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Abstract

We study the convergence of a finite volume scheme for a model of miscible two-phase
flow in porous media. In this model, one phase can dissolve into the other one. The
convergence of the scheme is proved thanks to an estimate on the two pressures, which
allows to prove some estimates on the discrete time derivative of some nonlinear functions
of the unknowns. Monotony arguments allow to show some properties on the limits of
these functions. A key point in the scheme is to use particular averaging formula for the
dissolution function arising in the space term.

KEYWORDS. Two-phase flow in porous medium, dissolution, finite volume methods, con-
vergence study.
AMS CLASSIFICATION. 65N08, 65N12.

1 Introduction
We consider the following problem: approximate the given model

q = Pw — Pg> (1.1&)
®(2)0; (S(q)pw) — div (puwkw(S(9)VDw) = fu, (1.1b)

@)k (S(a)pwX (pg) + (1= S()) py)
— div (puku(S(9)) X (pg) VDw + poke(S(0)) Vg + DpuwS(@)VX (pg)) = fan

together with boundary and initial conditions. This problem arises in different engineering
frameworks. In the framework of hydrology, it represents the two-phase flow of the water
phase and the air gaseous phase in the underground. In the framework of nuclear waste
management, it represents the propagation of gaseous hydrogen, produced by acid attack of
metallic containers containing the nuclear waste, into porous soils. This model also holds for
CO2 storage, gas production, and other situations. In Problem (1.1), pg is the pressure of
the phase 8 (8 = w,g), q is the difference between the two pressures, called the capillary
pressure, ® is the porosity (volume occupied by the two fluid phases per unit volume), S(q)
is the water saturation (volume occupied by the water phase per unit fluid volume), pgs is
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the mass density of the phase 8 (8 = w,g), kg is the mobility of the phase § (5 = w,g)
(including the absolute permeability and the viscosity of the phase), X is the mass fraction
of the gaseous component dissolved in the water phase, D is the diffusivity coefficient of the
dissolved gas phase in the liquid phase and fg is the source term of the phase 3 (5 = w, g).

Problem (1.1) has been the subject of many theoretical and numerical studies in the case
where X = 0. Let us recall the reference book [11] or the convergence study of the industrial
phase-by-phase upstream weighting scheme [10] for example, and let us mention the study
done in [5], considering a case where the porous medium is nonrigid. In [9], the authors study
the convergence of a large class of discretization methods, namely the gradient schemes.

In [4], the authors study the two-phase flow model, assuming compressibility and mass
exchange between the phases (with a mass exchange rate, out of thermodynamical equilibrium
between the phases), and they show the existence of a weak solution to this model. In
[3], the authors consider Problem (1.1), with an additional diffusion term, assuming the
thermodynamical equilibrium, and they show the existence of a weak solution. Our aim is to
study the convergence of a numerical scheme to the solution of Problem (1.1).

Let us emphasize that this study is the source of a series of difficulties. The problem
posed by the first estimation is that it leads to consider nonlinear functions of the unknowns
as test functions. Although this does not provide particular difficulties in the continuous case
(thanks to Stampacchia’s results), it prevents from using general schemes for the discretization
of the space terms (like it is done in [9]). On the contrary, we are led to use two-point flux
approximation for the space terms, in the same spirit of [10] (and further works like [1] in the
case of one compressible phase). Note that such a difficulty also arises in [7] or [2], for the
study of numerical schemes for two-phase flow with discontinuous capillary forces, or more
generally in some elliptic problems with irregular data [6] where nonlinear test functions of
the unknown must be used. Let us now give the precise hypotheses, all together denoted in
the following by (H), that are done in this paper:

(QT) Q c R? with d =1,2,3, T € (0, +00).
(Ini) pf, € L?(Q) and p) € L*(Q).
(R) pw = const and py = const.

(S) S : R — [Smin, Smaz] is a non-decreasing Lipschitz continuous function with
0 < Smin < Smaz < 1. We denote by Lg the corresponding Lipschitz constant.

(X) X : R — [0, X] is a non-decreasing Lipschitz continuous function with X (0) =
0.

(D) D > 0 is a possibly null positive constant.

(K) ky € C%1(]0,1]) is a positive, non-decreasing function with k7" := ky,(Spin) >
0 and k, € C%1([0,1]) is a positive, non-increasing function with k;’”” =
kg(Smaz) > 0.

(®) ¢ : Q2 — R is a measurable function with 0 < @y, < P(2) < Ppga-

(f) f; € L2(2 x (0,T)), for i = w, g are given source terms.



Remark 1.1 (Nonhomogeneous Dirichlet boundary conditions and gravity terms). We could
as well consider the case of nonhomogeneous Dirichlet boundary conditions and the pres-
ence of gravity terms, which would only lead to additional terms in the estimates and in the
convergence results.

Let us mention that Hypothesis (S) is a regularization of the physical situation, where
Smin = 0 and Sy, = 1. This regularization is done for enabling some estimates and con-
vergence results. This hypothesis can probably be relaxed considering the phase-by-phase
upstream weighting scheme, but our paper is focused on the difficulties due to the numerical
approximation of the function X in the space terms. Therefore we have preferred to use
simpler arguments, deduced from Hypothesis (S). Let us also emphasize that we do not use
D > 0 for proving the convergence of the scheme, which means that the present analysis apply
in case where Problem (1.1) is a regularization of the immiscible two-phase flow problem by
the addition of a dissolution term.
Let us now provide the weak sense that is considered for a solution to Problem .

Definition 1.2 (Weak sense of a continuous solution). Under Hypotheses (H), we say that
(Pw,pg) 1s a weak solution to (1.1) if:

pg € L2((0,T); HY), pw € L2((0,T); HE) and, for all o € CX(Q x [0,T)) (1.2a)

/ / x) puwS(q)Op dxdt +/ / Q) puw VPV dxdt

(1.2b)
_ - Mol . - dudt,
—/Qq)( )pwS(q")e(x,0)d +/0 /Qf o drdt
T
fo e pr<q>X<pg>+<1—s<q>>pg)at@dxdt
/ / X (pg)Vpuw + kg (S(Q))Pngg+Dpr(q)VX(pg))Vgoda:dt (1.2¢)

- [ o (pws<q°>x<p2> (=8 9) w0t [ [ fypdna

where CX (2 x [0,T)) denotes the set of the restrictions of all functions of CX (2 x (—o0,T))
o (2x10,7)).

This paper is organized as follows. In Section 2| we show briefly the continuous method
used in order to prove the estimates, assuming sufficient regularity of the solution. This
section details in particular the use of nonlinear test functions. Then, after presenting the
discrete scheme in Section[3] we mimic the techniques used in section|2 to prove the estimates
which hold in the discrete setting. From these estimates, we deduce the existence of at least
one solution to the scheme and conclude the necessary compactness results, leading to the
convergence proof of the scheme. In Section [4] simple numerical test cases show how some
physical features are reproduced by this simple model. A short conclusion is finally given.

2 Estimates in the continuous setting, assuming that the so-

lution is regular

In this section, we provide the computations which enable to take into account the dissolution
function X. For the sake of simplicity, we write the following estimates in the 1D case



assuming D = (0, which does not change the principles of the computations. The ideas and
techniques applied in this section will then be carried over to the discrete setting in (3l

Lemma 2.1. Let us assume that Hypotheses (H) hold under the additional hypotheses that
d =1, fo, = fg = 0 and that there exists a solution (pw,pg) of Problem which is
sufficiently reqular. Then, there exists a constant C' depending on the initial conditions pg
and p° and on k:;”m, K™ and ®pin, such that for any solution of (1.2), we have

Hal’ <C and Ha:cpwHH((O,T),Q) <C (2.1)

p9HL2( (0,T),Q) =

Proof. Multiplying equation by 7;—3 and equation (1.1c) by %Z and add the obtained
equations, we have

(@)0,(S22X + (1= 9) )y + 2(@)2US)pu

o (2.2)
= aac(*wk’w(S)Xaxpw + k‘g(S)@xpg)pg + 0 (kw(s)axpw>pw
Pg
Define
P % P Pw
)= / S'(t)rdr, X(p) = / X'(r)rdr and a= o (2.3)
0 0 g

Then, the left hand side of (2.2) becomes

(@)0: (S(@)aX (py) + (1 = $(0)) )pg + ()05 (@)u
= ©(2)0:(5(a))a + D(w)ads (S(0)X (pg) +1)py
— ©(2)[9:(5(a)) + @S0 (X (pg))py + aX () 0:(S(0))]
= ()| (5(0) + 0 (S X (py))] = (X (2g) = X(2e)py )0 (ku(5(2)) 0w ) |

and we can write (2.2) as
() [at (5( )) + o, (aS( )X (p g>)]
— 8, (akw(S)Xampw + kg(S)f)xpg> g+ O (kw(s)ﬁxpw> oo
+ (X (pg) = X(py)py ) 9 (ku(S(@))0:p0)

Recall that X (0) = 0, and d( (p)p — X (p)) = X (p), such that integration yields

//k‘ OzxPuw dxdt—l—/ /k xpg dxdt
(2.4)

— [ 2@ (3" - @) + (aS@)X W) - Sa(T)X(py(1))) | do
Q
Recall that S and X are Lipschitz continuous and bounded, such that

- L
< —=q and 0 < aS(q)X(pg) < O‘Tng' (2.5)



We have thus,

k;}nm |0z Pw H%ﬁ((O,T) x€2) + k;mn Haxpg Hiﬁ((O,T) x€2)

Lx 2

Lg
< Pas 3 [0 g+ P o

(2.6)

O]

2
L2(Q) L*(Q)

Lemma 2.2. Let us assume that Hypotheses (H) hold under the additional hypotheses that
d =1, fo = fg = 0 and that there exists a solution (pw,pg) of Problem which is
sufficiently regular. Then, there exists a constant C depending on the initial conditions pg
and p? and on k;”m, K™ and @i, such that for any solution of (1.2), we have

2
1908 (@) | 2o 11y <€ and Hcpat (S(q)X(pg)) <C (@27
n L2((0,7);H-1(Q))
Proof. Let w € H3(2). Then,
2 2
(/ <<I>(x)8t5(q))wdx> = (/ kw(S(q))0zpuwOzw dx)
Q Q
2 2 2
< kgzam / OzDw | dz || Opw
(k) [ (9epw)de Nouolfaa)
Taking the supremum and integrating in time yields
2
T 9 T
/ H@atS(q)HH_l(Q) dt :/ sup / <<I>(x)8t5(q))w dx dt
0 0 weH3 () Q

||8z°-’||1,2(9>

max

Jemaz \ 2 2
<(3 102Pwll12((0,1)x2)

man

Using the estimate of lemma this proves the first estimate.
Adding equation (1.1b) and (1.1c), we get

DI (aSX) — 8x((aX D)k (8)0upw + k:g(S)@xpg) —0.

Using Holder and Young inequalities, we have therefore

< ol <<aX SO0 [ (O e+ ey [ <ampg>2dm)

2 2
+ (X + 1)kperkmes (( / lf)xpwaxw]d:c> + ( / ‘@Cpgaxw}dx) )
Q Q

5

2

/ O (PSX)wdx
Q

/(aX + 1)kw(5)8xpw8zwd1:—|—/ kg(S)0ppgOpw dx
Q Q




< (0% + DR 4+ K o] Za ((aX T 1)(kme) /Q (Oepu)? dix + (K9 /Q (9apy)’ daz)

Taking the supremum and integrating in time, we get

2
Hat(S(Q)X(pg))HL2((07T);H—1(Q)) < CluazpwHL2((0,T)><Q) + C(2HaﬂﬂpwHL2((0,T)><Q)’

where C; and Cy only depend on «a, X, ®, k,, and ky. O

3 Finite volume scheme with two-point flux approximation

We assume Hypotheses (H), and we consider a given mesh 7 with the following properties.

(T) Denote by £ the set of edges (in 2D) or sides (in 3D) respectively. Then,

(i) For every K € T there exists £k C € such that 0K = (J,c¢, 0 and

(ii) For o € € such that KNL =5 # () for some K € T and L € T, we write
also K|L.

(iii) The family of cell centers P := (z)ker is such that xx € K for all
K € T and if 0 = K|L, we have zx # z and the straight line Dy j,
connecting zx and zy, is orthogonal to K|L.

(iv) For any 0 € £ with 0 C 9 and o € €k, we have xx ¢ o and the
straight line through xx orthogonal to o is denoted by Dg/,. We define
Yo := Dk No

For simplicity, we introduce the following notation.

For any sequence t(© =0 < t0) ... < tV) = T, we denote the discrete time step by 5t

The (d — 1)-dimensional measure of ¢ is denoted by |o].
The set of interior edges is denoted by &y, the set of boundary edges by Eeyt.

The euclidean distance of zx and xp for L € Nk is denoted by d, (or dgr). For
0 € Eext N €k, the euclidean distance between xx and y, is denoted by dq,-

For o € &k N Eint, we define y, := dg|, N o and denote by dg |, the straight line
connecting zx and y,.

For o € €k N &t we denote by Dz, the diamond spanned by the diagonals o and
dr|r- For o € Ex N Eeqt we denote by Dy, the tetrahedron spanned by o and Dy ,.

We define hy, := max § max ,ee;ne dic|r, MAXpeeyat Ai|o, MAXges lo| ¢
o=K|L o€lK

We denote by X7 the set of all functions u : € — R such that u(z) = > xcr ur XK (T)
with ug = const.

nt3) =

() () for p = 0, . - , N —1. Furthermore, h denotes the maximum value of the diameter
ofall K € T and 6t™*t2) n=0,...,N — 1.



Definition 3.1 (discrete bilinear forms and norm). For u,v € X(7) and for a family (s )ses
of real values, we define the scalar product

o]
[, v]ar = > CKIL G (ur —up)(vk —vr) + ) Urlo UKUK,
o€Eint | c€Eert
o=K|L S

we define the following discrete operator

. o o
div(o,u) = [u, 1g|a 7 = Z QKL id (ug —ur) + Z ozK‘ULuK, VK €T,
K cEERNE; dK|L _ dK\a
K''“int occfNE—ext
o=K|L o=K|o

and the following norm

1/2

fully = (e sr) = | 27— un+ Y e

oC€int K|L o€yt
o=K|L o€k

Let péo) € X7 and p&? ) ¢ X7 be given piecewise constant initial conditions. Then, we
define the implicit scheme for a discretization of problem (1.2) by

t(n+1)

1
P = P(x)dzx, (ntl) _ __ ~ / wl(x, t)dxdt, a = w,
w= [ 2@ =g [ e g
P € X70,p0" € X7, g = pQ) — pl0), qn V) = plntt) — plntD)
SO _ s(qﬁQ),S(n“) = Sy, X = X (o), X = XY,
(n+d) ey _ ST — S (1) ey _ (S VXD — (50X
o7 'Sy pra o *(SkXk)" = T
5t +3) 5t(n+3)
(n;l) (n[«l&»l)
n n g n n+1 n+1 9
vt = [ Xwan, il - = [ X@)ap
9, K
0 _ (0) (n+1) _ (n+1) o _ (0) (n+l) _ (n+1)
kg,K\L = kg(SK\L) kg K|IL = kg(SK|L ); kw,K|L = kuw (SK|L)’kw,K\L - kw(SmL )
0  _ (0) (n+1) _ (n+1) (0) (0) (n+1) _ (n+1)
kg,K\cr k <S Klo )’kg Klo — k (SK|U )’ kw Klo ™ = kw (SK\U)’kw Klo — ku’(SK|a )
SK|J S [mln{SK, ( )},maX{SK, S(O)}], SK|L = SL\K € [mln{SK,SL},maX{SK,SL}]
1
¢K6¥L+2)S§?+1) dlv(k:(”'H) p(n+1)) _ fz(l:bj(l) (3.1a)
1
Breads T (Sp Xp) ") — B pestnH) g — acdiy (kWD )
(3.1b)
. n+1 n+1 (n+1) n+1 _ p(n+1)
- d[l(V(k‘g * )7pg * )) - O[Dle(S 7X(p§; * ))) - fg,K )
VK € T,¥yne{0,...,N —1}.
Note that W fulfills
)
p(i]l,ﬂ) X(p)dp
Wy = — 25— ¢ minf X X} max (x0T, X)),
DPg,L — Pg,K



p(nED
Jo7* X(p)dp

c O,X(n+1)
P [0, X ]

\IIK|U =

and is therefore a mean value at the cell boundary, especially chosen to fit the requirements
of the algorithm.

To prove the convergence of the above defined algorithm, we proceed as follows. In
Section (3.1, we prove estimates analogous to the ones in the continuous setting of section [2.
These estimates will be used to prove some estimates on time and space translates of S and
SX necessary in order to deduce the relative compactness of the sequences S,, and (SX),,
by the Kolmogorov-Riesz theorem. It remains then to show in section 3.2 that the obtained
limit is a solution to .

3.1 Existence of a discrete solution and discrete estimates

Lemma 3.2. Let Hypotheses (H) hold. Then there exists at least one solution to scheme (3.1)

and a constant C > 0 depending on the initial conditions péo) € X1 and pg,)) € X1 and on

Q, k;”m, Emin o, fg, @, X and ® such that for any solution of (3.1) we have

T 9 T )
/0 pg|7 dt < © /0 lpwl% dt < C (3.2)

Proof. For any non-decreasing function F satisfying F'(0) = 0, we define F fo F'(r)rdr.
Note that F(r) > 0 therefore,

b b
_ / F'(r)rdr = b((F(b) — Fla)) — / (F(r) — F(a) dr < b(F(b)— F(a)). (3.3)

Now, let FY"™ (@) = Y jeeq Fr )y (2). Using we obtain

N-1
S e T( (n+1) () Fé—n)(x)) PPt Z 3 k(e ( (n1) (TE?))> pinth)
> n= OKET
Y Y e ) (PO = Fi)
n=0 KeT
> =Y @) (Fof)
KeT
= —Féo)(:z:).

(3.4)
For any quantity with time index (n4 1) (say Q*1) in (3.1), we denote with the notation Q
(without the time index) the function of the time, equal to Q*1) in the interval (¢, ¢t(*+1)).
Now, we multiply equation by 5t(”+%)p1(f+1) and equation (3.1b) by w = 5t("+%)p§n+1).
Adding the two equations so obtained and summing on K € 7 andonn =0,...,N — 1, we
have

> (s ) e (3.50)

n=0 KeT



(n+1) (n+1 n n n+1
L3S e (X s i)
n=0 KeT
T
+/ [pw7pw]k’w,'2'dt
0
T
+/0 [Pg, Pglk, T dt
T
+/ a[Ppw; Pglk,w,T dt
0

T
4 / aD[X (py), py)se. dt

/ Z (fw,kDw, Kk + [g,kDg.K) dt.

0 KeT

(3.5b)

(3.5¢)
(3.5d)
(3.5e)

(3.56)

(3.5g)

To obtain the desired estimates, we observe that is non-negative and that the terms

in (3.5¢) ans (3.5d) can be bounded from above by

T T T
min min 2
/ ([p’IU7pw]kw,T + [pgvpg]kg,7> dt > kw / ”pwH%—dt + kg / HpS]H’Tdt'
0 0 0

Thanks to (3.4) and (2.5)), the term (3.5a) becomes

ZZ(I) n+1 S(n)) n+ SZ(I)K( )

n=0 KeT KeT
cI)maa:LS 0 ‘ 2
> marTo
= 2 H Tl 2
Using again (3.4) and (2.5), the term (3.5b)) can be written as
Z Z q)K n+1 §?+1) . S?)th))pér’z;l)
n=0 KeT
N-1 ) )
> 305 i (S (X - )+ XD (s - 5) ) e
n=0 Ke7T

- Z Z Pra (( "*”X}?m — S@X}?) + (X$+1)p;?;1) B ngl)) (Sgl-‘rl) B

n=0 KeT
> Y easPXY 4 [ aicfuna
KeT 0 KeT

T
O[/ [pwaX]kw,Tdta
0

s}?))

(3.6)

where X = Xgpgx — Xk = [P X(p)dp. Note that |Xg| < X|pgx|- We then remark

that, by definition of Wz,

[ w;X]kw,T = [pwypg]kw\lf,’fa



term which vanishes when combining with (3.5e). We finally turn to a bound of the term
arising in (3.5g), combined with the last but one term issued from (3.6). We easily get, thanks
to the Young inequality and to the discrete Poincaré inequality [8, Lemma 9.1 p.765], that

T
> (fwk (pui — aXK) + fo.xPg.x) dt
0 KeT
= 2
diam(2) waHi2(Qx(o,T)) £l + aX’fme?(Qx(O,T))
< - + -
- 2 krun kgun

1 min T 2 min T 2
w5 (k[ melidee s [ ae).
2 0 0

Combining all results and the fact that the term in (3.5f) is nonnegative, we have

1 min T 2 min T 2
S kg / HngTdt"'kw / prHTdt
2 0 0

2 2

L2<m> + 61 (Iulliz@enmy + 14l @xioy)
(3.7)

where C7 only depends on the data listed in the statement of the lemma, which concludes

the proof of the estimates.

To deduce the existence of at least one solution, we substitute the functions S and X in (3.1)

by Sy = AS + (1 —A) and X, = AX + (1 — A\). Note that the estimates derived above hold

also for solutions of the modified scheme. Furthermore, the modified scheme has a solution

for A = 0 (that is p, = 0 and p; = 0), such that we can deduce by a classical topological

degree argument the existence of at least one solution for A = 1 and thus for (3.1). O

T HQT

Lx|| (0
< (I)ma:c 7”
- <a 2 IPo Tl 20

To show the estimates on 0757 and d7(S7X7), we define the following dual norm.

Definition 3.3. Let T be a mesh on Q that satisfies (T). Then, we define the discrete dual
semi-norm on L2(2) by

lwl, 7 = sup Z D rwivK ‘ v € X1 with vl =1p, VYweL*Q).
KeT

Lemma 3.4. Let Hypotheses (H) hold. Then, there exists a constant C' depending on the
initial conditions pgj and p?uj, on fuw, fg, kw, kg and on T such that for any solution

of (3.1), we have
r 2 r 2
/ 6757 ()|, ;dt <C and / 67 (ST XT)(1)| ;dt <C (3.8)
0 ’ 0 ’
Proof. Let w € X1 . From (3.1a)), we get
1
= sup Z @K6$+2)S§?+1)w[(

*T WEXT 0 KT
wllF=1

10



2

+1
= | swp | PO Wl o+ D LR e

wEXT 0 KeT
llwll =1

w

< (o2 0|7+ diom( @)L g

by the Cauchy-Schwarz inequality, the boundedness of k,, from above and the discrete Poincaré

inequality. Multiplying by 575(”"‘%), sum

T
/0 6787 ()2 pdt < C

To show the second estimate, we add equations (3.1a) and (3.1b) and follow the same steps
as above to obtain

2
1
5Ut2) gt ) x (nl+)

*, T

mazxr \ mazx v 2 : n
< ((kw P(aX + 12l + ()2 + (@DX)?) |lpg |5 + diam (@) f§ “)Hi2<m) -

As for the first estimate, multiplication by 6t(”+%), summation on n and application of (3.7)
yields the second estimate. O

3.2 Convergence of the scheme

Lemma 3.5. Let Hypotheses (H) hold. Furthermore, let T, be a sequence of space-time
discretizations satisfying (T) with hy, — 0 as m — oco. We assume that p(go) € X1 and
p§,9) € X1 are given such that péo) € L2(Q) and pﬁ,?) € L2(Q).
If pwt,s P9 Tns ST,, and X7, satisfy the scheme (3.1) for all m € N, the families (S7,,)men
and (St,, X1, )men are relatively compact in L2((0,T) x Q).

Proof. The relative compactness of the family (Sz., )men can be shown exactly as in [9, Lemma
2.6]. To show the relative compactness of (S7,, X7, )men, we extend the functions Sz, and
X7, by 0 outside of  x (0,T). Recall that S and X are Lipschitz continuous and bounded
from above. Let 7 € (0,T). For ¢t € (0,7 — 7) we have then

/er(x) ((Sz, X7,) (2.t +7) — (S, X7, (2, 1)) dx

< XLg > @k ((SkXk)(t+7) = (SkXK)(t)) (ax (¢ +7) — qx(2))
KeTn

+Lx Y O (SxXK)(t+7) = (SkXK)(t)) (Pg,x(t+T) = Py, (1))
KeTm

Using Definition taking the square root and integrating in time, we obtain

T—T
V (I)m'm/0 H(STmXTm)(:E? t+ T) - (STmXTm)(x’ t)HLz(Q) dt

11



T—7 1
< VIsx / (S, X7,) (10, +7) — (57, X7,) (0, 8)| 2

yEm

<HQm t+7)_Qm ) HT +Hpg, t+7—) pgm ) H’Tm> dt

y TﬁT
T T—
+\/?/O gm (-1t +7) = g (1) dt
T -
B [ oy

with Lsx = max{XLg, Ly}. Now, we get by the definition of ¢

1

T—7 T T ) 2
[ et 00 et <2 [ ol 227 ([ ol

(3.9)

and

T—1 T
L a0 = anC bl de <2 [ (el + [l d
1

T ) % T 2
<2VT </0 prmHdet) +</0 Hpg,mHdet> . (3.10)

Furthermore,

T—71 T
/ (S, X7,) (.t +7) — (57, X7, ) (. t)] . dt <~ / 67(S7X7)( )| dt
0 9 m O 9

T 9 2
<7VT (/O \5T(STXT)(-,t)\*’Tdt> (3.11)

Gathering the results (3.9)— and applying lemmas 3.2 and we can conclude the
existence of a constant C such that for all 7 € R the following estimate holds:

/R (57, X7,,) (@, t +7) = (57, X7,,) (1) || 2 ) dt < TCV/I7].

It remains to show the convergence of the space translates. For every ¢ € R? we define the

domain Qf := {x €N ‘ r+€€ Q} Then, the Lipschitz continuity of S and X yield

(87, X7, )(x +&,t) — (ST, X7, ) (0, 1) HLZ(R
< C~’|£| + H(STmXTm)(' +£7t) (ST XT HL2 (Q8)

> é|€| + L2SX2HQTm( + 55 t) - QTm("t)HLZ(Qi) + LXHpg,Tm(‘ + §7t) - pg,Tm('a t)HiZ(QE)

12



~ > 2 > 2
< C|f| + X2L?S'Hpg,7m(' + §,t) - pg,Tm(‘a t)HLz(Qg) + (XQL?S‘ + L%()Hpg,Tm(' + é,t) - pg,Tm('a t)HLz(Qg)
A classical result (see e.g. [8, Lemma 9.3]) yields

Hpg,’Tm(' + §7t) - pg,Tm('vt)Hiz(Qg) < Hng27m|€| (|£| + CSize(T))

[Pz (4 68) = Put (D20 < Ipull7, J€] (1] + Csize(T)).

Integration in time and application of lemma [3.2| yields

T
2
|17 Xm0+ €00) = (55X, @.0) (e < TCYe
We can therefore conclude the relative compactness of the families (Sz,, )men and (Sz,, X7, )men
in L2((0,T) x Q) by the Kolmogorov-Riesz Theorem. O

Lemma 3.6. Let Q be an open bounded subset of R, d > 1 and let S : R — R be a bounded
continuous nondecreasing function. If there is a sequence (qn)nen C L2(Q) such that

1. there exists ¢ € L2(Q) such that (q,)nen converges weakly to q in L2(€2)

2. there exists a function S € L2(Q) such that (Sp)nen converges to S in L2(Q), where
Sy = S(qn)-

Then S(x) = S(q(z)).
Proof. The proof of this theorem is analogous to the proof of [9, lemma 2.7]. O

Corollary 3.7. Let Q be an open bounded subset of R4, d > 1 and let S : R — R and
X : R — R be two bounded continuous non-decreasing functions with 0 < Spin. If there are
sequences (qn)nen C L2(Q) and (pn)nen such that

1. there exists ¢ € L2(Q) such that (q,)nen converges weakly to q in L2(€2)
2. there exists p € L2(QQ) such that (pn)nen converges weakly to p in L2()

3. there exists a function S € L2(Q) such that (S, )nen converges (strongly) to S in L2(2),
where Sy, 1= S(qn).

4. there exists a function Xg € L2(Q) such that ((SX)n)nen converges (strongly) to Xg
in L2(Q), where (SX)p = S(qn) X (pn)-

Then X (pn) converges strongly to X = X(p).

Proof. Since 0 < Spyn, we can write

An = [ (Xn) = X@) o —a)da = [

Q

(<5X>n_

S X(a)> (pn —a)dz > 0.

Defining X := %, we get by strong / weak convergence

n—oo

lim A, = /Q(X—X(a))(p—a)d:c > 0.

13



The above inequality holds especially for a = p — t¢ with ¢ > 0 and ¢ € C(2). Dividing by
t > 0 we obtain

/Q(X—X(p—w))@dx >0

and for t — 0
/(X - X(p))pdr > 0.
Q

As the above inequality also holds for —p, we obtain
/(X—X(p))goda: =0. (3.12)
Q
O

Lemma 3.8. Let Hypotheses (K) hold and let T, be a sequence of space-time discretizations
satisfying (T) with hy, — 0 as m — oco. Furthermore define

Kuw1, = Z kuw(SK|L) XDy, + Z kw(SK|o)XDx

o€Eint c€Eext
o=K|L 0EEK
Kg,Tm = E k‘g(SKIL)XDKlL + E kg(SK|U)XDK\U'
o€Eint o€€ert
o=K|L o€k

Then, (Ku T, )men converges to ky(S) in L2((0,T) x Q) and (Ky 7, )men converges to kg(S)
in L2((0,T) x Q).

Proof. Denote by L, the Lipschitz constant of k,, and recall that

By i= max ¢ max dg|r,, max dg|,, max |o|
oeg;nt oc€EEext oce€
o=K|L S e
Recall that S € [min{Sk, St }, max{Sk,Sr}] and Sk|, € [0,Sk]. We deduce therefore
that (Sg|z, — Sk)? < (St — Sk)? and (Skjo — Sk)? < (Sk)? and obtain

/ (Ko, — ko (Sz.,))? do
Q

=S | T Sk kS0P loldrs + S (ki) — Ru(Sk))? gloldico

KeT,, | cc€gnéint cEENE—ext
o=K|L o=K|o

h o o
SLKme > > dH(Squ — Sk ’dgL+ Y dH(qua — Sk)*dK o
KeT, CEERNE; K|L vecpre—est Klo
m K int K
o=K|L o=K|o

2

hin |o| 2 |o| 2
<Lk, > > K(SL—SK) + ) 7 (9K)

KET | ccexnéin: cEENE—eat Klo
o=K|L o=K|o
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h2, o o
<Lk,Ls—" > > d’K’L(QL—QK)2+ > il (4x)?

d
KETm | oc€xning | cEEgNE—eat Klo
o=K|L o=K|o

h2,
<L, Ls 2 (lpglly, + ol

Integration in time and application of lemma yields

lim / / Ky, — ko(ST,))* dedt = lim ChZ, =0,

since h,, — 0 for m — oo. Due to the regularity of k, and the strong convergence of
St.,, the assertion follows. Analogously, we can prove the convergence of K, to kg(S) in
L2((0,7T) x Q). O

Lemma 3.9. Let Hypotheses (K) hold and let T,, be a sequence of space-time discretizations
satisfying (T) with hy, — 0 as m — oco. Furthermore define

vz, = Z VXD, T Z VKo XDy, -
0EEint o€yt
o=K|L 0EEK
Then, (Y7, )men converges to X (pg) in L2((0,T) x ).
Proof. First, recall that X is monotone and non-decreasing such that we get by definition of

\I’KlLZ

fngX — X (pg,x) dp

(\I/K\L - X(pg,K))2 =

DPg,L — Pg,K
2
< (X(pg,) — X(pg.x))(Pg.L — Pg.K)
N Pg,L — Pg,K

= (X(pg,L) - X(pg,K))2

and analogously

Dy K 2 2
wmfnmmmf—<f at p;ﬂwa@)s(X@“”Wﬁ — X(pyx)?
9,

pg,K
Analogously to the proof of lemma [3.8 we get
2 ha
[ ¥ = Xy o < L],

Again, integration in time and application of lemma 3.2 yields

lim |07, = X (Pg,7)|| 20,1y xy < Jim Chiy, = 0.

m—0o0 m—o0
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Lemma 3.10. Denote by Vip = d | vee,,, pg;pLK XDy, + Dooeen deKXDK‘U the dis-
o=K|L ¥ oeti K17

crete gradient associated to the mesh Tp,. Then, V,p, converges weakly in L2((0,T) x ) to
Vpg and V,py converges weakly in L2((0,T) x Q) to Vpy,.

Proof. Let ¢ € (C)¢ by an arbitrary test function. We denote by n k|, the normal vector of
o directed into L and by ¢k, - ng|r = 1 fD ¢ - ng|r dz the integral mean of ¢ - ng g,
|DK|L| K|L

on the diamond D r. The quantities x|, and ng|, are defined analogously. Then,

/ng (Vmpg) — Py, T,,divep dw

d’(7|dK|L Pg,L — Dg,K) d\U\dK\a Dy, K

= E d PK|L " MK|L T+ E do PKlo Ko
oEEint K|L 0€Eext K‘U
o=K|L €€k

-1 > (pg,L—pg,K)/HSO ngiLds+ Y Pok /| @ - NKlo ds

o€Eint o€yt |
o=K|L oclk

1
= Z |o|(pg,L — Pg.K) / YKL K| dT — ol ) ? ng|r ds
c€E s ‘ K\L‘ DkiL] lo]

o=K|L
1
+ E lo|pg, i @K|a Ng|o de — o] Y NE|o
o€€ert ‘ K‘ ‘ DK‘O' |U‘
o€EK

Since ¢ € (CX)4, we can bound

1 1
/ SDKL'nKLdUC—/ ¢ -ngpds < Chp,
‘DK|L) Pk 7] Jiof

and
1

1
/ PKlo NKlodT — 7 [ ¢ nKje < Chpy
(Dmg\ ko] 7] Jiof

Thus,

/Q 0 (Vinpg) = Poz,divods < Chun | D |ol(pgr — Do) + Y |olpgxc

o€€int c€Eeyt
o=K|L o€lK

< Chmlpgllg, | D loldrie+ D loldi

o€Eint o€€ert
o=K|L o€k
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< Cd|9||pg| 7, Fe

Integration in time and application of lemma yields

lim / / mpg — Py, Tndive dzdt = 0.

m—00
Since py 7;, converges weakly to py, this proves the weak convergence of V,,py to Vp,. ]

Theorem 3.11 (Convergence of the scheme). Let Hypotheses (H) hold and let T, be a
0)

sequence of space-time discretizations satisfying (T) with hy,, — 0 as m — oco. Let (pg T, )meN

a3

and (pEL?,)Tm)meN be a family of given initial conditions such that lim,, .o H pg?%—m

0 and oo ||y, ~ 22| , =
and lim Puy.1,, — P L)

If py 1, and py,1,, fulfill the scheme (3.1) for allm € N, then there exist p, € L2((0,T) x ),
pw € L2((0,T) x Q) and q¢ = py — py such that (up to a subsequence)

L2(Q)

1. (pg,T,, )menN converges weakly in L2((0,T) x Q) to Pg aS M — 00.

Puw.T,, )meN converges weakly in L2((0,T) x Q) to p, as m — oo.
VinPg T Jmen converges weakly in L2((0,T) x Q) to py as m — oc.

VnPw T, )men converges weakly in L2((0,T) x Q) to py as m — oo.

X (pg.1,.))men converges in L2((0,T) x Q) to X(z) := X (py(z)) as m — oo.

7., )men converges in L2((0,T) x ) to ky(S(q)) as m — oc.

‘"L

(
-
- (
- (
. (S(q7,))men converges in L2((0,T) x Q) to S(z) := S(q(x)) as m — co.
-
- (Kw
- (Ky7, )men converges in L2((0,T) x Q) to ky(S(q)) as m — .

9. (

U7, Jmen converges in L2((0,T) x ) to X(py) as m — oo.
and (pg, pw) is a weak solution of problem .

Proof. We use lemmas|3.2/and (3.4 to extract a subsequence of (7,,)men such that lemmas 3.5
to and items 1. to 9. of the theorem hold. Note further that p, and p,, are functions in
L2((0,7); HY(9)), since their extension by 0 outside of € is in L2((0,7); H'(R)).

Let now be ¢ € C([0,7T)) and w € CX(N) two test functions. Furthermore, writing 7
instead of 7,, and dropping the index m wherever confusion is excluded, we define the ap-
proximation wy of w by

W = Z w(xg)xK

KeT

wlx — wW\x
Vywr=| Y <(L)(K)nKL + vK|Ltw> XDwp T D ( K)nK\a + VK|a,tw> XDy

d d
K|L Do Klo

DL
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where Vi, denotes the tangential part of the discrete gradient in the diamond Dy,
Analogously, we define the approximation @7 of ¢ by

N-1 N-1
tn+1 o n
o= > (") Srer =Y il () ;0( )
n=0 n=0 ot n+2)

Note that by consistency of the approximation wz converges in L?(Q) to w and V,,ws con-
verges in L2(f2) to Vw. Analogously, @7 converges in L2([0,7)) to ¢ and d7¢7 converges in
L2([0,7)) to ¢

Multiplying (3.1a) by 5t("+%)g0(t”)w(ac k) and summing over all K and n, we obtain

N-1 1
S drdy ST S D (1w () (3.13)
n=0 KeT
! 1
= 3 st o) Y, wrl, e Z §tnts Vo). (3.13b)

Reordering of the terms in yields

N-1 1
Z Z (I)K(S,(;Hri)S}?Jrl)(st(nJr%)so(tn)w(xK)

n=0 KeT

:_Zétn—i— n+) (n—l—l Zq) S”+1) Z@KS

n=0 KeT KeT
/ 57107/ x)Stwr dzdt — p(0 )/ @(x)S(qg)))wq—da:.
Q
And therefore

lim Z S @rdy S (M w(e)
TS0 KeT

T
. / (1) / B(2)S(q(x))w(x) dadt — (0) / B(2)5(¢0 (@) w(z) do.
0 Q Q

The term in (3.13b) can be rewritten as

T
Z5t(n+%)¢(tn)[p1(§+l),wT]k(n+1)T—/ @T(t)/ﬂKw,Tvmpvawdedt
— w ’ 0

We easily have
N-1

lim Z(St (nt3) (t")f(nH) (xKx) = / /fwwdacdt

and, due to strong / weak convergence, we have

T T
i, [ or() [ KoaVupaVrordsit= [ o) [ k(500 Vpa T drd
Q 0 Q

m—00 0

which shows the convergence of (3.1a) to (1.2b). To show that (3.1b)) converges to (1.2¢), we
follow the same steps as above. O
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4 Numerical examples

To conclude the paper, we present two numerical example in one space dimension using the
following parameter.

®(x) = 0.2 A(x) = 10712
kg kg
3
fw(t,z) =0 fq(t,z) =0
D =0.

This means that we examine the results obtained in the case where the gas diffusion in the
water phase is negligible. Furthermore, we specify the functions S, X, k, and k,, as follows.

1

S(q) = — with n=2m=1/3,py = 10°Pa
max{—q,0} n
(=) 1)
X (pg) = min{cypy, X} with X =01
2
kw(S) = maX{S—, 1077} with fhy = 1073
Hw
1-5)?
ky(S) = max{(u), 1075} with fg =107°.
g

Both test cases will be performed with the same initial and boundary data, given by

py(0,7) = 10°Pa pw(0,2) = 10°Pa
py(t,0) = 3-10°Pa py(t, L) = 10°Pa
Pw(t,0) = 10°Pa pw(t,L) = 10°Pa.

To apply the algorithm (3.1)), we define the values Sk |, and Sk, at the cell boundaries by

1 1
Sk|iL = §(SK +SL) Sklo = §(SK + 50,

with Sg = S(gx) = S(Pw,k — Py, x) and S, = S(q,). Hereby, g, denotes the value of ¢ at the
boundary, specified by ¢(t,0) or ¢(t, L) respectively. Note that due to the initial conditions
we have S0 := §(¢(®)) = 1 in the whole computation domain. To take into account that this
choice does not imply k;(S) > k:;nm > 0 for the standard choices of k;, we bound k; artificially
from below by 107°. All convergence results continue to hold in this case, provided S > 0 is
satisfied during the computations.

For the first test case, we define the parameter ¢, of the function X (p,) by ¢, =3 - 10~7
and assume a length of the spacial interval of L = 103m. Figure[l shows the distribution of .S,
X(pg), pg and p,, at different times ¢. Each line corresponds to a time step of dt = 1month,
the simulation ends at time 7" = 2years. In this example, the parameter ¢, is chosen such that
the maximum fraction of dissolved gas in the water phase is not attained, X (py) is therefore
less than X in the whole computational domain [0, L] x [0, 7.
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S(@) X(py)

1 01
0.9 0.08
0.8
0.06
0.7
06 0.04
05 0.02
0 500 1000 0 500 1000

0 500 1000

Figure 1: Test case 1: X does not attain its maximum value.

s(@) X(py)
1 0.1
0.9 0.08
0.8
0.06
0.7
06 0.04
0.5 0.02
0 5000 10000 0 5000 10000
X X
x 10° Py x 10° P
3 1.4
2.5 13
2
1.2
15
1 1.1
0.5 1
0 5000 10000 0 5000 10000
X X

Figure 2: Test case 2: The maximum value of X is attained.
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For the second test case, we chose ¢, = 3.5 - 1077, and a length of the domain of L = 10%.
In this case, the maximum value of X is attained. Figure 2 shows the distribution of S,
X(pg), pw and py for time steps of dt = lyear, the simulation ends after T = 20years.

In both test cases, we observe the profiles of the water pressure. They show a maximum
value inside the domain, due to the fact that some water has to be removed (by flows at the
two boundaries) in order to leave some porous volume for the apparition of the gas phase.
As long as the gas phase does not appear, the gas pressure remains equal to its initial value,
which simply corresponds to the initial gas concentration in the water phase (this remains
exactly true since we performed the simulations with the value D = 0). The gas pressure
leaves its initial value mainly in the cells where the gas phase appears. We also remark, in
the second case, that the moving front defined as the boundary of the domain X (pg) < X
has some influence on the profile of the saturation and of the gas pressure.

5 Conclusion

In this paper we have studied the convergence of a finite volume scheme with two-point flux
approximation, to a solution of two-phase flow in porous media in the case of the partial
dissolution of one phase into the other one. It is interesting to notice that the scheme which
has been chosen here was the only one on which we have been able to derive this study, due to
the need of nonlinear expressions of the primary unknowns as test functions. Further works
to overcome this difficulty seem to be necessary, although it is not clear whether they can be
fruitful.
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