N
N

N

HAL

open science

Study of a numerical scheme for miscible two-phase flow
in porous media

Robert Eymard, Veronika Schleper

» To cite this version:

Robert Eymard, Veronika Schleper. Study of a numerical scheme for miscible two-phase flow in
porous media. Numerical Methods for Partial Differential Equations, 2014, pp.30(3):723-748, 2014.

hal-00741425v3

HAL Id: hal-00741425
https://hal.science/hal-00741425v3
Submitted on 21 Nov 2013 (v3), last revised 1 Mar 2016 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00741425v3
https://hal.archives-ouvertes.fr

Study of a numerical scheme
for miscible two-phase flow in porous media

Robert Eymard*and Veronika Schleper'

November 21, 2013

Abstract

We study the convergence of a finite volume scheme for a model of miscible two-phase
flow in porous media. In this model, one phase can dissolve into the other one. The
convergence of the scheme is proved thanks to an estimate on the two pressures, which
allows to prove some estimates on the discrete time derivative of some nonlinear functions
of the unknowns. Monotony arguments allow to show some properties on the limits of
these functions. A key point in the scheme is to use particular averaging formula for the
dissolution function arising in the space term.

KEYWORDS. Two-phase flow in porous medium, dissolution, finite volume methods, con-
vergence study.
AMS CLASSIFICATION. 65N08, 65N12.

1 Introduction

This paper is focused on the study of the convergence of a numerical method for the approx-
imation of two-phase flow in porous media, where dissolution of the gaseous phase can occur.
Such a problem arises in different engineering frameworks. In the framework of hydrology, the
water phase flow together with the air gaseous phase in the underground. In the framework
of nuclear waste management, some gaseous hydrogen, produced by acid attack of metallic
containers containing the nuclear waste, may flow within porous soils initially saturated with
water. Let us first give the continuous model, which also holds for CO2 storage, gas pro-
duction, and other situations. For z € © and ¢t € [0,7], we consider the functions py, py,
weak solution in a sense precised below, to the following model, which describes the mass
conservation of two species, a liquid and a gaseous ones. These equations can be written by

81514% + div F;ZJ = fuw,
O (AY + A9) + div(FY + FY) = f,,

where, for m = w, g and ¢ = w, g, the expression A’ represents the mass of constituent m
in phase £ per unit volume, F¥ is the massic flux of constituent m within phase ¢, and f,,

*LAMA UMR 8050, Université Paris-Est, Marne-la-Vallée, France
tcorresponding author, Institut fiir Angewandte Analysis und Numerische Simulation, Universitit
Stuttgart, Stuttgart, Germany



is the massic source term of constituent m per unit volume. In this model, the water phase
¢ = w may include the constituents m = w (water) and m = g (gas), whereas the gaseous
phase £ = g may only contain the gas constituent m = g. Since we consider a flow across a
porous medium, we may write

A$ - CI)(:):)S(q)pw, FZUU - _prkw(S(Q))vaa q = Pw — Dg
Ay = @(2)S(q)puwX (pg),  Aj=@(z)(1—5(q))py,
Fy = =Apuwku(S(9) X (0g)VPw — DpuwS(@)V X (pg), Fj = —Apgky(S(q))Vpg,

where p, and p,, denote the gas and water pressure respectively and A is the constant mobility
coefficient. In the following, we assume A = 1 to simplify the notation. The difference between
the two pressures, ¢, is called the capillary pressure. pg/,, are the (constant) mass densities of
the two fluid phases, ®(x) the porosity of the medium, defined as the volume occupied by the
two fluid phases per unit volume and D the diffusivity coefficient of the dissolved gas phase in
the liquid phase, dedicated to the modeling of Fick’s law (note that the part of the molecular
diffusion in the coefficient D is small compared to the effect of dispersed velocities at the pore
scale). The function S(g) denotes the water saturation defined as the volume occupied by
the water phase per unit fluid volume (see Figure 1). The positive functions k,,,, depending
on the saturation, are the mobilities of the gas and water phase respectively (including the
absolute permeability and the viscosity of the phase), involved in the generalized Darcy’s law.
Furthermore, X is the mass fraction of the gaseous component dissolved in the water phase
(see Figure 2).

s(q) 1
1
Sma.t
Smin
0 q -

Figure 1: Function S(q).

We then get the following resulting system of equations:

q = pw — Dy, (1.1a)
(@) (S(@)pw) — div (puku(S(0) V) = fu (L.1b)
@)k (S(a)puX (py) + (1= S(@) y) Lo
— div (puku(S(9)) X (pg) VPw + pgky(S(2))Vpg + DpuwS(a)VX (pg)) = fo,
for which we consider the following boundary and initial conditions
pg(t,z) =0, pu(t,z) =0 Vz € 0Q,t € [0, T (1.1d)
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Figure 2: Function X (pg).

Pg(0,z) = pg(ac), pw(0,2) = p2 (z) Vo € Q. (1.1e)

These data are assumed in this paper to satisfy the following hypotheses, all together denoted
in the following by (H):

(2,7) Q ¢ R? is a polygonal domain (in an extended sense for d = 1,2,3),
T € (0,+00). We define Qr := (0,T) x Q.

(Ini) pf, € L?(Q) and p) € L*(Q).
(R) pw = const and py = const.

(S) S : R — [SminsSmaz] is a non-decreasing differentiable function with 0 <
Smin < Smaz < 1, such that sup, g |S'(7)| < Lg.

(X) X : R — [0, X] is a non-decreasing differentiable function with X (0) = 0,
such that sup,cp |X'(7)| < Lx.

(D) D > 0 is a possibly null positive constant.

(K) ky € C%1(]0,1]) is a positive, non-decreasing function with k7" := ky,(Spin) >
0 and k, € C%1([0,1]) is a positive, non-increasing function with k"™ :=
kg(Smaz) > 0.

(®) @ : Q — R is a measurable function with 0 < @i, < ®(z) < Py
(f) f; € L2(Qr), for i = w, g are given source terms.

Let us comment the hypotheses done here, with respect to the literature.

First considering the immiscible case (corresponding to set X = 0 in Hypothesis (X)),
Problem (1.1) under Hypotheses (H) has been the subject of many theoretical and numerical
studies.

Let us recall the reference book [?], where theoretical works have been done on the analysis
of the continuous problem with D = 0 in Hypothesis (D), and S,,,;,, = 0 and Sj,4, = 1 instead



of Hypothesis (S), dealing with degenerate parabolic equations. Let us also mention the
theoretical study done in [?], showing the existence of a solution to the continuous problem
in a case where the porous medium is nonrigid (modifying Hypothesis (®) by introducing
some dependence on the pressure).

Turning to convergence studies of numerical schemes in the immiscible case, many works
are available in the literature, and it is not possible to cite all of them. If we restrict the
literature to the finite volume schemes used in the industrial framework, let us note that the
first convergence study of the phase-by-phase upstream weighting scheme has been done in [?],
under modification of Hypothesis (S) (this study is done with S, = 0 and Sy, = 1, and
the function S is replaced by its reciprocal function, hence defining the capillary pressure as a
function of the saturation) and of (K) with the addition of a series of technical hypotheses on
the functions k,,, kg. Let us then mention further works like [?] in the case of one compressible
phase (modification of Hypothesis (R)) or [?], for the study of numerical schemes for two-
phase flow with discontinuous capillary forces (modification of Hypothesis (S)).

Now turning to the literature in the miscible case, let us first cite [?] where the authors
study the two-phase flow model, assuming compressibility (modification of Hypothesis (R)),
diffusion (Hypothesis (D) is changed in D > 0) and mass exchange between the phases (with
a mass exchange rate, instead of Hypothesis (X) stating the thermodynamical equilibrium
between the phases), and they show the existence of a weak solution to this model. In [?], the
authors show the existence of a weak solution for Problem (1.1), with D > 0, but assuming
the equilibrium Hypothesis (X). Up to our knowledge, the present paper provides the first
convergence study of a numerical scheme under Hypotheses (H).

Let us emphasize that this study is the source of a series of difficulties. The problem posed
by the first estimation is that it leads to consider nonlinear functions of the unknowns as test
functions. Although this does not provide particular difficulties in the continuous case (thanks
to Stampacchia’s results), it prevents from using general schemes for the discretization of the
space terms (like it is done in [?], concerning a wide class of discretization methods, namely
the gradient schemes). On the contrary, we are led to use two-point flux approximation for the
space terms, in the same spirit of [?] (and further works like [?] in the case of one compressible
phase). Note that such a difficulty also arises in [?] or [?], or more generally in some elliptic
problems with irregular data [?] where nonlinear test functions of the unknown must be used.

Let us mention that Hypothesis (S), which is an approximation of the physical situation,
where Spin = 0 and Sp,q = 1, is done for enabling some estimates and convergence results
(in the numerical tests, it is possible to take values for (Spin, Smaz) close to (0,1)). The
question of relaxing this hypothesis by using the phase-by-phase upstream weighting scheme
is open and seems to be quite difficult. Since our paper is focused on the difficulties due
to the numerical approximation of the function X in the space terms, we have preferred to
use simpler arguments, deduced from Hypothesis (S). Let us also emphasize that we do not
use D > 0 for proving the convergence of the scheme, which means that the present analysis
applies in the case where Problem (1.1) is a regularization of the immiscible two-phase flow
problem by the addition of a dissolution term.

Remark 1.1 (Non-homogeneous Dirichlet boundary conditions and gravity terms). We could
as well consider the case of non-homogeneous Dirichlet boundary conditions and the presence
of gravity terms, which would only lead to additional terms in the estimates and in the con-
vergence results.



Let us now provide the weak sense that is considered for a solution to Problem (1.1).

Definition 1.2 (Weak sense of a continuous solution). Under Hypotheses (H), we say that
(PwsDg) is a weak solution to (1.1) if:

py € L2((0,T); H(Q)), pw € L2((0,T); HH(R)) and, for all ¢ € CX(Q x [0,T)) (1.2a)

/ / x) puwS(q)Orp dxdt —|—/ / Q) puwVpw Ve dxdt

— €T (lﬂjlh;
/ (P( )pr(qo)@(U"r) daj+/ / fw@ )

T
/ /_q)(x)(pr(Q)X(pg)+(1—5(Q))pg)8tgodxdt
0 Q
T
+/ / (kw(S(Q))PwX(pg)pr + kq(5(2))pg Vg + DPwS(Q)VX(pg)>V90 dedt  (1.2¢)
0 Q

= [0 (puS@X08) ~ (1~ 5@py) w000 dr + [ [ pypaaat

where CP(Q x [0,T)) denotes the set of the restrictions of all functions of C°(£2 x (—o0,T))
o (2x10,7)).

This paper is organized as follows. In Section 2, we show briefly the continuous method
used in order to prove the estimates, assuming sufficient regularity of the solution. This
section details in particular the use of nonlinear test functions. Then, after presenting the
discrete scheme in Section 3, we mimic the techniques used in section 2 to prove the estimates
which hold in the discrete setting. From these estimates, we deduce the existence of at least
one solution to the scheme and conclude the necessary compactness results, leading to the
convergence proof of the scheme. In Section 4, simple numerical test cases show how some
physical features are reproduced by this simple model. A short conclusion is finally given.

2 Estimates in the continuous setting, assuming that the so-
lution is regular

In this section, we provide the computations which enable us to take into account the disso-
lution function X. For the sake of simplicity, we write the following estimates in the 1D case
assuming D = 0, which does not change the principles of the computations. The ideas and
techniques applied in this section will then be carried over to the discrete setting in 3.

Lemma 2.1. Let us assume that Hypothesis (H) holds under the additional hypotheses that
d =1, fo = fg = 0 and that there exists a solution (py,pg) of Problem (1.2) which is
suﬁczently reqular. Then, there exists a constant C depending on the initial conditions pg
and pw and on kmm K™ and ®yin, such that for any solution of (1.2), we have

HaxngLz(QT) <C and Ha:vaHLz(QT) <C (2.1)

Proof. Recall that throughout this section, we have D = 0 for simplicity. Now, we multiply

equation (1.1b) by p: and equation (1.1c) by Z o+ and add the obtained equations. Taking



advantage of the fact that the mass densities pg/,, are assumed to be constant in Hypothesis
(H), we obtain

2(2)0,(S(0) 52X + (1= 8()) Jpy + )OS @)

p g (2.2)
= 0u (05w (S (@) X () 0upu + Ko (S())epy )y + 02 (u(S(@) e o
g
To simplify the notations below, we define
q 5 P
:/ S' (1) dr, X(p) ::/ X'(r)rdr and a="2v (2.3)
0 0 Pg

Then, the left hand side of (2.2) becomes

()0 ( (@)aX (pg) + (1 = S()) )py + ®(@)(S(0))pu
D()01(S(a))a + ®(x)ad (S(a) X (py) +1)p,
(@)[0(8(0)) + aS(X (py))py + X (p)ps01(S(0))]
<x>[at S<q)+at(as<q> (00))] = [0(X00) ~ X (po)g )22 (ku(5(0)) ) |
and we can write (2.2

) as
D [ {(3() + 0 (aS@) X (py) |
= 0. (ku (S(0)) X (o) 0aus + g (5(0)0upg ) g + O (Ku(S(@)Oepu ) (2.4)
+ (X (pg) = X(p)py ) 0 (ku(S(@))0:p0)

To obtain the desired estimates, we integrate (2.4) in space and time. Recall that X(0) =0,
and i(X( )p — X (p)) = X(p), such that integration by parts yields

/ / wpw dﬂ:dt—l—/ / mpg> dxdt

- /Q @(x)[(5<q>—9<qm>) (aS( )X () = S(a(T) X (py(T)) )| da

Now note that S and X are differentiable with uniformly bounded derivative by Hypothesis
(H). Furthermore we have 0 < S(q) < 1, such that

0<S(q)<Lg | 7dr= -4 and 0 < aS(9)X(py) < ang (2.6)
0

Note now, that a, D, S(¢) and X'(p,) are all non-negative by Hypothesis (H). Furthermore,
again by Hypothesis (H), the functions k,, and k, are bounded from below by a positive
constant k7" (k:;m" respectively), while ® can be bounded from above by some positive
constant ®,,q,. Using (2.6) and the fact that S, S and X are positive, we have thus,

(2.5)

KT 0spulEa (g + k’”mH@xngiz o)

/ / mpw ! dwdt + / / xpg> dudt (2.7)

L
a2

IN

IA

o
mary 2 L2(Q)
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Next, we show that 9;5(¢) and 0, (S(q)X (pg)) are bounded in the dual norm. To this
end, we define the weighted dual norm

HUHH;(Q) ;= sup {/Q ®(z)v(z)w(x) dr | w € H§(Q)with ||wHH(1)(Q) = 1} .

Lemma 2.2. Let us assume that Hypothesis (H) holds under the additional hypotheses that
d =1, fo = fg = 0 and that there exists a solution (py,pg) of Problem (1.2) which is

sufficiently reqular. Then, there exists a constant C' depending on the initial conditions pg
and p? and on k;m”, kmin kg, ke such that for any solution of (1.2), we have

<C  (28)
L2((0,7);H " (%))

O (S(q)X(pg))

Hats(q)HLZ((O,T);Hgl(Q)) S C and ‘

Proof. Let w € H}(Q2) be an arbitrary test function with Hw||H(1)(Q) = 1. Using the definition
of the weighted dual norm, we have

T 2
HatS(Q)HL2((0,T);H<I)1(Q)):/0 ( sup /be(:c) (8tS(q))wdx) dt.

weHE(Q)
HWHH(lj(Q):l

To estimate this norm, note first that

( /Q B(z) (0,5(0)) wdaz)2

(f kw<s<q>>axpwaxwdaz)2

2
(kzjzax)2/ﬂ<axpw) dx H@waiz(m,

max 2
(kw ) Haﬂ?pw”%Q(Q) ||WH%—I(1)(Q)7

IN

IA

where we used equation (1.1b) together with partial integration, the upper bound of the
function k,, and Holder’s inequality. Taking the maximum value over all w € H(Q) with
Hw||H%(Q) = 1 and integrating in time yields

2 r 2
HatS(Q)HL2((0,T);H;1(Q))_/0 ( sup A(‘I’(w)ats(@)wm‘) di

weHE(Q)

”"JHH(I)(Q):l

T
<@y [ O dode - (s ol

wEHF(Q)
w =1
” ”H(l)(Q)

2 2
§ (k‘Z}Lax) ||6xpw||L2(QT)
Using the estimate of Haa;pwHLz(QT) provided by lemma 2.1 this proves the first estimate.

To prove the second estimate, we add equation (1.1b) and (1.1c¢) to obtain

D0,(@SX) = 0, ((aX + 1)k (8)2up + kg (S)0upy ) = 0. (2.9)

7



To estimate the dual norm H@t(S(q)X(pg))HL2((O’T);H;1(Q)), we proceed as above and start

with and estimate of [, ®(x)9;(S(q)X (pg))w dzx. Using (2.9) together with Holder and Young
inequalities, we have therefore

o? ( /Q $9,(S(q) X (pg))w dx>2 = ( /Q (X 4 1)ky(S)0ppuOpw dz + / kg (S)0rpy Oz d:c>2

Q

< ey (0 + 0202 [

2 2
+ (aX + 1)k:$“””k;ww ((/ |02 POz w| dl’) + </ ‘&Epg&vw‘ d:n) >
0 0

< (@ + DD + k) [l o ((aX FDE) [ @l do + () [ (@i dx)

(Dapu)? di + (K072 /Q (Dupy)? da

Taking the maximum value and integrating in time, we get

Hat(S(Q)X(pg))Hiz((o’T) H;l(Q)) < ClHaxpwHLz(QT) + CQHa:(;ngL2(QT)’

)

where C; and C5 only depend on «, X, k, and ky. O

3 Finite volume scheme with two-point flux approximation

We assume Hypothesis (H), and consider a given mesh 7 with the following properties (see
Figure 3) called Hypothesis (T) in the following,.

(T) Denote by € the set of edges (in 2D) or sides (in 3D) respectively. Then,

(i) For every element K € 7T there exists x C & such that 0K = {J,c¢, @
and £ = Uyt Ek-

(ii) For o € € such that KNL =& # () for some K € T and L € T, we write
also K|L instead of o.

(iii) The family of cell centers P := (zf)ker is such that zx € K for all
K € T and if 0 = K|L, we have zx # x, and the straight line Dy r,
connecting rx and z, is orthogonal to K|L. We denote by ng/, the
normal vector of o directed into L.

(iv) For any o € £ with 0 C 92 and 0 € €k, we have xx ¢ o and the
straight line through xx orthogonal to o is denoted by Dg/|,. We define
Yo = Dg|s N o and we denote by ng|, the normal vector of o directed
outside 2.

For simplicity, we introduce the following notation.
e The (d — 1)-dimensional measure of o is denoted by |o]|.
e The set of interior edges is denoted by &y, the set of boundary edges by Eeys.

e The euclidean distance of xx and zp for L € Nk (with Nk the set of all neighbor
elements) is denoted by d, (or dg|). For o € £zt NEK, the euclidean distance between
zg and Yy, is denoted by d|-



Figure 3: Notations for the discretization.

e For 0 € &k N &int, we define y, := dr N o and denote by dg|, the straight line
connecting xx and y,-.

e For 0 € &k N &int we denote by Dy, the diamond spanned by the diagonals o and
d|r- For o € Ek N et we denote by Dy, the tetrahedron spanned by o and Dp|,.

o We define Ay, := max ¢ max ce;n: dK|L,man€gelt dmg,maxgeg lo| .
o= K‘L o€k

e We denote by X7 the set of all functions u : 2 — R such that u(z) = > crurxK ()

: - : L, zeK
with ug = const and the characteristic function xx(z) := 0. o .
, else

For any sequence t(¥ =0 <t ... < t®) = T, we denote the discrete time step by 5t(n+3) —
() () for p = 0,..., N — 1. Furthermore, h denotes the maximum value of the diameter
of all K € T and 5t("+%), n=0,...,N — 1. In the following definition, we introduce discrete
bilinear forms and norms on the space X7. Since the elements of X are constant in each
control volume and their gradient is a distribution whose support is the reunion of all edges
of the mesh, the discrete version of an H' bilinear form and norm is obtained by summing,

up to a geometric coefficient, the differences of the values across the edges.

Definition 3.1 (discrete bilinear forms and norm). For u,v € X1 and for a family (w,)see
of real values, we define the scalar product

o]

[, 0] = ) wriLg (u —up) (v —vr) + wK|a UKVEK,
oEEint ‘ o€Eext U
U:K|L O'E(SK



we define the following discrete operator

lo

. o
div(w,u) = [u, 1g w7 = Z wK|Lu(uK —ur) + Z wK|c,—|uK, VK eT,
K CERNE; dK‘L dK|‘7
cEEKNEint oCEKNEeyt
o=K|L o=K|o
and the following norm
1/2
1/2 o] 2 ol 5
lull = ([w,uli,7) "~ = —(ug —up)* + WK |g U
TECint oCCext
o=K|L o€EEK

Let pgo) € Xr and p&? s X7 be given piecewise constant initial conditions. Then, we

define the implicit scheme for a discretization of problem (1.2) by first setting

1 t("+1)
Oy = /K ®(z) dz, fc(j?l) = ey /t(n) /Kfc(t,aj) dxdt, c =w,g
Pt € Xropt e X, g = pl0) — plO, gmHD) = plptD) _ plnn)

SO = 5(¢\2y, 51 = (g,

(n+%) S(n+1) _ S(n)

DRIl Sl
T K 5t(n+%) )
(n;(-l)
9
Vi ek = i X (p) dp,
© (0) (n+1) _ (n+1)
ko rin = ka(Siin)s kg i = Fo(Sin )
o  _ 0) \ z.(n+1) _ (n+1)
kg,K|0 - kg(SK|a)’ kg,K|a - kg(SK\J )’

X = x@0), xpt Y = x(UEY),

n+1 n+1 n n
5D g,y — SE X — (510X
T str+3) ’
(1) _(nen)y _ [P0
n n+1 n+1 9
Vidi g =g )= [ . X(p)dp
Py K

(O (0) (n+1) _ (n+1)
Ko reir, = Fuw(Sgin)s Ky e, = Fuw (S )

©  _ (0) (n+1) _ (n+1)
kw,K\U - kw(slﬂa)’ kw,K|a - kw(SK\U )

SK\U S [min{SK,S(O)},max{SK,S(O)H, SK|L = SL|K € [min{SK,SL},maX{SK,SL}]

VK € T,¥n € {0,...,N —1}.

and then compute a solution of

n 1 n
Doy S = div (kG ptD) = £ (3.1a)
1
Brcad 2 Sk Xi) — Dot D) S — adiv(kn TGO ity
K (3.1b)

: n+1 n+1 . (n+1) n+1 _ n+1)
= div(ky™V, pY) —aDdiv(S", X () = £,

VK € T,¥ne{0,...,N —1}.

Note that, since the function X is monotonous, ¥ fulfills

(n+1)
D
(i’-qu) X(p)dp
Py K . (n+1) (n+1) (n+1) (n+1)
\I’K|L = = € [mln{XK ’XL }7maX{XK 7XL }]a
Pg,L — Pg,K

10



7 X (p) dp
Q" X (o oy

Uigle =
lo Pg,K — 0

and is therefore a mean value at the cell boundary, especially chosen to fit the requirements
of the algorithm. Let us also observe that the Dirichlet boundary conditions are taken into
account through Definition 3.1 for the operator divg(:,-), which involves finite differences
with 0 at all the boundary edges.

To prove the convergence of the above defined algorithm, we proceed as follows. In
Section 3.1, we prove, up to the extraction of subsequences, some compactness on a family of
discrete solutions, and, in section 3.2, we show that the limit of a converging subsequence is
a solution to (1.2).

3.1 Existence of a discrete solution and discrete estimates

In this Section, we prove estimates analogous to the ones in the continuous setting of section 2.
These estimates will be used to prove some estimates on time and space translates of S and
SX necessary in order to deduce the relative compactness of the sequences S,, and (SX),,
by the Kolmogorov-Riesz theorem.

Lemma 3.2. Let Hypothesis (H) hold. Then there exists at least one solution to scheme (3.1)

and a constant C > 0 depending on the initial conditions pgo) € Xy and pl(l?) € X7 and on €,

k:;m”, KT fu, fg, o« X and ® such that for any solution of (3.1) we have

T 9 T )
/0 [pg||7-at < C. /0 lpw||%dt < C (3.2)

Proof For any non-decreasing function F satisfying F'(0) = 0 and any real value s, we define
F(s) := [; F'(s)sds. Note that F(s) > 0 therefore,

b b
F(b) — F(a) = / F'(s)sds = b(F(b) — F(a)) — / (F(s) — F(a)) ds < b(F(b) — F(a)). (3.3)

Now, let us consider any family 1) e X for n = 0,..., N, and compute F7(—n+1)(x) =

Yorer Fry pott ))XK(:U). Using (3.3) with b = rgﬂ) and a = rg), we obtain

N-1

> (B @) - B () i ZZXK ) (B = Bl et

n=0 n=0 KeT

> 5 el (Bl - i) (3.4

n=0 KeT
> — ZXK FTK
KeT
0
— —F9(x).

For any quantity with time index (n+1) (say Q*1) in (3.1), we denote with the notation Q
(without the time index) the function of the time, equal to Q™*1) in the interval (¢, ¢(*+1)).,

Now, we multiply equation (3.1a) by 5t(”+%)pgf+1) and equation (3.1b) by w = 5t(”+%)p§n+1).

11



Adding the two equations so obtained and summing on K € T andonn=0,...,N — 1, we

have

53w (s - s e

n=0 KeT
+ ad g (n+1) (n+l) S(n)X(n) p(n+1)
R

T
+/ [pvaw]kw,'rdt
0
T
+/0 [pg,pg}kg,Tdt
T
+/ a[pwapg}kw\ll,Tdt
0
T
+ [ aDIX(w).pylse

/ Z fprwK+fg,KpgK)dt
0

KeT

(3.5a)

(3.5b)

(3.5¢)
(3.5d)
(3.5e)

(3.51)

(3.5g)

To obtain the desired estimates, we observe that (3.5f) is non-negative and that the terms

in (3.5¢) ans (3.5d) can be bounded from above by

T T T
min min 2
/O (1w Dl + g poli, 7 ) dt > K /0 Ipuwll2-dt + &7 /0 Ipo 3.

Thanks to (3.4) and (2.6), the term (3.5a) becomes

ZZ(I) n+1 S(ﬂ))n SZ@ ( )

n=0 KeT KeT
(I)mazLS 0 2
> _ _maro
= 2 HqT‘ 12(9)
Using again (3.4) and (2.6), the term (3.5b) can be written as
Z Z (I>K n+1 21+1) . S%)X?))pévfl}kl)
n=0 KeT
N-1 ) )
> 30 Y e (S (R - X)X (s - ) ) o
n=0 KeT

— Z Z P (( n+1)X§?+1) _ S@X?)) " (Xg+1)pgb;1) _ X?Jrl)) (S$+1) B

n=0 KeT
> — Z P S 0)X / Z aXk fur dt
KeT 0 KeT

T
—O[/ [pva]kw,Tdtv
0

12



where Xy = Xgpox — X = Joo* X (p) dp. Note that | Xk| < X|pg.ic|. We then remark
that, by definition of Wz,

pw, Xk 7 = P Dyl 7

which vanishes when combining with (3.5e). We finally turn to a bound of the term arising
in (3.5g), combined with the last but one term issued from (3.6). We easily get, thanks to
the Young inequality and to the discrete Poincaré inequality [?, Lemma 9.1 p.765], that

T
> (fwk (pwi — aXK) + fo.xpg.x) dt
0 keT
S 2
diam(2) wa“%ﬂ(QT) H|fg| +aX’fw|HL2(QT)
< - + -
- 2 kﬁ)un k;mn

1 min T 2 min T 2
+§ Ky, ; |pwl7 dt + Ky ; HngTdt :

Combining all results and the fact that the term in (3.5f) is non-negative, we have

1 min T 2 min T 2
9 kg /OHPgHTdt"'kw /OHPwHTdt

2 2
L2(Q)> +C (”wa%—'z(QT) + Hf9HL2(QT)> ’

where C] only depends on the data listed in the statement of the lemma, which concludes
the proof of the estimates.

To deduce the existence of at least one solution, we substitute the functions S and X in (3.1)
by Sy = AS+ (1 —A) and X\ = AX + (1 — A). Note that the estimate (3.7) also holds
for solutions of the modified scheme. Furthermore, the modified scheme has a solution for
A =0 (that is p,, = 0 and py = 0), such that we can deduce by a classical topological degree
argument the existence of at least one solution for A = 1 and thus for (3.1). O]

(3.7)

Lx | (o Lg
O I

L2 (Q)

We now define the operator é7 (without time index) by
(i 1) Pt ()
orrr(t,z) =67 *rk = K(S(#)K, ze K, te ™ ) (e Xt n=0,... N.
t\"T2
(3.8)
To show the estimates on d7S7 and d7(S7X7), we define the following dual norm.

Definition 3.3. Let T be a mesh on Q that satisfies (T). Then, we define the discrete dual
semi-norm on L2(2) by

|w|, 7 := sup Z ®rwrvK ’ v € Xy with ||v]|F=1p, YweL*Q).
KeT

13



Lemma 3.4. Let Hypothesis (H) hold. Then, there exists a constant C' depending on the
initial conditions pgﬂ— and p?U’T, on fuw, fg, kw, kg and on T such that for any solution
of (3.1), we have

T T
/ orST( 02 dt < C and / 67 (STXT) ()| dt < C (3.9)
0 ’ 0 ’

Proof. Let w € X7. From (3.1a), we get
2

(ntd) o | (n+3)
57— 287‘ = sup ZQ)K‘;T 2 SKWK

“T CENT KeT
||W||7*:1

2

1
= sup [Pgwl),w]k&wmj + Z fl(unzt i

wEXT
[ KeT

< ()2 [+ diam( @178 o

by the Cauchy-Schwarz inequali‘qlf, the boundedness of k,, from above and the discrete Poincaré
inequality. Multiplying by §t(*2) and summing with respect to n, we get

T
/0 6787 ()2 pdt < C

To show the second estimate, we add equations (3.1a) and (3.1b) and follow the same steps
as above to obtain

(n+1) 2
oy 2 (STXT)

T

maxr \ mazx % 2 : n
< ((kw P(@X + 12l + ((07)2 + (@DX)?) |lpg |5 + diam (@) | £§ “’Hizm)> .

As for the first estimate, multiplication by 6t(”+%), summation on n and application of (3.7)

yields the second estimate. O
3.2 Convergence of the scheme

In this section, we prove any limit of the numerical scheme is a solution to (1.2).

Lemma 3.5. Let Hypothesis (H) hold. Let T be a space discretization satisfying Hypothesis
(T). Denote, for any p € X, by

PL — PK 0—pK
Vyp:=d E T”KlLXDmL + E d NK|o XD, (3.10)
oeg; K|L oeg Klo
int ext
o=K|L o€k

14



the discrete gradient of p associated to the mesh T .
Let Ty, be a sequence of space-time discretizations satisfying Hypothesis (T) with hy, — 0

as m — 0o, and let pgf) € X7.,,,n=1,...,N be such that the function p,, € L2(Qr), defined
by pm(-,t) = pﬁ;*” fort e (t(”),t("+1)) and extended by 0 outside (), weakly converges as
m — oo in L2(Qr) to a function p, and such that f(;f Hpm , HT dt remains bounded.

Then the function Vppm, defined by Vipm(-,t) =V mpn?ﬂ for t € (t™) 41 also
extended by 0 outside €2, converges weakly in L2((0,T) x RY)4 to Vp (hence proving that
p € L((0,T); Hy(2)).

Proof. Let us first show the following property for a given space discretization 7 satisfying
Hypothesis (T): for a given ¢ € (CP(R%))? (not necessarily null at the boundary of Q) and
p € X7, be given, extended by 0 outside €2, then

Q[[VTPllL2@)h- (3.11)
()

o (eVrp + pdive) dz| <

The equality in (3.11) immediately results from

/|V7—p ) da =

loldg|L d*(pr, — pK)? ’U|dKa d*(0 — pg)?
Y, DML PO v T ST P . (312)
o€Eint K|L o€€eyt Kla
o=K|L oEEK

We denote by g1, = m ‘]‘DK\L ¢ dx the integral mean of ¢ on the diamond Dgr,. The

quantity ¢, is defined analogously. Then we have

/ (¢ - Vrp+ pdivy) da:—Z/ v - Vrpdr + ZpK/ divp dx.
K

el KeT

Using fDa Xp,, (z)dz = “Tl% if o = 0’ and 0 otherwise, for the computation of the first term
of the right hand side and using the Green formula for the second term of the right hand side,
we obtain

/R 9 Vrp +pdive) de

loldk| pr — px |oldk)s 0 — pre
=Y d 7 | ¥ ngiL- oKL+ Y d 7 i 7o Kl Ko
o€€int K‘L o€€ert KIU

o=K|L o€EK

+[ > (pK—pL)/Icp ngiLds + Y pK/ PN ds

o€Eint ‘ o€€eqt
o=K|L o€lK

o€Eint

1 1
= Y lol(pr — px) / K| NK|LdT — 7= | @-ngLds
’DK|L‘ DL o] Jiof
oc=K|L

15



- Z lolpk

o€€ert ‘ K‘ ‘
o€fK

1
SDK\U nK|0'd I ¥ "K|o
IDxclo] [

Since ¢ € (CP(R?))?, we can bound

1
/ oL nriLdr — | e ngipds| <ol b
’DK\L‘ Dk o] Jol

and

1
/ @K\a'nlﬂadx_m P NK|lo| =
\Dmg\ Do | Jio|

Thus, thanks to the Cauchy-Schwarz inequality,

<Nl | D lol(pr —pxl+ Y lollpk]

o€Eint g€Ee st
oc=K|L €€k

' /R d(@ - Vp+ pdive) dx

<ol shlplr | D loldrin+ Y loldw
o€€int c€Eeyt
o=K|L 0EEK

which completes the proof of (3.11). We can now prove the lemma. Thanks to (3.12),
we deduce that, up to a subsequence, V,,p, converges weakly in L2((0,7) x RY)? to some
function G. Integration in time of (3.11), using some regular time dependent function ¢,
yields

T T
lim / / (¢ - Vimp + pmdivy) dedt = / / (¢ - G+ pdivy) dzdt = 0.
R4 0 Rd

m—r0o0 0

This shows that G = Vp € L2((0,T) x R%)? (which implies that the weak convergence of
VmpPm to Vp holds for all the sequence), and therefore that p € L2((0,T); H'(R%)). Since
p = 0 almost everywhere outside (2, we get that p € L2((0,T); HA(2)). O

Lemma 3.6. Let Hypothesis (H) hold. Furthermore, let T, be a sequence of space-time
discretizations satisfying (T) with hy, — 0 as m — oco. We assume that p( ) € X7 and
pz(u) € X1 are given such that pg ) ¢ L2(Q) and p(O) € L2(Q).

If pw Ts Pg.Tons ST, and X, satisfy the scheme (3.1) for all m € N, the families (ST, )men
and (S7.,, X7, )men are relatively compact in L2(Qr).

Proof. The relative compactness of the family (57, )men can be shown exactly as in [?, Lemma
2.6]. To show the relative compactness of (S7,, X7, )men, we extend the functions St and

16



X7, by 0 outside of Q7. Recall that S and X are Lipschitz continuous and bounded from
above. Let 7 € (0,T"). For t € (0,7 — 7) we have then

/Q D(x) (57, X7.) (.t +7) — (57, X7 ) (1 2)) o

< XLg Z Pr (SkXK)(t+7) — (SkXK)()) (ax(t +7) — qx (1))
KeTm

+Lx Y Px ((SkXK)(t+7) = (SkXK)()) (Pg,x (t+7) = Py ic(1))
K€Tm

Using Definition 3.3, taking the square root and integrating in time, we obtain
T—1
V Drin /0 H (STmXTm)(:E7 t+ T) - (STmXTm)(t7 SL’) HLz(Q) dt
T—T1 1
< VEIsx [ |85 Xm) w4 1) - (57, %7,)(00)]
0 s/ m

X <qu(-,t + T) - Qm('7t)H7%’m + Hpg,m("t + 7—) —pg,m(‘,t)H%—m) dt

Young \/T T=r
< \/;X /0 (ST X7 ) (2, t +7) = (ST, X75,) (L, @), .t

T T—1
v SXT/O lam (-t +7) = am(-.0)]| -, dt

(I [
2 0

+

[Dgm (-t +7) = Do (-, 8)]| 1 dt

with Lgx = max{XLg, Lx}. Now, we get by the definition of ¢

T—7 T T ) 2
[ et 00 mantetlg, a<2 [ ol 227 ([ ol

(3.13)
and

T—1 T
/0 gm (-t +7) — Qm<'7t>H’Tm dt < 2/0 (HPw,mHT + Hpg,mHT> dt

1

T 9 % T 2
<o T (( [ ol )+ ([l ) |- @20

Furthermore,

yIm

T—7 T
/0 (S X7 ) (o, +7) — (S X7 ) (1) db < 7 /0 7 (SrXT)( 1),

T 9 2
<VT (/0 07 (STXT) (. )], dt) (3.15)

17



Gathering the results (3.13)—(3.15) and applying lemmas 3.2 and 3.4, we can conclude the
existence of a constant C' such that for all 7 € R the following estimate holds:

/R H(STmXTm)(I’t + T) - (STmXTm)(t’x)HL2(Q) dt < TC\/H

It remains to estimate the space translates in R? (recall that the functions are extended by
0 outside ). For every ¢ € R, we define the domain Q¢ := {x €N ’ r+E€ Q} Then, the
Lipschitz continuity of S and X yield

(57, X7.) @ + &) = (575, X7.,) (6, 0) [ g2 ey

< ClEl+ [[(S7, X 1) (- + &) = (57, X7,) ()12 e

< Clel + LEX?|ar, (- + &) = a7, (0| 2(6) + L Po.7 ( + &1) = P72

< Clel + X2Lg||py:7i, (- + &) = g7 (5 D[ g2y + (X°L3 + LX) Hpgmn(~+€7 £) = Do, () 220

A classical result (see e.g. [?, Lemma 9.3]) yields

1Po.720 (- +€8) = Po7en (D) | 2026y < Il €] (€] + Csize(T)
Pu 75 (- + &58) = Dot () [0y < IPwllF,, €] (1€] + Csize(T)) .

Integration in time and application of lemma 3.2 yields

T
/0 (7, X7, (@ + &) = (S7,, X7,,)(t: 7) |2 oy dt < TC¢]

We can therefore conclude the relative compactness of the families (S7,, )men and (S7., X7, )men
in L2(Qr) by the Kolmogorov-Riesz Theorem. O

Let us state the following lemma, the proof of which is recalled in [?, lemma 2.7].

Lemma 3.7 (Minty’s trick). Let Q be an open bounded subset of R, d > 1, T > 0, Qp =
(0,T) x Q, and let F': R — R be a bounded continuous nondecreasing function. If there is a
sequence (U )men C L2(Qr) such that

1. there emists u € L2(Qr) such that (um)men converges weakly to u in L2(Q7),

2. there exists a function F € L2(Qr) such that (F(um))men converges to F in L2(Qr),
then F(t,z) = F(u(t,x)) for a.e. (t,x) € Qr.
Lemma 3.8. Let Hypothesis (K) hold and let T, be a sequence of space-time discretiza-
tions satisfying (T) with hy, — 0 as m — oo. Let qy(,?) € X7.,n=1,...,N be such that
the function qn € L2(Qr), defined by qn(-,t) = q,(,?ﬂ) for t € (™, 0+ s such that
fOT qu(,t)HQT dt remains bounded and S(qm) converges to some function S as m — oo in

L2(Q7). Furthermore let us define the following piecewise constant functions on the diamonds
(omitting some indices m):

Ku,T1, = Z kuw(SK|L) XDy, + Z kw(SK|o)XDx
TE€Eint o€€eqt
U:KlL O'G(EK
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Kgﬂ;n = Z k9<SK|L)XDK|L + Z k9<SK|U)X'DK‘Ja
o€Eint o€€eyt
O':K|L o€EEK

where, denoting by Sk = S(qx) for all K € Ty, we assume that the values Sk, and Sk 1, only
ensure Sk |, € [min{Sk, S(0)}, max{Sk, S(0)}] and S|, = Sp|x € [min{Sk, S}, maX{SK, Sr}.
Then, (Ky T, )meN converges to kw(S) in L2(Qr) and ( Ky 7, )men converges to k (S) in

L?(Qr).

Proof. Denote by Lk, the Lipschitz constant of k,, and recall that

hyp i= max { max dK‘L, max dK|c,,maX|0'|
oeg;nt
o= K|L UGEK

Recall that Sk |7, € [min{Sk, S}, max{Sk, S }| and Sk, € [S(0), Sk]|. We deduce therefore
that (Sg|p — Sk)?* < (Sp — Sk)? and (S|, — Sk)? < (Sk — 5(0))? and obtain

/ (KwT, — ku(ST,,))? dx
Q

=Y | T ki) kS0 ol + Y (u(Ski) — Ru(Sk)) gloldico

KeTm | o€egn€ins cEEKNEest
O':K|L o':K‘o'
hn ol o|
N ) G Skl dgir+ Y. ——(Skie — Sk)*dK o
KeTm | ocexnéin, KL cEEKNEert Klo
o=K|L o=K|o

: . -
<Lk, > dH(SL Sk’ + > d‘ | (Sx — 5(0))?
K€Tm | o€exnEiny KL cEEK NEeqt Klo
o=K|L o=K|o

h?
<Lic, "2 13aml3,

Integration in time and the bound on fOT e t)Hg_ dt yield

T
lim / / (Kuw T, — kw(Sm))?dzdt = lim Ch2, =
Q

m—r0o0 0 m—r0o0

since hy, — 0 for m — co. Due to the regularity of k,, and the strong convergence of Sy, the
assertion follows. Analogously, we can prove the convergence of K, to ky(S) in L2(Qr). O

Lemma 3.9. Let Hypothesis (K) hold and let Ty, be a sequence of space-time discretizations
satisfying (T) with hy, — 0 as m — oo. Let pﬁ,’f)n € X7, n=1,...,N be such that

the function pgm, € L2(Qr), defined by pym(-,t) = pgl,:{l) fort € (™, t™+D) s such that
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fo Hpgm , HT dt remains bounded and X (pym) converges to some function X asm — 00
in L2(Qr). Furthermore define, for a.e. t € (0,T),

pg,K( ) pg,L(t)
wKw@dew=ié X(p) dp, WKM@X%L@>—mﬂu»=1/ X(p) dp
p

g,K(t)

and
V7, = Z YK LX Dy, Z Y K|oX D), -

oc€Ent o€€eyt

o=K|L 0EEK
Then, (U7 )men converges to X in L2(Qr).
Proof. First, recall that X is monotone and non-decreasing such that we get by definition of
\IIK|L:

Pl (X (p) — X(pgrc)) dp)

Uyp — X(pgx))? = | 25
(Vkiz — X(pg.x)) P—
2
< (X(pg,L) - X(pg,K))(pg,L - pgvK)
o Pg,L — Pg,K

= (X(pg,L) - X(pg,K))Q

and analogously

K 2 2
<%W—x%KW—<5%“@*“@M”®)s(X%K%“>—X%KF

Pg,K Pg,K

Analogously to the proof of lemma 3.8 we get
2 hy
| 7= X7 o < "2 Lyl

Again, integration in time and the bound on fo Hpg m(s, HT dt yield

lim || @7, — X(pgg-m)HLz(Q ) < lim Ch,

m—00 m—0o0

which concludes the proof. O
We may now state and prove the convergence result.

Theorem 3.10. [Convergence of the scheme] Let Hypothesis (H) hold and let Tp, be a se-
quence of space-time discretizations satisfying (T) with hy, — 0 as m — oo. Let (p; )meN

and (pz(,?)Tm)mGN be a family of given initial conditions such that lim,, Hpéogfm B ng)

0 and lim,, oo Hpgg,)ﬂn o pr)‘ L2(Q) B

If pg1,, and py 7, fulfill the scheme (3.1) for all m € N, then there exist p, € L2(Qr),
pw € L2(Qr) and g = py, — py such that (up to a subsequence), letting m — oo,

L2(Q
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1. (pg. T, )men converges weakly in L2(Qr) to p, € L2((0,T); H§(Q)) and (Vipg T, )men
converges weakly in L2(Qr)? to Vp,,

2. (Pw,Tpn )meN converges weakly in LZ(QT) to Py € Lz((O,T); H(l)(Q)) and (VmPw T )meN
converges weakly in L2(Qr)? to Vpy,

3. (S(q7.,))men converges in L2(Qr) to S := S(q),
4. (X(Pg.7:,))men converges in L2(Qr) to X = X(pg),

w T Jmen converges in L2(Qr) to ky,(S(q)) and (K, 7, )men converges in L2(Qr) to

(K

kg(5(9)),
6. (V7. )men converges in L2(Qr) to X (py).

and (pg, pw) is a weak solution of problem (1.2).

Proof. Thanks to Lemmas 3.2 and 3.5, we extract a subsequence such that items 1 and 2 of the
theorem hold (we then denote q7,, = pw, 7, —Pg,7;n)- We now apply Lemma 3.6, which ensures
the existence of a subsequence, extracted from the preceding one, and of S , Xs € L2(Qr),
such that (S(qu))meN converges in L2(Qr) to S, and (S(q7,) X (Pg, 7o) )men converges in
L%(Qr) to Xs. Using Spmin < S(g7,,). Thanks to Lemma 3.7 applied with F' = S and
Um = qT,,, we obtain that S=5 (¢), and item 3 is proved. Using Spmin < S(g7,,), We
get that X (py.7,.) = (S(¢7.,)X (pg.7..))/S(qr,) converges in L2(Qr) to X := Xg/S. Again
applying Lemma 3.7 applied with F = X and u,, = pg.7,,, we conclude that X=X (pg), thus
concluding item 4.
The application of Lemma 3.8 provides item 5 and that of Lemma 3.9 provides item 6.

Let now be ¢ € C([0,7)) and w € CX(Q) two test functions. Furthermore, writing
T instead of 7,, and dropping the index m wherever confusion is excluded, we define the
approximations wy and Vywy of w and Vw by

wr =y wlzk)xK

KeT
~ w(ry) —w(zk) (zK)
V5ywr = Z ———NK|L T VK|Ltw XDk|L + Z NKlo + VK\U,tW XDk o>
dg|L Ao
DK|L DK|a

where Vg7, denotes any tangential part of the discrete gradient in the diamond D r. It

is worth to note that the operator @T has two important differences with V1 defined by
3.10 (there is no factor d and there is a tangential component). Analogously, we define the
approximation @7 of ¢ by

N-1

thrl ( )
or =Y (™) oTT = Z il ( )

n=0

Note that by consistency of the approximation wy converges in L?(Q) to w and V,,w7 con-
verges in L2(f2) to Vw. Analogously, ¢ converges in L2(]0,T)) to ¢ and §7p7 converges in
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L2([0,T)) to ¢'.
Multiplying (3.1a) by 5t("+%)g0(t("))w(w1<) and summing over all K and n, we obtain

Z Z Dy n+1 Sﬁg))go(t("))w(x[() (3.16a)
n=0 KeT
N-1 X N—-1 )
n+s n n n+= n n+1
= > ot pl H)’“T]kww =) otrralp( ))fé}; Ju(zr).  (3.16b)
= n=0

Reordering of the terms in (3.16a) yields

N—-1
SN er (s — St )w (k)

n=0 KT

:_Z n+1 Z(I) Sn+1 Z‘I’KS(

KeT KeT

T
/ (57-<p7—/ x)STwr dzdt — p(0 )/Q@(:U)S(q(TO))wde.

And therefore

N-1 1
lgn Z Z (I)K(sgt”ri)SK(St(nJr%)gp(t(n))w(xK)
n=0 KeT

T
:—/‘mw/@@ﬂ%WM@Mﬁ—ﬂ@/@@ﬁ@%mqum
0 Q Q

We then remark that, since the weak gradient defined by (3.10) contains only a component
normal to the edges, the term in (3.16b) can be rewritten as

N-1 T
L ~
E &(nﬂ)@(t(n))[pgﬁﬂ)’"JT]kSﬂ"*l),T:/0 QPT(t)/QvaTVmpwVTwTd:rdt

We easily have
N-1

Tim - 5t Dot ™) I () = / / fu wdadt,
n=0

and, due to the strong convergence of Kw,TﬁTwT to kyw(S(q))Vw (using the L> bound of
K, 7), and the weak convergence of V,,p,, to Vp,,, we have

T T
i [ er(t) [ KurVapSrordsdt= [ o) [ k(S@)Vp, Vo dudi
Q 0 Q

m—r0o0 0

which shows the convergence of (3.1a) to (1.2b). To show that (3.1b) converges to (1.2c), we
follow the same steps as above. O

Remark 3.11. We only state a weak convergence result for the pressures in Theorem 3.10.
A stronger convergence result could probably be expected by passing to the limit m — oo in
(3.5) and comparing this limit with the equation obtained by taking the solution py,py as
test functions in (1.2). But such a work implies quite long developments due to the need of
reqularizing the test functions.
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4 Numerical examples

To conclude the paper, we present two numerical examples in one space dimension using the
following parameters.

d(z) =0.2 Az) =10712
kg kg
_ 3 _
fw(t,z) =0 fo(t,x) =0
D =0.

This means that we examine the results obtained in the case where the gas diffusion in the
water phase is neglected. Furthermore, we specify the functions S, X, k; and k,, as follows.

1
S(q) = - with n=2m=1/3,py = 10°Pa
max{—q,0} "
(=) 1)
X (pg) = min{cypy, X } with X =01
2
ky(S) = max{S—, 1075} with fh = 1073
1— 2
ky(S) = max{ﬂ, 1077} with g = 1077,
g

Both test cases will be performed with the same initial and boundary data, given by

py(0,2) = 10°Pa pw(0,2) = 10°Pa
py(t,0) = 3-10°Pa py(t, L) = 10°Pa
pw(t,0) = 10°Pa pw(t, L) = 10°Pa.

To apply the algorithm (3.1), we define the values Sg |, and Sk, at the cell boundaries by

1 1
Skp = 55k +51) Sklo = 5 (5K +55),

with S = S(¢x) = S(pw,k —Pg,x) and Sy = S(q,). Hereby, ¢, denotes the value of g at the
boundary, specified by ¢(t,0) or ¢(t, L) respectively. Note that due to the initial conditions
we have S0 := §(¢(?)) = 1 in the whole computation domain. To take into account that this
choice does not imply k;(S) > /c;m" > 0 for the standard choices of k;, we bound k; artificially
from below by 107°. All convergence results continue to hold in this case, provided S > 0 is
satisfied during the computations.

For the first test case, we define the parameter ¢, of the function X (py) by ¢, =3 - 1077
and assume a length of the spacial interval of L = 103m. Figure 4 shows the distribution of
S, X(pg), g and py, at different times ¢. Each line corresponds to a time step of dt = 1day,
the simulation ends at time 7" = 15days. In this example, the parameter ¢, is chosen such
that the maximum fraction of dissolved gas in the water phase is not attained, X(p,) is
therefore less than X in the whole computational domain [0, L] x [0,7]. Table 1 illustrates
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s(@) X(py)
1 0.1
0.9 0.08
08
0.06
0.7
0.6 0.04
05 0.02
0 500 1000 0 500 1000
X X
x 10 Py x 10° P
3 15
25 1.4
2 13
15 12
1 11
05 1
0 500 1000 0 500 1000
X X

Figure 4: Test case 1: X does not attain its maximum value.

the convergence behavior of the variable p, for a sequence of different grid sizes. Therein, we
use a fine grid solution pgef (T') computed on a grid of K = 240 cells as reference solution up
to time T' = 2years. The comparison is done by averaging of the reference solution on the
coarse grid, i.e. we take the mean value of the fine grid solution on each coarse grid cell. The
simulations are scaled to the unit intervals in space and time, such that the definition of the
time step size dt = dx? in relation to the space discretization is meaningful. Furthermore,

the pressure variables where scaled by 105, i.e. Dg = Dg 10°.

K 30 60
155 (1) — 5™ ()| 2oy || 29921073 | 1.430 - 102

120
0.587-1073

Table 1: Convergence study for the gas pressure in experiment 1 for the grid sizes K = 30, 60
and 120.

Note that we do not report the convergence study for p,, since it tends to a constant in
the stationary solution and the deviations of the numerical solutions from this constant in
the numerical experiments are all below the accuracy of the simulations.

For the second test case, we chose ¢, = 3.5 - 107, and a length of the domain of L = 10%.
In this case, the maximum value of X is attained. Figure 5 shows the distribution of S,
X(pg), pw and py for time steps of dt = 10days, the simulation ends after 7' = 150days.

In both test cases, we observe the profiles of the water pressure. They show a maximum
value inside the domain, due to the fact that some water has to be removed (by flows at the
two boundaries) in order to leave some porous volume for the apparition of the gas phase.
As long as the gas phase does not appear, the gas pressure remains equal to its initial value,
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s(@) X(py)

1 0.1
0.9 0.08
0.8
0.06
0.7
0.6 0.04
0.5 0.02
0 5000 10000 0 5000 10000
X X
x 10° Py x 10° P
3 15
25 1.4
2 1.3
15 1.2
1 1.1
0.5 1
0 5000 10000 0 5000 10000
X X

Figure 5: Test case 2: The maximum value of X is attained.

which simply corresponds to the initial gas concentration in the water phase (this remains
exactly true since we performed the simulations with the value D = 0). The gas pressure
leaves its initial value mainly in the cells where the gas phase appears. We also remark, in
the second case, that the moving front defined as the boundary of the domain X(p,) < X
has some influence on the profile of the saturation and of the gas pressure.

5 Conclusion

In this paper we have studied the convergence of a finite volume scheme with two-point flux
approximation, to a solution of two-phase flow in porous media in the case of the partial
dissolution of one phase into the other one. It is interesting to notice that the scheme which
has been chosen here was the only one on which we have been able to derive this study, due to
the need of nonlinear expressions of the primary unknowns as test functions. Further works
to overcome this difficulty seem to be necessary, although it is not clear whether they can be
fruitful.
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