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 
Abstract—An efficient technique to provide fast and accurate 

analysis of large-scale and complex reconfigurable reflectarray 
antennas is presented and validated. The method combines the 
surrounded cell approach and the compression technique to 
analyze the global array. It takes into account the mutual 
coupling effects and the numerical complexity is reduced. Only a 
minor electromagnetic simulation and a fast post-processing are 
required. 
 

Index Terms—Reconfigurable reflectarray, rigorous analysis, 
surrounded cell approach, compression technique. 
 

I. INTRODUCTION 
EFLECTARRAYS [1]-[4] have received increasing attention 
in the last years, especially in space and defense 

applications. Reflectarray is an advanced antenna technology 
that combines key features of reflectors and phased array 
antennas. 

This type of antenna is an array of radiating elements, 
which is illuminated by a primary feed source. The radiating 
elements reflect the incident wave with prescribed phase shifts 
to form a desired radiation pattern.  

A reflectarray can be designed as a low profile antenna with 
high gain. The complex feed network that characterizes 
phased array antennas is not required anymore. 

For passive reflectarrays, the phase of the reflected field can 
be controlled by varying elements geometry such as a slot or a 
patch length [5]. 

Reconfigurable reflectarrays are attractive for implementing 
reconfigurable patterns. The cells have the same geometry and 
the dynamic phase control is achieved by electronically 
varying active loads inserted in each radiating cell. Analog or 
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binary control can be carried out using MEMS [6]-[7], PIN 
diodes [8] or varactors [9]. 

Reflectarray electromagnetic analysis is a computationally 
challenging task given that these antennas are electrically 
large. Furthermore, due to complex geometry or resonant 
behavior of radiating elements, a very fine mesh is required. 
High accuracy analysis is essential and, in this context, full-
wave modeling methods play a key role. 

A reflectarray can be composed of several thousands of 
radiating elements, making rigorous analysis of the whole 
antenna very difficult. Numerical techniques such as the 
Multilevel Fast Multipole Method permit to treat large 
structures in terms of wavelength. A quasi-periodic multilayer 
reflectarray was electromagnetically modeled in [10] but the 
simulation may suffer from numerical convergence problems 
for more complex reflectarrays. 

Because global simulations require prohibitive CPU time 
and memory resources, segmented approaches have been 
implemented. They consist in determining the field radiated by 
each cell and, in agreement with the superposition principle, 
the radiation pattern of the global antenna is computed by 
summing all the unit-cell contributions. The isolated cell 
approach [11] evaluates the unit-cell radiated field by 
analyzing the field scattered from the cell without considering 
the effects of its surrounding elements. The Floquet approach 
[12] considers that each radiating element is extracted from an 
infinite periodic array. This method does not take into account 
accurately the mutual coupling given that it assumes that the 
individual element is surrounded by identical neighbors. The 
'surrounded-element' approach [13] simulates each radiating 
cell with its actual neighboring cells. The mutual coupling 
effects are realistically accounted for and better results are 
reported using this method. The extended local periodicity 
technique [17] combines the 'surrounded-element' method and 
the Floquet approach to analyze passive reflectarrays. This 
technique takes into account the first direct neighbors around 
the central cell and Floquet boundary conditions are then 
applied to the resulting sub-array. This means an artificial 
periodicity is introduced at the sub-array level which can be 
responsible for inaccuracy in coupling evaluation. 

For structures with active loads, the computation time can 
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be reduced using the compression technique [15]-[16]. For 
reconfigurable reflectarrays, the Floquet approach can be 
combined to the compression method [17] to analyze a single 
unit-cell. The unit-cell, extracted from an infinite array of 
identical cells, is electromagnetically simulated once and a 
circuit simulation is carried out to derive the cell response as a 
function of active loads states. This approach is generally 
dedicated to the study and optimization of a unit-cell. 

In this paper, a new technique combining the 'surrounded-
cell' approach and the compression method is presented for the 
analysis of large and complex reconfigurable reflectarrays. 

II. PRINCIPLE 

A. General description 
As introduced in [18], each cell in the array is studied one 

after the other in order to compute the reflectarray radiation 
pattern. To determine the scattered field of one cell, a sub-
array made up of the considered cell and its closest neighbors 
is considered. The whole sub-array is illuminated by the 
incident wave and the field radiated by the considered cell is 
determined. Therefore, the mutual coupling between cells is 
accounted for in a realistic way. The same electromagnetic 
simulation is used whatever the studied cell given that the 
cells are geometrically identical and only the state of the 
active loads differs from one cell to another. Thanks to the 
compression approach, the specific state of active elements 
within the considered cell and its neighbors is taken into 
account afterwards through circuit simulations. In agreement 
with the superposition principle, the radiation pattern of the 
global array is then constructed by summing all the unit-cell 
contributions. 

B. Detailed description for the analysis of one cell 
For the sake of simplicity, the considered radiating element 

includes only one active load, which is a diode. In this case, 
the control is carried out in a digital manner although the 
method can be immediately applied to an analog control. For 
convenience, a sub-array composed of the studied cell and its 
two closest neighbors is considered (Fig. 1). The mutual 
coupling from further cells is neglected but the method is 
naturally expandable to a larger sub-array. A normally 
incident plane wave illuminates the whole sub-array while the 
radiation surface surrounds the studied cell. The generalization 
to multiple incidences and polarizations is straightforward. 
Using Huygens’s principle, the field radiated by the 
considered cell is calculated by integrating the fields on the 
radiation surface. 

 
Fig. 1.  Structure to analyze. 

  
Step 1. Electromagnetic simulation of the distributed passive 
part 

Diodes are replaced by localized ports and the 
electromagnetic simulation of the sub-array (Fig. 2) is realized 
as follows. 

 
Fig. 2.  Electromagnetic simulation of the sub-array. 
  

Each of the localized ports plus the plane wave excitation 
port is sequentially excited. 

Firstly, the plane wave port is excited and the others are 
terminated with 50-Ohm impedances. An incident wave ܽଵ is 
injected and given by 

ܽଵ=ඨ(ቛE1
incሬሬሬሬሬሬ⃗ ቛ

ଶ
ܵ)/η0 (1) 

with: 
- S the excitation surface,  
- E1

incሬሬሬሬሬሬ⃗  the incident E-field on port 1 and, 
 .଴ the vacuum impedanceߟ  -
The normalized far-field ℰଵ௥ሬሬሬሬ⃗  radiated from the central cell is 

recorded, as defined by 

ℰଵ௥ሬሬሬሬ⃗ = 	
ଵ௥ሬሬሬሬ⃗ܧ

ܽଵ
. (2) 

Next, the same procedure is repeated for all the localized 
ports and ℰప		ଶஸపஸସ௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  are recorded and obtained as 

ℰప		ଶஸపஸସ௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = 	
ప௥ሬሬሬሬ⃗ܧ
ܽ௜

 (3) 

where ai is imposed by the electromagnetic simulator. 
At the same time, the reflection and transmission 

parameters between ports ܵ௜௝	(ଵஸ௜ஸସ,ଵஸ௝ஸସ)	 are determined and 
gathered in a compression matrix [S]. For the localized ports, 
the electromagnetic simulator automatically computes the 
transmission and reflection parameters ܵ௜௝	(ଶஸ௜ஸସ,ଶஸ௝ஸସ)	. For 
the excitation port, a specific treatment is necessary for the 
transmission parameters on localized ports. When port 1 is 
excited, the current and voltage are determined on each 
localized port and ܾ௜ and ௜ܵଵ are deduced as follows 

ܾ௜  (2 ≤ ݅ ≤ 4) = 	 ௏೔ି௓బூ೔
ଶඥ௓బ

 (4) 

ܵ௜ଵ (2 ≤ ݅ ≤ 4) = 	 ௕೔
௔భ

. (5) 
Step 2. Compression method 

The second step is the compression method. It aims at 
considering on- and off-state equivalent impedances of diodes. 
It consists in carrying out the circuit simulation of the loaded 
sub-array, as described in Fig. 3. 

Excitation surface 

 . . . . . . 
Radiation surface 

. . 
~ 2 

. . 
~ 3 

. . 
~ 4 

Radiation surface 

1 Excitation port 
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Fig. 3.  Circuit simulation of the loaded structure. 
  

A wave ܽଵᇱ  is injected and defined as 

ܽଵᇱ=ට(ቛE1
ᇱሬሬሬሬ⃗ ቛ

ଶ
ܵ)/η0 (6) 

where E1
ᇱሬሬሬሬ⃗  is the desired incident E-field on port 1 of the 

loaded structure (Fig. 3). 
Then, the other coefficients (ܽ௜ᇱ and ܾ௜ᇱ) are computed 

through a circuit simulation. The expression of [ܾᇱ] is given by 

[ܾᇱ] = ൞[ܵ]൮

ଵ߁ 0 0 0
0 ଶ߁ 0 0
0 0 ଷ߁ 0
0 0 0 ସ߁

൲− ௗൢܫ

ିଵ

൞−[ܵ]൮
ܽଵᇱ
0
0
0

൲  ൢ (7) 

with ߁ଵ = ௜ஹଶ߁ ,0 = 	
௓ೀ೙/ೀ೑೑ି௓బ 	

௓ೀ೙/ೀ೑೑ା௓బ
, ܼ଴ =  ௗ theܫ and ,ߗ50

identity matrix. 
The incident waves ܽ௜ஹଶᇱ  are directly deduced: ܽ௜ᇱ = ௜߁ ௜ܾ

ᇱ. 
Step 3. Superposition of the contribution of each port 

The radiation pattern of the loaded cell is obtained by 
summing the contribution of each port. 

௖௘௟௟௥ሬሬሬሬሬሬሬሬ⃗ܧ = 	෍ܽ௞ᇱ
ସ

௞ୀଵ

ℰ௞௥ሬሬሬሬ⃗  (8) 

C. Advantages of the proposed method 
The major advantage of the method is that it allows actual 

mutual coupling effects to be accounted for. 
Secondly, this method leads to a drastic reduction of the 

computational costs compared with global approaches. It 
requires only one lightweight electromagnetic simulation for 
the whole antenna. 

Moreover, the radiation pattern of any reflectarray 
configuration of the active elements is determined promptly 
by circuit simulations. 

Furthermore, the proposed method is a flexible technique. It 
is independent of the number of cells in the array and it is 
expandable to analyze electrically large reflectarrays. 

 
Four examples are considered to demonstrate the 

performance and the applicability of the proposed method for 
solving the electromagnetic problems associated with 
reconfigurable reflectarrays. 

III. RESULTS 

A. Presentation 
THALES Systèmes Aéroportés has developed a reflectarray 

design and a detailed description of the cell can be found in 
[19]. The unit-cell consists of a printed circuit with RF 
switches inside an opened rectangular metallic cavity (Fig. 4). 

 
Fig. 4.  Reflectarray phase shifting cell. 
 

The digital phase control is provided by two pairs of PIN 
diodes located on the printed circuit which leads to four 
possible states as depicted in Table I. The reflectarray operates 
in the X-band and optimal performance in radiation has been 
demonstrated in a 25% frequency bandwidth. Diodes have a 
forward resistance of 2.5 Ohms (ZOn) while their reverse 
blocking capacitance (ZOff) is 50 fF. The reconfigurable 
reflectarrays studied below are analyzed at 8.7GHz and the 
size of a unit cell is 0.35λ in the E-Plane and 0.72λ in the H-
Plane. 

The electromagnetic HFSS® commercial software, which is 
based on the Finite Element Method, is used and the unit-cell 
design used for the simulation is represented in Fig. 5. The 
design does not include biasing lines and, for the validation, 
an impinging plane wave under normal incidence is assumed. 

 
Fig. 5.  Unit-cell design for the simulation 
  

A 360° phase range is achieved with about 90° progressive 
steps between the four states (Table I). The phase values are 
obtained combining the Floquet approach with the 
compression method. However, the results are strictly the 
same than those obtained with the Floquet method. The only 
difference concerns the computation time which is reduced 
thanks to the compression method. For the sake of simplicity, 
the method is just called the Floquet approach. 

 
TABLE I 

PHASE VALUES OF THE CELL RESPONSE UNDER NORMAL INCIDENCE AT 
8.7GHZ WITH THE FLOQUET APPROACH  

State Phase 
On-On 31.0° 
Off-Off -49.0° 
On-Off -123.6° 
Off-On -175.8° 

  

B. Number of cells required in the sub-array 
For the considered cell, a preliminary study is done in order 

to determine the required size of sub-arrays. This size depends 
of the mutual coupling between cells and does not depend of 
the total array size. The study consists in comparing the phases 
obtained by the Floquet approach to those obtained by the 
proposed method with 3x3, 5x5 and 7x7 uniform sub-arrays. 

Given that the Floquet approach analyzes an infinite 
periodic structure, the phases should be closer as the number 
of cells in the sub-array increases. Firstly, a 3x3 sub-array 

a1 

b2 
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with all the cells in “On-On” state is simulated and the 
radiation surface surrounds the central cell, as depicted in Fig. 
6. Then, the phase of the co-polarization component of the 
electric field, radiated by this cell for θ equals 0°, is 
determined. 

 
Fig. 6.  3x3 sub-array with all the cells in “On-On” state. 
  

The same procedure is carried out for the three other states 
and with 5x5 and 7x7 uniform sub-arrays. The results are 
reported in Table II and they are compared to the phases 
obtained with the Floquet approach (Table I). 
 

TABLE II 
PHASE VALUES OF THE CENTRAL CELL WITH 3X3, 5X5, AND 7X7 SUB-ARRAYS 

UNDER NORMAL INCIDENCE AT 8.7GHZ 
             Phase 
State 

3x3 sub-
array 

5x5 sub-
array 

7x7 sub-
array 

On-On 45.9° 26.6° 33.0° 
Off-Off -45.1° -48.1° -51.4 
On-Off -125.3° -127.1° -119.7° 
Off-On -183.8° -179.8° -171.8 

  
According to the results, a maximum of 15° occurs between 

the Floquet approach and the proposed method with 3x3 sub-
arrays. When 5x5 and 7x7 sub-arrays are considered, the 
difference between the Floquet approach and the proposed 
method is approximately 4°. This residual error can be related 
to the numeric error introduced by the electromagnetic 
simulation which is more complex when the number of cells 
increases. As a consequence, 5x5 sub-arrays are sufficient to 
estimate the mutual coupling effects in reconfigurable 
reflectarrays of any size composed by this type of cells. 

C. Validation of the method with a 10x10 reflectarray 
A small-sized array of 10x10 cells is studied so that it can 

be simulated entirely with HFSS for validation. This 
simulation of the global antenna is the reference simulation 
and allows to compare results from different approaches. 

The array is illuminated by a normal-incident plane wave 
and the aim is to steer the direction of the main beam in the 
(φmax = 45°; θmax = 10°) direction. To do so, the state of all 
diodes is determined according to the relevant phase law using 
Floquet phase values (Table I) and the configuration of the 
diodes is depicted in Fig. 7. 

 
Fig. 7.  10x10 array with a main beam in the (φmax = 45°; θmax = 10°) direction 
 

The reconfigurable reflectarray is simulated with three 
different approaches: 

- The global simulation of the reflectarray replacing the 
diodes with their equivalent impedances (reference), 

- The Floquet approach, 
- The proposed approach with 5x5 sub-arrays. 
The radiation patterns obtained with the three approaches 

are reported in Fig. 8. 

Fig. 8.  Comparison of the proposed method with 5x5 sub-arrays and the 
Floquet approach for a 10x10 reflectarray. 
  

First of all, the results achieved with the proposed method 
are in good agreement with those obtained with the reference 
simulation. Secondly, the proposed method gives better results 
than the Floquet approach. However, in this case, the Floquet 
approach is acceptable given that few diode states 
discontinuities exist on the reflectarray. 

In order to provide a more quantitative assessment, the 
statistical results set out in Table III compare the two different 
approaches to the reference simulation. The PLerror parameter 
estimates the field amplitude difference between the studied 
approach and the reference in the main lobe direction. This 
error is 0.09dB for Floquet and 0.07dB for the proposed 
method. The MAE parameter, which stands for ‘Mean 
Absolute Error’, is the average of the absolute differences 
between the method and the reference for θ over the interval [-
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90, 90] degrees. The MAE is equal to 0.91dB with the 
proposed technique using 5x5 sub-arrays and 1.93dB with the 
Floquet method. 

 
 

TABLE III 
STATISTICAL RESULTS 

 Floquet 
Proposed method 
with 5x5 sub-
arrays 

PLerror (dB) 0.09 0.07 
MAE(dB) 1.93 0.91 

  
Besides, all the computations are carried out on an Intel® 

Xeon® E5506 2.13GHz Quad Core with 48 GB RAM. The 
simulation of the global antenna requires 587 minutes for each 
reflectarray configuration of the diodes. In comparison, the 
electromagnetic simulation of the 5x5 sub-array requires 201 
minutes and the circuit simulation performed to consider the 
state of active elements requires only 55 seconds. In this 
example, one specific configuration is studied but the method 
can easily analyze any configuration. In conclusion, the 
proposed method using 5x5 sub-arrays has been validated on a 
simple case and has proved to be accurate. 

D. Analysis of a 10x10 reflectarray 
A second example of a small-sized array of 10x10 cells is 

studied. This example is not a practical one but the purpose is 
to show that the proposed method is more robust than the 
Floquet approach. 

The array is illuminated by a normal-incident plane wave 
and the aim is to steer the direction of the main beam in the 
(φmax = 45°; θmax = 30°) direction. The configuration of the 
diodes in the array is represented in Fig. 9. 

 

 
Fig. 9.  10x10 array with a main beam in the (φmax = 45°; θmax = 30°) direction 
 

As in section B, the reconfigurable reflectarray is simulated 
with three different approaches and the radiation patterns are 
reported in Fig. 10.  

A difference of approximately 2.5dB exists for the first 
quantification lobe between the reference and the Floquet 
approach. There is a noticeable difference of 9.7dB for the 

second quantification lobe between the reference and the 
Floquet approach while the proposed method is in good 
agreement with the reference. The Floquet approach is not 
accurate since strong variations of cell states are encountered 
on the reflectarray. The infinite array assumption is not 
acceptable in this case. 

 

Fig. 10.  Analysis of a 10x10 reflectarray with the proposed method with 5x5 
sub-arrays, the Floquet approach and the global simulation. 
  

As depicted in Table IV, the PLerror is 0.36dB for Floquet 
and 0.21dB for the proposed method. With the proposed 
technique using 5x5 sub-arrays, the MAE is equal to 0.86dB 
which is less than the 2.89dB obtained with the Floquet 
method. For the two parameters, the proposed method with 
5x5 sub-arrays is more accurate than the Floquet approach. 
 

TABLE IV 
STATISTICAL RESULTS 

 Floquet 
Proposed method 
with 5x5 sub-
arrays 

PLerror (dB) 0.36 0.21 
MAE(dB) 2.89 0.86 

  

E. Analysis of a uniform 50x50 reflectarray 
A more complex case has been chosen to show the 

capability of the technique for analyzing larger reflectarrays 
without a considerable increase in the processing time. 

The considered reflectarray is now composed of 50x50 cells 
and is illuminated by a normal-incident plane wave. All the 
diodes within the array are in the same state and thus the 
infinite array environment assumption is justified. Then, the 
Floquet approach is expected to be accurate. 

The analysis of the global antenna using a standard rigorous 
method, like the FEM (Finite Element Method), is impossible. 
Fig. 11 shows the far-field patterns obtained using the 
proposed method and the Floquet approach. The agreement 
between the two approaches confirms the effectiveness of the 
proposed method on larger reflectarray. 

Moreover, to analyze the 50x50 reflectarray, the proposed 
method with 5x5 sub-arrays requires, as before, 201 minutes 
for the electromagnetic simulation. The only difference 
concerns the post-processing which requires 18 minutes 
instead of 55 seconds for the 10x10 reflectarray. 
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Fig. 11.  Simulation of a uniform 50x50 reflectarray using the proposed 
method with 5x5 sub-arrays and the Floquet approach. 
  

F. Analysis of a 50x50 reflectarray 
As for the first example, the states of diodes are now chosen 

to steer the beam in the (φmax = 45°; θmax = 10°) direction and 
the array is illuminated by a normal-incident plane wave. 

The radiation patterns are reported in Fig. 12. A difference 
of 1.6dB and 3.5dB exists for the first quantification lobes 
between the proposed method and the Floquet approach. 
Contrary to the precedent 50x50 array example, this array is 
not uniform and the Floquet approach does not take into 
account accurately the mutual coupling. As a consequence, the 
Floquet approach can’t be accurate and the proposed method 
gives better results. 

Fig. 12.  Simulation of a 50x50 reflectarray using the proposed method with 
5x5 sub-arrays and the Floquet approach. 
  

IV. CONCLUSION 
A fast technique to simulate reconfigurable reflectarrays 

with mutual coupling consideration has been described and 
validated. It was shown that the proposed technique is more 
accurate than the Floquet approach. The efficiency and 
strength of the proposed method has been proved for the 
analysis of two 10x10 and two 50x50 reconfigurable 

reflectarrays. Furthermore, this method is well-adapted for any 
kind of reconfigurable reflectarray no matter what the 
configuration of the active elements is and how large the array 
is. 
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