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Abstract

We construct the type-IIB AdS4nK supergravity solutions which are dual to
the three-dimensional N = 4 superconformal field theories that arise as infrared
fixed points of circular-quiver gauge theories. These superconformal field theories
are labeled by a triple (ρ, ρ̂, L) subject to constraints, where ρ and ρ̂ are two
partitions of a number N , and L is a positive integer. We show that in the
limit of large L the localized five-branes in our solutions are effectively smeared,
and these type-IIB solutions are dual to the near-horizon geometry of M-theory
M2-branes at a C4/(Zk × Zk̂) orbifold singularity. There is no known M-theory
description, on the other hand, that captures the dependence on the full generic
data (ρ, ρ̂, L) . The constraints satisfied by this data, together with the enhanced
non-abelian flavour symmetries of the superconformal field theories are precisely
reproduced by the type-IIB supergravity solutions. As a bonus, we uncover a
novel type of “orbifold equivalence” between different quantum field theories and
provide quantitative evidence for this equivalence.
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1 Introduction

Conformal field theories play a distinguished role in the space of all quantum
field theories. They reside at fixed points of the renormalization group, which
generates a flow in the space of quantum field theories. Any non-conformal field
theory can be reached under renormalization group evolution by perturbing a
conformal theory with a suitable operator. The central role that conformal field
theories play in our understanding of quantum field theory is one of the reasons
why they have been a subject of enduring interest.
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A large class of conformal field theories can be obtained by perturbing a Gaus-
sian fixed-point theory in the ultraviolet by a relevant operator, and following the
renormalization group flow in the infrared. Infrared fixed points which arise af-
ter “long” renormalization group flows are, however, inherently strongly coupled,
and therefore not amenable to study with conventional field theory techniques.
The discovery of the AdS/CFT correspondence [1, 2, 3] has opened a new window
into the world of strongly-coupled conformal field theories, turning the study of
some of them (in the large N limit) to the study of string theory in asymptotically
anti-de-Sitter backgrounds.

In this paper, we provide the type-IIB string theory backgrounds dual to a
very large class of strongly coupled, three dimensional N = 4 superconformal
field theories. These backgrounds have a warped AdS4 nK geometry with very
specific five-brane sources. They are dual to the non-trivial infrared fixed points
of three-dimensional N = 4 supersymmetric gauge theories corresponding to
circular quiver gauge theories depicted in figure 2. These quiver gauge theo-
ries admit an elegant realization in terms of the low energy limit of intersecting
brane configurations [4]. The dual type-IIB backgrounds we construct encode
the backreacted near-horizon geometry of these brane configurations.

The circular quiver gauge theories that give rise to irreducible superconformal
field theories in the infrared are labeled by the triple

(ρ, ρ̂, L) ,

where ρ and ρ̂ are two ordered partitions of N and L is a positive integer. In order
for the ultraviolet quiver gauge theory to be well defined, the Young tableaux
corresponding to the partitions ρ and ρ̂ must satisfy a set of constraints which
can be summarized, as we will explain, by the inequality

ρT + L > ρ̂ . (1.1)

Besides being invariant under the OSp(4|4) superconformal symmetry group,
these infrared fixed-point theories have a rich pattern of global symmetries that
go beyond those present in the theory in the ultraviolet. For a superconformal
field theory emerging from a circular quiver labeled by partitions ρ and ρ̂, the
infrared theory acquires an enhanced global symmetry

Hρ ×Hρ̂ , (1.2)

where Hσ is the commutant of SU(2) in U(N) for the embedding σ : SU(2) →
U(N) characterized by the partition σ of N . The explicit AdS4 n K type-IIB
string backgrounds we construct provide a concrete realization of the constraints
(1.1) and reproduce the precise pattern of global symmetries (1.2).
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The construction of these string backgrounds extends previous work in [5, 6],
where the bulk description of the strongly coupled, three dimensional N = 4
superconformal field theories that arise as infrared fixed points of linear quiver
gauge theories was presented. All these solutions emerge from the analysis of the
equations derived in [7] (see also [8]) which determine the most general OSp(4|4)
invariant type-IIB supergravity backgrounds. These equations can be, in turn,
elegantly solved [9, 10] in terms of two harmonic functions on an open Riemann
surface. The Riemann surface relevant for the linear quivers is a strip, whereas
the one relevant for circular quivers is an annulus. Pleasingly, the data of a
circular quiver gauge theory which flows to a superconformal field theory in the
infrared is encoded in special “punctures” at the boundary of the annulus.

A class of three-dimensional N = 4 superconformal field theories that arise
from circular quivers are known to admit an M-theory description in terms of M2-
branes at an orbifold singularity [11, 12]. By taking a certain smearing limit of
our solutions, we are able to reproduce these M-theory solutions by T-dualizing
the circular dimension of the annulus, and lifting the resulting type-IIA back-
ground to eleven dimensions. As far as we know, however, our general type-IIB
solutions describe superconformal field theories for which an M-theory solution
is not known. It would be interesting to investigate if such a construction in
M-theory can be actually found.

An interesting outcome of our investigations is a new type of “orbifold equiva-
lence” between different quantum field theories. Based on the SL(2,R) symmetry
of type-IIB supergravity we arrive at the conjecture that gauge theories living on
brane configurations which are related by SL(2,Q) transformations are equiva-
lent in a certain large N limit. Theories related by SL(2,Z) transformations are
of course exactly equivalent, or mirror-symmetric, while more general SL(2,Q)
transformations can be regarded as orbifoldings of the F-theory torus. A simi-
lar generalization of the T-duality group O(d, d,Z) to a semigroup extension of
O(d, d,Q) has been analyzed recently in [13]. We provide quantitative evidence
for this new orbifold equivalence by explicitly computing the partition function
on S3 of two different theories, which are related by SL(2,Q), and showing that
these partition functions match exactly.

The plan of the rest of the paper is as follows. In section 2 we introduce the
linear and circular quivers, which are the main objects of study in this paper.
We also recall the conditions under which an ultraviolet quiver gauge theory is
expected to flow in the infrared to an irreducible superconformal field theory
and provide the data and constraints characterizing irreducible superconformal
field theories, both for linear and circular quivers. In section 3 we present the
supergravity solutions corresponding to the fixed points arising from circular
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quivers, also introducing the main features of the solutions corresponding to
linear quivers that are needed for our analysis. In section 4 we establish the
dictionary between the infrared SCFTs and our supergravity solutions and find
perfect agreement. Section 5 contains the analysis of various interesting limits
of the solutions and discusses their interpretation. This includes an interesting
“smeared” limit that results in M-theory geometries describing M2-branes at
orbifold singularities. In section 6 we explain how our supergravity solutions
can be used to yield theories that are equivalent under a novel type of “orbifold
equivalence”. We provide quantitative evidence for this by computing the large
N partition function of a proposed dual pair and we find perfect agreement. We
have relegated to the Appendices some details and computations.

2 Quivers, Infrared Fixed Points and Branes

2.1 Linear and circular quivers

The three-dimensional N = 4 superconformal field theories considered in this
paper arise as non-trivial infrared fixed points of three-dimensional quiver gauge
theories with N = 4 supersymmetries. Their field content and their microscopic
Lagrangians are succinctly summarized by a quiver diagram [14]. In our case the
diagrams will have either linear or circular topology (see figures 1 and 2). We
refer to the corresponding quivers as linear and circular respectively.

N1N2Nk̂−1

Mk̂−1 M2 M1

Figure 1: A linear quiver with k̂− 1 gauge-group factors U(N1)×U(N2)× · · · . The red boxes indicate the
numbers of hypermultiplets in the fundamental representation of each gauge-group factor.

The vector multiplets of these quiver gauge-field theories transform in the
adjoint representation of the gauge group

U(N1)× U(N2)× ... U(Ni)× ... . (2.1)
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N1

N2

M2

M1

Nk̂

Mk̂

N3M3

Figure 2: A circular quiver with k̂ gauge-group factors. The U(Ni) theories interact via bifundamental
hypermultiplets (the blue lines) which form a circular chain, as opposed to the linear chain of figure 1.

Moreover, these theories contain a hypermultiplet transforming in the bifunda-
mental representation of each consecutive pair of gauge groups U(Ni)×U(Ni+1).
For linear quivers 1 ≤ i ≤ k̂ − 2, while for the circular quivers 1 ≤ i ≤ k̂ with
the convention that U(Nk̂+1) ≡ U(N1). Finally, there are Mi hypermultiplets in
the fundamental representation of the group U(Ni).

1

A central question about the dynamics of these gauge theories is whether they
flow to a non-trivial fixed point of the renormalization group in the infrared. Since
massive fields decouple in the infrared, we will assume that hypermultiplet masses
and Fayet-Iliopoulos terms are set to zero. We also assume for now vanishing
Chern-Simons terms – we will consider however such terms later in the paper.
The quiver data and the extended N = 4 supersymmetry specify then completely
the microscopic, renormalizable Lagrangian.

We are interested in “irreducible superconformal field theories”, i.e. theo-
ries not containing a decoupled sector with free vector multiplets and/or free
hypermultiplets.2 It has been conjectured by Gaiotto and Witten [15] that a
necessary and sufficient condition for a gauge theory to flow to an irreducible
superconformal field theory is

NF,i ≥ 2Ni . (2.2)

1In the special case k̂ = 1 the circular quiver has a single gauge-group factor, U(N1), and the bifunda-
mental hypermultiplet is a hypermultiplet in the adjoint representation of U(N1).

2On general grounds, we do not expect the bulk dual of a strictly free field theory to be describable by
supergravity. Such a theory would require, due to the existence of higher spin conserved currents, higher
spin fields propagating in the bulk.
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In words, each gauge-group factor U(Ni) should have at least 2Ni hypermultiplets
transforming in the fundamental representation. A more refined irreducibility
condition will be discussed below. Recall that a hypermultiplet in the fundamen-
tal and anti-fundamental representation are equivalent. Therefore, for a quiver
gauge theory, the above requirement of irreducibility in the infrared imposes the
following inequalities on the quiver data

Mi +Ni−1 +Ni+1 ≥ 2Ni . (2.3)

One way to argue for the above conditions is that when they are obeyed the
gauge group can be completely Higgsed [16], and there exists a singularity at
the origin of the Higgs branch, from which the Coulomb branch emanates. A
non-trivial superconformal field theory appears in the infrared limit of the gauge
theory around that vacuum. Conversely, when complete Higgsing is not possi-
ble, decoupled multiplets remain in the infrared, thus yielding non-irreducible
theories.

The quiver data that characterizes the irreducible superconformal field the-
ories can be repackaged in a convenient way in terms of two partitions, ρ and
ρ̂, of the same number N (this is explained below). As usual, one can associate
a Young tableau to each partition. The quiver theory can be described by the
following data

• for linear quivers : (ρ, ρ̂) subject to the constraints

ρT > ρ̂ ; (2.4)

• for circular quivers: (ρ, ρ̂, L) subject to the constraints

ρT ≥ ρ̂ , L > 0 . (2.5)

Here ρ and ρ̂ denote the two partitions of N , and L is a positive integer. The
inequality ρ > σ between partitions means that the total number of boxes in
the first n rows of ρ exceeds the same number in σ, for all n. Transposition
interchanges the columns and rows of a Young tableau. The inequality (2.4) has
appeared previously in different contexts related to solutions of Nahm’s equations,
see e.g. [17, 18].

We denote the linear-quiver theory associated to (ρ, ρ̂) by T ρρ̂ (SU(N)), and the
circular-quiver theory with data (ρ, ρ̂, L) by Cρ

ρ̂(SU(N), L). It turns out that the
above Young-tableaux constraints are automatically satisfied if the ranks of all the
gauge groups of the ultraviolet theories are positive, that is if all Ni > 0. If some
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Young-tableaux inequalities were saturated for a linear quiver, the quiver would
break down to decoupled quivers plus free hypermultiplets. Circular quivers, on
the other hand, degenerate to linear quivers when L = 0.

As we shall see, this data also completely encodes the field content of the
ultraviolet mirror pair [19] of quiver gauge theories which flow to the same fixed
point in the infrared. Mirror symmetry for this class of quiver gauge theories is
realized very simply by the exchange of the two partitions

mirror symmetry : ρ←→ ρ̂ . (2.6)

Therefore, T ρρ̂ (SU(N)) and T ρ̂ρ (SU(N)) are mirror linear-quiver gauge theories,

while Cρ
ρ̂(SU(N), L) and C ρ̂

ρ(SU(N), L) are mirror circular quivers. The Young
tableaux constraints are symmetric under the exchange of ρ and ρ̂, see appendix
A, and are therefore consistent with mirror symmetry.

These infrared superconformal field theories are believed to have a rich pat-
tern of global symmetries, inherited from the symmetries acting on the Higgs
and Coulomb branch of the quiver gauge theory from which the fixed point is
reached in the infrared. Since mirror symmetry exchanges the Higgs and Coulomb
branches of mirror pairs, we conclude that the global symmetry at the fixed point
is

H × Ĥ , (2.7)

where
H =

∏

i

U(Mi) and Ĥ =
∏

i

U(M̂i) . (2.8)

H is the symmetry that rotates the fundamental hypermultiplets of T ρρ̂ (SU(N))

or Cρ
ρ̂(SU(N), L), while Ĥ rotates the fundamental hypermultiplets of their mir-

ror duals. The two symmetries coexist at the superconformal fixed point.

In this paper we find the bulk gravitational description of the irreducible three
dimensional N = 4 superconformal theories to which circular quiver gauge theo-
ries of the above type flow in the infrared. We already presented the supergravity
description of the superconformal theories associated to linear quivers in [5].

2.2 Brane Realization

The above three-dimensional N = 4 supersymmetric linear and circular quiver
gauge theories admit an elegant realization as the low-energy limit of brane con-
figurations in type-IIB string theory [4]. The brane configuration consists of an
array of D3, D5 and NS5 branes oriented as shown in the table.3

8



0 1 2 3 4 5 6 7 8 9
D3 X X X X
D5 X X X X X X
NS5 X X X X X X

Table 1: Brane array for three-dimensional quiver gauge theories

For linear quivers, the D3 branes span a finite interval along the x3 direction and
terminate on the five-branes, while for circular quivers x3 parametrizes a circle.

Linear Quivers

The brane configuration corresponding to the linear quiver gauge theory of
Figure 1 is depicted in Figure 3. An invariant way of encoding a brane configu-
ration – and the corresponding quiver gauge theory – is by specifying the linking
numbers of the five-branes. They can be defined as follows

li = −ni +RNS5
i (i = 1, ..., k)

l̂j = n̂j + LD5
j (j = 1, ..., k̂) , (2.9)

where ni is the number of D3 branes ending on the ith D5 brane from the right
minus the number ending from the left, n̂j is the same quantity for the jth NS5
brane, RNS5

i is the number of NS5 branes lying to the right of the ith D5 brane
and LD5

j is the number of D5 branes lying to the left of the jth NS5 brane. These
numbers are invariant under Hanany-Witten moves [4], when a D5 brane crosses
a NS5 brane. Since the extreme infrared limit is expected to be insensitive to
these moves, it is convenient to label the infrared dynamics in terms of the linking
numbers.

The brane construction of the linear quivers shown in Figure 3 is characterized
by the following linking numbers

li = j for a D5 brane between the j-th and (j + 1)-th NS5 brane,(2.10)

with a labeling such that l1 ≥ .. ≥ lk;

l̂j = Nj−1 −Nj +
k̂−1∑

s=j

Ms for j = 1, .., k̂. (N0 = Nk̂ = 0) . (2.11)

We may move all the NS5 branes to the left and all the D5 branes to the right,
noting that a new D3 brane is created every time that a D5 crosses a NS5. In

3For more details of these brane constructions see [4][15].
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D5 D5 D5NS5 NS5 NS5 NS5 NS5

Figure 3: Brane realization of linear quivers

the end, all the D3 branes will be suspended between a NS5 brane on the left
and a D5 brane on the right, so that the linking numbers satisfy the sum rule

k∑

i=1

li =
k̂∑

j=1

l̂j ≡ N , (2.12)

where N is the total number of suspended D3 branes. This implies that the two
sets of five-brane linking numbers define two partitions of N

ρ : N = l1 + . . .+ lk

= 1 + . . .+ 1︸ ︷︷ ︸
M1

+ 2 + . . .+ 2︸ ︷︷ ︸
M2

+ . . .+ . . . (2.13)

ρ̂ : N = l̂1 + . . .+ l̂k̂
= 1 + . . .+ 1︸ ︷︷ ︸

M̂1

+ 2 + . . .+ 2︸ ︷︷ ︸
M̂2

+ . . .+ . . . . (2.14)

This is the repackaging of the quiver data in terms of partitions of N , mentioned
above. It is illustrated by Figure 4.

In the original configuration of Figure 3 the D5 brane linking numbers are, by
construction, positive and non-increasing, i.e. l1 ≥ · · · ≥ li ≥ li+1 · · · ≥ lk > 0,
but this is not automatic for the linking numbers of the NS5 branes. Requiring
that the NS5 brane linking numbers be non-increasing, that is l̂1 ≥ · · · ≥ l̂i ≥
l̂i+1 · · · ≥ l̂k̂ = Nk̂−1, is equivalent, as follows from (2.11), to

Mi +Ni−1 +Ni+1 ≥ 2Ni . (2.15)
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.... ....1 2 kk̂ 12

Figure 4: Pushing all D5-branes to the right of all NS5-branes makes it easy to read the linking numbers, as
the net number of D3-branes ending on each five-brane. In this example ρ = (3, 2, · · · 2) and ρ̂ = (4, 2, · · · 1).

This is the same as (2.3), the necessary and sufficient conditions for the corre-
sponding (‘good’) quiver gauge theories to flow to an irreducible superconformal
field theory in the infrared. Notice that if these conditions are not obeyed the
linking numbers of the NS5 branes need not even be positive integers. Further-
more, for the good theories that obey (2.15), it follows from the expressions (2.11)
that the Young tableaux conditions ρT > ρ̂ are automatically satisfied, as long
as the rank of each gauge-group factor in the quiver diagram is positive.

In the configuration of Figure 4 on the other hand, the meaning of the above
conditions changes. The ordering and positivity of all linking numbers is now
automatic (more precisely, it can be trivially arranged by moving 5-branes of
the same type past each other). The constraints ρT > ρ̂ on the other hand are
non-trivial; they are the ones that guarantee that a supersymmetric configura-
tion like the one of Figure 3 can be reached by a sequence of Hanany-Witten
moves [5]. The two types of configuration shown in the figures are in one-to-one
correspondence when all these inequalities are satisfied by the five-brane linking
numbers.

Summarizing, the linear-quiver N = 4 gauge theories conjectured in [15] to
flow to irreducible fixed points in the infrared, without extra free decoupled
multiplets, are labeled in an invariant way by two ordered partitions of N , with
associated Young tableaux ρ and ρ̂ subject to the conditions ρT > ρ̂.

Circular Quivers

The brane configuration corresponding to the circular-quiver gauge theory
of Figure 2 is given in Figure 5. In this case the x3 coordinate along the D3
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branes is periodic. Compared to the linear case, there are Nk̂ > 0 additional

D3 branes extended between the first and the k̂th NS5 branes that close the
circle. There can be, as well, Mk̂ ≥ 0 extra D5 branes giving rise to fundamental
hypermultiplets.

N1
Nk̂−1

︸︷︷︸ ︸︷︷︸ ︸︷︷︸
M1Mk̂−1

cut Nk̂ ≡ L

Mk̂

Figure 5: Brane realization of circular quivers. To attribute linking numbers to the five-branes we cut open
the k-th stack of D3 branes, and place the k-th D5 stack at the left-most end.

We can associate linking numbers to the five-branes by cutting open the cir-
cular quiver along one of the suspended D3-brane stacks, say the k-th stack. We
also choose to place the k̂-th stack of D5 branes at the left-most end of the open
chain, as shown in Figure 5. The linking numbers are gauge-variant quantities,
and the above choices amount to fixing partially a gauge. In this gauge the
linking numbers read:

li = j for the j-th stack of D5 branes , (2.16)

l̂j = Nj−1 −Nj +
k̂∑

s=j

Ms , with j = 1, .., k̂ . (N0 = Nk̂) (2.17)

As in the case of linear quivers, we label the NS5 branes in order of appearance
from right to left, and the D5 branes from left to right.

Defined as above, the linking numbers obey the sum rule (2.12) with N ≡∑k̂
s=1 sMs. Furthermore the linking numbers of the D5 branes are by construction

non-increasing, positive and bounded by the number of NS5 branes, i.e.

k̂ ≥ l1 ≥ · · · li ≥ li+1 · · · ≥ lk > 0 . (2.18)
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What about the linking numbers of NS5 branes? For linear quivers, imposing
that the l̂j be non-increasing was equivalent to the Higgsing conditions (2.2)
that singled out the ‘good theories’, i.e. those believed to flow to an irreducible
superconformal fixed point in the infrared. Now, the Higgsing conditions can be
written as

0 ≤ Nj+1 +Nj−1 − 2Nj +Mj = l̂j − l̂j+1 for j = 1, .., k̂ − 1 (2.19)

0 < N1 +Nk̂−1 − 2Nk̂ +Mk̂ = l̂k̂ − l̂1 +
k̂∑

s=1

Ms . (2.20)

The second line, which gives the condition for Higgsing of the k̂-th gauge-group
factor, needs explaining. We have assumed that, for this factor, the inequality
(2.2) is strict. A good circular quiver always has at least one such gauge-group
factor because, if all the inequalities (2.2) were saturated, it can be shown that
all the Nj are equal, and all Mj = 0. So, in this case, there would be only bi-
fundamental hypermultiplets, but these cannot break completely the gauge group
since they are neutral under the diagonal U(1). This possibility must thus be
excluded, i.e. one or more of the inequalities (2.2) must be strict. We choose to
cut open the circular quiver at a D3-brane stack for which NF,j > 2Nj. Without
loss of generality this is the k-th stack.

The conditions (2.19) tell us that the NS5-brane linking numbers are non-
increasing. If we want them to be positive, we must impose that

l̂k̂ = Nk̂−1 −Nk̂ +Mk̂ > 0 . (2.21)

If we furthermore want our gauge condition to respect mirror symmetry we must
impose the analog of the first inequality (2.18), namely

l̂1 = Nk̂ −N1 + k ≤ k . (2.22)

Together (2.21) and (2.22) imply (2.20), but not the other way around. For-
tunately, these conditions can be always satisfied in good quivers, for example
by choosing a gauge factor whose rank is locally minimum along the chain (i.e.
Nk̂ < N1, Nk̂−1). With this choice we finally have

k ≥ l̂1 ≥ · · · l̂j ≥ l̂j+1 · · · ≥ l̂k̂ > 0 , (2.23)

so that the NS5-brane and the D5-brane linking numbers are on equal footing.
They define two partitions, ρ̂ and ρ of the same number N .

Contrary to the case of linear quivers, here the partitions do not fully deter-
mine the brane configuration. The reason is that the number, Nk̂ ≡ L > 0, of D3
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branes in the k-th stack is still free to vary. We can change it, without changing
the linking numbers of the five-branes, by adding or removing D3 branes that
wrap the circle (thus increasing or decreasing uniformly all gauge-group ranks). It
follows from (2.17) that the condition for all gauge-group factors to have positive
rank now reads

L+ ρT > ρ̂ . (2.24)

To understand this constraint intuitively, note that removing L winding D3
branes may convert some stacks of D3 branes to stacks of anti-D3 branes. In
the case of linear quivers the inequality ρT > ρ̂ guarantees the absence of anti-D3
branes. Here anti-D3 branes are tolerated, as long as their number is less than
L.

To any data (ρ, ρ̂, L) subject to the constraints (2.24), together with the ad-
ditional conditions l1 ≤ k̂ and l̂1 ≤ k, there corresponds a ‘good’ circular-quiver
gauge theory, i.e. one conjectured to flow to an irreducible superconformal the-
ory in the infrared. This description is, however, highly redundant because of
the arbitrariness in choosing at which D3-brane stack to cut open the quiver. A
generic circular quiver will have many gauge-group factors for which (2.21) and
(2.22) are satisfied, so many different triplets (ρ, ρ̂, L) would describe the same
SCFT.

To remove this redundancy, one can impose the extra condition that the cut-
open segment be of minimal rank globally, i.e. that L ≤ Nj for all j.4 This
condition is compatible with the earlier ones; it amounts to further fixing the
gauge. Now removing L winding D3-branes does not create any anti-D3 branes,
since L was the absolutely minimal rank. The two partitions thus obey the
stronger inequality

ρT ≥ ρ̂ . (2.25)

As a bonus, the conditions l1 ≤ k̂ and l̂1 ≤ k are now also automatically satisfied.
Note that linear-quiver theories saturating some of the inequalities ρT ≥ ρ̂ broke
down into smaller decoupled linear quivers plus free hypermultiplets. For circular
quivers, on the other hand, these disjoint pieces are reconnected by the L > 0
winding D3 branes, giving irreducible theories in the infrared.

Summarizing, the circular-quiver gauge theories conjectured to flow to irre-
ducible superconformal field theories in the infrared can be labeled by a positive
integer L, and by two ordered partitions ρ and ρ̂ subject to the condition ρT ≥ ρ̂.
An alternative but redundant description is in terms of a triplet (ρ, ρ̂, L) subject
to the looser conditions (2.24), together with the additional constraints l1 ≤ k̂

4If there are several gauge factors of globally-minimal rank, there will remain some redundancy in our
description of the circular quiver. This is however a non-generic case.
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and l̂1 ≤ k. Both descriptions are manifestly mirror-symmetric. As we will later
discuss, in the dual supergravity theory these two descriptions correspond to a
complete, or to a partial gauge fixing of the 2-form potentials.

3 Solutions of IIB supergravity

We will now exhibit the solutions of type-IIB supergravity that are holographic
duals of superconformal field theories, to which the circular-quiver theories of the
previous section (are believed to) flow. The solutions are constructed by periodic
identification of the linear-quiver backgrounds found in [5, 6]. These latter are, in
turn, special cases of the general local solutions of [9, 10]. We start by reviewing
very briefly some key formulae from these earlier works.

3.1 Local solutions

References [9, 10] give the general local solutions of type-IIB supergravity pre-
serving the superconformal symmetry OSp(4|4). This group is the supergroup
of the 3d N = 4 SCFTs. The solutions are parameterized by a choice of a 2-
dimensional Riemann surface with boundary, Σ, and by two harmonic functions,
h1 and h2, on Σ. In terms of the auxiliary functions

W = ∂∂̄(h1h2) , Nj = 2h1h2|∂hj|2 − h2
jW, (3.1)

the metric can be written as

ds2 = f 2
4ds

2
AdS4

+ f 2
1ds

2
S2
1

+ f 2
2ds

2
S2
2

+ 4ρ2dzdz̄ , (3.2)

where the warp factors are given by

f 8
4 = 16

N1N2

W 2
, f 8

1 = 16h8
1

N2W
2

N3
1

, f 8
2 = 16h8

2

N1W
2

N3
2

, ρ8 =
N1N2W

2

h4
1h

4
2

.

(3.3)

This geometry is supported by non-vanishing “matter” fields, which include
the (in general complex) dilaton-axion field

S = χ+ ie2φ = i

√
N2

N1

, (3.4)

in addition to 3-form and 5-form backgrounds. To specify the corresponding
gauge potentials one needs the dual harmonic functions, defined by

h1 = −i(A1 − Ā1) → hD1 = A1 + Ā1 ,

h2 = A2 + Ā2 → hD2 = i(A2 − Ā2) . (3.5)
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The constant ambiguity in the definition of the dual functions is related to
changes of the background fields under large gauge transformations. The NS-
NS and R-R three forms can be written as

H(3) = ω 45 ∧ db1 and F(3) = ω 67 ∧ db2 , (3.6)

where ω 45 and ω 67 are the volume forms of the unit-radius spheres S2
1 and S2

2,
while

b1 = 2ih1
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N1

+ 2hD2 ,

b2 = 2ih2
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N2

− 2hD1 . (3.7)

The expression for the gauge-invariant self-dual 5-form is a little more involved:

F(5) = −4 f 4
4 ω

0123 ∧ F + 4 f 2
1 f

2
2 ω

45 ∧ ω 67 ∧ (∗2F) , (3.8)

where ω 0123 is the volume form of the unit-radius AdS4, F is a 1-form on Σ with
the property that f 4

4 F is closed, and ∗2 denotes Poincaré duality with respect to
the Σ metric. The explicit expression for F is given by

f 4
4 F = dj1 with j1 = 3C + 3C̄ − 3D + i

h1h2

W
(∂h1∂̄h2 − ∂̄h1∂h2) , (3.9)

where C and D are defined by ∂C = A1∂A2 −A2∂A1 and D = Ā1A2 +A1Ā2.

For any choice of h1 and h2, equations (3.1) to (3.9) give local solutions of the
supergravity equations which are invariant under OSp(4|4). Global consistency
puts severe constraints on these harmonic functions and on the surface Σ. There
is no complete classification of all consistent choices for this data. What has
been shown [9, 10] is that the most general type-IIB solution with the OSp(4|4)
symmetry can be brought to the above form by an SL(2,R) transformation. This
acts as follows on the dilaton-axion and 3-form fields:

S → aS + b

cS + d
,

(
H(3)

F(3)

)
→
(

d −c
−b a

)(
H(3)

F(3)

)
. (3.10)

The Einstein-frame metric and the 5-form F(5) are left unchanged.

3.2 Admissible singularities

The holomorphic functions A1 and A2 are analytic in the interior of Σ, but can
have singularities on its boundary. Refs. [9, 10] identified three kinds of “ad-
missible” singularities, i.e. singularities that can be interpreted as brane sources
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in string theory. Two of these are logarithmic-cut singularities and correspond
to the two elementary kinds of five-brane. In local coordinates, in which the
boundary of Σ is the real axis, these singularities read

D5 : A1 = −iγ logw + · · · , A2 = −ic+ · · · ,

NS5 : A1 = −ĉ+ · · · , A2 = −γ̂ logw + · · · . (3.11)

Here γ, γ̂, c, ĉ are real parameters related to the brane charges, and the dots
denote subleading terms, which are analytic at w = 0 and have the same reality
properties on the boundary as the leading terms. These reality properties imply
that, in the case of the D5-brane, h1 and h2 obey respectively Neumann and
Dirichlet boundary conditions, i.e. (∂ − ∂̄)h1 = h2 = 0 on the boundary of Σ.
For the NS5 brane the roles of the two harmonic functions are exchanged.

The vanishing of the harmonic function hj implies that the corresponding
2-sphere S 2

j shrinks to a point. This is necessary in order for points on the
boundary of Σ, away from the singularities, to correspond to regular interior
points of the ten-dimensional geometry. Non-contractible cycles, which support
non-zero brane charges, are obtained by the fibration of one or both 2-spheres
over any curve that (semi)circles the singularity on ∂Σ. For instance in the case
of the NS5-brane I × S 2

1 , with I the interval shown in figure 6, is topologically
a non-contractible 3-sphere. The appropriately normalized flux of H(3) through
this cycle is the number of NS5-branes:5

N̂5 =
1

4π2α′

∫

I×S 2
1

H(3) =
2

πα′
hD2

∣∣∣
∂I

=⇒ N̂5 =
4

α′
γ̂ . (3.12)

In evaluating the flux we have taken I to be infinitesimally small, and we used the
fact that in the expression (3.7) only hD2 is discontinuous across the singularity on
the real axis. We also assumed that the logarithmic cut lies outside the surface
Σ, so that fields in the interior of Σ are all continuous (see figure 6).

In addition to 5-brane charge, the singularities (3.11) also carry D3-brane
charge. The corresponding flux threads the 5-cycle I×S 2

1 ×S 2
2 , which is topolog-

ically the product of a 3-sphere with a 2-sphere. There is a well-known subtlety
in the definition of this charge, because of the Chern-Simons term in the IIB

5The five-brane charge is quantized in units of 2κ20T5, where 2κ20 = (2π)7(α′)4 is the gravitational coupling
constant, and T5 = 1/[(2π)5(α′)3] is the five-brane tension. Note that since we have kept the dilaton arbitrary,
we are free to set the string coupling gs = 1; the tension of the NS5-branes and the D5-branes is thus the
same, while the D3-brane tension and charge is T3 = 1/[(2π)3(α′)2].
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I I ′

w = 0w = 0

D3

I × S 2
1 I × S 2

1 × S 2
2

cutcut

NS5

Figure 6: Local singularities corresponding to a NS5-brane (left) and a D3-brane (right), as explained in
the text. The boundary of Σ is colored red or blue according to which of the two 2-spheres, S 2

1 or S 2
2 ,

shrinks at this part of the boundary to zero. The non-contractible cycles supporting the brane charges are
I × S 2

1 , I × S 2
1 × S 2

2 and I ′ × S 2
1 × S 2

2 , with I and I ′ the (oriented) solid semicircles of the figure. These
cycles are topologically equivalent to a 3-sphere, a 3-sphere times a 2-sphere, and a 5-sphere. The broken
lines indicate the logarithmic (on the left) and square root (on the right) branch cuts.

supergravity action [5, 20, 21]. In the case at hand the conserved flux is the inte-
gral of the gauge-variant 5-form F(5) +C(2) ∧H(3), which obeys a non-anomalous
Bianchi identity. The number of D3-branes inside the NS5-brane stack is thus
given by

N̂3 =
1

(4π2α′)2

∫

I×S 2
1 ×S 2

2

[F(5) + C(2) ∧H(3)] = − 2

πα′
N̂5 h

D
1

∣∣∣
w=0

. (3.13)

It can be checked, by taking again I arbitrarily small, that F(5), as well as all
terms in the expression for C(2) other than hD1 , do not contribute to the above
flux. This explains the second equality, leading finally to

N̂3 =

(
4

α′

)2 (
γ̂ ĉ

π

)
. (3.14)

Note that N̂3 depends on the potential C(2) at the position of the 5-brane singu-
larity, and may change under large gauge transformations. This is related to the
Hanany-Witten effect [4], an issue to which we will return in the next subsection.

In principle, using SL(2,R) transformations one can convert the NS5-brane
solution to a more general (p, q) fivebrane solution. Such transformations gen-
erate, however, a non-trivial Ramond-Ramond axion background, so (p, q) five-
branes cannot coexist with the NS5-brane solution for which the axion vanishes.
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There is one exception to the rule: the S-duality transformation converts the
NS5-brane to a D5-brane without generating an axion background. Combined
with an exchange of the two 2-spheres, S-duality acts as follows on the harmonic
functions:

(
iA2

−A1

)
S̃−→
(
A1

iA2

)
. (3.15)

This gives the D5-brane singularity anticipated already in equation (3.11). The
integer D5-brane and D3-brane charges read

N5 =
4

α′
γ , N3 =

(
4

α′

)2 (γ c
π

)
. (3.16)

Note that the D3-brane charge is here the flux of the 5-form F(5) − B(2) ∧ F(3),
which is the S-duality transform of F(5) +C(2) ∧H(3). This gauge-variant form is
well-defined in any patch around the D5-brane singularity as long as this patch
does not contain NS5-brane sources.

The last kind of singularity, which can coexist with D5- and NS5-brane singu-
larities, is the one describing free D3-branes, with no associated fivebrane charge.
In this case the holomorphic functions have square-root rather than logarithmic
cuts [10]

D3 : A1 =
1√
w

(a1 + b1w + · · · ) , A2 =
1√
w

(a2 + b2w + · · · ) . (3.17)

Such singularities change the boundary condition of h1 from Neumann to Dirich-
let, and the boundary condition of h2 from Dirichlet to Neumann. This is il-
lustrated in the right part of figure 6. The integer D3-brane charge is given
by

n3 =
1

(4π2α′)2

∫

I′×S 2
1 ×S 2

2

F(5) =

(
4

α′

)2
(a1b2 − a2b1)

2π
. (3.18)

The ten-dimensional geometry near the D3-brane singularity is an AdS5 × S5

throat with radius L given by L4 = 4πα′ 2|n3|.

3.3 Linear-quiver geometries

Consider two harmonic functions with the singularity structure shown in figure
7. The corresponding geometries have the field-theory interpretation of super-
conformal domain walls in N = 4, D = 4 super Yang Mills [15]. If n±3 are the
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Σ

δ1 δ2 · · ·

· · · δ̂1δ̂2

∞−∞

Figure 7: Structure of singularities of the harmonic functions for the linear-quiver geometries. The two
boundary-changing singularities at ±∞, corresponding to AdS5×S5 throats, can be capped off by choosing
a1 = a2 = 0, as described in the text. They become regular interior points of the ten-dimensional geometry.

D3-brane charges of the two boundary-changing (black-box) singularities, then
the domain wall separates two gauge theories with gauge groups U(n−3 ) and
U(n+

3 ). As pointed out in [5, 6], one may decouple the three-dimensional SCFT
that lives on the domain wall from the bulk four-dimensional Yang-Mills theories
by setting a±j = 0. Equation (3.17) shows that in this case n+

3 = n−3 = 0. The
square-root singularities of the harmonic functions are then simply coordinate
singularities, while the infinite AdS5×S5 throats are replaced by regular interior
points in ten-dimensions.

Following references [22, 5, 6], we choose Σ to be the infinite strip and the
harmonic functions to be given by

A1 = −i
p∑

a=1

γa ln tanh

(
iπ

4
− z − δa

2

)
, A2 = −

p̂∑

b=1

γ̂b ln tanh

(
z − δ̂b

2

)
.

(3.19)

Here δ1 < δ2 < ... < δp are the positions of the D5-brane singularities on the

upper boundary of the strip, whereas δ̂1 > δ̂2 > ... > δ̂p̂ are the positions of the
NS5-brane singularities on the lower boundary. It can be checked that on these
two boundaries h1 obeys, respectively, Neumann and Dirichlet conditions, while
h2 has Dirichlet and Neumann conditions. The boundary-changing square-root
singularities are at z = ±∞. In the local coordinate w = e∓z one can verify easily
that a±j = 0, so these points at infinity correspond to regular interior points of
the ten-dimensional geometry.
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To simplify the formulae we will adopt from now on the (non-standard) con-
vention α′ = 4. Equations (3.16) and (3.12) give the numbers of NS5-branes and
D5-branes for each fivebrane singularity:

N
(a)
5 = γ(a) , N̂

(b)
5 = γ̂(b) . (3.20)

Unbroken supersymmetry requires that there are only branes (or only anti-
branes) of each kind. Thus all the γ(a) must have the same sign, and likewise for
all the γ̂(b). Dirac quantization forces furthermore these parameters to be integer.

Next let us consider the D3-brane charge. Inserting the harmonic functions
(3.19) inside the expressions (3.16) and (3.14) gives

N
(a)
3 = N

(a)
5

p̂∑

b=1

N̂
(b)
5

2

π
arctan(eδ̂b−δa) ,

N̂
(b)
3 = −N̂ (b)

5

p∑

a=1

N
(a)
5

2

π
arctan(eδ̂b−δa) , (3.21)

where we used the identity i log tanh( iπ
4
− x

2
) = −2 arctan(ex). As already noted

in the previous subsection, this calculation of the D3-brane charge depends on
the 2-form potentials B(2) and C(2) and is, a priori, ambiguous. One may indeed
add a real constant to A1, or an imaginary constant to A2, thereby changing
hDj without affecting hj. This gauge ambiguity is also reflected in the arbitrary
choice of Riemann sheet for the logarithmic functions that enter in equations
(3.19).

Following [5] we fix this ambiguity by placing all logarithmic cuts outside Σ,
as in figure 7, and by choosing the sheet so that the imaginary part of (ln tanh z)
vanishes when z goes to +∞ on the real axis. This implies that the arctangent
functions take values in the interval [0, π/2]. Our choice of gauge is continuous
in the interior of Σ (which is covered by a single patch), and sets B(2) = 0 at +∞
and C(2) = 0 at −∞. With this choice, D5-branes at δ = +∞ and NS5-branes

at δ̂ = −∞ do not contribute to the D3-brane charge. Placing, on the other
hand, one NS5-brane at δ̂ = +∞ adds one unit of D3-brane charge to each D5-
brane, while placing one D5-brane at δ = −∞ adds one unit of charge to each
NS5-brane. This is a holographic manifestation of the Hanany-Witten effect.

Since this story will be important to us later, let us explain it a little more.
The 2-form potential B(2) is proportional to the volume form (ω45) of the sphere
S 2

1 , which shrinks to a point in the lower boundary of the strip (the blue line
in figure 7). When B(2) 6= 0, the corresponding boundary interval corresponds
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to a Dirac singularity of codimension 3 in (the 9-dimensional) space. This is
unobservable if

1

2πα′

∫

S 2
1

B(2) ∈ 2πZ =⇒ B(2)

∣∣∣
Imz=0

= πα′ω45 × (integer) . (3.22)

With our choice of gauge,

B(2)

∣∣∣
Imz=0

= πα′ω45 ×
β∑

b=1

N̂
(b)
5 for δ̂β+1 < Rez < δ̂β . (3.23)

Large gauge transformations change B(2) everywhere in the strip by a multiple of
πα′ω45, and can remove the Dirac sheet in one of the intervals of the boundary.
For us this was the interval (δ̂1,∞). A similar story holds also for the upper (red)
boundary and the 2-form C(2). The D3-brane charges with our choice of gauge
agree with the invariant linking numbers defined in §2.2.

The brane engineering of the dual gauge field theories [4, 15] involves N D3-
branes suspended between k̂ NS5-branes on the left and k D5-branes on the right.
In the IIB supergravity the corresponding numbers are:

N =

p∑

a=1

N
(a)
3 = −

p̂∑

b=1

N̂
(b)
3 , k =

p∑

a=1

N
(a)
5 , k̂ =

p̂∑

b=1

N̂
(b)
5 . (3.24)

The way in which the D3-branes are suspended to the five-branes is given by two
partitions ρ and ρ̂, which define the linear-quiver gauge theory. These partitions
are given in terms of the linking numbers:

ρ =
( N

(1)
5︷ ︸︸ ︷

l(1), l(1), .., l(1),

N
(2)
5︷ ︸︸ ︷

l(2), l(2), .., l(2), ... ,

N
(p)
5︷ ︸︸ ︷

l(p), l(p), .., l(p)
)
,

ρ̂ =
(

N̂
(1)
5︷ ︸︸ ︷

l̂(1), l̂(1), .., l̂(1),

N̂
(2)
5︷ ︸︸ ︷

l̂(2), l̂(2), .., l̂(2), ... ,

N̂
(p̂)
5︷ ︸︸ ︷

l̂(p̂), l̂(p̂), .., l̂(p̂)
)
, (3.25)

where l(a) = N
(a)
3 /N

(a)
5 and l̂(b) = N̂

(b)
3 /N̂

(b)
5 . Here l(a) is the number of D3-branes

ending on each D5-brane in the ath stack, while l̂(b) is the number of D3-branes
emanating from each NS5-brane in the bth stack. Because these numbers must
be integers, the parameters δa and δ̂b are quantized.6 In all one has 2p + 2p̂− 1

6The relations between the integer brane charges and the supergravity parameters are not easily inverted.
To express the latter in terms of the brane charges one must solve a system of transcendental equations.
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parameters, since a global translation of all the δa and δ̂b does not change the
solution. The parameters of the quiver are N

(a)
5 , l(a), N̂

(b)
5 , l̂(b) subject to one

constraint (3.24), which expresses the conservation of D3-brane charge. The two
parameter counts therefore match.

The linking numbers of the supergravity solutions obey the inequalities ρT >
ρ̂, which were the conditions for the existence of a non-trivial infrared fixed
point of the quiver gauge theory [15], see §2.2. On the supergravity side, the
inequalities follow immediately [5] from the fact that 0 < arctan(x) < π/2 for
positive x. This is a non-trivial check of the AdS/CFT correspondence.

3.4 From strip to annulus

The strategy for constructing holographic IIB duals for the circular quivers is the
following: one starts from the linear-quiver solutions that we have just described,
and arranges the five-branes in infinite regular arrays. The holomorphic func-
tions Aj become logarithms of quasi-periodic elliptic functions. Modding out by
discrete translations then converts the strip domain, Σ, to an annulus, and the
dual linear-quiver theories to theories based on circular quivers.

More explicitly, given a set of fivebrane singularities at δa and δ̂b, we may
always pick a positive parameter t such that, after a rigid translation, 0 ≤ δa ≤ 2t
and 0 ≤ δ̂b ≤ 2t. Replicating the fivebrane sources with periodicity 2t then leads
to the following harmonic functions

h1 = −
p∑

a=1

γa ln

[ ∞∏

n=−∞

tanh

(
iπ

4
− z − (δa + 2nt)

2

)]
+ c.c. ,

h2 = −
p̂∑

b=1

γ̂b ln

[ ∞∏

n=−∞

tanh

(
z − (δ̂b + 2nt)

2

)]
+ c.c. . (3.26)

These functions are manifestly periodic under translations by 2t, so we are free
to identify z ≡ z + 2t thereby converting the strip Σ to an annulus. Figure 8
depicts this annular domain in the w-plane, where w = exp(iπz/t).

To see that the infinite products in the above expressions converge, we will
rewrite them in terms of elliptic ϑ-functions (we use the conventions of reference
[23]). This can be done with the help of the identity

∣∣∣ϑ1(ν|τ)

ϑ2(ν|τ)

∣∣∣ =

∣∣∣∣∣
∞∏

n=−∞

tanh(iπν + nt)

∣∣∣∣∣ , where eiπτ = e−t . (3.27)
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iπ

2

2t0
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z w

C
C

q̃
1
2

Figure 8: The annulus Σ for the type-IIB solutions that are dual to D = 3,N = 4 circular-quiver theories.
Σ is the infinite strip in the z plane modulo the translations z → z + 2t (left), or the annular domain in the
w = exp(iπz/t) plane (right). The radius of the inner boundary of the annulus is q̃1/2 where q̃ = exp(−π2/t)
is the exponentiated dual modulus of the elliptic ϑ-functions. The monodromies of hDj around the curve C
give the total number of NS5 and D5-branes, as explained in the main text.

The proof of this identity follows from the product formulae for the ϑ-functions

ϑ1(ν|τ) = 2eiπτ/4 sin(πν)
∞∏

n=1

(1− e2niπτ )(1− e2niπτe2πiν)(1− e2niπτe−2πiν) ,

ϑ2(ν|τ) = 2eiπτ/4 cos(πν)
∞∏

n=1

(1− e2niπτ )(1 + e2niπτe2πiν)(1 + e2niπτe−2πiν) .

(3.28)

Note that the modular parameter is τ = it/π, because the hyperbolic tangents
are periodic under z → z + 2πi. Inserting the identity (3.27) in (3.26) leads to
the following expressions for h1 and h2:

h1 = −
p∑

a=1

γa ln

[
ϑ1 (νa|τ)

ϑ2 (νa|τ)

]
+ c.c. , with i νa = −z − δa

2π
+
i

4
,

h2 = −
p̂∑

b=1

γ̂b ln

[
ϑ1 (ν̂b|τ)

ϑ2 (ν̂b|τ)

]
+ c.c. , with i ν̂b =

z − δ̂b
2π

. (3.29)

These harmonic functions are well-defined everywhere inside the annulus. They
have logarithmic singularities on the boundaries, wherever νa or ν̂b vanish.
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Decomposing hj into holomorphic and anti-holomorphic parts requires, as in
the previous subsection, a choice of gauge. A convenient choice is to make the Aj
analytic in the interior of the covering strip, before the periodic identification of z.
This amounts to placing again all logarithmic branch cuts outside the strip. With
this understanding, and recalling that the Jacobi ϑ-functions are holomorphic,
we have

A1 = −i
p∑

a=1

γa ln

(
ϑ1 (νa|τ)

ϑ2 (νa|τ)

)
+ ϕ1 , A2 = −

p̂∑

b=1

γ̂b ln

(
ϑ1 (ν̂b|τ)

ϑ2 (ν̂b|τ)

)
+ iϕ2 ,

(3.30)

where the constant phases ϕ1 and ϕ2 are residual quantized gauge degrees of
freedom, corresponding to large gauge transformations of the 2-form potentials.
As in the case of the linear quiver, we may use this residual freedom to enforce
the absence of Dirac singularities in one interval on each annulus boundary.

Unlike hj, the above holomorphic functions and the dual harmonic functions
hDj are not periodic under z → z + 2t. Their gauge-invariant holonomies (or
Wilson lines) give the total fivebrane charges. To see why, note that translating
z → z + 2t changes all the arguments νa by it/π (and all the ν̂b by −it/π).
From the product formulae (3.28) one finds that under these translations the
ϑ-functions are quasi-periodic:

ϑ1(ν +
it

π
|τ) = −e−2πiν+tϑ1(ν|τ) , ϑ2(ν +

it

π
|τ) = e−2πiν+tϑ2(ν|τ) . (3.31)

The ratio ϑ1/ϑ2 changes only by a minus sign. Thus ln(ϑ1/ϑ2)→ln(ϑ1/ϑ2)∓ iπ
when ν → ν ± it/π, from which we conclude

A1(z + 2t) = A1(z)− π
p∑

a=1

γa , A2(z + 2t) = A2(z)− iπ
p̂∑

b=1

γ̂b . (3.32)

The meaning of these holonomies becomes clear if one integrates the 3-form field
strengths over the 3-cycles C × S 2

j , where C is the dotted curve in figure 8.
Consider for example the H(3) flux through C × S 2

1 . From equations (3.6) and
(3.7) we deduce that this is proportional to

∮

C

db1 = 2

∮

C

dhD2 = 4i [A2(z + 2t)−A2(z)] , (3.33)

where in the first step we used the fact that (db1 − 2dhD2 ) is an exact differen-
tial which, therefore, integrates to zero. Since the total flux is conserved, the
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right-hand-side of (3.33) must be z-independent. Furthermore, by deforming the
contour C so that only the singularities on the outer boundary of the annulus
contribute, one finds that the integrated flux is proportional to the total number
of NS5-branes. This agrees with the holonomy of A2, as computed from the
properties of the ϑ-functions. The holonomy of A1 is likewise determined by the
total number of D5-branes.

4 The AdS/CFT correspondence

We turn now to a discussion of the dictionary between the type-IIB supergravity
solutions of the previous section, and the circular-quiver theories of section 2. As
explained there, these gauge theories can be parametrized (in a redundant way)
by the linking numbers of NS5-branes and D5-branes, and by the number L of
D3-branes that wind the circle. We will here first relate these numbers to the
brane charges of the supergravity solutions, and then prove the basic inequalities
(2.24). Modulo a few subtleties, this is a straightforward extension of the linear-
quiver analysis of [5].

4.1 Calculation of D3-brane charges

The ten-dimensional geometries described in §3.4 have non-contractible three-
cycles Ia × S 2

2 and Îb × S 2
1 , where Ia is a semicircular curve around the ath

singularity of h1 on the upper annulus boundary, and Îb is a semicircle around
the bth singularity of h2 on the lower annulus boundary, see figure 9. These three-
cycles are threaded respectively by R-R and NS-NS three-form fluxes, emanating
from γa D5-branes and from γ̂b NS5-branes (in units where α′ = 4).

In addition, these geometries have a number of non-contractible five-cycles
which can support D3-brane charge. These are fibrations of S2

1 and S2
2 over the

three types of open curves Ia, Îb and Iab shown in figure 9. Recalling that S2
1

shrinks to a point in the lower boundary, and S2
2 shrinks to a point in the upper

boundary of the annulus, one deduces that the topology of these 5-cycles is as
follows:

• C5
a ≡ (S2

1 × S2
1) n Ia and Ĉ5

b ≡ (S2
1 × S2

1) n Îb are topologically S3 × S2;

• C5
ab ≡ (S2

1 × S2
1) n Iab are topologically S5 .

Here Ia is a line segment semi-circling the ath singularity on the upper boundary,
Îb likewise semicircles the bth singularity on the lower boundary, and Iab is a line
segment which begins on the upper boundary of the annulus between the points
δa and δa+1 and ends on the lower boundary between the points δ̂b and δ̂b+1.
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δ1 δa+1 ........ δp

δ̂p̂ δ̂b+1 δ̂1....

Iab

Ia

δa

δ̂b

Îb

0 2t

Figure 9: The non-contractible 5-cycles in the circular-quiver geometries are fibrations of the two 2-spheres
over the curves shown in this figure. Σ is an annulus, so the dotted boundaries are identified.

As shown in the figure, the orientation of the above segments is chosen to be
counter-clockwise, or in the case of Iab from the upper annulus boundary to the
lower boundary.

The D3-brane charges emanating from the five-brane singularities can be com-
puted with the help of the general formulae of §3.2. Consider for example the
bth NS5-brane stack which corresponds to the z = δ̂b singularity on the lower
boundary of the annulus. Using hD1 = A1 + Ā1 and the expressions (3.13), (3.14)
and (3.30) we find

N̂
(b)
3 = − 2

πα′
N̂

(b)
5 hD1 |z=δ̂b

= N̂
(b)
5

p∑

a=1

N
(a)
5

(
i

2π
ln

[
ϑ1 (νab|τ)

ϑ1 (ν̄ab|τ)

ϑ2 (ν̄ab|τ)

ϑ2 (νab|τ)

]
− 4

πα′
ϕ1

)
(4.1)

where

iνab =
δa − δ̂b

2π
+
i

4
, τ = e−t , (4.2)

and ν̄ is the complex conjugate of ν. Likewise, one finds for the ath D5-brane:

N
(a)
3 =

2

πα′
N

(a)
5 hD2 |z= iπ

2
+δa

= N
(a)
5

p̂∑

b=1

N̂
(b)
5

(
− i

2π
ln

[
ϑ1 (νab|τ)

ϑ1 (ν̄ab|τ)

ϑ2 (ν̄ab|τ)

ϑ2 (νab|τ)

]
− 4

πα′
ϕ2

)
, (4.3)
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where the arguments νab are defined again by (4.2).

As has been discussed in the previous section, the D3-brane (Page) charge
suffers from a gauge ambiguity which corresponds, in the above expressions, to
the freedom in choosing the constants ϕ1 and ϕ2. In what follows, and until
otherwise specified, we fix the gauge so that the potentials are continuous inside
the fundamental domain 0 ≤ Rez < 2t, and furthermore

C(2) = 0 in [0, δ1] on the upper boundary,

B(2) = 0 in [δ̂1, 2t] on the lower boundary. (4.4)

The above choice can be motivated by considering the pinching limit t −→ +∞
with δa − t and δ̂b − t kept fixed. In this limit the geometry degenerates to that
of a linear quiver, and our gauge fixing agrees with the one adopted in reference
[5].

Using the infinite-product expressions for the ϑ-functions in (4.1) and (4.3),
and fixing as just described ϕ1 and ϕ2, leads to the expressions

N
(a)
3 = N

(a)
5

p̂∑

b=1

N̂
(b)
5

[ +∞∑

n=0

f(δ̂b − δa − 2nt)−
+∞∑

n=1

f(−δ̂b + δa − 2nt)
]
, (4.5)

and

N̂
(b)
3 = N̂

(b)
5

p∑

a=1

N
(a)
5

[ +∞∑

n=1

f(−δ̂b + δa − 2nt)−
+∞∑

n=0

f(δ̂b − δa − 2nt)
]
, (4.6)

where N
(a)
3 is the D3-brane charge in the ath stack of D5-branes, N̂

(b)
3 is the

D3-brane charge in the bth stack of NS5-branes, and

f(x) =
2

π
arctan(ex) ∈ [0, 1] . (4.7)

It can be easily verified that the above charges obey the sum rule

p∑

a=1

N
(a)
3 = −

p̂∑

b=1

N̂
(b)
3 ≡ N . (4.8)

In the pinching limit, where only the n = 0 terms survive in the sums, all the
N

(a)
3 are positive and all the N̂

(b)
3 are negative numbers. For finite t, on the other

hand, the numbers in each set can have either sign.

Next we consider the 5-cycles C5
ab. To associate to these 5-cycles a Page charge

we must decide which (gauge-variant) 5-form to integrate. Take for instance the
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5-form F̃(5) ≡ F(5) +C(2)∧H(3), which obeys the non-anomalous Bianchi identity

dF̃(5) = 0. This is globally defined only on the cycles C5
0b, since for all other

choices of a, the gauge potential C(2) has a Dirac string singularity at the upper

endpoint of Iab. Put differently,
∫
F̃(5) would depend on the precise location of

this upper endpoint unless C(2) = 0 in the corresponding boundary segment. By

a similar reasoning one concludes that F̃ ′(5) ≡ F(5) − B(2) ∧ F(3) should be only

integrated on the 5-cycles C5
a0. Both of these modified 5-forms can be integrated

on the 5-cycle C5
00, which is picked out by our gauge fixing (4.4). Furthermore,

the Page charge for this cycle does not depend on the choice of the modified
5-form since

∫

C500
(F̃(5) − F̃ ′(5)) =

∫

C500
d (C(2) ∧B(2)) = 0 . (4.9)

Let us denote the D3-brane charge for this special 5-cycle by M . If normalized
appropriately, as in equation (3.13), M must be an integer charge. We will now
argue that this D3-brane charge is given by the following expression:

M =
∑

a,b>0

N
(a)
5 N̂

(b)
5 f(δ̂b − δa) +

∑

a,b≤0

N
(a)
5 N̂

(b)
5 f(δa − δ̂b) , (4.10)

where we here considered the universal cover of the annulus (i.e. the infinite
strip), and extended the range of five-brane labels so that −∞ < a < ∞ is
a label for the infinite array of D5-brane singularities from left to right, while
−∞ < b < ∞ labels the corresponding array of NS5-brane singularities from
right to left. Furthermore in this notation, δa+np ≡ δa + 2nt is the position
of the nth image of the ath singularity on the upper strip boundary; likewise
δ̂b+mp̂ ≡ δ̂b − 2mt corresponds to the mth image of the bth singularity on the
lower strip boundary. The expression (4.10) can thus be written more explicitly
as follows:

M =

p∑

a=1

p̂∑

b=1

N
(a)
5 N̂

(b)
5

[ ∞∑

m,n=0

f(δ̂b − δa − 2nt− 2mt) +
∞∑

m,n=1

f(−δ̂b + δa − 2nt− 2mt)
]

=

p∑

a=1

p̂∑

b=1

N
(a)
5 N̂

(b)
5

∞∑

s=1

s
[
f(δ̂b − δa − 2(s− 1)t) + f(δa − δ̂b − 2(s+ 1)t)

]
.

(4.11)

A schematic explanation of the above expression is given in Figure 10.

To see that (4.10) is indeed right, let us consider a change of gauge which
makes B(2) vanish on the boundary segment between the b = 1 and the b = 2
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3
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C(2) = 0

B(2) = 0

I00
I01

Î1

Figure 10: The infinite array of 5-brane singularities on the universal cover of the annulus. The D5-branes
on the upper boundary are labelled from left to right, and the NS5-branes on the lower boundary from right
to left. The choice of gauge determines a fundamental domain, and a special 5-cycle C500 = I00 × S2

1 × S2
2 .

The D3-brane charge supported by this cycle is obtained by summing over all pairs of singularities with
positive labels, and all pairs with non-positive labels, see equation (4.10).

singularities. The privileged 5-cycle is now C5
01, and the corresponding D3-brane

charge M ′ reads

M ′ =
∑

a>0,b>1

N
(a)
5 N̂

(b)
5 f(δ̂b − δa) +

∑

a≤0,b≤1

N
(a)
5 N̂

(b)
5 f(δa − δ̂b) . (4.12)

The difference M ′ −M is equal to N̂
(3)
1 , the number of D3-branes in the first

NS5-brane stack, as one can check with the help of equation (4.6). This should
be so since I01 = I00 ⊕ Î1, as illustrated in Figure 10, and furthermore the
corresponding Page charges, M ′ and M + N̂

(3)
1 , are given by integrals of the

modified form F(5) + C(2) ∧ H(3) which does not depend on the choice of B(2)

gauge.

This simple consistency check fixes almost uniquely the expression (4.10) for
the charge M . To remove all doubts, we have also verified this formula numeri-
cally.

Note that by deforming the open curves as in Figure 10 one can show that
there are no independent charges besides M and the Page charges {N (a)

5 , N̂
(b)
5 }

of the five-branes. It will be convenient for our purposes here to trade M for
L ≡ M − N , where N is the total charge carried by the D5-branes, see (4.8).
The charge L corresponds to the 5-form flux through the cycle C5

p0, or equivalently

30



....
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Figure 11: A fundamental domain and the segments I0p̂ and Ip0 which correspond to the Page charge L.
This is the number of winding D3-branes, which vanishes in the (pinching) limit of a linear quiver.

the cycle C5
0p̂, depicted in Figure 11. Simple manipulations give

L =

p∑

a=1

p̂∑

b=1

N
(a)
5 N̂

(b)
5

∞∑

n=0

∞∑

m=1

[
f(δ̂b − δa − 2nt− 2mt) + f(−δ̂b + δa − 2nt− 2mt)

]

=

p∑

a=1

p̂∑

b=1

N
(a)
5 N̂

(b)
5

∞∑

s=1

s
[
f(δ̂b − δa − 2st) + f(δa − δ̂b − 2st)

]
.

(4.13)

Below, we will identify L with the number of winding D3-branes in a circular
quiver. Consistently with this interpretation, L can be seen to vanish in the
pinching limit, t→∞ with δa− δ̂b, for all a = 1, · · · p and b = 1, · · · p̂, held finite
and fixed.
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4.2 Parameter match

Following references [5, 6] we define the linking numbers of the fivebranes as the
Page charge per five-brane in each given stack:

l(a) ≡ N
(a)
3

N
(a)
5

, l̂(b) ≡ −N̂
(b)
3

N̂
(b)
5

, with

p∑

a=1

N
(a)
5 l(a) =

p̂∑

b=1

N̂
(b)
5 l̂(b) = N .

(4.14)

We here assume that these linking numbers are integer. Strictly-speaking, Dirac’s
quantization condition only requires integrality of the total charge for each five-
brane stack, so solutions with fractional linking numbers cannot be ruled out a
priori as inconsistent. We will nevertheless discard this possibility, because we
have no candidate SCFTs on the holographically dual side with fractional linking
numbers. But the question deserves further scrutiny.

Next let us identify the above liking numbers with those in the brane con-
struction of the circular quivers described in §2.2, by defining the following two
partitions of N :

ρ =
( N

(1)
5︷ ︸︸ ︷

l(1), l(1), .., l(1),

N
(2)
5︷ ︸︸ ︷

l(2), l(2), .., l(2), ...,

N
(p)
5︷ ︸︸ ︷

l(p), l(p), .., l(p)
)
,

ρ̂ =
(

N̂
(1)
5︷ ︸︸ ︷

l̂(1), l̂(1), .., l̂(1),

N̂
(2)
5︷ ︸︸ ︷

l̂(2), l̂(2), .., l̂(2), ...,

N̂
(p̂)
5︷ ︸︸ ︷

l̂(p̂), l̂(p̂), .., l̂(p̂)
)
. (4.15)

Together with the additional parameter L, we thus have the exact same data
that was used to define the circular-quiver gauge theories C ρ̂

ρ(SU(N), L) . Put
differently, the supergravity parameters {γa, δa} can be used to vary the charges

{N (a)
5 , N

(a)
3 }, the parameters {γ̂b, δ̂b} can be used to vary {N̂ (b)

5 , N̂
(b)
3 }, and the

annulus modulus t controls the number L of winding D3-branes. One of the
charges is not independent because of the sum rule (4.14), but this agrees pre-
cisely with the fact that the supergravity solution is invariant under a common
translation of all five-brane singularities on the boundary of the annulus.

The parameter counts on the supergravity and gauge-theory sides therefore
match. The quiver data, on the other hand, had to obey a set of inequalities in
order for the theory to flow to a non-trivial IR fixed point, see section 2. We will
show that the same inequalities are also obeyed on the supergravity side.

Note first that from the expressions (4.5) and (4.6), and the fact that f(x)
is a monotonic function, it follows that the linking numbers of the supergravity
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cut

11

2

2
3

Figure 12: Brane engineering of a circular quiver. Cutting open the circle on its high side leads to
the linking-number assignements ρ = (3, 1, 1) and ρ̂ = (3, 2) with L = 2; the corresponding theory is
C ρ̂ρ (SU(5), 2). The green arrows indicate the elementary D5-brane moves described in the text. For instance,
a rotation of the 3rd D5-brane changes these assignments to ρ′ = (3, 3, 1) and ρ̂′ = (4, 3) with L′ = 3.

solutions are automatically arranged in decreasing order:

l(1) > l(2) > ... > l(p) and l̂(1) > l̂(2) > ... > l̂(p̂) . (4.16)

From the brane-engineering point of view, it is possible to order the linking
numbers by moving five-branes of the same type around each other in transverse
space (this is obvious in the configuration of Figure 4). We have argued in
section §2 that these moves do not change the infrared limit of the theory, up
to decoupled free sectors. Such moves should thus be indistinguishable on the
supergravity side.7

Besides being arranged in decreasing order, the linking numbers of the field-
theory side could be furthermore chosen to lie in the intervals (0, k̂] and (0, k],
with k and k̂ respectively the total numbers of D5-branes and NS5-branes, see
(2.18) and (2.23). As was explained in §2.2, these inequalities were automatic if
one chose to cut open the circular chain at a link of locally-minimal rank. We
will now explain why the same argument goes through on the supergravity side.

7Unlike (2.18) and (2.23), the inequalities (4.16) are strict because they refer to stacks of five-branes.
Members of a given stack have identical linking numbers, so the linking numbers of individual five-branes
are not decreasing but only non-increasing.
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To this end, consider the circular quiver of Figure 12. Following the discussion
in §2.2, to assign linking numbers to the five-branes we cut open the circular chain
of D3-branes and then use the definitions (2.9). Clearly, the assignment is not
unique since we are free to move one or several five-branes around the circle before
cutting the chain. Let us focus, in particular, on the following two “elementary”
moves:

• Move the (right-most) kth D5-brane anticlockwise, which produces the changes

∆lk = k̂ , ∆l̂j = 1 ∀ j = 1, · · · k̂ , ∆L = lk ; (4.17)

• Move the (left-most) 1rst D5-brane clockwise, which leads to the changes

∆l1 = −k̂ , ∆l̂j = −1 ∀ j = 1, · · · k̂ , ∆L = k̂ − l1 . (4.18)

These formulae translate the well-known fact that when a D5-brane crosses a
NS5-brane it creates or destroys a D3-brane [4].8 Similar formulae clearly hold
for the mirror-symmetric moves of NS5-branes. The main point for us here is
that the inequalities lk > 0 and k̂ ≥ l1 imply that L is a “local” minimum with
respect to elementary D5-brane moves. Likewise, l̂k̂ > 0 and k ≥ l̂1 imply that L
is a minimum with respect to elementary NS5-brane moves. One can thus impose
the bounds (2.18) and (2.23) by choosing to cut the chain at a minimum of L.

This same line of argument applies to the supergravity side, where five-brane
moves across the cut correspond to large gauge transformations. The elementary
D5-brane moves are illustrated in Figure 13. They correspond to shifting the
boundary segment on which C(2) = 0 to a neighboring segment, on the right
or left. Pushing for example this segment to the left leads to the following
transformations of charges:

∆l(p) = k̂ , ∆l̂(b) = N
(p)
5 ∀ b , ∆L = N

(p)
5 l(p) . (4.19)

The last two equations follow from the expression for the linking numbers (see
§3.2) and from the argument illustrated in Figure 10. As for the first equation, it
comes from the fact the pth D5-brane stack is replaced in the fundamental domain
by the 0th stack. On the universal cover of the annulus linking numbers (defined
as the integrals over the 5-cycles C5

a and Ĉ5
b ) obey the periodicity conditions:

la+np = la − nk̂ , l̂b+np̂ = l̂b − nk . (4.20)

8The linking numbers are actually invariant under such Hanany-Witten moves, but they change in the
way indicated above when the D5-brane crosses the cutting point.
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Figure 13: Global gauge transformations corresponding to the elementary D5-brane moves described in
the text. Pushing the boundary segment on which C(2) = 0 one step to the right corresponds to moving the
first stack of D5-branes around the circular quiver clockwise once. Pushing this boundary segment to the
left corresponds to moving the last D5-brane stack once in the anti-clockwise direction.

Thus replacing the pth stack by the 0th stack changes the associated linking
number by k̂.9 Likewise, pushing the segment on which C(2) = 0 one step to the
right leads to the following changes:

∆l(1) = −k̂ , ∆l̂(b) = −N (1)
5 ∀ b , ∆L = N

(1)
5 (k̂ − l(1)) . (4.21)

In this case the first D5-brane stack is replaced in the fundamental domain by
the (p+ 1)th stack, as in Figure 13.

Equations (4.19) and (4.21) are the same as (4.17) and (4.18) when N
(p)
5 =

N
(1)
5 = 1. The large gauge transformations are in this case the counterpart of the

elementary D5-brane moves. More generally, they describe the effect of moving
the first and last stacks of D5-branes around the circular quiver. Requiring that
L be minimum under these moves implies that k̂− l(1) ≥ 0 and l(p) > 0, as adver-
tized.10 Likewise one shows that k− l̂(1) ≥ 0 and l̂(p) > 0, by requiring minimality
under changes of the B(2) gauge. That such a minimum exists is guaranteed by
the fact that L is bounded below, and goes to infinity along with the separation

9The notation in (4.19) is slightly abusive, because the change of the fundamental domain should be

followed by a relabeling of the D5-branes. Strictly speaking ∆l(p) ≡ l(1)new − l(p)old.

10If l(p) = 0 we push the selected line segment to the left until the second inequality becomes strict.
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δ1 − δ̂1. Note that in general there are several minima, so different triplets of
data (ρ, ρ̂, L) may correspond to one and the same supergravity solution.

Having established the inequalities (2.18) and (2.23), we now need to prove the
inequalities (2.24) for the associated Young tableaux. In the brane constructions
of §2.2 these inequalities guaranteed that all gauge groups have positive rank,
i.e. that they are realized on D3-branes rather than anti-D3-branes. This is a
condition for supersymmetry, so we expect it to be automatically satisfied on the
supergravity side. The proof is straightforward but tedious, and we relegate it
to appendix B.

5 Limiting geometries

In this section we discuss the solutions described in §3.4, in regions of the param-
eters where the annulus with the marked points on the boundary degenerates.
Note that taking (δa − δa+1)→ 0 with t held fixed merges the ath and (a+ 1)th
stack of D5-branes. Modulo the subtle issue of linking number quantization, this
limit is thus rather dull. The more interesting limits are those of an infinitely-
thin or infinitely-fat annulus, t → ∞ or t → 0. We will comment on these two
limits in turn.

5.1 Pinched annulus and wormbranes

When taking the limit t → ∞ one must decide what to do with the positions,
{δa} and {δ̂b}, of the five-brane singularities. If the number of singularities is kept
fixed then, since δa− δa+p = δ̂b− δ̂b+p̂ = 2t, at least one of the intervals δa− δa+1

with a ∈ [1, p], and at least one interval δ̂b − δ̂b+1 for some b ∈ [0, p̂ − 1] should
become infinite in the limit. Without loss of generality, we take these divergent
separations to correspond to a = p and b = 0. From the expression (4.13) we
conclude that L → 0 in this limit, so that the circular quiver degenerates to
a linear quiver. If more than one interval diverges, the linear quiver breaks up
further into disjoint linear quivers.

The linear-quiver geometries were analyzed in [5]. They are warped products
AdS4 ×w K6, where K6 is a compact manifold with singularities of co-dimension
four at the locations of the five-branes. When L is small (compared to all other
D3-brane charges) but finite, the geometry describes what one may call a “worm-
brane”. A schematic representation of this space-time is given in Figure 14. Two
highly-curved AdS5× S5 throats11 emanate from two distinct points of the com-

11By scaling up homogeneously all charges, we can keep the curvature small enough so that the supergravity
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AdS4 ×w K6

AdS5 × S5

N1 M1

M2M3

M4

M5

N2N3

N4

N5 → 0

Figure 14: Breaking up of a circular quiver as described in the text. On the left, the ten-dimensional
geometry describes a wormhole whose entrances are extremal D3-branes. An example of a dual gauge theory
is illustrated on the right: a gauge-group factor with vanishing rank opens up the chain into a linear quiver.

pact space K6, and are joined together to form a handle. The wormhole entrances
are three-dimensional extended objects, whence the name “worm-brane”. Note
that (in theories without exotic matter) point-like wormholes cannot be traversed
and, in particular, they cannot provide short-cuts for time travel (see for instance
[24, 25, 26]). Whether these conclusions can change in the case of worm-branes
is an interesting question to which we may return in future work.

From the perspective of the gauge theory, the pinching-limit geometries de-
scribe circular quivers with a gauge-group factor whose rank is much smaller than
all other ranks. Taking this rank formally to zero opens up the circular chain,
and decouples the corresponding fundamental hypermultiplets, see Figure 14. If
several gauge-group ranks are made to vanish, the linear quiver breaks down into
disjoint pieces. In general, the limiting geometries are smooth except when one
sends a set of stacks of the same type infinitely far from all other stacks. This
corresponds in gauge theory to the decoupling of free hypermultiplets from the
end-points of a linear quiver. The geometry with five-branes of only one type is
singular [5, 22], consistently with the fact that free hypermultiplets should have
no smooth supergravity dual.

approximation stays valid in the AdS5 × S5 throats (though of course not near the five-brane singularities).
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5.2 Large-L limit and M2 branes

The second interesting limit of the circular-quiver solutions of section §3.4 is the
limit t → 0. As we will see, this is the limit of a very large number, L, of
winding D3-branes, in which our type-IIB solution becomes dual to the near-
horizon geometry of M2-branes at a Zk × Zk̂ orbifold singularity.

To compute the geometry in this limit we use the asymptotic behavior of the
theta functions when eiπτ = e−t → 1, or equivalently eiπτ̃ = e−iπ/τ = e−π

2/t → 0.
One finds in this limit

ϑ1(ν|τ)

ϑ2(ν|τ)
= −iϑ1(ντ̃ |τ̃)

ϑ4(ντ̃ |τ̃)
= −2 e−π

2/4t sinh(π2ν/t) +O(e−9π2/4t) , (5.1)

where the second equality follows from the expressions of the theta functions as
infinite sums. The formula simplifies further if Re(ν) 6= 0, in which case the
hyperbolic sine can be replaced by an exponential. Inserting (5.1) in (3.30), and
recalling that 2πRe(νa) = π/2− Im(z) and 2πRe(ν̂b) = Im(z), finally gives

A1 '
p∑

a=1

γa
π

2t
z + ϕ1 , A2 = i

p̂∑

b=1

γ̂b
π

2t
(z − iπ

2
) + iϕ2 , (5.2)

where we have absorbed some irrelevant constants in the arbitrary phases ϕ1

and ϕ2. This approximation breaks down at a distance ∼ t from the annulus
boundaries, where the linear dependence is replaced by the rapidly-oscillating
log sinh function.

The first thing to note is that, away from the boundaries, the harmonic func-
tions depend only on three parameters: t and the total numbers of five-branes,
k =

∑
γa and k̂ =

∑
γ̂b. The precise locations of the five-brane singularities

do not matter, as if these were smeared. It is convenient to scale out the t-
dependence by redefining the annulus coordinate as follows: 2πz = 2tx + iπ2y,
so that x ∈ [0, 2π) and y ∈ [0, 1]. In terms of these coordinates, the holomorphic
functions read

A1 ' k (
x

2
+ i

π2y

4t
) , A2 = ik̂

(
x

2
− π + i

π2(y − 1)

4t

)
, (5.3)

where we have here chosen ϕ1 and ϕ2 so as to impose the canonical gauge condi-
tion (4.4). Inserting these functions in the general form of the solution, see §3.1,
gives the Einstein-frame metric (we recall that α′ = 4):

ds2 = R2g(y)
1
4

[
ds2

AdS4
+ y ds2

S2
1

+ (1− y)ds2
S2
2

]
+R2g(y)−

3
4

[
4t2

π4
dx2 + dy2

]
,
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with R4 = π4 kk̂

t2
, and g(y) = y(1− y) . (5.4)

Furthermore, the dilaton and the non-vanishing gauge fields read:

e2φ =
k̂

k

√
1− y
y

, C(4) = R4

(
6tx

π2
ω0123 + y2(y − 3

2
)ω4567

)
,

B(2) = 2k̂(2π − x)ω45 , C(2) = −2kxω67 . (5.5)

As already noted, this solution only depends on three integer parameters: the
numbers k and k̂ of five-branes, and the modulus t of the annulus which can be
traded for the number of winding D3-branes via the formula (4.13),

L =
kk̂

2t2

∫ +∞

0

du u
2

π
arctan(e−u) =

π2

32

kk̂

t2
. (5.6)

One may also compare (4.13) to the formula (4.11) for the charge M = L + N ,
where N gives the number of D3-branes emanating from five-branes. Since the
summands in these two expressions differ by terms of order t2, we conclude that
N ∼ kk̂ as t → 0. Thus the number of winding D3-branes far exceeds, in this
limit, the number of D3-branes that end on the five-branes.

Not surprisingly, after having effectively smeared the five-branes, the solution
has a Killing isometry under translations of the coordinate x. To be sure, x
enters in the expressions for B(2) and C(2) but this is a gauge artifact since the
3-form field strengths are x-independent. One may thus T-dualize the circle
parametrized by x, using Buscher’s rules [27], to find a solution of type-IIA
supergravity. This can be then lifted to eleven dimensions – the details of these
calculations are given in appendix C. The final result for the eleven-dimensional
metric is

ds2
M−theory = R̄2ds2

AdS4
+ R̄2

[
4dα2 + sin2 α ds2

S3/Zk̂
+ cos2 α ds2

S3/Zk

]
,

ds2
S3/Zk̂

= dθ2
1 + dφ2

1 + 4dx2 − 4 cos θ1dxdφ1 ,

ds2
S3/Zk = dθ2

2 + dφ2
2 + 4dv2 − 4 cos θ2dvdφ2 , (5.7)

where x and v are angle coordinates with periodicities x = x + 2π/k̂ and v =
v + 2π/k, while the radius of AdS4 is R̄2 = (25π2kk̂L)1/3.

39



This is the metric of AdS4×S7/(Zk×Zk̂) with the two orbifolds acting on the
two 3-spheres in S7. The solution furthermore carries L units of four-form flux.
It can be recognized as the near-horizon geometry of L M2-branes sitting at the
fixed point of the orbifold (C2/Zk̂)× (C2/Zk), where the orbifold identifications
are

(z1, z̄2) = e2iπ/k̂(z1, z̄2) and (z3, z̄4) = e2iπ/k(z3, z̄4) .

Note that the two-forms B(2) and C(2) become, after the T-duality and the lift,
part of the metric. This is in line with the fact that D5-branes transform to
Kaluza-Klein monopoles, while T-duality in a transverse dimension maps the
NS5-branes to ALE spaces with singularities of An type [28, 29].

The superconformal field theories that are dual to M theory on AdS4 ×
S7/(Zk × Zk̂) are close relatives of the ABJM theory [30, 31] that have been
analyzed by many authors, see for example [11, 12, 32, 33]. We will discuss them
in more detail in the following section. Let us here only quote their free energy
F = − log |Z| on the 3-sphere. Using the general formula of [33] one finds

F = L3/2

√
2π6

27 Vol7
=

π

3

√
2kk̂ L3/2 , (5.8)

where Vol7 is the volume of the compact (Sasaki-Einstein) manifold whose metric
is normalized so that Rij = 6gij. In the case at hand, this is the unit-radius seven

sphere with orbifold identifications, so that Vol7 = π4/3kk̂.

As a check of our formulae, we may compute this free energy on the type-IIB
side. Following [34], the on-shell IIB action can be computed via a consistent
truncation to pure four-dimensional gravity with unit AdS4 metric multiplied by
a 6d volume factor. The explicit formula derived in [34] is

SIIB = − 1

(2π)7(α′)4

(
4

3
π2

)
(−6)vol6 , (5.9)

where for the solutions of interest

vol6 = −16(4π)2t

∫ 2π

0

dx

∫ 1

0

dy h1h2 ∂z∂z̄(h1h2) . (5.10)

Plugging in the harmonic functions h1 = −i(A1 − Ā1) and h2 = A2 + Ā2, and
performing the integrals gives

SIIB =
π4

48

k2k̂2

(2t)3
=
π

3

√
2kk̂ L3/2 (5.11)
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in perfect agreement with the result of M theory.

To summarize, we have shown here that when L is large our solutions approach
smeared backgrounds dual to M theory on AdS4 × S7/(Zk × Zk̂). In this limit,
the information about the positions of the (localized) five-branes is lost. It is
an interesting question whether and how this information can be retrieved in M
theory.

6 SL(2,Q) and orbifold equivalences

Classical type-IIB supergravity has a continuous global SL(2,R) symmetry [35]
which transforms the axion-dilaton field, S = χ+ ie−2φ, and the NS-NS and R-R
three-form field strengths as follows:

S ′ =
aS + b

cS + d
,

(
H ′(3)

F ′(3)

)
=

(
d −c
−b a

)(
H(3)

F(3)

)
, (6.1)

where a, b, c, d are real numbers with ad− bc = 1. The transformations leave in-
variant the Einstein-frame metric, and the gauge-invariant five-form field strength.

As is well known, only the integer subgroup SL(2,Z) is a symmetry of the full
string theory [36], whereas continuous transformations can be used to generate
inequivalent solutions. The authors of [9, 10] have indeed used such SL(2,R)
transformations to bring the general solution of the Killing-spinor equations to
the local form given in §3.1. Conversely, acting with the transformations (6.1)
generates new solutions from the ones of section 3, with singularities that cor-
respond to general (p, q) five-branes.12 We will now discuss briefly these new
solutions.

6.1 Solutions with (p, q) five-branes

The solutions given by the harmonic functions (3.19) or (3.29) have singularities
on the upper boundary of the infinite strip or the annulus that correspond to D5-
branes, and singularities on the lower boundary that correspond to NS5-branes.
The charges are, respectively, γ(e) and γ̂(f) for the stacks labeled by e and f .
Since the metric is invariant, the SL(2,R) transformations do not change the

12The symbol p, which usually indicates the NS5-brane charge of a (p, q) five-brane, was also used for the
number of five-brane singularities in the upper boundary of Σ. We hope the context will make it clear in
which sense this symbol is being used. The same comment applies to the lower-case Latin letters which label
the five-brane stacks; following standard notation we also use them for the elements of the SL(2,R) matrix.
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positions and the total number of five-brane stacks. It transforms, however, their
charges as follows

γ(e)(0, 1)→ γ(e)(−c, a) and γ̂(f)(1, 0)→ γ̂(f)(d,−b) , (6.2)

where the NS5-brane and D5-brane charges are arranged as usual in a doublet.
Let us write (−c, a) = w(p, q) and (d,−b) = ŵ(p̂, q̂), where p, q and p̂, q̂ are pairs
of relatively-prime integers. Charge quantization requires that

N
(e) ′
5 = wγ(e) and N̂

(f) ′
5 = ŵγ̂(f) (6.3)

be integer for all e and f . Since the γ’s and γ̂’s are arbitrary parameters, this can
always be arranged to get any desired number of five-branes in each stack. The
only conditions are that all five-branes on the upper boundary are of the same
kind, including the sign, that the same is true for all five-branes on the lower
boundary, and that furthermore these two kinds are different, pq̂ − qp̂ 6= 0. This
last constraint follows from the fact that the SL(2,R) matrix has determinant
one.

It should be stressed that the SL(2,R) transformations take us, in general,
outside the ansatz of §3.1; they generate in particular a non-vanishing R-R ax-
ion field. The only exception is S-duality (S → −1/S) which interchanges the
harmonic functions, and acts as mirror symmetry on the holographically-dual
SCFT.

Consider next the D3-brane charges. These are not affected by SL(2,R)
transformations, provided one transforms the gauge choice covariantly. More
explicitly, let us consider the D3-brane charge of the (p, q) singularities in the
upper boundary. The 2-form that has no component on S2

2 [and is therefore well
defined on a patch containing the whole upper boundary where this 2-sphere
shrinks] is B(2) = aB′(2) + cC ′(2). The D3-brane charge of a (p, q) five-brane stack
is given therefore by the integral of the following closed five-form

N
(e) ′
3 =

1

(4πα′)2

∫

C5e

[
F(5) − (aB′(2) + cC ′(2)) ∧ (bH ′(3) + dF ′(3))

]
, (6.4)

with the gauge choice aB′(2) + cC ′(2) = 0 in the lower-boundary segment [δ̂1, 2t].
This is identical to the integral in the non-transformed solution, so that

N
(e) ′
3 = γe

p̂∑

f=1

γ̂f

(
− i

2π
ln

[
ϑ1 (νef |τ)

ϑ1 (ν̄ef |τ)

ϑ2 (ν̄ef |τ)

ϑ2 (νef |τ)

]
− 4

πα′
ϕ2

)
, (6.5)

which is the same result as (4.3). The quantization of this charge puts the
same constraints on the continuous parameters as in the untransformed solution.

42



This is not however the case for the quantization of individual linking numbers,
since the number wγ(e) of (p, q) five-branes depends, via w, on the SL(2,R)
transformation.

Among all the solutions discussed here, those related by SL(2,Z) transfor-
mations are physically equivalent [36]. To characterize inequivalent solutions, we
may perform a SL(2,Z) transformation that maps (p̂, q̂) to (1, 0), so that the sin-
gularities on the lower boundary correspond to pure NS5-branes. Using then the
shift symmetry (p, q)→ (p+ql, q), which leaves invariant the NS5 branes, we can
bring the second type of five-branes to a canonical form (p, q) with 0 ≤ p < |q|.
The SL(2,R) transformation from the ansatz of §3.1 to the above canonical form
of the general solution is effected by the following matrix

(
ŵ −wp
0 wq

)
with wŵq = 1 . (6.6)

Multiplying (6.5) with wŵq, using (6.3) and the infinite-product expressions for
the ϑ-functions gives

N
(a) ′
3 = qN

(a) ′
5

p̂∑

b=1

N̂
(b) ′
5

[ +∞∑

n=0

f(δ̂b − δa − 2nt)−
+∞∑

n=1

f(−δ̂b + δa − 2nt)
]
, (6.7)

and likewise

N̂
(b) ′
3 = qN̂

(b) ′
5

p∑

a=1

N
(a) ′
5

[ +∞∑

n=1

f(−δ̂b + δa − 2nt)−
+∞∑

n=0

f(δ̂b − δa − 2nt)
]
. (6.8)

A similar expression can be written for the winding charge L′. Integrality of the
linking numbers, N

(a) ′
3 /N

(a) ′
5 and N̂

(b) ′
3 /N̂

(b) ′
5 , constraints the modulus t and the

positions of the singularities on the annulus boundary. When q 6= 1 there are
more allowed choices than in the case of pure D5-branes and NS5-branes.

The charges (6.7) and (6.8) obey the sum rule (4.8), and they thus still define
two partitions ρ and ρ̂ of some integer N . Furthermore, these partitions still
satisfy the basic inequalities (1.1). In general, we have no clear argument for
why these conditions should be obeyed on the gauge-theory side. Indeed, for
arbitrary (p, q) there is no known Lagrangian description of the field theory (we
refer the reader to section 8 of [37] for more details). Such a description only
exists for the configurations involving (1, k) 5-branes [37, 38, 11] : the U(N)
gauge theory living on a stack of N D3-branes has level k (or −k) Chern-Simons
terms depending on whether the D3-branes end on the (1, k) five-brane from the
left (or the right).
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6.2 Orbifold equivalences and free energies

An interesting corollary of the holographic dualities that we have presented in this
work is the orbifold equivalence of different N = 4 superconformal gauge theories
in three dimensions. Orbifold equivalences translate the fact that quantities
which are sensitive only to the untwisted sector, are not affected by an orbifold
operation [39, 40, 41]. Such quantities usually exist in the classical limit of string
theory, and in the large-Nc (planar) limit of gauge theories.13 An example of
orbifold equivalence for the ABJM theory was analyzed recently in [44, 45]. Here
we will present some more examples relating N = 4 circular-quiver theories.

The theories that we will discuss are related by SL(2,R) transformations with
rational entries, i.e. by elements of SL(2,Q). Two theories related in this way are
clearly equivalent in the limit where the supergravity approximation is valid, since
SL(2,R) is a symmetry of type-IIB supergravity. A similar rational extension
of the perturbative T-duality group O(d, d,Z) has been discussed recently in
[13]. As explained in this reference, O(d, d,Q) transformations can be seen as
orbifold operations14 which lead to equivalences that are valid at any order in the
α′ expansion. One may likewise view the SL(2,Q) transformations as orbifold
operations on the F-theory torus. This formal interpretation does not, however,
imply in any obvious way that the equivalences presented here extend beyond
the supergravity approximation.

The simplest example of “equivalent” theories are theories related by the
SL(2,Q) transformation

(
r/s 0
0 s/r

)
with (r, s) relatively prime integers .

Such diagonal transformations do not modify the five-brane types, but they
change the number of five-branes in each stack. They also transform their linking
numbers, so as to leave unchanged the D3-brane charges:

N̂
(b) ′
5 =

r

s
N̂

(b)
5 , l̂ ′j =

s

r
l̂j , N

(a) ′
5 =

s

r
N

(a)
5 , l ′i =

r

s
li . (6.9)

Consistency with charge quantization requires of course that N̂
(b)
5 and li be multi-

ples of s, and that N
(a)
5 and l̂j be multiples of r. Since the number, L, of winding

13For a discussion of when the equivalence is exact see [42, 43].

14If x = x+ 2π parametrizes the orbits of a Killing isometry, then the orbifold identification x ≡ x+ 2πκ
for rational κ changes the radius of the Killing orbits, and can thus be viewed as a O(1, 1,Q) transformation.
Rationality ensures that the orbifold group is of finite order. These observations generalize to O(d, d,Q).
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Figure 15: The two circular-quiver gauge theories related by the SL(2,Q) transformation (6.11). The
theory on the right is obtained from the one on the left by doubling the number of gauge-group factors,
removing the fundamental hypermultiplets and adding Chern-Simons terms with alternating sign.

D3-branes does not transform, whereas

k → s

r
k and k̂ → r

s
k̂ , (6.10)

the supergravity free energy (5.8) is invariant, as expected. Note that even these
simple SL(2,Q) transformations act highly non-trivially on the field theory side.
For instance, the number of gauge-group factors is multiplied by r/s, while the
total number of fundamental hypermultiplets is multiplied by s/r.

As another example of SL(2,Q) equivalence, we consider the transformation

(
1 M−1

0 1

)
with M ∈ N . (6.11)

This transformation leaves the NS5-branes invariant, while it converts a stack
of M D5-branes to a single (1,M) five-brane. Recall that the worldvolume the-
ory of a stack of N D3-branes intersecting a stack of M D5-branes is a U(N)
gauge theory with M fundamental hypermultiplets. Replacing the D5-branes by
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a (1,M) five-brane leads to a U(N)M × U(N)−M gauge theory with a bifunda-
mental hypermultiplet and level M (respectively −M) Chern-Simons terms (see
e.g. [30]). The transformation (6.11) can be used therefore to relate the following
two theories:

(i) a U(N)k̂ gauge theory, with M fundamental hypermultiplets for every
gauge-group factor, and a bifundamental for each neighboring pair;

(ii) a U(N)2k̂ gauge theory with bifundamentals for each neighboring pair,
and Chern-Simons terms of alternating level ±M .

The corresponding circular quivers are illustrated in Figure 15. As a test of their
SL(2,Q) equivalence we will conclude this section by comparing the free energies
of these two gauge field theories in the limit N � 1.

Let us first recall the result (5.8) for the free energy on the supergravity
side. Replacing the number of winding D3-branes by N , and the total number
of D5-branes by Mk̂, leads to the expression

Fsugra =
π
√

2

3
k̂M1/2N3/2 . (6.12)

This should be compared to the result on the field-theory side. For the neck-
lace quiver of theory (ii) the calculation has been performed in [33]. These
authors used the localization techniques of [46] to reduce the calculation to a
matrix-model integral, which they then evaluated for large-N by the saddle-point
method. Their result agrees precisely with (6.12), confirming the AdS/CFT cor-
respondence. What we need to do is to also recover this result from the original
gauge theory (i).

Since for theories with N ≥ 4 supersymmetries the free energy does not run
[46], we may perform the calculation near the (ultraviolet) Gaussian fixed point.
Using the standard localization techniques, one reduces the partition function of
theory (i) to the following matrix-model integral:

Z(i) =
1

(N !)k̂

∫ k̂∏

a=1

dNσa
(2π)N

∏
i<j 4 sinh2

(σia−σja
2

)

∏
i,j 2 cosh

(σia+1−σ
j
a

2

)
1

[∏
j 2 cosh

(
σja
2

)]M , (6.13)
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where i, j run from 1 to N . This can be written as Z(i) =
∫
e−F (σa) with

F (σa) = −2
∑

a ; i<j

log
[
2 sinh

(σia − σja
2

)]
+
∑

a ; i,j

log
[
2 cosh

(σia+1 − σja
2

)]

+
∑

a ; j

M log
[
2 cosh

(σja
2

)]
+ k̂ log(N !) + k̂N log(2π) . (6.14)

Following reference [33], we let σja = Nβxja, and fix β so that at the saddle point

the xja are of order one. Contrary to this reference, we do not introduce an
imaginary part for the xja. Indeed, the saddle point equations are invariant under
complex conjugation, so we are entitled to look for real solutions.

In the limit N � 1, we may replace the variables xia by a continuous density
ρa(x) normalized so that

∫
dxρa(x) = 1. The expression 6.14 can be written as

F (ρa) =
k̂∑

a=1

1
2

[
π2N2−β ∫ dxaρa(xa)2 +MN1+β

∫
dxa|xa|ρa(xa)

]

+O(N2−2β, N logN) . (6.15)

The details of the computation are subtle and can be found in appendix A of
[33].

The saddle-point equations are non-trivial when the two terms in this expres-
sion are of the same order, so that β = 1

2
. Furthermore, thanks to the symmetries

of the problem, we may look for saddle points with ρa(x) = ρ(x) for all a,15 and
ρ(x) = ρ(−x). With these assumptions the above free energy reduces to

F (ρ) =
k̂

2
N

3
2

[
π2

∫
dx ρ(x)2 +M

∫
dx |x|ρ(x)− γ

∫
dx ρ(x) + γ

]
, (6.16)

where the Lagrange multiplier γ imposes the constraint
∫
dxρ(x) = 1. The

ensuing saddle point equation,

2π2ρ(x) +M |x| = γ , (6.17)

is solved by the eigenvalue density

ρ(x) =
1

2π2

(
γ −M |x|

)
for |x| < x0,

= 0 for |x| > x0. (6.18)

15The authors of [33] arrive to this same ansatz after some approximation of the saddle point equations.
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The constraint
∫
dxρ(x) = 1 fixes the Lagrange multiplier

γ =
Mx0

2
+
π2

x0

, (6.19)

whereas the positivity of ρ implies x0 ≤ π
√

2
M

. Combining all these formulae

gives

F (x0) = k̂N
3
2

[ π2

4x0

+
Mx0

4
− M2x3

0

48π2

]
. (6.20)

We now need to minimize this expression with respect to x0 which takes values
in (0, π

√
2/M ]. The minimum is achieved at the rightmost endpoint, leading to

the final result for the gauge theory (i):

F(i) =
π
√

2

3
k̂
√
MN

3
2 , (6.21)

in perfect agreement with both the necklace-quiver and the supergravity calcu-
lations. Note that although the final results agree, the three calculations differ
greatly in their specific details.
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A Mirror symmetry of inequalities

We will here show that the inequalities (2.24) are invariant under the mirror map,
i.e. that

L+ ρT > ρ̂ ⇐⇒ L+ ρ̂T > ρ . (A.1)
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A1

A2

A3

....

τσ

Ar

Figure 16: The difference of two Young tableaux defines an alternating sequence {A1, A2, · · · , Ar} where
|Ai| counts the number of boxes in the ith region enclosed by the two histograms of the Young tableaux. In
this example A1 = 2, A2 = −1, A3 = 3, · · · . The difference of the transposed tableaux, obtained by rotating
the figure by 90o, defines the inverse sequence {Ar, · · · , A2, A1}.

Let us first recall that if τ = (a1, a2, ..., at) and σ = (b1, b2, ..., bs) are two parti-
tions of the same number N , expressed as vectors with non-increasing positive
components, then L+ τ > σ is a shorthand notation for the set of inequalities

L+
n∑

i=1

ai >
n∑

i=1

bi for all n = 1, ...,max(t, s). (A.2)

These can be visualized more easily in the diagrammatic representation of Figure
16, which defines a sequence {A1, A2, · · · , Ar} of areas with alternating signs. In
terms of this sequence, the inequalities read

L+ A1 > 0 , L+ (A1 + A2) > 0 , · · · , L > 0 , (A.3)

where the last inequality follows from the fact that A1+A2 · · ·+Ar = 0. Reversing
the order, one may put these inequalities in the following form:

L− As > 0 , L− (As + As−1) > 0 , · · · , L > 0 , (A.4)

or equivalently L+σT > τT , as is evident if ones rotates by 90o Figure 16. Setting
τ ≡ ρT and σ ≡ ρ̂ proves the mirror equivalence (A.1), as claimed.
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B Proof of the inequalities in supergravity

We have already shown in §4.2 that, with an appropriate choice of gauge, the
linking numbers of the supergravity solution can be confined to the intervals
l(a) ∈ (0, k̂] and l̂(b) ∈ (0, k]. In particular, the linking numbers are positive, and
we demand that they be quantized. Thus the Young tableaux ρ and ρ̂ are well
defined, and the inequalities L + ρT > ρ̂ make sense. We will now prove that
these inequalities are automatically obeyed on the supergravity side.16

Let us recall the explicit expressions of the five-brane linking numbers and of
L:

l(a) =

p̂∑

b=1

N̂b

[ +∞∑

n=0

f(δ̂b − δa − 2nt)−
+∞∑

n=1

f(−δ̂b + δa − 2nt)
]
,

l̂(b) =

p∑

a=1

Na

[ +∞∑

n=0

f(δ̂b − δa − 2nt)−
+∞∑

n=1

f(−δ̂b + δa − 2nt)
]
, (B.1)

L =

p∑

a=1

p̂∑

b=1

+∞∑

k=1

k NaN̂b

[
f(δ̂b − δa − 2kt) + f(δa − δ̂b − 2kt)

]
,

where f(x) = 2
π

arctan(ex), and we use in this appendix a lighter notation for the

five-brane charges, Na ≡ N
(a)
5 and N̂b ≡ N̂

(b)
5 . In terms of these linking numbers

and the five-brane charges the partitions ρ̂ and ρT read:

ρ̂ = (l̂(1), ..., l̂(1)

︸ ︷︷ ︸
N̂1

, ..., l̂(b), ..., l̂(b)︸ ︷︷ ︸
N̂b

, ..., l̂(p̂), ..., l̂(p̂)︸ ︷︷ ︸
N̂p̂

) , (B.2)

and

ρT = (

p∑

a=1

Na, ...,

p∑

a=1

Na

︸ ︷︷ ︸
l(p)

,

p−1∑

a=1

Na, ...,

p−1∑

a=1

Na

︸ ︷︷ ︸
l(p−1)−l(p)

, ...,
A∑

a=1

Na, ...,
A∑

a=1

Na

︸ ︷︷ ︸
l(A)−l(A+1)

, ..., N1, ..., N1︸ ︷︷ ︸
l(1)−l(2)

) .

(B.3)

We need now to establish the set of inequalities
r∑

s=1

ms + L >

r∑

s=1

l̂s ∀r = 1, . . . ,max(k, k̂) . (B.4)

16In the graphic form of Figure 16 the inequalities actually make sense for any pair of monotonic functions
with equal definite integral, and with transposition of the Young tableau being replaced by function inversion.
This should make it possible to prove the inequalities without using quantization and the partial gauge fixing
that was required to define the Young tableaux. We will not pursue this approach further here.
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where ρ̂ = (l̂1, l̂2, ..., l̂k̂) and ρT = (m1,m2, ...,mk) are the above two partitions.

The last inequality, the one for r = max(k, k̂), implies that L > 0. This is
obeyed automatically, as seen from the explicit expression (B.1) and the fact that
f is strictly positive. As in the case of the linear quivers, it is now sufficient to
prove the inequalities (B.4) for the corners of the histogram ρ̂, i.e. for the values

r =
J∑

b=1

N̂b where J = 1, 2, ..., p̂ . (B.5)

We refer the reader to [5] for a detailed explanation of this claim. The above
subset of inequalities takes the following explicit form:

J∑

b=1

l̂(b)N̂b < L+

p∑

a=I+1

l(a)Na +

(
I∑

a=1

Na

)(
J∑

b=1

N̂b

)
. (B.6)

This is the form that we will prove using the supergravity calculation of the
charges.

Let us give a name to the infinite sum that enters in the supergravity expres-
sions for the linking numbers:

F (x, 2t) ≡
∞∑

n=0

f(x− 2nt)−
∞∑

n=1

f(−x− 2nt) . (B.7)

In terms of the function F the inequalities (B.6) can be written as

p∑

a=1

J∑

b=1

NaN̂b F (δ̂b − δa, 2t) < L+

p∑

a=I+1

p̂∑

b=1

NaN̂b F (δ̂b − δa, 2t) +
I∑

a=1

J∑

b=1

NaN̂b .

Splitting the sums, simplifying and rearranging terms gives:

I∑

a=1

J∑

b=1

NaN̂b F (δ̂b − δa, 2t)−
p∑

a=I+1

p̂∑

b=J+1

NaN̂b F (δ̂b − δa, 2t) < L+
I∑

a=1

J∑

b=1

NaN̂b .

We show that this is automatically satisfied by putting the following successive
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bounds on the left hand side:

I∑

a=1

J∑

b=1

NaN̂b F (δ̂b − δa, 2t)−
p∑

a=I+1

p̂∑

b=J+1

NaN̂b F (δ̂b − δa, 2t)

<

I∑

a=1

J∑

b=1

NaN̂b

∞∑

n=0

f(δ̂b − δa − 2nt) +

p∑

a=I+1

p̂∑

b=J+1

NaN̂b

∞∑

n=1

f(−δ̂b + δa − 2nt)

<
I∑

a=1

J∑

b=1

NaN̂b f(δ̂b − δa) +

p∑

a=1

p̂∑

b=1

NaN̂b

∞∑

n=1

[
f(δ̂b − δa − 2nt) + f(−δ̂b + δa − 2nt)

]

< L+
I∑

a=1

J∑

b=1

NaN̂b . (B.8)

In the first inequality we have dropped terms that are explicitly negative. The
second inequality is obtained by extension of the sums. Finally, in the third
inequatlity we used, in addition to the bound 0 < f(x) < 1, the expression (B.1)
for the winding charge L. This completes the proof.

C From IIB to M theory for large L

We give here the detailed T-duality transformation of the type-IIB solution for
large winding number L to a solution of type-IIA supergravity, and the subse-
quent uplift to eleven dimensions. We will follow the metric, dilaton and two-
form gauge fields, which all become part of the metric in eleven dimensions. The
four-form potential of the IIB theory transforms to the three-form potential of
M theory, but we leave the details of its transformation as an exercise for the
reader.

The type-IIB backgrounds in the large-L limit are given by the expressions
(5.4) and (5.5). In order to use the standard Buscher rules, we make a gauge
transformation that removes the x-dependence from the gauge potentials. The
new two-form potentials read

B(2) = −2k̂ cos(θ1)dx ∧ dφ1 , C(2) = −2k cos(θ2)dx ∧ dφ2 ,

where we recall that x is periodic with period 2π. We also transform the Einstein-
frame to the string-frame metric, GMN = eφgMN , in terms of which Buscher’s
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rules read [27]:

G′µν = Gµν −
GxµGxν −BxµBxν

Gxx

, G′0ν =
Bxµ

Gxx

, G′xx =
1

Gxx

,

B′µν = Bµν −
GxµBxν −BxµGxν

Gxx

, B′0ν =
Gxµ

Gxx

, e4φ′ =
e4φ

Gxx

, (C.1)

where the prime indicates the type-IIA fields in string frame, and the lower-case
Greek indices µ, ν run over all dimensions other than x. In addition, the 2-form
R-R potential transforms to a one-form potential,

C ′(1)µ = C(2)xµ . (C.2)

Since the IIB metric had no (xµ) components B′ is zero, while the original 2-
form NS-NS gauge field becomes an off-diagonal component of the IIA metric.
In string-frame this latter reads:

dS 2
IIA =

π2k̂

t

√
1− y

[
ds2

AdS4
+ y ds2

S2
1

+ (1− y)ds2
S2
2

]

+
4π2

t

√
1− y

[
y

k̂
(dx− k̂

2
cosθ1dφ1)2 + k̂

dy2

y(1− y)

]
, (C.3)

whereas the R-R gauge field and the transformed dilaton field are given by

C ′(1) = −2k cos θ2dφ2 , e4φ′ =
4π2

t

k̂

k2
(1− y)3/2 . (C.4)

Finally we uplift the solution to M theory, whose metric (denoted here by a
bar) is given in terms of the type-IIA backgrounds by the following relations [47]

ḡMN = e−4φ′/3(G′MN +
1

4
e4φ′C ′MC

′
N) , ḡMv = e8φ′/3C ′M , ḡvv = 4e8φ′/3 , (C.5)

where v = v + 2π parametrizes the eleventh dimension. Redefining the coordi-
nates x→ k̂x , v → kv and y = sin2 α gives, after some straightforward algebra,
the AdS4 × S7/(Zk × Zk̂) metric, equation (5.7).
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