (B, | • | B ) be a separable Banach space. For a random variable X with values in B, let X p = (E(|X| p B )) 1/p and L p (B) be the space of B-valued random variables such that X p

  .30) Since m = m(1) is xed, (3.27) follows from (3.29) and (3.30) and the fact that p > 2.4 Inequalities for ergodic torus automorphismsIn this section, we keep the same notations as in the introduction. Let us denote by E u , E e and E s the S-stable vector spaces associated to the eigenvalues of S of modulus respectively larger than one, equal to one and smaller than one. Let d u , d e and d s be their respective dimensions. Let v 1 , ..., v d be a basis of R d such that v 1 , ..., v du are in E u , v du+1 , ..., v du+de are in E e and v du+de+1 , ..., v d are in E s . We suppose moreover that det(v 1 |v 2 | • • • |v d ) = 1. Let || • || be the norm on R d given by

	d
	i=1

  3 . We get ∆ = ((64/27) -(64/27)2 -16/27)α 4 + (-(128/27) 3 + (128/27) 2 -(32/9) )α 3 + ((32/27) -(64/27) 4 + (16/27) 2 -16/27 -(128/27) 3 )α 2 + (-(32/9) -(32/27) 2 -(64/27) 4 -(32/9) 3 )α -(16/27) 2 -(16/27) 4 < 0 .Since ∆ is negative, we use the usual expression of the solutions z with cos and arccos (to which we substract b/3). So the solutions are Clearly p 1 < p 2 < p 0 . The unique solution in ]2 , 4 [ is then p 0 .

	p k = 2	+ 1 -α 3	+ 2 -	p 3	cos	1 3	arccos -	q 2	27 -(p ) 3 +	2kπ 3
	for k ∈ {0, 1, 2}.									

Proof of Lemma 24. We prove the results for = 2. The general case can be proved in the same way.

For u ∈ R, let h u (x) = 1 x≤u . By denition of g s,t ,

we obtain the decomposition

On the other hand, we have that

Using (5.3), we have that

Applying (4.4) of Theorem 18, we infer that

Applying Hölder's inequality, and using the fact that the distributions functions of f 1 and f 2 are Hölder continuous of order α, we get that

(5.6) Using (5.3) again, we also have that

Let V n be the set introduced in Theorem 18. Applying (4.5) of Theorem 18, we have that

, applying Hölder's inequality, we get that